ملتقى طلاب وطالبات جامعة الملك فيصل,جامعة الدمام

ملتقى طلاب وطالبات جامعة الملك فيصل,جامعة الدمام (https://vb.ckfu.org/)
-   المستوى الثاني - كلية الأداب (https://vb.ckfu.org/f308)
-   -   [ مذاكرة جماعية ] : { تجمع مذاكرة مادة مبادئ الأحصاء } (https://vb.ckfu.org/t741903.html)

مازن اليامي 2016- 4- 30 02:32 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
الله يعينا عزالله اني مضجج
يالله لاتضيع لنا جهد

rasila 2016- 4- 30 02:38 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
اقتباس:

المشاركة الأصلية كتبت بواسطة SH.M (المشاركة 13360210)
شلون انحلت هذي ؟ :mh12::mh12:

نفس السؤال:Cry111::Cry111:

مجرد عآبر 2016- 4- 30 02:39 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
اقتباس:

المشاركة الأصلية كتبت بواسطة رجاااوووي (المشاركة 13359676)
P10=28, q1=50, m=60, q3=78, p90=96


الربيع الثاني q2 يساوي :
أ-2 ب- 60 ج-62 د-64

المدى الربيعي للبيانات يساوي :
أ- 14 ب- 28 ج- 34 د- 68


الانحراف الربيعي للبيانات يساوي :
أ- 14 ب- 28 ج- 34 د-68


معامل الالتواء الربيعي للبيانات بساوي (تقريبا):
أ- 0.06 ب- 0.12 ج- 0.14 د-0.29


معامل الاختلاف الربيعي يساوي 0تقريبا ):
أ- 22% ب- 22 ج-4.5 د 4.5%


المنين الخمسون للبيانات يساوي :
أ- 68 ب- 34 ج- 28 د-60





وانا ابي شرححح الله يوفقكم اللي يعرف لايبخل



السؤال الاول : عن الربيع الثاني .. < اللي هو الوسيط ..


اولا : الربيع الثاني = الوسيط = المئين الخمسون



m= 60 .. اذا الجواب هو = 60


السؤال الثاني : المدى الربيعي ..


المدى الربيعي = q3 - q1


78 - 50 = 28 .. الجواب 28


السؤال الثالث : الانحراف الربيعي ..


الانحراف الربيعي = نصف المدى الربيعي ..


طلع لنا قبل شوي المدى بـ 28 .. معناته النص بـ 14


يصير جواب السؤال الثالث هو : 14



الاسئلة الباقية ، عجزت عنها ,:000:

غيداء1 2016- 4- 30 02:42 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
ايش المقاييس الي يمكن حسابه فى التوزيعات المفتوحه
والي لايمكن حسابها فى التوزيعات المفتوحه

rreemmaa 2016- 4- 30 02:45 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
1 مرفق




عدد الطلاب الراسبين (الحاصلين على درجة اقل من 60)
الطلاب الراسبين يعني اللي درجتهم اقل من ستين يعني ايش؟
يعني ناخذ طول الفئة الاولى <لانها من صفر الى ستين
اذا الفئة الي احنا نبيها<<< اذا نجيب التكرار الى الفئة ,,, طول الفئة^كثافة التكرار = 60^2=120




عدد الطلاب الحاصلين على 80 فأكثر
الحاصلين على 80 فاكثر <يعني الفئة الرابعة صح؟
لان الفئة الثالثة اقل من 80
اذا طول الفئة الرابعة =20
الكثافة =2
الطول ^الفئة=20^2=40




عدد الطلاب الحاصلين على تقدير c+ (اكثر من 75 واقل من 80)
75 < تقع في نصف الفئة الثالثة <نوجد مركز الفئة الثالثة 80+70=75
قال لنا اقل من 80 يعني تكون فئتنا الجديدة من 75 الى 80
يعني طول الفئة كم؟ طولها 5 صح؟؟
طيب طول الفئة ^الكثافة=5^4=20




عدد الطلاب الناجحين والحاصلين على تقدير B على الأكثر (اكثر من 60 واقل من 80)
الحاصلين على اكثر من 60 واقل من 80 يعني الفئة الثانية و الثالثة
طول الفئة الثانية =10 في كثافتها 6=60
طول الفئة الثالثة =20 في كثافتها2=40
المجموع = 100




العدد الكلي للطلاب
اول شي نطلع طول كل فئة على حدة
نضرب طول كل فئة في تكرارها ونجمع النواتج
يصير عندنا 260 < وهذا هو العدد الكلي للطلاب

الناجحه دوماً 2016- 4- 30 02:46 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
=الفراشه؛;13359894]
- معامل الإختلاف هو أحد مقاييس :

1 1. - النزعة المركزية
2 2. - التشتت
3 3. - الالتواء
4 4. -
التشتت النسبي

2- معامل الإختلاف الربيعي هو أحد مقاييس :

1 1. - النزعة المركزية
2 2. التشتت
3 3. الالتواء
4 4. - التشتت النسبي


3- لعدد من القيم ، يُعرف متوسط القيم المطلقة للإنحرافات عن الوسط الحسابي على أنه :

1 1. - الوسط الحسابي للقيم
2 2. - الانحراف المتوسط للقيم
3 3. - تباين تلك القيم
4 4. - الإنحراف المعياري للقيم


4- لعدد من القيم ، يُعرف متوسط مربعات الإنحرافات عن الوسط الحسابي على أنه :

1 1. - الوسط الحسابي للقيم
2 2. - الانحراف المتوسط للقيم
3 3. - تباين تلك القيم
4 4. - الإنحراف المعياري للقيم


5- لعدد من القيم ، يُعرف الجذر التربيعي للمتوسط مربعات الإنحرافات عن الوسط الحسابي على أنه :

1 1. - الوسط الحسابي للقيم
2 2. - الانحراف المتوسط للقيم
3 3. - تباين تلك القيم
4 4. - الإنحراف المعياري للقيم


6- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وأضفنا لكل قيمة من القيم 2 فإن الوسط الحسابي للقيم الجديده يكون:

1 1. ـ 20
2 2. ـ 22
3 3. ـ 40
4 4. ـ 18


7- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وأضفنا لكل قيمة من القيم 2 فإن الانحراف المتوسط للقيم الجديدة يكون:

1 1. ـ 4
2 2. ـ 6
3 3. ـ 8
4 4. ـ 2


8- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وأضفنا لكل قيمة من القيم 2 فإن الانحراف المعياري للقيم الجديده يكون:

1 1. ـ 5
2 2. ـ 7
3 3. ـ 10
4 4. ـ 3


9- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وأضفنا لكل قيمة من القيم 2 فإن التباين للقيم الجديده يكون:

1 1. ـ 2
2 2. ـ 25
3 3. ـ 7
4 4. ـ 49


10- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في 2 فإن الوسط الحسابي للقيم الجديده يكون:

1 1. ـ 20
2 2. ـ 22
3 3. ـ 40
4 4. ـ 18


11- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في 2 فإن الانحراف المتوسط للقيم الجديده يكون:

1 1. ـ 4
2 2. ـ 6
3 3. ـ 8
4 4. ـ 2


12- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في 2 فإن الانحراف المعياري للقيم الجديده يكون:

1 1. ـ 3
2 2. ـ 5
3 3. ـ 7
4 4. ـ 10


13- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في 2 فإن التباين للقيم الجديده يكون:

1 1. ـ 2
2 2. ـ 25
3 3. ـ 10
4 4. ـ 100


14- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في -2 فإن الوسط الحسابي للقيم الجديده يكون:

1 1. ـ 20
2 2. ـ 22
3 3. ـ 40
4 4. ـ -40


15- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في -2 فإن الانحراف المتوسط للقيم الجديده يكون:

1 1. ـ 4
2 2. ـ 6
3 3. ـ 8
4 4. ـ -8


16- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في -2 فإن الانحراف المعياري للقيم الجديده يكون:

1 1. ـ 5
2 2. ـ 7
3 3. ـ 10
4 4. ـ -10


17- إذا كان الوسط الحسابي لمجموعة من القيم هو 20 وانحرافها المتوسط 4 وانحرافها المعياري 5 وضربنا كل قيمة من القيم في 2 فإن التباين للقيم الجديده يكون:

1 1. ـ 2
2 2. ـ 25
3 3. ـ 100
4 4. ـ -100


18- التباين لمجموعة من القيم هو :

1 1. - الانحراف المعياري للقيم
2 2. - مربع الانحراف المعياري للقيم
3 3. - الجذر التربيعي للانحراف المعياري
4 4. - نصف الانحراف المعياري


19- الانحراف المعياري لمجموعة من القيم هو :

1 1. - تباين هذه القيم
2 2. - نصف التباين للقيم
3 3. - الجذر التربيعي لتباين هذه القيم
4 4. - مربع تباين هذه القيم


20- هو قيمة تقسم مجموعة القيم [ بعد ترتيبها تصاعدياً ] الى مجموعتين بحيث تقع 25% من القيم تحتها ( أي أقل منها ) ، 75% من القيم فوقها (أي أكبر منها ):

1 1. - الربيع الأول
2 2. - الوسيط
3 3. - الربيع الثالث
4 4. - المئين العاشر


21- هو قيمة تقسم مجموعة القيم [ بعد ترتيبها تصاعدياً ] الى مجموعتين بحيث تقع 75% من القيم تحتها ( أي أقل منها ) ، 25% من القيم فوقها (أي أكبر منها ):

1 1. - الربيع الأول
2 2. - الوسيط
3 3. - الربيع الثالث
4 4. - المئين العاشر


22- هو قيمة تقسم مجموعة القيم [ بعد ترتيبها تصاعدياً ] الى مجموعتين بحيث تقع 10% من القيم تحتها ( أي أقل منها ) ، 90% من القيم فوقها (أي أكبر منها ):

1 1. - المئين التسعون
2 2. - الوسيط
3 3. - الربيع الثالث
4 4. - المئين العاشر


23- هو قيمة تقسم مجموعة القيم [ بعد ترتيبها تصاعدياً ] الى مجموعتين بحيث تقع 90% من القيم تحتها ( أي أقل منها ) ، 10% من القيم فوقها (أي أكبر منها ):

1 1. - المئين التسعون
2 2. - الوسيط
3 3. - الربيع الثالث
4 4. - المئين العاشر


24- الوسيط لمجموعة من القيم هو نفسه :

1 1. - المئين العاشر
2 2. - الربيع الأول
3 3. - الربيع الثاني
4 4. - الربيع الثالث


25- الوسيط لمجموعة من القيم هو نفسه :

1 1. - المئين العاشر
2 2. - الربيع الاول
3 3. - المئين الخمسون
4 4. - الربيع الثالث


26- الربيع الاول لمجموعة من القيم هو نفسه :

1 1. - المئين رقم 25
2 2. - المئين رقم 75
3 3. - نصف الوسيط
4 4. - الوسيط


27- الربيع الثالث لمجموعة من القيم هو نفسه :

1 1. - المئين رقم 25
2 2. - المئين رقم 75
3 3. - نصف الوسيط
4 4. - الوسيط


28- المدى الربيعي يساوي:

1 1. - ضعف الانحراف الربيعي
2 2. - نصف الانحراف الربيعي
3 3. - الانحراف الربيعي
4 4. - المدى المئيني


29- مقياس لا يتأثر بالقيم المتطرفه :

1 1. - الوسط الحسابي
2 2. - الانحراف المعياري
3 3. - المدى
4 4. - الوسيط


30- مقياس لا يمكن حسابه للتوزيعات المفتوحة:

1 1. - الوسيط
2 2. - المدى
3 3. - الربيع الاول
4 4. - الربيع الثالث


31- مجموعة من القيم عددها 10 ولها البيانات التالية: سيقما X بـ 60 ، سيقما IdI بـ 22 ، سيقما d تربيع بـ 76 ، فان الوسط الحسابي للبيانات السابقه هو :

1 1. ـ 2.2
2 2. ـ 7.6
3 3. ـ 6
4 4. ـ 2.76


32- مجموعة من القيم عددها 10 ولها البيانات التالية: سيقما X = 60 ، سيقما IdI =22 ، سيقما dتربيع = 76 ، فان الانحراف المتوسط للبيانات السابقه هو :

1 1. ـ 2.2

2 2. ـ 7.6
3 3. ـ 6
4 4. ـ 2.76


33- مجموعة من القيم عددها 10 ولها البيانات التالية: سيقما X = 60 ، سيقما IdI =22 ، سيقما dتربيع = 76 ، فان التباين للبيانات السابقه هو :

1 1. ـ 2.2
2 2. ـ 7.6
3 3. ـ 6
4 4. ـ 2.76


34- مجموعة من القيم عددها 10 ولها البيانات التالية: سيقما X = 60 ، سيقما IdI =22 ، سيقما d تربيع = 76 ، فان الانحراف المعياري للبيانات السابقه هو :

1 1. ـ 2.2
2 2. ـ 7.6
3 3. ـ 6
4 4. ـ 2.76


35- اذا كان الوسط الحسابي لدرجات عدد من الطلاب هو 50 وانحرافها المعياري 5 فإن معامل الاختلاف للدرجات يكون :

1 1. ـ 0.1
2 2. ـ 10%
3 3. ـ 0.5
4 4. ـ 50%


36- الدرجة المعيارية للقيمة 13 في مجموعة من القيم وسطها الحسابي 10 وتباينها 4 هي :

1 1. ـ 1.5
2 2. ـ 0.67
3 3. ـ 0.75
4 4. ـ 1.33


37- مقاييس الالتواء هي :

1 1. - مقاييس ترصد الدرجة التي تتجه بها البيانات الكمية للانتشار حول قيمة متوسطة
2 2. - مقاييس تحدد النسبة المئوية للتشتت المطلق بالنسبة لقيمة متوسطة
3 3. - هي مقاييس ترصد درجة تماثل أو البعد عن التماثل لتوزيع ما
4 4. - مقاييس ترصد درجة التدبب في قيمة المنحنى مقارنة بقيمة منحنى التوزيع الطبيعي


38- مقاييس التفرطح هي :

1 1. - قيم نموذجية يمكن ان تمثل مجموعة البيانات
2 2. - مقاييس ترصد الدرجة التي تتجه بها البيانات الكمية للانتشار حول قيمة متوسطة
3 3. - مقاييس تحدد النسبة المئوية للتشتت المطلق بالنسبة لقيمة متوسطة
4 4. - مقاييس ترصد درجة التدبب في قيمة المنحنى مقارنة بقيمة منحنى التوزيع الطبيعي


39- لتحديد معامل بيرسون الأول للالتواء يلزم معرفة :
الوسط والمنوال
3 3. - الربيعات Q3 , Q1
4 4. - المئينات P90 , P10


40- لتحديد معامل بيرسون الثاني للالتواء يلزم معرفة :

1 1. - الوسط والوسيط
2 2. - الوسط والمنوال
3 3. - الربيعات Q3 , Q1
4 4. - المئينات P90 , P10


41- لتحديد معامل الالتواء الربيعي يلزم معرفة :

1 1. - الوسط والوسيط
2 2. - الوسط والمنوال
3 3. - الربيعات Q3 , Q1
4 4. - المئينات P90 , P10


42- لتحديد معامل الالتواء المئيني يلزم معرفة :

1 1. - الوسط والوسيط
2 2. - الوسط والمنوال
3 3. - الربيعات Q3 , Q1
4 4. - المئينات P90 , P10


43- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي 0.45 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً متوسطاً
2 2. - مرتبطان ارتباطاً طردياً قوياً
3 3. - غير مرتبطين
4 4. - مرتبطان ارتباطاً طردياً متوسطاً


44- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي 0.84 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً متوسطاً
2 2. - مرتبطان ارتباطاً طردياً قوياً
3 3. - غير مرتبطين
4 4. - مرتبطان ارتباطاً طردياً متوسطاً


45- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي -0.92 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً قوياً
2 2. - مرتبطان ارتباطاً طردياً قوياً
3 3. - مرتبطان ارتباطاً عكسياً تاماً
4 4. - مرتبطان ارتباطاً طردياً متوسطاً


46- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي -0.22 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً قوياً
2 2. - مرتبطان ارتباطاً عكسياً متوسطاً
3 3. - مرتبطان ارتباطاً عكسياً تاماً
4 4. - مرتبطان ارتباطاً عكسياً ضعيفاً


47- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي -1 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً قوياً
2 2. - مرتبطان ارتباطاً عكسياً متوسطاً
3 3. - مرتبطان ارتباطاً عكسياً تاماً
4 4. - مرتبطان ارتباطاً عكسياً ضعيفاً


48- اذا كان معمل الارتباط r بين المتغيرين y , x يساوي -2 فهذا يعني أن y , x :

1 1. - مرتبطان ارتباطاً عكسياً قوياً
2 2. - مرتبطان ارتباطاً طردياً قوياً
3 3. - مرتبطان ارتباطاً عكسياً تاماً
4 4. - هناك خطأ في الحسابات


49- من مزايا الوسط الحسابي:

1 1. - سهولة حسابه
2 2. - يأخذ في الاعتبار جميع القيم
3 3. - لا يحتاج لترتيب القيم
4 4. - جميع ما ذكر صحيح


50- من عيوب الوسط الحسابي:

1 1. - يتأثر بشدة بالقيم المتطرفة
2 2. - لا يمكن إيجاده بالرسم
3 3. - لا يمكن حسابه للتوزيعات المفتوحة
4 4. - جميع ما ذكر صحيح


51- من مزايا الوسيط :

1 1. - لا يتأثر بالقيم المتطرفة
2 2. - يمكن حسابه بالرسم
3 3. - يمكن حسابه للتوزيعات المفتوحة
4 4. - جميع ما ذكر صحيح


52- من عيوب الوسيط :

1 1. - يحتاج لترتيب القيم تصاعدياً وتنازلياً
2 2. - لا يأخذ في الاعتبار جميع البيانات
3 3. - قد لا يتواجد
4 4. - 1 , 2 صحيح


53- من مزايا المنوال :

1 1. - لا يتأثر كثيراً بالقيم المتطرفة
2 2. - لا يحتاج لترتيب البيانات
3 3. - يمكن تحديده في حالة البيانات النوعية
4 4. - جميع ما ذكر صحيح


54- من عيوب المنوال :

1 1. - لا يمكن حسابه بسهوله
2 2. - قد لا يتواجد
3 3. - قد يكون هناك أكثر من منوال
4 4. ـ 2 , 3

غيداء1 2016- 4- 30 02:47 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
اذاكان لديناتوزيع تكراري مفتوح فانه لهذاالتوزيع يمكن تحديد

ابي الجواب الصح س٣ للفصل الاول ١٤٣٦

muhawer 2016- 4- 30 02:47 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
يا ليت أحد يجاوبني على هذا السؤال إلي سألته كثير :

القوانين تكون مكتوبة في ورقة الأسئلة و إلا لا ؟


المادة سهلة إذا القوانين موجودة و جاهزة بس حفظها هو المشكلة

Sukinah_Hadi 2016- 4- 30 02:51 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
بيعطينا ورقة القوانين في الصفحة الاولى؟!!!!

عادل العنزي 2016- 4- 30 02:54 PM

رد: { تجمع مذاكرة مادة مبادئ الأحصاء }
 
اقتباس:

المشاركة الأصلية كتبت بواسطة muhawer (المشاركة 13360462)
يا ليت أحد يجاوبني على هذا السؤال إلي سألته كثير :

القوانين تكون مكتوبة في ورقة الأسئلة و إلا لا ؟


المادة سهلة إذا القوانين موجودة و جاهزة بس حفظها هو المشكلة

ايه تكون مكتوبه بس مايبين لك قانون ايش هذا يبيلها حفظ


All times are GMT +3. الوقت الآن حسب توقيت السعودية: 03:54 AM.

Powered by vBulletin® Version 3.8.7, Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Content Relevant URLs by vBSEO 3.6.1 جامعة الملك الفيصل,جامعة الدمام

Adsense Management by Losha

المواضيع والمشاركات في الملتقى تمثل اصحابها.
يوجد في الملتقى تطوير وبرمجيات خاصة حقوقها خاصة بالملتقى
ملتزمون بحذف اي مادة فيها انتهاك للحقوق الفكرية بشرط مراسلتنا من مالك المادة او وكيل عنه