تسجيل الدخول

مشاهدة النسخة كاملة : حلول لأسئلة الاساليب الكمية الترم الماضي


شموخ & انسان
2012- 9- 16, 09:26 PM
هنا ملف به اسئلة الاساليب للترمين الماضيين

تم حل جزء كبير منها لضيق الوقت لم استطع اكمالها

بالتوفيق للجميع

آبيات
2012- 9- 16, 10:18 PM
مشكووووووووووور يالغلا لاخلا ولا عدم:rose:

وهذا كمان مساهمة من أخونا جمال ربي يوفقهـ
حل للاختبار الماضي

http://www.ckfu.org/vb/6490153-post283.html (http://www.ckfu.org/vb/6490153-post283.html)

rasha1989
2012- 9- 17, 01:07 AM
مشكور ماقصرت جزاك الله ألف خير يارب

فارس740
2012- 9- 17, 04:52 AM
الف شكر :rose:

ميرامار
2012- 9- 17, 01:31 PM
ثانكس ماقصرتوا :rose:

Miss Lambert
2012- 9- 17, 02:28 PM
وش افضل ملخص اعتمدوا عليه في مادة الاساليب الكميه:(107):

سعد 2011
2012- 9- 17, 09:46 PM
السوال هذا كيف حله ؟؟

اذا كان 3ْْx=60 فان x2 :
20
180
57
60

miss.amal
2012- 9- 17, 11:56 PM
السلام عليكم


الكتاب مهم ولا نكتفي بالملخصات ؟؟؟

شموخ & انسان
2012- 9- 18, 05:30 PM
السوال هذا كيف حله ؟؟

اذا كان 3ْْx=60 فان x2 :
20
180
57
60



السوالين الاخيرين بمثابه هدية من الدكتور
والحل تقسم 60 / 3 = 20

شموخ & انسان
2012- 9- 18, 05:32 PM
لاتحتاجون الى كتب فقط تابعوا شرح الدكتور وقراءة المحتوى وبالتوفيق

غيووووم
2012- 9- 20, 06:54 AM
شكرا ماقصرت

الله يجزااااك خير

محمدد
2012- 9- 20, 02:42 PM
شكرا

ẤĽSЙΪфRẪΉ
2012- 9- 21, 03:40 AM
جزآآآآك الله خيـــر ـأخوي لاحرمك المولـى الجنه ..

وفقت :rose:

شموخ & انسان
2012- 10- 13, 04:08 PM
شكراً لمروركم الكريم

فهد الحجاز
2012- 10- 13, 08:38 PM
استاذنا ومبدعنا الاخ العزيز والغالي شموخ انسان..لم انتبه لموضوعك..احببت ان اشكرك فانت سباق للخير في المنتديات الجامعية..لمساعدة لزملائك ..احترامي وتقديري لشخصك الكريم

شموخ & انسان
2012- 10- 13, 09:18 PM
الله يبارك فيك اخوي على مجهودك وحبك ان تصل الفائدة للجميع
تقبل فائق الود

روووح القمر
2012- 10- 17, 09:42 AM
يعطيك الف عافيه ماقصرت ..وان شاءلله دووم ع القوة يارب
جعلها بميزان حسناتك ..

شموخ & انسان
2012- 11- 1, 04:20 PM
شكراً لكم من الأعماق

l a v e n d e r
2012- 11- 1, 04:26 PM
يعطيك العافية شموخ ,,
والف مبروك عالتميز ,,

شموخ & انسان
2012- 11- 4, 11:11 PM
يعطيك العافية شموخ ,,
والف مبروك عالتميز ,,




أشكرك اختي الكريمة وهذا أقل ما نقدمه للجميع ( روح التعاون )
وأشكرك على التهنئة وأيضاً مبروك لك
المعذرة إن أتت متأخرة لقلة دخولي ومشاركتي الجميع

l a v e n d e r
2012- 11- 4, 11:17 PM
أشكرك اختي الكريمة وهذا أقل ما نقدمه للجميع ( روح التعاون )
وأشكرك على التهنئة وأيضاً مبروك لك
المعذرة إن أتت متأخرة لقلة دخولي ومشاركتي الجميع


الله يبارك فيك ,,
وما في مكان للمعذرة لان ما في سبب يتستدعيها ,,
الف شكـر لك ,,
يعطيك ألف عافيـة على كل شيء تقدمـة ,,

دمت ودام عطـــائك ,,
شموخ انسـان ,,
:2::2::2::2:

ambsder
2012- 11- 6, 08:20 PM
الله يجزآآآكم الف خيررررر ...

tulip’
2012- 11- 12, 12:49 AM
الله يسعدك يااارب ولايحرمك الاجر

زهورة البنفسج
2012- 11- 30, 09:39 PM
السلام عليكم ورحمة الله ...........

في سؤالين من اسئلة الاختبار ياليت تشروحونها لي ماعرفت كيف الطريقة :

السؤال \36_القيد الاول يتقاطع مع القيد الثاني في النقطة:

1-(8.24)
2-(20.30)
3-(30.20)
4-(24.8)


السؤال|37_قيمة دالة الهدف عن النقطة (24,8) تساوي:

1360-1
1200-2
90-3
1260-4

السؤال|38_ قيمة دالة الهدف عن النقطة (0,20) تساوي:

100-1
1200-2
800-3
1000-4


وهذا رابط الاسئلة:

http://www.ckfu.org/vb/attachment.php?attachmentid=73940&d=1347819866

شموخ & انسان
2012- 11- 30, 10:05 PM
السلام عليكم ورحمة الله ...........

في سؤالين من اسئلة الاختبار ياليت تشروحونها لي ماعرفت كيف الطريقة :

السؤال \36_القيد الاول يتقاطع مع القيد الثاني في النقطة:

1-(8.24)
2-(20.30)
3-(30.20)
4-(24.8)


السؤال|37_قيمة دالة الهدف عن النقطة (24,8) تساوي:

1360-1
1200-2
90-3
1260-4

السؤال|38_ قيمة دالة الهدف عن النقطة (0,20) تساوي:

100-1
1200-2
800-3
1000-4


وهذا رابط الاسئلة:

http://www.ckfu.org/vb/attachment.php?attachmentid=73940&d=1347819866



http://www.ckfu.org/vb/ v2lq+AAAgAElEQVR4nKy893MbV7bvqzPBnnGc8TjL1tiyZVs55 ywqMyhQWVSmJIoilahEUsw5A+junffuBkhligmxM0DNnFv3v3o/bICkNPJ9dd67VatYBJiAXp+91neF5iyfc58ylxAXYQciF2IPYh +RNCJpRDKYThL2mvB/UT6JWc5oBk3bvyh/Tfhrkn0+DUkaYh/gNGEewo4GTUU1Q6qlaLYGXYA8iF2IXIAcgBwAXYBciDyIfQX4C kxrKANwGmBPg44KLEWb6Osf7+0b7ekd6ekd7e+PBoMJTTNR7md B9lfZGrRUYCmaB7ELsQuQA2Du92MP4qlvfss8iN9pPmXvNBtha Q7CDiYeoT5jac49RDxEfGmY+Jj6mKYxTRPmI+IAZKvAVoEDkI9 ImjCPUI9SnzKPMpdQB2ELQlMDU7/ZJdSjzGcszXia89eG8Vo3JnVjUtczQs8IkeEizUWaiwwXGaFP6 nr2S1ykufBF1jzOPc49zlw2bQ6lDqUuoy5js9JczITA1oCtQVe DHkAeQD7EaUQyiE5imvP0TGeTNMS/B0GGcg8RSwXJQCgxEEwGFUvVHAA9hF2IHA3aGrA14AAksfNCIK 3CjIYzGnYVkOwLjHV2D7e2swcPyb37sOouvHuP1dQ8bmkZ6euL KYozw5H/AQFyAHI06GjQyUH2fw8ClLM3IHBzR8hDxMckjWma0DRhGcI8hG 0VpEJqKqTaKvAQzmQhYD5lHqUOwilNiwdDEwMDJgAmgBaENkIO xi4mEpfXRjjHwbSn01ykGU9zkREiI7JwyCf/BxD8m4X/zSOTVHcRNVUYDSiRhubHbR0j/YGR/sCLnt4EROnIYALhJIKjwcCr/r4JJZQAWlxTkwA4hGSE7hBiQehi8lror3XDJzSlaCmIbcrjKnz a3hluaHre0TXeH4wGlJQCbYBdSB1IHEBcQGwVpYKaryppoPkQe JoaDww8a24auFHx6PSpuyeOXSvMLy3Yf6WooPRA4f0L54L1tUZ fT7S/zwaqCRQTqJ4gFgYTykACKgkt5DDkYmhDbRJjR1XsgcBrhBwVpC HxIbFzrKQJ9Qm1ATQ1YEHkUepSamPsEJrR9de64VNmQ2QB6CLs E5rG1EfEBchHRAbFDKJpgDOQTCL631zPIOIC6CPsMeYxajNqcx qHmt7cONTWqjc1GA31YwP9cUVxCHENbjISRdqLgV7e1qTWPgjV PgANtbC+BjbURoEaxyCmhDzOHIwdhF4LfZKLSS4yjGcYl5/LJzOMpynzCfMJ9Qn1CUtTlhbhtDDS3PC57jHdY8KlwqUio4fTI uxzw2O6R4VLxazXRH/NjAwRLqKWhp62dTSdvXDn8JHmi6XNF0tRdc2EojlCHwkEn3Z2w IcPeisrArdvifr6lz3dCU1zGUsL4VJqI2RDlL1YlPmEWZhahD3 v7O64UlZ1qLi+5ByrfjQxELQAtgC2NWyq0FaRoxEXUA/QDNDSQPOAZgUDz5qbeq9cvr5/74m1q49tWHd84/rDG9btXbZkw7y5Wxf8dvFAQc/De2O93aaqJJRALDhgEWhTlICKSUAKqg5FKTWUCA64mmorIXsgM AlhKhByVegBZCuapWgeQD4mHsLSzTZCPmMeYxZCFkIupRaApgZ SqmYD6CLiImJrMBVSoj39ZkhNI/KasElE0wCnAZ5E9DVhrwmbpGySsrQQPmNJDCeU4Iu+nq6K8kdn S24cKKo5eSLc2JBQlIwQFqcJDJ/1dSsP7z0qPX/reHF58YHyw0WVRw5WHjkYvHfnSXfHRCiY1oXP2KQQ0uu/Z5KDN0wYaWH4MyCQHKRFOEeGkDYrg3iGiDQRLmE2JJHm1vL9Bd t++nnfosX7Fi2+dewYa2560ten1ta2XC6tOnqkPH///ePHA7dvPevsSKiqTYhLqUupi4kNkaUBS4MORC7CKUyTiLC6+qt 79+f9NO/QilWtpVdG+wM2phYkFsCmpAESF1EP8zSGLlBtoCaCA7y2+v6Rw 4dXrdjx89yS7VtvHS2uPH7k6NbNy77/9ss/zFr+w/e3z5950dmW1EIToYFnna1Pu9tf9HW9HOieAME4VEwKY6HAq96u aF/vWHfXSFtbrKdnoqfPDCoyDJiK5gDkQGRp0EHYAtBG2GfcY9xCK AmAiVAKwilLatpEIDDc1f20tRXcrhpqaIwPBKQCkLlskvIMYf/i+qQQHqEuZy5n45oy2NHWdbOidP+ewuVL138/u3j1ytDdqrimeoLHKXrW39N9+8bVov2HNq45sH71oU3rDm1au3 fFks2/zr24d1f3rcrn3V2u4B5jryPhNGUyALwW+swAkGEiw3ia8TTlaZ mzCPMJTXNJgOFz3WfTHMxkQj7MQpChukeFS9jIQOBRydktc+fO/+jj+R99vGvhwvslJS3l5VWnT13I23F++7ayfXsbzp/jdXXjwWAKwiQAFkI2xi4hHqUORLGBwPPW9vCj+khL21B7R9+Nm 8fXb1j2t882z/nnnUPFen3Ti86e4e6+6EDIhsQj3EHUBtgGxEfQVhVbUy1VGWpq aDp35sqeXWe3bam9cI401uOWptrLl/atWfXFH2b9+OnHV48VDzU3pqAa10LsUXVn+ZWm0vNdFWWkvmYk 0BuHykhvt15XQ+/f1W7d0CorxL17I+1d8b6AGVKtkGoqqqNBG8CUorqYWABaEHmUe YyZECY0TVo0FHrV2/u4tZXX1qp37vSVX++8fOXeocM9V8qeNrVYqiZlYAbTfzExyfi/hO5TagKQwiiF4FBnW+/tG+d27cib/8vKr7+Y99f39i2cr9yrigMtheAE0tTq+xf37d708w8bf/7h6JYNZcUHKo4fPrxx7aIv/77l5x+vHSjAtdUJBEwEfSE8QtOUTXLxWjde68YkF2nKvGz8pz7 J+t7DxMXERdjn+huW5WA6JHhUeEz3uTFrEosM0zPMcJmwKU8yx hobT+/c8dNHH/700YdzP/lo76oVp/btPr5rx4W8HTcOHmi9XMrqHo0HgzalNiEJTcvGT0IyXLiYvGhr 7yu7dv9Q8d2TJ2vOnbt+8ODO3+b/+uGHK7788uSmzdUlZ+rPnW+/eo3UPBoLhBwqbMJSEKcgdggyoZpCmoXhq4E++qim787N3ts3+x/cC3d3KA11VefO7Fu35vuPPlg4+5tb58/ozQ0pApMUatX3yg8WHFy74tiW9bdOHqHN9YPdbbDmQd35M1WHD 945WFR34kTftbJX7Z2xvgEzpJqKZiqaDaClgWRIcQkxAUwBYBN iYRwNhYZ7e553deG6R8qD+12V1+svnLt77GjlgaLygvzy/P3X9u5tunA+3NiYBMBjTAZCn3GPsTQXNmNJhMaBOtTV0VJx7XJ Rft7iBUu/+fK3v3/yw1/+vGfJIqXmYRSCCaA+D/bXXDq/df4vv372yfYl8++cO9VXez9QX3P/0rmVP3z3y6cf7VuxtKXsyqtQIA6hw7lLiE9ZhotsFZBT9A7CUj +6hLiYOLkEJ13uM/0tGt4FAdEzTE9LZyAShehpb+/NE8dXzP5mxexvvvvLewu/+mLbkoWHt21uungxWHVnqK11PBQ0MXY5cym1EPIoczBxMUkz7k D0uLGpqeRM6dbtp7ZtO71tW8Hy5cu++OLHP7+37PPPC5YuO78j r2Tz1rL9+a2lV560d5iIWJiaiDiEOwTaGFoYppAW1ZSRgb4nPV 2DnW28vVWrq606d6Z46+aNC35b8v3s/RvWtd69PdTRmiQwxRBrrLt+qHDzT/9cOfvL/SsWP7p0tq3ias2ZUxd2bjuzacPV3TvrT53Ubt0a7exODAQtVbN UzVQlBDCpqA7GKQ3IFBBTlKGWFrWqqru8vOrY0VtHDlccKLqav +/ynt1X9+2tLCq8ffhQ/dmzwdu3X3Z12YSkhfAYcwlxCbUQdgixKY0DEOlobyu/djF/b/6q5UXrVq/8/ptfPv3o+/f+uHvxgtDD+1EIohCw1qbLRflLvv5i4Zefndy9o6/mfiTQEx7oVpvqti9ZMOf9P62eM7vq+LHn/b0pgj3D8Aj1KUsznuEiI/U/ZR6hNkQOyhYRkgmpZnIBf4oDw+dv6MQZ6YAInwoHszhEE4oa7u oMPnxw8UDBpvm/bJr/y69fff79x39d/M9vj+7NEw31L3p6YkBLImhi5DDmMSYvhNQEHmUOwq+6urVbt5t Kztw5dfJKYcG+ZcsWfvb3eR9+uPmnn0q2b688XHxlf/7Nw8Ud18ofd3YlEZHmcJGAms2JyfCEpoyqwVE1NNTbBepq+6sf PLhw7viuvN2rVuStXH4kb/u9K5dRZ8dwsH8cqhMYvAj1t928vn/Vsl8/+2TxN5/nr15+Zk/ehT07S3ZsrSgqaLx4Qa2qetzaMtHbn1JUGQBMDdgQWRClVE2m/CSEKQRf9vQM3Lx569DBs1u3FK5afmTjurO7dpQdKKw6eby+9EL XjYrAvSrWUP+4q2NCVSxGbc4sRi1KbcaSCMcBHFPVSHt7Y9mVs 7t3FW1Ye3jLxspTx7cvWTjv7598+94fdy5ZNFD9YBRq4wj23r9 7eNOGuZ9+tHzO7LLjxbC9+SlUnkAFdbTsWbNizgfvL/zy8yuFBZGuzgSlbjjsMfZOszF2CPEYk9HIJdRG2ITQpWKaA677 3JBS8V3CEHOXcAuSCUV9NRDQHtU+OHu2aOO6HUsX7Vi6aM0vP3 37wfs/ffn3U4V7n3Z2jIeCSYQkBC7nHuc2xmmeg4BQnzIbwIm+gRdtHa K9ra2y4tT27atmf7v8668OrVtbffbswN27nRUV3ZU3cO2j0WDI pCwOUUyDFuXjStDmxOJkNBQYDg4MhwZoS1PL9WuXDxQd2LAub/nS/WvXnNy7p7rsKurseAzUGAavQgOv1GBKZ4N9nRfy9yz88u9zP/7LvE8/3L7w1xNbN5YfLOyprBhsaxnp650IBuIDQVsDLsS2BiUENkIpDS Q1TXafUhA+aW9rPH/u+Lq1W+bMWTtn9q7FC07v2Hrn5LG269e02oeR9tbn/b1jSmgCqAkEkxilMDIJcTjzdd0kdDykDHV29t2+fWHf3p2LFhS uX1Nx4mjH3dtFm9b99sVn3/31vX0rlgVrq19pyitNaa68vnv50m/f/9OKf35Xcfo47mx9QcCoQUPN9XvXrvzpk48WfPmPC3v38NaWGEK WED7nHmMezSYgqWB8zl1CZSbKCD0thM+4Q4iNsCwIpyBIZyEIv 6NE/G9j6HV4MBZSQXVN06XSywX5xRs2FG/ZdKmo8FJR4dG8bcvmzP7pH5+umDtHvXd3QlU8XSQgTCHkMOZQ6 lI6aRgSAhmdLA3YAGWYGMdoqLenNH//xrlz182Zc2r7NtLQ8Kyv72X/wPBAYCQQHAspURXEAUoinMJkJBSIIZDiNE7Q84H+4IN7lUePHt 6wfsV33+WvXlWyd++Nk6fa7lSBllbR2/ccolGgvAgOvFACw2pQa3xUVnxg/S9zf/z4r1//cdbSb78sLdgXrL4/1Nk+PNCfhDCFUSKkJEJKUlFNDcg8aiGUAiCFYExRoqoSB9qTzo 62K5cv5O0oWLJ42/x5OxcvKFq78syuHXdOHuu4UUGa6h/3dL0KBcaBGgXahKbGIZDxwKQkCuBQe2dL2bWS7Tu2/PbrjoULSvbteVB6selWZdHmDb998Y/v/vr+rmVLGsuvkZbmYU1tLL+2beGCuZ9+PPeTj2quXRmor33FyYi goLV565KFX//xv1bO+b40P5+1tHiRwQkApQB3KJ3q9tgYy2rW4zyt6xnDSOu6y 5iFcQqAbNin2fTvcz0tjIwe9pjweTYeeEy4lM/yCU+oINLY3HL5SuWBQ2d37Tq3e3fV2ZL+6gf91Q+ablYU79i6/MfvF87+6nphAap+mIDAZtTXha8LmxCbEFlb2xB5hHqEWgBaGvQ wiVLySlPrSkvP7tp1evv2eyWnH3f3vAqFxjVtAoAYgHGEk5iYl FmU20wkCLJ1nmL0cXdn543K8oNFBatWrv/xx2XffluwZs2logN3z59vuXWr+8FDraXlmQbGoPZsoJe1NQ88v Pfg4tkTeVs3/vrTwq//8f1f/jT/878d37q59+7tZz3dY0ooqigj/f2y6E+pWkrTTABSmhZXlIlAwMQorqoxTU1hNKEqemND1/XyunNnz+3ZeSpv29HNG4o3rju+ddPFfbtvHDl8v+RU6MG9wc72 OAK2YDZnFqcmJUmMTMpEY9Oto8f2LFq87Ntv1v8099CWTVePHi 4tPrhp4W8/f/bpt+//ee3cHy4fPNBaWRHp6a6/Vpa3eNHcTz/+4eMPH14tDTbWPSdgUAl0V9/fMP+X795/b+uC+VWnTg52d3uRwShCFsY2IW9AQMjUkx7nsjnoECILHIdwlw qf6bksMK0GfK7PgEDM8pkeUzSjoamjrPz+8ZN3j59ovFRKGxvj hMQJGdHUtoqK03l5e5YuObd9W+DO7TgAvmFMRiK+LiyMHUodTE wATQ04GHu5boENYJyQBKWsqann1q2uykpYWzuhgSiAKUxNQi3C bMocyl2ZmbhuCe5HIjGElAcPygoL9yxatOrb2Yv/8fmSL77atWjJie15lwsPXjt0tOzQkZpLV2lr54uBft7S3F5Zce PokbN7d5/M23502+ZDm9av/O7bX/72yfZff31wpiTc3DIaDEVDyquePgdjGyELQgtCCyETwgTQYopi M5qAIKqpCQTjCIwGA097uoY62gMP73XerKi9eK7yyKGL+3aX5G 07vW3L6W1b7hw7Erh7Z1wJpSNhTxcmJUkEkxC6IszqGisPFu9f smzTz/N2L1lavHXL2f37ijZuXDL727mffPLPDz5YMfu7I1u23D97Tu/o7L//4NiWrQu/+PK79967duxo5927ordHaWq8ffbMin/O+fXTvx3dsrWz4sbLgaArwnFILIJtShzGXM5dzh3GbEosglMYW QTblDqM2ZSaGCchiGuqhahLuc+NSSMyaUQyIuwxPUsG12UfKQv Ba2PQoXw8EBpsbaeP6vTmlsedXaOqagphChFnbKinp+/e3brLl5suXhhqazUJthh1GLMoMRFyGXMIkZFAalQHYQciB6IYx knGRlX1aU/v466u4UAggUkcYZMwkzBrhtmY2ZglCLYEH1OV/ju3r+zPL1i+PO+3BXm/Ldj88y97ly4vXL3u0IZNB9ZtKli9/lLhwd771eBRbdeNGzePHT21Y1vJ7p23T5+sv3a18XrZqZ07Vn4/e8XXX5/dmdd/69bz7p6ECuKKltJAUtWSqpYCwELYxtjEOIWgzWgSwRjQJlRlTA m+Cgy87O970d/7Itj/dKA30tWOGh713L5Ze+HczeJDV/L3VRwo7L5RMdzfZ3NmM5rEKAlhEkKb6UNtnW3Xrt85duL6kSM3 jx+/cepk5ckTx3fuXPb9dz//7dPfPv88b9GiS4WFjWXXng4Ewl3dt0+e3Dhv3td/+MP+NauvFhc/Ki+7d/FC8daty76bvfHnn2+eOEHqG4cDoSSiCUgsSmxKXc48wT3BXc5s Si1KzGkIqE2pSXASwQQANmYu5T7XM3pOBzDdpcKl3GPTEHhMzP K47lBuYZqCOKkhV9aKAMcVEFdAUoMpgOOKNtoXGGprjQMthVFM U+VfTUFoY2xBJOcoDiYOwh4msnOcxCSJSIrQqAomFC0BkZwmSJ c7iNqI2pDYkNiA2IDEAUxhMh5SyaO6pkuX7x47cevw0VvFxyoO FFcePFJeeLi88PC1wuLSvUVVJ85q1Q2BO3dbLl+tPFxcum/f3dOng9UPja5Oo7Oz69atk9u27l6w8MKu3d3XKp62dyVVmFJRL BSKBoMTgUA0FIprWhKCJAQJAOJASyAYRzAK1FElOBIKvAoODAf 6Xwb6R5TgOFDHNeVFf69obgzdreqqKO8qv8bq6saDQYsQO2cWx hYWEwHtSUeP0dTGmttoUytoaArV1j28eGnn0mVLv/52w08/X9yb31F5C9c3TUDyKqj23b57alveks+/3PLr/MI1a0/s2Hl02/b9K1ftXLTk3M49/VX3h3uDY0EtoWKH6FJ8uIJ7uvB04Qqeq02IzajNmcOZw5nNqEl ICuOZraGsNhRGWoQdwqUsyGpDJmY5lNuEO5S7lLtU2JjamFqIp ABOASxDiku5hWhUU23OkggmIPB14QkRDQZf9fa+7OqKK4oUBDI YyO6mzUUMQIfrSYQTEFmUJTSY1sMO4Q7hLmYOZg6iDqIOpA4kC YhMQuMQvejt05taaF0Dqq0H1Y9gTT1+1Kg9rAM1DbiuJXT/Uej+o0h7b7i1HVTXdFbe6KyohPX1L0LBcYxHIXw2MNB6/fq9k6eaL19BD2pedvclQtp4XyAFQEJV44oSV5QE0FIQJiFMQDA aDMSBlsBwQlNGgoGRUGBUCY4owRElOKqGJqAWwzCGwARQx0LBk cDAYGvraGDAxNhh1GXU49xj3KHUQsKELA5IVMVjAI1DPIbpOGF aQ+OlwqKCNWuPbt3WcKVssLv3eX8wTvg4wE97+jsqb5bmF57ds/d03q7j23cc377j7J59148c66y89aSnPwlpAhATsIwYshlzOPd0 4Rm6Z+ieLhzObZb1vSO4K7gruMO5RMHnxtTRd6eFYcQhTD7MSQ R9lit0Xxi+MHwmHMwsDTmQ+JhPUn2S6pNEpBFLQzaJuUWpLA3G Q8G4pj7r7AzeutVWWqrevvOsrd2GyGfMRdhFRDa0fWFEFU2iZy PqURELqpN6xEXMRcxF1IXUhdQF1AXEBUTGCYuwmArGAspYQBkd UIZ7A6/6lZiKx4JwLADjGh8P4hc9oZEBENPgcF/gaXfPcH9gHMAYJjFKE5xHER7q6h5sbR9q73zR0R0NqKaKxnoG4 ooiI8FEMBhX1SSESQSTCI4roRjQRpVgpK0F1DxUqx+Amoegtpo 3NvDGBtHUoDc3RlpbHne0P+vqfNHdzWprn3d2JjXNIUR2Rzwqo 6BwkDART0EWQzRJRFIYVnjweUjtvnO38eq1xqvlMgaMqyhJRAo Lm4dfBVTe1Bp6WNtReevRpcuNV691VN4ijS0vegMTGnaI4RDDx fprMeRkw4DuG7pv6J6uu4I7fBqCN4zzmfWhPz1HMKbShITAlxB kwoOT4UGf6TaiGWb4RGSI/poZr5mRwdzTyCQW/9t4LKPQWCg42NrKHtW2XS69smvX8TVrms6eYzU1KVVLM57tWhO apszl+lgglDEiLtNlCBrrC6S5YQFsadieMlUaimvQIswmPAFQV AExFcY0HFVgVME2CycgHwvCBBBJpE8oNKbxqApGA8qYoqUIixM 6oqgjqppgbBzAcQBThMU0NNoXSKrQxzwR0J62tT9pbX3S1vaso +NVX+94MBhVlZimJjCMQ/Cku7Pv9s2HJafuHDty+9iR28eO3D1+7N6J4w9Onqg+ferRmZL6 8+eaLpxvvnix6fx5cO/uy67uhKqaAFgQ2RBZEEoILCxMxBOYJzCPUh6jfILypwPBF0Fls Lv3xUAoSfUoICYzUkT44ccpqscRe6WCoZ4+2tI21NP/uKc/wXSLGVFAbCw8FvGwkaZhh3NXcM/Q/bDhhw3PkBBwm7OpXJAz7nBu46wwzOiRSSOSFmGP6S6dej4HAdd n5QSCnDfzmUPot+bQnkb+t/E4GlDIg5qHZ85cP3hw7U8/bvx13tXig6yjbQKhBKUOZhYk/2ZhTyMyQXiEujjb05YmH049Y0MkzYTEhDgFcAqgFEApgE2ITUi s37E41BIQJBBIIpjCyCTIpNikOKapCQRSGJoEW4zEgfa4vU29f 7f3zp2msrKa8+fvnjpVd+kSb2mJYzIBYBSAJKHDff09FZU3Dx6 6unfftX351/blX9uzr3xvfsX+gsr8ohsFByrziyrzCyv2F1zfl99y4VKkscUE WGorh3CXco8KG1P5FixEbMwcLDUvtSBJAZTUYFJDJsTyLMqej0 OpI4UFxhbGFsI2Jg4hDqEuZR7jPudpIdJCdwX3BPd04RvCN4Sn C09wV3BPf7dNGhHpu4wenjQi0stpEc6I8NSIWQaJWT57u5P81q zJpVxmcUdB/80j0YASrm9suXbt7qlT6+f9tPanH8qPHRFdHVGE4oSYACdV+C9 qpKGcaWY58HKOl6FiCogsAQBaAFqIWoiYEJsAmwCbEFuIWIj+n iUxTGKYwihFUIogk2CTYJPiFEEpjGSoT2L4aqAPVj9ounSh7MC ByuLiW8eOXS7IP7drV+358+G29jFNiwFocRHTAKtv6Lx2vbX0S mvpleaLpQ1nzjWcOd949kLTuYvN5y82n7/YdE7ahdDNO0/bOpMazOobwj0q5CEzITEhsTF1CLMxsxCVH00o4cYWIg5hHhUzI XAIsTGWJh+6lLqMeXwKAvE/hSCjR6QTcxDovwuBm5OEkgB56HNPSvczaXYI/osaCQWM9PST+vrOioq8xQvXzf3h5snjRndXDKE4JkkVxoLqa6J PYpFmufE2Zd4MGpzfgSB7aBC1EJHutzGV5+mdZjFiMWJRYlFiU pyFgGCbUYuSFIZJBBMIDPf1qvfu1p09U1ZUdOfEifslJWfz8nY tWHB627bgvfsxiGIAWoyblI0MBJ+0dz5p73zc1h5ubI40Nkcam 8MNzeGG5khDc6SxZbCpZai5VTxqeNzSPtLbn1CACbGNqSy+bcx sRC1EbExdwl2SZcIhXHIg35eNmUuFx/TsHsZMDgixszGAupR6WQjE/xsE4p2WFmGpCWSfQB7sd0MgQ5ZDuJwq5iCY5mDaVPxvFrYgsRE dDgTRo7r81as2zvvp1qkTRndnDKEkpRbAEoLXVE/LTYffQeGtHOFAJIGTKGTdT5g8Z+82wV2RLYqmOEgRZFJsUWJRb BKUIiiqKkNtreq9u7137nTfvtV05cr53bt3zp9/csuWQNXdKERRAJOEpjCNAxgH0MQ0hUg0pMqzm9RgQjV1WCoAAC AASURBVAUJNVstW5BEg0o0qESDakKdgkBGfmojKpmQQdTG1AQ4 e5ay15m5lOfOG32DA0odQmUWcLPDIe7//4BAjoh8brwOD02nhndCIK+4Q1guFwhvevsgN5CWVSZi/+YRuQkyrmqkrr5w9arNP/9870xJpKsrBpHFhUdFUoWv6f8JguzG5puKwcVkKvDYueslc+3v ma/rnhC53hm1CDGz/R/kMOYwJj9PADAeDL7o7gaPHnVWVlafPXu1oODsjh33Tp5k9Q2jo VASkwTCcQDjGjQRcbnuMmEiIs9xCuCkBpMaTAFkQiIDe1JDCRU kNSRjuyyqc/hKN+seEw5mJsTZZCoTRzbo6j57A4KcMakD5GqoL01MQSA8ITxd 93Xd13VPvn3xbgI8Xa4LiIwe/lfk8aQRkQc7o78zEpAZhOaKilxdkRtBciMtjAwW/+bhlIYsSIYHAqi29vD6dfuWLWssu/qkvy8KoMVFhhsWwK+pnsG/GwPeemYagndFAvf3OfCEeCcEJsYSghRCcU0bDwafd3UZjY0Pz5 4tP3DgakHBzSNH6i9eQo/qRoLB0ZBiMZ7EJK5lIXCokN2zrErVZDCASRVKZZfSUFJDkgn5I m3MLCQhngqrQgpGC9FcPp165Vn3ODPdP2M0nPU9F/6MtfH/DxDIlzFpRP49+GTSiMjw+W4IXMpdMp37Z0qEt1YS0lj8i4ctgB 1Ex0PKUGt75aFDt44cVR8+HNdATIMmYT7TTYAzRHiQ/q4wfFMeTlUHUwRI3TcjI7zbXCZcxl3KHcpseRwxtTCxMLUJswk 1EUlo4EVXt3Knqr7k7MktWw6vXXtm+/aq48c7r1eEW9tkK9PENAlxUkMpiHNOpfLET9UmudSAkipMqCAF pMjPBlEJq8d0qQOkJvBymjqXI94MbIQ7bxGQO/rp3NGXNsWBK3RP6J5u+Lrh64anG57QXaF7wnin2Zh5TLwOD/730JNJY1C+gHdDIFNFLg7TmaF4RvgSHhNpzP8tBl3MJkXYoiwO YPeNG7C2NtzWlmIspoEERC5mKRX6iLvgd0vENyoCAE0NSPufCk OH5hQrYTahOQiohamJsAmxTaiFyLOOzpYLly5s21G4fPn+pUtP bt5ceejwo3PnQ/fuP+vuGRkIxjQQU0FCgxamDuXZPVhIEupUFsApgBIqjIc0KQVS AEvXWojauTlNmhuyQJCnX554l4rce8nqG2fqyL0JwVQASAv9/xIEVELwvx4/nTQi8lpl9Mg7IdAlBNIHM7w+XSvKdDLJjEkenhThDDc8rjuEm4 gkIY5rMCHzJaau7AQDYgOc3X/CRPYG/NySpFyNkj3mbAyQcMhpwn+Y9eZJyl5BzFzCbcQsSFIAmwDbSJ4/3YLEBMRGzKPCBORJS0f31fKqg0cu7d5zZe++8oLC28VH6s9dCF bdfdbZLScaJiQWInZunCGXoZMaSmowmUsEkgYTklhISwEknSrF YLYnI6aXNVwqZgS2aaBngv52LshFAi93f4jMDmkh5K6Aw3SX65 4wfD3s6xFfD/t62BPhycjjTHjQ1yOeMOQ3eHrY1yNTE+S3LKu1cwuGaZGLBFMX d+Y6ypsQiAzTJ5mR4UaGGx7THcqlkE5CnELEwtQhzMXcxcyB1A HZHRMZBv5zP+4dEGSv0dsm3ePgXDjNZS6f6S4RNsrKNxNmv83M MeFR4RI+MRAK1zeFblb13brdf/vOwO07waq7sLom0to2HlRsylMQm9JPU9hBYk31rDSUyiqALCtx RUuB6cQx1YCbMbPPJYI3IMgGsKly0XujBJgWgGkhfJ7bI5pRIz hMzIAg7OthTw97IpwJD6aNQd+IeHo4FwbCnh7+PQjcXGvrDQi8 6bJQeNNq4E2jIk31NMuaL1dWckMgFzOPcJ8Kn4rsFjkkU83BaV VIqEfo1Iak+2bPYKaKnmkWnBFOp7sXPMMjPjVcLGzITI1Y0gCV H23IXCw8otuQJUNwol8ZDYRGA8GRgcBw38Bwb//oQDCuAhORqTAwc5plA2JmW5ZZ308plal0MKOQyVZ9M5Z5pmXWW/pmKhj8p/5P63pG1ycNI6PraSE8xl3GZMngMuYw3WGGy8OeiPh6xNcjnoh4 QkaFQV8fTBuDvj4on3T570OQ83Ju8TA8a4bX3z7602RIhUjFW+ ZR4eX6ZWmmp5mRZrpPhScnxQA6CE/VhFNHf6o0eKt7+HtVgGwd5noyM0pEanhEdxG3IbMAlWYDakPmQ OYg7kBmA2oD6kDmYpGAOIFwAuIExLIWSKgwoUEJmYOog5mL2BQ HJsQ5/ujMyJTUYO4lTanUbIB9o8WSg3hmz2NmL2R6WXSqHBAiLYQkwOf ijYVSzm06BUHYE5EpZ7vc8ETY1wfTxlDaGPL1iCfCDns3AWlhz Kj+sluHb0MgWXapmO7J0Nwkiuk+1X0qfJK1NBFpInzM00RkmD7 JjQw30vIoEG7lIJDdAgmBBaCH360ZfxcCGepluqEzrjUULhQO5 A7kDuAu5C4ULhI2YC4UHtZdKGyNWSqVzyQhTiJiYmpR5lBuk2w 310bERtRFzMXMkxPOKQiy8LGZzpNDDSv7kqb9OgVEjoms2XhGL ptuHGW7hFP9QXeGv703KsYsGTbVHWq4LOxySUDE5RGXh3NkDKb 1obQ+5ItBl0cc9ruRYGqcOLV8/HY6yOma6W6xbH340sHcSFPhE+7jrKWJ8BDzMU9TXSpHyYFPxZQ efAsCN7ck/zYHv5MOZD7OSW4+laFswBzAHcCdnPtdJDwkLJU6gHtY97HhId2 VlECewjSFSQoTi0gIuIVIUkMyEbiYedJyY+5cJ4DmBOlUgicyT UwtWziEvVHOTFeDwmPi7YbHNE/YlhuC0mboxKkU4DEuCZg0DJvoNjUcJk9/lgCXhR02k4xBTwx6IuLx3xWG04vnOXtbGKaF3ETgU5WYS7lcVn wtqwume4T7iHmI+YilEXc14kGalisIPJzlgE/fLDEFwUwRkO0e5jj4PwjDlIZMgKfrrlzQkpEg634oXMglE7bGH MBdKPwcBw7glkZtylOYJAFKQmwiYiKSAiihAAdRB0kCuI+55MC DNNsnRrlIgJl0/1QnMQdBtjM4JR1y8iX7Umcy4b4hF95yP8vVilIV8hm9I5EWwvp PCFjYYZKDrLks7PGIJwZ9fej33C+3zWTDIJOD4I0SUepbN7cEN rWAkBbGv4zBST2SYbpHuLxMPmQ+YraKXI34iGWoPsmNSRHOCBk Psu7P5FqH0t+yHJjZOsxC8DslYlKbHr7NhMDHhjQP6S4UNmCWS k2FeEg4gDuAuZB7SLiQmwpJBKAnDIuwFMJJiLMNJUxNiKUa+E8 IEipMgWxjWF4f6fupT2SX0KPCxmx68D0tX4THhD8DAi/bOZgqxN5dIsrNcXlv08xy0SJ6VhawNyHgEYeFHWrkREPE14fSx uPfhyAyzYEeTovwrElKfEY8ih1GPJ35Yd1i1MTEItQi1EZEXqY MN+RFlNXXa6r/m4dfI+GpOA3ZJOJpqk9yI21E0uGIF4m4kYjPdW/qjqcZIiMR1DzCJ3nYgdRUoAvpJNUnmSEb0tkJISSy0rMg8Si3E ZWlmgWxLOFMgJxci94lXLYNXMxsSFxIHUAcjbiAyFiVhswH1IP UAURusjiQurIloGEXM3eqATXdfWIW4ylMExAnEbEosxm3CEtCn AQ411qg2b9LuEdFirIUZeYMk2u0Tk4HOJhNlVFppnth3dG5q3P PEA5nSQRTCDqMOoS4jKY5ywgxKUQmd/exQw2Xh30RSRtTuT/sMON15GnaGPJ4xJXigIddZjhU9ylPM5ERxqQefi0PsBhMi4jPI z6PeHzQ44MeH/L40KxJitOcpjl1BfN0niIoiZFFiNxOcQhLAWRDkma6y3WLUOkb H7I04hlAfRVPIp5BXCZUm3KbcVMISwh/5mZKrpTwCI8HVBsSD3Nbw6YCXUTlvfESgulKHRLZ/7GkCpPnlXLJk4OZlZOKU5dYOtVDzIXUlRxkDTsq9hBzAbE17AD iIuoh5kBqATyzC/lGf0JCgHASE4sym3KL0JQcKMw89DkO3nA/ZRbNwjTV3XoLApMROfO0ObUoTkKQQtBl2SGy/O8nmRnmsrDLDJcZDjMcKk13qO6LiMfDsnTMFQiDLg9n/xDXM8LIZO8yMDyqezzi5SBw+ZDLh2b5FLuCejqzBE0xHCcoikA cY5Nzk3Ob8RQmFqYu0z097IpsJ0SqwgziGcT/zcOvqeFT4WFuEWZTbvL/gCAXDzwqLEjk0XEQczFLMz3DdJ8IE2Z7sRICWYj7TE9q0IJESp Opc+9gZiJiYmrLo5Yb+ZgA5zaYp5fY5P9DkV0sGxAbEhczF3MH 0ynsclOrGe1nyuS/WEhhYhJmUWaSXHMM4hQk8m5aG2c9bbJpsyi3KLelydAiOwqYyf fuM90WzGTE4tTVucNZiiCLYE9k/7VMVhBIFISYFLpvDHn6oMPDNjMsqtvMcLghH0pzRcQ3hnxj0OV hi+oek1Oo7H5pWo+k9cG0iLh8pqoYdNngLI9iT2e+wVOMjAMlh uGz/t5Ie9vTnp6nPT0xDViUuUx4XHe47um5jEJ1H/M04hnEJ4k+SYQsHW3GbZq9EB5/YyQ9vbyU6yl5hKepnmGGT4WLshfIIcxGVCYC2YwzAXYwkwDJL8 mvpiBOAJQEyMTUQjQJkJSQKRWaGsq6X8MupD5iGSI8nOtiQerK v4WZlVVz7zCT0BShKUzl3TImoSamcto0DQGiVm7m+Z8QZFHI3l tBp8KGPKMyHTg6dw1hcyrTgc2oL7jHpWIgHqU+y96O7umDrohk vU51K2e5J3Wb6Q43JCIpzF06vbuQFuGMHskYgxljaGYkyKYDRx B30PAfh2McPw304tampoprt0+drLtyue7KZdbSEsXE1sOWMBKY mJTJzqUsf21AbIBNFdm51r1cF04SmsDkjY4TmzYTkaRctMLMZS JbsmPqZPUzlzpLfk/2tElpRqb2c6iNWYrQqAbGFTUGYAzACUWLq8AiLKHC7K6H9DEkD qJe7sel87JZH1PZMXy3Tfl+CgVMTUKTECeRNJJCRJadKUyTlCU pS82w6dtsctEl2+0g3KPCFCzJSIpRk7MkJVGgxYCWIlguksvhu E2IS5nPeVroJtNNbuRMTzGRpCJBuBsesvVwiukpKkyu23rY1iO 2HnGF7grdEcLhwuG6w3WXh10R9vRBTx/09CFPH/LEY088nmVz4kZ0O8yfBfuVuuqK40cOrF+z5ddfjmzedGTzpvaK yuGQYgo9xbLCxyLMyrXDXMxcxGyAHUhlMekwYcvTQHPJNauzuA zaDuVJeXwhkUzIq+PQ3OidcocwE+JkrqOXa7ZTm7Bs0UW5hWgc opf9A086u5529zzr7nna1T3SH0ghElc0E5GpyJFSoYwNFqYmJF LWyRNsIpLKHut3GSImoRZlJmEpeSMNphZlOQKyHExZgkxbEpNk Fg4i44eJqJnDV/YMTC4hIJbgKUpiCCYQtBg1CTFzuxEWJjahDqUuZZYIW8KQZnIj 9zDs6BGTGykmUky3RNgxBt3woGsMpsMRPxz2jLCnG64wPD3s6R FPH8z1EoY8kYMgisEI1h4P9HTcu11+onjH8iW/ffX5Pz/6cOuihVsXLawuLX0cCMSEHmU8xfkEhCPB0HAgMK6oCYQtwqRik kEyIXuxAKUQMXH2zMnMbWJq5Y5FitDsfaiMxyB82T/wvLfvVSAYVdQEQDLNZ38hQAkNWoTJTGwT5gnDpnwipD7v6tFqa zsqK+tLL9WXXmooLW28fLnn5k1cV/e8p3cspKQwtRk35dKYBhMAJTCJIRSFMAaRlHsJhOMAJSBKQCTR nGkpiC1CZWzLSgFMLcYTCCcQjmMclx8xjv2nIRxDOI5wHGGZU0 xEUoiYiEo961BuGnqCszijcUYnIBwOBocDgVFViUEUR9k7tWfa OKajEA2r2ouQ8jKkjgA4QWicizgXcSbiTMS5Hud6lLIxiIdVbT gUfKWERlRlDGgxjFOcO3rEiwxZ3LC4YbOwzcI2i9gsMuuVMhDu 7QzU3L92vHjXyqXL/vnddx/+5du/vCchqL1y5XEgEONigrIJCJ/19YmmZlJfH25te9HbNx5SYypIQhxV1Fe9/c86u5+0dz7v6nnVNzAWCCUBkscuJd9/LpymCE0gHEd4QgOPu7pATU3o/n1YUzvSNzARUqWzLcLknDoJkE259IFFmMtEXAVDre3g3oPK4uK SvB2H1q45sHr1oTVritetu7Bz152jx3hj09Ou7qiqmYTJOWcKE YuwOMJRiKIARAGMS0dCFJN8vGlZDiC2CLMZtyhLIpJ4JwQo6+8 YwlGEpg2iKEQxiGIQZTuVWQhy2Y3yBGcTGI0CbVgJPe7pZs1Np L6eNTZOaCAGYQKhqViShCgB0GBPr2jvQI1N6qM6ra6BtrQN9vQ +D4ailEUpjzEeY3wck+fBkNHZhZuaB+7dDT64Dx7Vsuamx93dr 0JKHFOT6ykqUlSkiJ4iukkMkxizng70Nt24fr5w3/4NazYtnr/o+29nf/TXr95/b8/aNXvWrqmvqHgcUrznL18h8iwwEOnuun+m5EphwfXDhxqvXnkRC LwMBl8FQ5GODuXu/ebSyw3nLvRW3Ig0tUSDakKDcRUkITYxTSA8oWhyBS0KkTc4GMX 4WX8/bKgvO3jgyOZND86fwzWPxoKhJCIxFSQgSkAsCYtp0MQ0AVFU1a Tepo/qqoqP7l25fOMvP+9etvTA+rWn8nYs++brpV9+sWPB/JtHjw6HQlGEhoOhGMKvQqFRRUlg8jwUfKWpoxCMaNqIqo5DGEM 4hvGYoo6GlLGgMqFqciyeBCimAqlXLEkSJimUDfJypTbJWYzgM QjHEZwgOErJGARjAAwroWcD/S+DwShCKcaSlNpCn9CASainh5MQx1RgU+4JY4LSEQj0rk7e0X7 vTMnlwsLLBQUt5eXh9o4k5044HMckxXgck6H2TvVB9d1z5+6cO VNWXHyp6MCVQ4evHi6+e/58f3XN42BwnLFhCF9o2iuEQnV1t0pKrh87dqko/2Lh/gv5+64cLHpUWoqaGocVdRzhCUiiiMYRT2BhEsOk4VktFWXHd24 v3LCmeOe2I7u2b1ux9PtPPvr8T388tH3boe3beqtrniiqOfRkh NARTdPb264WFe5avGj7r7+W5O1Qa2qe9PaqD6sbLpVeyy84u21 72d79DWfP05pHo/2BmKLFNSjPk8W4RXmSkBhCj7u7xzRtOBSKdHY2XLmy6eefFn7+ j9M787T7D171DyQRjmtQ5uCoqsUBTEJsM55CZEJR4wBGVQ08eF hVfHT/6pX7Vq24VJB/90xJbeml7QvmL/js74u/+PzUtm2spflVKDSqqglCXvT3h1vbWGMjb2t9FgyMQvBKU0c0dR zCV6HQUFfX0+6eZz29w30Do8FQXIOmlKhM2IRPicckwkmYPfoj ijIBYZySOKUTGI9BOKJpw6oyDuGz/n7c0NB/965SXT3Y2TmhgSSljtBjEKUItblIImwR5nI9CVGUs8G+3rYblQ 8vnC9YtXLzvHlb5s07k5cXbu+IE2oJPYZwAtNnPb1tZeXlhUWF 69blr1mzc+nS7YsWb12wcOMvv+SvWVNx4kTfw4cjhCQikcfBYH 91denBg3lLl+YtWVK4bnX+mlU7lyzatuC3orVr7pw+RRqbJxCJ IhpFNIZYHPEk1lPEmFWyc8e2xQuO7th681xJ1aULBVs2zf7ow7//13+dzs8/nZ+P2zsfh9QxKp5rKKGLJ4H+mydPbPrl5x8+/OuSb766VFTQUF5WXnz4xLatRStXnti06c7hIz3lFUONLdEBZUR ToxjHCIkSnBLCDofHIQx3dKCGetzQAOvqYF3dvdOnl3zx+fd//GPhypXNpZdRzaPBtvanXd1RDZiUJRBJEjqhatkjKHfDCX3a1T1 wu+r2uZJbZ0ta79zsvF/VevtG3rLFv3z2t3l/+6R48ya1vu6lEhpDMMao3tHeXllx49jRO+dKOu/d0Xu6nmvKS00Z7OsJ1VQ3ll1tKSvru1MlGpue9/aNh9Q4gCYiNuUJQhOExDGJIRyFaALCCQDGARhV1HFNi0IUQ3hM 05739YXb2llTU+Dhw+byazePHb1ckF918mTg/v2XgUCKc1s35MuW78IzwhZlQ20dgUe1j8rKTu3eVbR+/W+fffbTxx8v/vLLg+s3iPaOMYjilE8gPAExqm+4kl+4dd4vK+f+uGP5siN5O84 fKDqwZfP8r7+a8/FHa+b9fOHgAdHXG42EAw31Fw4eWP/br4u/m71l8aKrx4svHS46uGXjyh/nLPjy8z0rVzSWlw8DECVsAtMoZBOQxiBPIDFrx4Lf9qxaUXHye POdW48qru1Zt3b2Rx9+/qc/lRQUlBQUgNb2wUBoBLNnCogyOk5wsLbm1M68X//x99nv/3nt3B8OblxfuGZ10do153ftarh0iT2qf97VM94XTIS0EVWNEhz FeFTT4pSmhHja19dXVXX7+PHL+flnd+68UlBwYsuW+Z9++s2sW au/m31uR97NQ4fvnzjZdKmUNzRFNSD141hIjUMkU7hJmWeETcpGg6 HwQK/a3NBb86Dq/NnSg0Ur5ny3dPY32xctqDh2xOjuGsNogpJxjFBj472SkoKVKzY v+O143vaG69dEdyfvaG+6Xl528MCZXTsv7tnzoKQEPKx+2T8Q0 2BcgzEVxFSQS/YoCtEEAGOaNqqqI4oSQ2g4GBzq6uJNzaEHD1rKyh6cLrl19Oj5 vXuOb91atHr1wXVrrx040He36mUgkBLC1nWTC4vxOMJJhD0jPB oM9VTeOL1nz5Ft23YsWbx90aIfPvjgnx98sHz27JJdu0hzyytN i1E2gck4RKC27vL+gh2/zt+zZnVp8eGemmpjoL/x5o0N83/7/I9/+OHTT4o2b9JaW54jeK/00uZFC3/98otNCxdcOXqE9nSgjpa662X7162a++nHS779+vqRo5HeXgnBB KQTgEQBi0M+a8U33+xetqz0QFFlyenS4sMb5s+f88kn37z/l4INmwo2bKq7VoFa2qMsPIbFMNTGKA739944fXLl3H9+/f6fvv/or8t/+P7AxvUXiwrarl8Pd3TEFC2ugnhAjQeU8aCSACgG4HhIiSGUom yop7vn9u3TO/MObli/e+WyvGVL1sybO+fjD77+659/++aLgqXLDq9ec3j1mnM78jqvVzzv7YsCEEcojpCMw1EAowDGMU 5gksDkFSe4u72l6uaxPXl5K5f++LeP1/z849G8bQ0V156poTFGRgl6hQDvaKu7ejl/9cqf/vHpkjmzj+7cXl9Z/ujaleN52/csX1a8aWPZgaL60lLW2DSmqklMEhBla5zcdnlCg1EVjIfUkWBo OBCMdHUGHtyvKb1YefzY+YL9R7ZtyV+3Zt/aVUe3bDq+bUvJzryygweayspYa8uopsUpMbmwhG7rehyTOEQW4 0PtHdWnS3atWHFg8+aDmzcf3rr118/+8d37f1n01dendu4CjU0vVC3GRJTycUxFW0fDlbKK4qO3L13oq H4QUYLPCW68c2v9wvnffvTBou9nn8rfj3u6jFDg7MGieV99Med vn+zbuL6p6vYzCl4wqLQ2nti/64dPP/7+w78e27EjVF8/jukYJuOQjkMaAyyOxKw133+/+bdf961aWbBh/a6VKxZ8+813H3745Z/eWzvvl7Xzfjm7r6D5xu1hQEYRH6P4caAfNDdePnxg1U8/zPn4r//4w6wfPv3o0oHC5hsVg11dr0KhsYHgeCCUCGrJkDYWDMU0EAMwq oEEJinGXoZCrLn53rkz986duVly6uTunSt+nDP7g/d/+eofW5cturR7z5V9+8/n7SwrKOi7dXt4IBBHOElIHGEpsxOYxCAaV7UJTYtB9AxrYqAn8 P9Udt7fUVzZvme9N3fujO0ZM2OPPbbHJBscwUSDyTmKKHI2YEA IEAiJKCQQoKwOFU4+p6q6FQCpU+WqboHvff/Y++G0mvDs+9as9V2s7lKhpar9OfvsvevsUw/uXzx8YP/Gtd9/9s+FMz7fuPCH1jOneF/3GNRzCIxD/amahg87Lu7bO3fap198OHXRrOn169cc2rhu44J5O5cuadxf33u tCbS1jfT15dNKMa0W04qj6QHC1UYDUINAHU+lx5LJu2d+Prt9e 92PizfPn7d18cKdPy09sGHtqbptrSeOt5//pff6da2tLdvXm9d1B+MShAFj1UmBMnkVmSdd90+dPrp169Vjx1 rPnLl24sSSmbOmvfPO3H9+cnLbdtz5aBxAjxsO4y7lzxVNPOlm nU9wf6+lprO6qnc9bjh2ZP7MGTP+NnXZt19fOXmcJwdBT9e+De umT/3r9L+9v2f92sGO++MGKWY5T/Sd2b/7yw+mfvzH/123bFlPy408RAWEbUgdzH1sBMSccnLDxmMbN57atm3/unVrvv/+i7/9/fN335v+3vvr5s1fN2/+6e272s5fyvanRhKaNdj/5HpTy5lT9etWr5733eLZMz999z8/efc/D2xY23ntyvN0alxVx/sHHUWvQBJp0NWAp0MfogATnxAX4wIEOU3TH7Sr7W2pjrbWcz8v +2b2P/74v777/JP6TWv7rl5Vb95K3riRvHFjqLvHQzikLOLcAbCkAw/hmAsP4WcDg5knXZmuLtTXRQd7TSXR13a7valx2/Iff5j+ry8/nLp//Zqemzeeakqe4me6Ogb1p2r64eVLy+d+/eXHf//8L+/M/fyTdT98v2/tquvHjybv3rZ6e0YGB8dT6fFUamwwMTaYKKYUT4eBBkO9mi66u oQg9TyRuLh7987FixdP/3zJjGnr5889sGFt45GD9y83DN5sRQ8fZPr7nqaSOV2zCfYodTD 2KfUojYURce4h5BMynkyprTcf7U3KFAAAHsFJREFUNjWlOzpS7 e0dV678NOer6e+9t3Da9IYDB43e/gKmrjBsxj1ulDAd14CN2QiBQ1BLP+5suXBu9/q1P8yasWjOl/VbNna23sjoauJh+/ZVyz+f+teZH/794LYtoLfbeZpxnmZEeuDcoX2zP/rg4z/9YceypV03msd0kIPIRsynRsQyMc9O6Wu6NtDaqrTdu3Xu3PalS 7/6x0ezP/hw0fRZp+p2n6rbfe+Xhu7rrVZvwupNdDQ2nNi25cCGtTuWL63f uPbQ1o3zZ02b9eHU+Z9/1njkYKa3ZyydLibTZcJ+pcJLqjK5DzCJCHMQyqtqXtddSl2DD6 eSmdRg8v7d3WtWfvnh1BVzv2k4fkh0dhYUtahpY8lkSdfluPcx CQh1EQoIjbkoKCq8d6+r4dKDc7+0X7/ce+8mS/Shvi7c13WmfvfSOV98+uc/rvhmzr1LF54BzTH4iJIaVdNjQOttaV4579s5//zwgz9M+eSdP6767uvGIwfV9rZRJf08ncppmg2gDWBJ1Ypp1Zb1 Dw2GOpKt8q4OJQTPEokbx47uX7FiyYxpCz//bPV33+xZveLCgX13G84P3GwBD9qNnm6rr3d4cGBcUz1GQ0P4lD qTD+R8jCPGQ0Kf9g+IgYERXUddXW2XLi2YNu3jP/zhh08/azhwYDiZthl3uVGizOOGTVgeIJcJS0urXY+vnT29beXyhbO/WDh71r7NGx60XGfJwWLWSnY+2LJ82Wd/fXfGB1MPbd9KEwOFITFmErXr4bFd22b+/f2P//Qfu1au6L99+7mq5QB0MAu4VRZDFWNoSkHRPURLGtJv32s5dHTZ Z9MWf/zpnkU/9l5u6r3clEupQ919/Vev3z999sCyFQeWrTi6at21+oP9V5v7rlw/vmb9V+/8Ze7UD7Z+N+/huQslDQaElzToABwQbqeVX4VZHEzGiPy3MJ2kEgHkpJRSWvEBL AId3m+7UL9n+4+LDm5a13LudCml2WndUaGnYx+QANIAsQCxipE pKHourYXMGE9rDy807P9pxcpZX9b9tOLC/oPJ+x0jqp5qf3B8e92C6TNn/OX9Vd9+f/dCw5CiPYf4OcTGQOJ+4+XTO3cvmvnNgulfzfjrhx/94Z1V38zruHxtRNFGFe25qj5XlXEtldOVIkwXYboIknktYUNQ0 vWCphVUNa+pBV3L62pOU5W7tx81NjTu33dgzaptixZsWfDD9iW Ldv304+ndu5p/Pv34+vXBe/fwkydPVbWISR5hhzCHMA8zDzMfMx8zeV1PFX00rY2mtZaTPy+Z Pmvan95dOvPL68dODicVm4rAGrKZUSTc4WYB0eFEur/t/tn9B1bOm7d49pxNS5eeqd//+OZNI53Om+YowunOR5uXLvvknXe/+uST3WvX6V3d+aHsWMZUu7sP76ybPnXqP//85/q165WOhwVAipC6kPlYxNiMiTnFhcTHzENsuKc/2dx6rf5gQ93um0eOo3sd6F5HLqVaj7t7Gq/ePnaqoW5384HDD86e12/fezaQHO0bfHjuwqHlq9Z+MWf3wiVtp86M9A7YOrJ1JC/VTisTlBcHUxVM/49hBapewTTQQIBwTGgo+LiSHrx98865Mx1XL2mPO+y07ijA1ZC vkwDSELEAswCzipFxAHYgnrCyLmaDzS1H16xbNm3GwukzNy1af HbPvhunz5zbW79x4eKF02cumDbjyOatfbfujGi66B8cvNt289w vR7ds27pk6fZla3csX7/i6x9mTf1o7qfTTu3Yk25rH1W0cV0b09RxNTWupfJ6sgBSRZAqg pQDYU0lAIpALwC9APScrlq9Pak7tzobG1pPnbhYv+fopvV7Viz buHDBtmVL961dc3bPnkdNTZlEoohJDkCXMpcynzCfVK9IKgfJU 0W3+hNXDh2d/+nnn//nO0tnftl05PhoWitg5nBTKgcJfPi4o+HyztVr1syfv3LuvD3r1 18+efJx603c1/+M0iEdjECkd3fXrV796bvvzfjb37cuXz7Y3jHKmQn1zps3t61e Ne2v78/56OOze/ax3v4ipCVZJCBGTMwytab4mHmIhlR4kI4nFf7gEb7XTtsfPhtI PhtIOjrKJRXW0Zlsbu1pvKrdupt50pNPaxEzAsKHuvoGmpqbDx xuPnC493LTaN+grUH521xIbF33IMonUzFlL7nh60A+Gao+nmEs FqIA9aGB/qHEQA7prgo9Dfk6CSENEQsxl6oIK8Dcw6xsWJFhWd29t46frP9 pxeIZX6z46tsti5bs/GnF5oWLV387d8uiJQfXb+povEK6e43+RE/LzcZDR/atXrd50ZIdS39qOnG25ecL5/YcWvnND7P/9o8Vc75rPn6S9/TlIcgBPacrOV0pgHQJqQ7WPKq7CHkE+4R4GJcgKOhaXtfyuhYY vIjgMyU1kkpkBvrAg/ZHVxtbTh4/WVe3d83qTQsX7l658taZM9bAQInQcR14lHuUB4QHhIeEh4RHmE eYB9ZQHhKrb/DivgPzPv50+p/fWzH76+Zjp0bTWg4SmwqHGQXMyOPu60dP7Fi8dPYH//j+039tWLDo/P6DD65e67t9N3m/XX34CD7pfgpQJqWc2bPv239+Mv0v76/89vub586jwYFEZ+flU6eWz5375Qcfrpo77/bZ85lEqohYCTEfi4AYMbGqELiQhFREzPAxKyh6UQFFFcgxHVJR FpaPWS6lPu1P5FNaSYMlDbqQBIS7gIwnlad9Cf7gUbarV/4vFxAP0YKi+xgX0kohnQ4xiRD2VL3a1gmQpwEPobIQoSlsgnII FAjydRIAEkIaISZvU0h4iLmsdbuIOhD7VHiEWd29fU3Nv+ytP1 236/jW7Ue3bDuyeeupHTuvHT/ZefUa6+kzBxJK+4Pb5y6c2b334PqNJ7fX3Tr7S7rjid7Z29va9 vOu/T/N/mbJzNmnd+xM3Ln3NJ16pijjWjqnKwU9XYSKjVWX6h7GHsEexg5 CRaDnNTWnqTlNzQN9TFWeKekxTckhfUxXh5IDvKcLPH7Uea3p0 qGD5/bu7WhszAwO2pTlIapCQHlAJyGQygwXMbP6Ehf27p/38aez3nt/zTfft578eSSpFBD1jEyJCqN3oO18w84ff/pq6gcz/vr+Nx9/suq77/ev33h6157Tu/ac2rnr5917Oq81W8n0UwDbLl3evPjHrz/6eN6/Pt+1ctXFE8fPHj60c+3aBV9+uWT2nON1Owfv3BtRtJon8LFRnQ 4CzELMIyoCzB0dR1RURKbCreqfS8WEka0Iy4O0IqyYmQFmLsA+ YjEzK9ySS1xKCnB05CNma9DWkAdpUdHzCIqe7meplMeYo0NHhy EkYbXFn8jFBDETAaYuwj4mIaQhZBFiMZ4cK5gFmLmQRMwIqChq 0IY4NqyQm3kNsK7edFtHT3Prk6bmnubW5J021PnE7Bsc09FwUl HvP3jc1NzRcLntfEPvjZvZwdSogp+qJDOg9Lfea6g/fGzTtmtHjiVu3cn09Y0kEmNqOq+reT2d19MFoJSQ6kAko0UHIg chG6ICADlNG1OVMVV9rqnPVGU0nRpNp56q6ee6OqKqZmJQe/Cg/9Ytrb1jVFEcwkqYvuEJMA8nr86hRh6S4cF00+FjK774auFn0+o WL2s7d3E4kXaYURl6WsI8fef+xT37138779sPPpr38WeL/jV9xZdfbfj+h03zFmyat2DrgsV1S35qOfEze9IzriPyqKvl+On ti35c/sWc1V99u2LevHWLFq1dsHDN/PmHN2/pvHZ9OKkUCC9CWoLMg9zHIkRGiI0pMTPK3Coz00fMVmFERJmbZ W5GVERURNQoc1PaPqZGSHiAWUTFhJF5YQ5VhBUS7iNqq1D6bQ8 SF2AX4PFEWmu///BSg3j8xMHY1kFIWIxZXG3eqD5U9BHxIPYxCRkPEYsQixCP5ESA mI+oB6mto5ibZSPjYVYCyMXMI7wEcZHw5xrMJtLZwdRISn2uwT EdPddRHtMxgDMDSbNvcDipWP2JzECySPg4FONQjEM+koaos6u/9W7qThvv6nmaTud0vYShjWEBqHldKULFxnpR0/OKWlA1F+GAcRfjZ6mU2d1t9nQPDQyMplKjqWRmoN/s67X6+4YSg7jrSTaVeqbrQ6nUUCI5DoBNmI2pS5hL3ggJQ8RCx BxmlAgvYtZzveXMjl0nN2+/cvBI+s79pynNE9bEyLMiZqk7bU2Hjx3dsHnf8tWH1208umHz8U 1bj2/aemzDlmMbtpzcsv3Mjl33zzdkB1JFzGwqzN6Btl8uNuw7cGLzt t3r1h3evv1M/f4rJ04+bm4RA4ki4TYzSojZiHtI+NiIsBFhY4pccVamRkRE9dZ D6kMaExETUWFmmRplZk5wS/4ogDQmQq5zjYmQ1+PquEyNCZFxVPisL8HbO/svXzu9e9eeNasfN10dVZSCBmLDiomIMAtUFGo40kmk4VAnEaAR pJGcBSQEiIeIBZB6gLgAyyAjZIZPmI2IDXEJ4hLARcRKmJcwKy JagKSIaBGxImJ5gG0iCpCWMA/NIZuI5wooQFKAvIB4CYsSFjkdPU1pz9JqTodFiEoYlxAcV9WRw f6hgb7R5MC4mipqIK9oBVX3MPUpf5ZMpW/daTt7ru3cLw8uXOxsvPz4ytXHV6t60tTU0djYd/Nm6t69xJ07Stt9q68/r4ESIi6iLqLyrgbglXyRcakRmUPZvkT6dpt6t11vezCaVIuQes yMzCEb80zvoHLnft/11t5rLcrNe9qt+9rt+0rrveSN28nm26kbd9Itd2j7o5BaPjEq5 nDEMtnuAfNxL7jT3nv7buJ+O3j0RPQPjijaOCI2FS4zXWJ41Ai pGVErplZMrSlVW2IeU0P2NYaYB5DKtYsVboWIBYiVmfnSHKpwa UgubR9TQ/ZDyc8hYqM9A1rL7bvHTp1Yvf6nr+d8/9knTUePit7esbRSNjMRZj4gMaAxrLYOVjCfIEYZ80DHk56ARYj JnTxdgB0dxdz0IC1qsKQjB1GXsIAZsZHJ6dhlRmhmXWbmAc7pu ISZx80xFTjUsAkvYR4YGYca4xosQFJAvISNEhYFSMc1mNNRERG H8nFVe66oI4MD7PEj7d4d5c4t2N7GH3c6EBc1UNSAh6kNMXv46 NaJU0fWrjuybv3B1WvqV67av2rVoXXrjmzYcGTjxiMbNpzctv1 0Xd3JbduOb9l65eChgdabo4PJEsQOJA4kHiAeID4gPiCBTgKd2 JjnNOQxc1yFYwooYf48rRcA8bnlUsPG3KWG/FCEtABIPg2KKipquKDAggJLOnEAdSAbT+n/NfSsqCIbUA/xsaQWMstDfFgDIzoYQ6QozBIz8oTZVETWcMCsgFsxz5RFtsKzF Z6dEmMeY1Em1WbHMhGT69uzL0X2pZGtrmhmZkxEjKV4hHg06dZ iImLMA0AnmDX0qPvB6XM36g+dWLlu/swZX/3zozvnz2dTqbwOc6r+0hhyNVyGvAx5GbCyzso6KwNWhrwCeZkY ZVL95QFiftUTEBkY+oT7hLmYOZg6iNiIeES4RLhYOJg7iNuI2Z DZkDmIO5i7RHjE8IhwMLchKwHiIu5AVoK0BEgJEBtSB1OXsOdp xezu6Wy4dGnv3sZ9+64ePNhYv6+xfl/yxs3nibQDSV7RHUTH01p/c8vV/Qcv7tl3cffe87v3nNu5+2zdrp931J3evuPU9h0/19Wd3Lrt+KbNP+/Y0Xz0eP+N1pH+hE+FzKR8SF0NuSr0VBRoONSJjdjrKiFWglJUe mwHC5cIlwgHCwdzOWrlMpCImDG1yixT4dl4ckDXjkyIoRfGcIk bJWYUqShRYVPD41ZgZCNzKOKZiGdininzbIVnK2JoirRrFQJmV SZ7XCbXpEpZL7gljVQmkxxUUeByFvd1XKbGWF9Cbb7Zc6Hx8o4 9P8yY/s2nn7Q1NEgIxhTthch4Oqn8LgQifgsCSDxAZEjlE+5h5hLmYuZ i6mJag8DF3EHckXcTMgdxdxIClwgHSQioPM2G1Ia0BImNqIOZS 1gRIHC//XL9/sNr1p7fufNyff2x9evrFi+6snc/auuwAXYR9amwIRGPuxKtt1K37iRv3Rm8eXug9VZfS2vvjZae5h vdzTeeNF3rvHylo6Hh4aXG/uYW8vDRWErxCAsw9xH1AZEQSA58Fb0FwSsaILMRc/ArCFwiHCL+XQhcw3KElOkJKzCzsTVczoz8BgQVYkhNUHOCmi+Y KT/U9IJZL3nmV5GZoOYENSbPF2UsxUNAy1h4KooRdxX4vGfQbH907 8jJ+TNmLJw563HT9VFVtyEdT+tlank6rSCjDEUZiDLgMeBlKMp QlJEhPU2EeYRYIGMCSDxIPEQ9RGXFzSPMI1zG2z4WUh4SHuIe4 h7kLuReNeoRPhY+Eh7kLmAOoAHmAa4Gm27tdxJWBEi723b1wKE Lu/a0n7/Q/suFI+s2LJ/1Rf3SFX1Xmks6DqjpU8NBLKfBvAZzOsppcEyDz1XwVNFG0+pIS h1JKSPJ1NBgItM3YPX1D/cPPkspRQ26qDoRBID4Ogk07KvIU6CXBg5kDqqJvyUXcxcLD0t/ZnjE+Hch8EXGF5bPLV9YgchERjY2h8rW8BsQiGxFDE2Rpq3pBb MmqCnNXCGiQowXzHzJM7+K7GtkvIFCoJMKMTwVRZDFiIWAjvUm 7h87tWDGzOXffNt/684YRD4zcwoIkXA1UkFGGRmVKgdVAsrIiDGvTTQSAh9SD1IXEh cSt2oz7lPuMxEwUYOgauxJ+ZOScLiQu5A5gMmkN8Dcx9UirlQR oJH+QeXOveTN2/hhZ3fTteMbN6+e8/XpjVvTLXdKOnERkzNIERCfmTZm1WgU0RzEOYDHARrTUR6iHIA5 HYzrIK+BAkA2wA4kro49SELIIsRjyEKd+CqqQlDlgLtVq1cN70 7KI8Inhk/NgJr/tidgppTHTJ9bAbdCnglF5jcgeMmsF9R8Qc0JYkwQ4yW1XlBzAh sVLKReUPMls/6LZ+VptTNr54QaeUHNUCcxZBUsyoiP9ybuHjy+ePqsDT8sTN1u G1NhzLMljQSA+zqrILOCzDIyYmhEyIiQEWEzIubk5MJktBEg5i PqI+oA7ALiIuJh6hHuUxEwI+BGgMRbCrER4lfHfch9yD3ApGLM YswizCJZuEXUQ9RFxKc8YOJpUgH3H3RdvX714OGj6zcdXreh61 LTUM+gDWhBRUWd2IAV5ESOeQnzIuYFxPKI5iHNQZIDRJp/XNPHNT2vgSJALiQeoj4gAWJlLCaoMYGNMuKxTkIVSwhcyF3EPS S8KtBGQEyfGD6WR4yAmCGzIp6JqBVSK6SmVMQsaciIWvJHEbVi linzbMUYmjCGfWb6zJRhYMgzIc9Ek//Gb0HwK89IDiaIUcGiZuCqiCEN/5JZL8ik+ckrRMqIhzp5Qc0IUHk8AjTXl3xw4sym+Yvq16zX7z9 8mtJinrV1GgAeIaOCrQoyy8iUEMTYjIgZE6uWGoSTklm1C972B AETATP+X/PXJAmomV/SECEavYKA+pA4EDsAF3U0llLTt+9eP3zsxKYtB1avPb9r7+PLT cajnpJGHMjyCnQR96lZgqwIqEOEQ0SJiCoKmBUwKyBWQDgPUU4 HOQ3kNVCC2EM0IDyANMS8QsQENV8QcwKLCmSxTmsQeIh7WPjE8 EnV5AGtcuATI6BmxDOxyP67EEQiGxnZ2Bgqm8Nlc7hsDJWNoVh kfwOC/+LZX3nmhdz8B/EK4hKF2rh/Qc0XxHxRJaNq+wriZcRlnB/pZIIYEaC/sswEMWLIfBXpzbeaDh+/dfrc6KAynoYVPuTo1NdYGZsVbFWwFWMzRmaIzZCYoby818xfhQ CzADMZFkxCwDzKfcp9KgIoQiQlix5mTMyYmBE2QmQEkPuAeTrz AfMBDyCPqn0QNEI0QMQD2NZRSQOZ7t5Ec+v5nXt2LFyydf6i+h Wrrxw8krh1l7Q/zqehA1lJJx4xfGIWAS1BZmNhY1HCNQi4hKCESRGRIsQFgEoA2R B7kPiISgjKiFeIMYHFBBIVyMuAOeAVBLKSH0jr8kzIrGASgpBa Mc+WjaGQWQGzAmoG1AxY1T3EIhsyS/6odqRsDFXM4VhkY2OoYg5XzOEJa6RsDJXFUMyz8WsQlKsQiCoE cljHkFWQkPPCS2q97iQmzS+k+WPIpEKdSAfw3yL7klkVLH7lmW dP+mHHI/TwSWQMlSCbEMOORl2FxMiYwJnXIYgkBCwTQlbVWxD8TmD4FgSS gJhYETYlBJ7OPJ16uoRAyC0E5Pr/ABIPoJIGi6pOOjrvnjqzc/HSlV/M2Tp/8YFVa09vq7t25Hj/1ZbhnoQDmAO5i0VRp+MKLAJahYCIEhbFVxzwPIB5gAoASQhKAD sAOwDLZ+IxZDHirzKjNyCYdPvUlCaPmBUQ08dGFQKRrRjD/y4EIbNCnpEolI2hKlvU/A0IfmNH4cnt9t7YWhLK5lxaprzCRIWJMuURqS7Ij3D1eK0bydN hUSMlnTqAuZMXWRUyagqloBFCo0KMGPEQ0hDSGFczxghzD2APE A8SD1IfUR8xH7Ng8slCgGtP50RYLXULmZVJFxIQHjOjLKwytsr IjKARAhEAEQIRQBEgg3c8eXL+ysXte46sXH9i7ebz23Y37Ky/sGPvk3ONvO2Ro+AYmyEUIRQhEj7krk59yANsBNjwEHchcyHzEC/oUL71pgRxUYcFDZZ0ZANs60iGNR6s1g1l9utOki2fjTkyFyU8o OI35UHiIxYQHlERMeMtyWpKxIwytyaM7AvrleEjka2YwxVrJBZ ZOblEIiOnCeknahC82qToNQ7e2GJUtpK9DoFszHj9uNzJIUTEB 8gGzIbMqaZtwsdGgI0A//8gADQANESsVjyu3jg0SQCq1uH9V8/mJyEgQt6LSQioj2iAecSMMjfLyIxfQcADCQEU44Na9nE/uvtAabmbbrmbbr2bvHF74Forvt3xvCcp4xhPp1KuRv4HCEoA24 iUIC7qqFrihFV/UA0Sa4LUQ9THTNY/qlVFzH6PgGDS8NX+ocmvsqcs5maNhrKwKkZmwsyWjaFIZEJmxR ICczgW2dddiPQQsTE05bXta/kbQLz+4g75nonJzsNXEFAmOZDtWvJ4TKvNXz42PCRcyB3A5NJm H4kA/0ZUL1WmRoS5D2ltWZEsGoaY18Z91fzVxIH56Lc4IG9BwCIqYmb EyIigEUIRAO5LQe5Dnk+BkoplGllQ0fOE9nQgPdqfzg2qrkZCZ PiAORpxNeIB5ur09yCQbsBBxIakBFBRhyWAHUScWoqLJg2PmUx T5bj3Ca8+XyA8ZMbvQVAWlmw89Qn3CQ8oD5kRcSMWViysWsNyL KyykakYmVhkIxkGimzFHC6bw3LukCliJLK1E6a8trtabZPjV7P Da5MCre6+Udt7QUIwuSlLzRPUPERIrYAYLuS2Tm2dSg7+Bwgqz IyxCCCtLSyTEERERETUUnwfVaOEmm94kwNZDKiBQn3MAsJDIiJ oRJIAnXk683WZO/B8ChQVbOu0qOLxNBhP6XkV2YC5GpVBpfQBPuTy7/w9CEoA2YjIqnYJYBkbSuvWJCGQU5gkQBrVw8zDVNr19yAIX31+ Y8qQENQaluXXsrCkmWWI8EZqILKxkY2NoXjyyJS33izwyvaT+w rLgCCCpPYuS9my/+ornvws93SZxCJmVkgMH3FHJ1IeZD7ivwdBzM2AitpwCQiXq54 CKqqVYzmAZH4PiQdrKLDX44PJyiDz3wQlhDwAzAfU06mrE1cnr k5dQH0sXMiKGs6rMK/CEiAu5j41XEAdnTg6lT5MViR9xB1AZQNXDQJ5XVWTY+ZiakNiQ +wgIr86iNqI2JA4iLiYeoT5lE/WPIRPuTzNpzzkRsDEb8olzKM84EZkWJFhRcIMuOEzEXAj4EbIj VCYr6sWJNYIkEO/FgpUzGF5fMqbO5uzWhg4uVfDqzdTya06QtmYh3C10ZjQ2kYNtb 7jSVbMAAsf8aoXBdSDrDaefkOES+u6kEhXWTW5zAsm3ak7WUP0 fo+D2sQxyYEHqQdpAJivMzmvOxp2NCzR9DF3AC3p2IbUxdwjwk asoGMXMEcnLmABNnwsbJ2UVOzo9PcgkCb3CPcIk5OCg6lHmIOo Dau+oQSQDV+dJnNdj3AHUwdRj/CA/S4EniyVThpbEuBRLh+D+ZQHb3HArHjS5HLERzXHYA69zsGUNxw +ovKdmJPvI0O1nb59DUrz+xDJ18T4EEkUAohf6Q04WAClaiEx9 eCrSfHt8i3CeYByOsgDWELYxtTB1MbUhlhKRk/VKbYKwW9wUIsZ/dqTAkhcgH1APUBcHTsasqV0ZOsor+gFFRSrzpyVIMlp4FlKKUF aBMRGzKemi3lBRUUNe1i8DkG1JAWZj7iM9uUQdzGtMkF5CZEix HkAczrIAViAqISJTZk0nku5Q5iNSAkRhzCPCf935HHDobyESR7 AcQ2Ma0DeqzxARYRtQl3GfWH4wvSF6QsjYObrIWHIrEhkZMoQi TecxP8FfrrdJ42K3qAAAAAASUVORK5CYII=

اختي الكريمة يجب عليك أن تفهمي حل المسائل المتعلقة بها اولا
وهنا تعويض مباشر في كل قيد على حده

فقط تابعي شرح الدكتور حتى ترسخ المعلومة ، شرح رائع وسهل


بالتوفيق

زهورة البنفسج
2012- 11- 30, 10:10 PM
الله يجازيك بالخير طيب هذي في اي محاضرة ......

سعد 2011
2012- 11- 30, 10:26 PM
شوفي موضوع اخوي العزيز ( فهد النجار ) وان شاء الله يفيدك كثير

ابو يزن كاملي
2012- 12- 1, 12:04 AM
:14:

فهد الحجاز
2012- 12- 1, 09:46 AM
السلام عليكم ورحمة الله ...........

في سؤالين من اسئلة الاختبار ياليت تشروحونها لي ماعرفت كيف الطريقة :

السؤال \36_القيد الاول يتقاطع مع القيد الثاني في النقطة:

1-(8.24)
2-(20.30)
3-(30.20)
4-(24.8)


السؤال|37_قيمة دالة الهدف عن النقطة (24,8) تساوي:

1360-1
1200-2
90-3
1260-4

السؤال|38_ قيمة دالة الهدف عن النقطة (0,20) تساوي:

100-1
1200-2
800-3
1000-4


وهذا رابط الاسئلة:

http://www.ckfu.org/vb/attachment.php?attachmentid=73940&d=1347819866

شوفي موضوع اخوي العزيز ( فهد النجار ) وان شاء الله يفيدك كثير

حلوة منك اخوي سعد..

زهورة البنفسج..تابعي هذا الموضوع ان شاء الله يفيدك

http://www.ckfu.org/vb/t379923-4.html#post7584080

ابو يزن كاملي
2012- 12- 1, 02:15 PM
كيف طريق حل الأسئلة من 63 إلي 69 وشكراً

ابو يزن كاملي
2012- 12- 1, 02:18 PM
كيف طريقة حل الأسئلة من 63 إلى69

الطموحهNA
2012- 12- 13, 04:18 PM
جزاك اللهـ الف خير

ღ الليدي ساره ღ
2012- 12- 14, 12:03 AM
للحين مافتحتها على بالي مادة نظري ياااااوالله النكبة :7:
الف شكر ربي يوفقك

ddira
2012- 12- 24, 11:23 PM
فيه احد عنده الاسئلة واضحه حقة ابتسامه
تكفووووووووون ضروررررري احتما ل
يجيبها copy

قمـــر الكون
2012- 12- 25, 03:16 PM
شكرررا يالغالي

احســـاس
2012- 12- 25, 09:02 PM
يعطيك العافية

سلطان القحطاني
2012- 12- 26, 12:24 PM
ببببببببببببببببب

سلطان القحطاني
2012- 12- 26, 12:28 PM
الشكر