مُعآذ
2014- 1- 2, 08:14 AM
السلآم عليكم ..
اللي اعرفه ان المجموعتين المتكافئتين هم اللي يتساوون بعدد العناصر مثال (1,2,3) و (أ,ب,ت) يعني ثلاث عناصر بكل مجموعه
بالنسبه للمتساويات (1,2,3) (1,2,3) يعني نفس عدد العناصر ونفس العناصر يعني
الي خلاني اسال هالسؤال حل بعض المجتهدين للاسالة الاختبارات الماضيه و بالاضافه لاسالة اختبر نفسك
ارجو توضيح الفرق بينهم .. وشكرا:004:
http://www.ckfu.org/vb/ qnJeWAAAgAElEQVR4nO3d/3Mb953f8f0LOv3lpjM3nd5MOx1lzsiM01F6M+0dfUpyl0tTpdf YNNqr0/Y04ySI4ZhyRSOKkwsKw62TyLKFJIWsLxF8MpTY6RU3tBQf5S9y pMRQJJoWxXyRSIaSKVFfKIIgRQqkac2gP+y3z+5+PrsLEEuA5P Mzjx9oaLH72Q+W3hfen92ltkSj0Wg0Go1Go0XctHZ3gEaj0Wg0 Go22/huhk0aj0Wg0Go0WedO0rgQAAAAQnaWlJW2ARqPRaDQajUaLrBm hs+3JFwAAAOuVEDrvewQAAACIghA6tzyqbXlU2/JV8weVwAVabvW32KqOMVaMFWPFWHUIxoqxYqwYqzZvUQidn9wO AAAAREEInZ/aAQAAAERBCJ2fTgEAAABREELnZ54EAAAAoiCEzs9+CwAAAIiCE Do/lwUAAACiIITOv3wGAAAAiIIQOu/fpd3/rHb/LuGHZ2Uv6j88K/znLufruxTL7/J9i+q93lW5+vCs7F+9e7FLsaSqb96h8BkNxoqxYqwYK8aKsWKs ohmrH4zX6/V6fWb3E+t0rH4wXq/Xj/2gpceVZNBaO1b/cKxer9fHtzUyVkLofHAPAABAJ3n9WL1er9eP5R3/abbq7q/pr/9o97W6q5lvabWvDY40vBW9e5e2WbtwbXCz+a+bjw5uW0F/Nh+tmuPgXHP+Ur1ubbRltg2KY2ysXNkHJ/72OgAA6FCbX75Zr9fr5cPmK4ePXXljs/7zM8P1er1ev7n74YTW9czuK/V6vT7y8jPRdunhN/TEeeyZhNZ1+Jj9sz+9e8Pbusx3WXvRldhWXlHPN7980xyEFq9Z te/1urUvwX0QEToBAEBn0rOanmY8jAy0uqHTSLp65Aq/Ub/QuUJ+gU/vrXpb28qKsVVuSL6zhE4AALCWGbHSUVSzGEVQI98Y+c+e9fatP m5++aYqKRqrdZRXRXp1MzhgOalDp5FiI6l0mr2VD2AASceMyq5 3lwmdAABgLdNDpzfBmHlIHm7Mfw0x6618b4jc6bPM4WPu11Wh0 7EqV4eFJOf92V7YN/D5loo93KuSdcwK5Z4XCZ0AAGCN0iOgPPm5Lq8UNT/Vvq3smq/31AjFCWtVkfLhN0bcLypC5zPDxtv1fXHuaetCpyJ/eybf7VX5dsybZQmdAABgLVNVOg2qcKl4XRnsrEzmiGhCALXpt+ ZYK3H9p2NDwnuNxcTqpv6zvYPeeXBxLxx75Lw9SMx/DVc69VU5d//m7of9O5bQuoRUGtwHG6ETAAB0JO81nc8M2wlPvHtd8ronJ6lDp 7IpZ/b9byRyX2Bad1RkHbHMyKMrbN442yVsy+eaTtflBCvpmLIPNkIn AADoTJ5CnTskmf/kfl0WsySz3rIVvjzstxLPW5RXjgqLOZeRxDJ5wrvyxmbrKUXiz/XhbfKnFzV897onc7t3OXT0VPdBIITO+x4BAADoHJtf0Z/T+VIr1vaSceP5F31eaQMr2B37diRrHnnl235jW//VttXqGKETAAB0rJeOtS73mDHL0VSZbNV2LapufPtX9Xq9fuXNz X7btQP3tnL92Ctvjlx5c3NkHRNC558mAQAAOosenupTu7/UirV96S1hYrpF62ySme2uvLV5VQfN2O7IK99Z5Y6JofNRAAAAI ApC6NzyVQAAACAKQuj8xGMAAABAFMTQ2QMAAABEQQidn3wcAAA AiIIQOj/1OAAAABAFO3QO0Gg0Go1Go9FokTUjdFaHhwAAAIAoEDoBAAAQO UInAAAAIkfoBAAAQOQInQAAAIgcoRMAAACRI3QCAAAgcoROAAA ARI7QCQAAgMgROgEAMOWWtU21svGfc/Gtc+Y/XU9vtV5vkVItpi0X277Lw0PV4aHi1k7picz19KZ6PNfuTZRq8e 3XW7xdx/HWXuLRHhVCJwBgo8rV0iXr52VtUy29ta5pRvgob7+raXVNz4W5 ZU2ra9rddGmoOny9mGs8fJRq6Zz9c0xbTm+/q2n1WMtzTBNKtZhm73gxNyddrLh9deLR9fT2OfvnTfX49lpMqz cSzsQ1hFg43CaKW+uavcxcsfEQXN5es5O953hrL8fRHnCEz8Xt Jc190eoWn90hdAIANqji1rpmVHeupzfVNe1uertdeRJDhnhKLm +/qzVeEypvv+tac3x7x1Q6xUitrL3NxVcnHpVqMSPcmx3bWmus0i muIeS+B29CP0KMA6a4tYlvC9fTm6x3SY639nIf7eoj3PhdMBcw fzXqYXInoRMAsCGUt991BIWSs7hVqsXcp/+5uOZMpZtqZf30HBgUcsvO07arODQX75C4aSpuFSK1rG/l0HXZ8va7jQVE52AWncW/4taGk26xwfJh2E2UajFjBK6nN9UDv3i4V2uk2zl7bZ0RN0320e 57hBvh29w1M4sby7v+043QCQBYR8yZPneMsGYAxdNh0BV1Ym6w MqsqltnM2WrHYv5XcNpvsSbxm2cVnxqIa1ZKzi2rOhCuvGfEjn CFQD2Lu3Z55VdwRnQN6PX0JqOfgV887PqfkE1DVRC9R2mzI+A+ AoNYR7vfEW78Holfnxwft3Oa3o3QCQBYR1Shc3hIDA32wp6zu3 hLjaM4asWycLO37kKXLHSWty8bM9phJyj1MOFdz13NNSVtUoU/q7Rpd8+8WlE1ja4InXYNuGq+3X/TLu4KtDQyum7iyS1Lephb1oRKZMOhU3KfkFjqdn6mueUQec5dz 5aGTv14M2a3HRTr17+fuNfj+BSca1Mdq+69sz8I9RHuvLB1SFn pVGRrQicAYB3xC50245YOb+i0p1DNtXnnQ0u1WGNFxFq6JA2dx llfvNzTn1UME1OatKgm1Lok4c8KJcI/WQlpLq7Ii7LQaW/FuAlJj2XhPgU3414rSWR0RmRXzBUG08hqkjU4buIxo54R+iWbG JJWYe1Ypq4HS+n3YElCp3G8zQmXe/qzBtxdG5YMuF0+93ZVVmN2fK1SfW3zHmn214yAuEzoBACsd9fT m1xnQfOWDmm9ynE5plissgqlfrfUFLe6T/DG7UrS6pERZF3XybmnLKvODgj3P9lZtrhVki2kIdWM2u6iqVnG u64KQI7tWuvfOmd0WNgRc1/m4uow7b300wzf0g64qtSei2L1T80YZM8a3IOvd8y1mGMTRsJ2l RUdXzzUFURZII7nhuTfLuyeCx+H42kJ3gPGcQR6PgX3oe5dlXz vnF88ZEe49Mi0P/TAawMInQCAdU0yFWtOLMrmtf3FFaU4g2SK1izLOa7aDMNbLjKj QOPdDkkPE6prN2VTwIHUyUwy0WzXKRsdHzGwxnMh19AcK5bJd0 2snlpHhV4+l97o7cc7SW1+TWrqswj/eSmOcOejtezDW3M9BYIbiQAAG5Gi2KZX+xoOglbolAYOb0l1qD psFSO9s5D+W5GuP7osVdeE0CntQMOZyQ4xbt56sPFhaWYpN3jN nkqnMHreNcQ2NdF5n+0qnj9QqsVklzMaxcgGvi34XtAZISt0yj 4gb+j0vqKq0Q4PVQmdAID1zP3oIosRRhutGPnNGisfgmOE0aDQ FuIaQU9qMUuSjSdaWXwx78JRXZPn2or01iXzYZ/6fyof+SnfhBFGQ0UrySUT9g661mDNPtuD4D9ixsplH9lycdgvX MovzTSWD/raEOLSXs8RK7+BLMzQyfbOvIBEdYQTOgEAMLhuYbHvaBYXc9+3 2xohbituhWg6v6qkVx96b+VpmOMu/nbQY5z31vtYa//0VG5ZspVV++Dc95+JcTngUU2ETgDAOiILnXIRhc5mK1jK3XE9W DRkTVR5DUAn8Kkyhgmd+iy867rDgIf1rA6fYnbTodN1ia3noUV qrX/+vGSQpbus2llCJwBgHXE/rEeVb6IIZMrJ0xUVpTxZNkx8kT0UqYOormoI6u1cXP/TkZrwt3MazqxRUn7xWHkFt9GjV/rg/ZUyeuLKsvztdQAAqsNDDT3SZeUiikHNhMigv7fUXk0EKfNPcdY cd45L//5TO3m+57Sm+NpMiGzqb8T7cv9FosYQOgEAwJrQydcMbBCuZ8o2 htAJAACAUIwSdVPlW0InAAAAQtIn+puZYSd0AgAAIHKETgAAAE SO0AkAAIDIEToBAAAQOUInAAAAIkfoBAAAQOQInQAAAIicHToH aDQajUaj0Wi0yBqVTgAAgI1rYGBgdbZC6AQAANi4CJ0AAACIHK ETAAAAkSN0AgAAIHKETgAAAESO0AkAAIDIEToBAIJSLtaVTWdS Wle22PbONKuYTMTz7e8GGpPPat25dDKhdefKbe8MIkDoBADYyp mU1pWIJbOx7myx1P7+NCOf1boSWlcilulrf2cQWjGZ0LoS8WSW 0LleEToBYG0oZ7JpIwX2FfNh45QeIr06PJA1t7O2Ui4WQXApZ1 LqAmpfOmlusVRoUV4X1tlhfIfCsxfd5oGXLLS954GKSavGXyh2 Ur28kTGXfQqZ9g8+oRMAOkY+q57UNs7c8fxQNZ8Nf/JWhc6g3FlItzOVNrmz0SrlYj7JyfjXbLGFk/v5rNaVSndAvbmcSWnJXLrb3Hf/oVCNmzk+gcun2xn1CvGuhD7s5Uyqg76bNTTmqrcL38TKmVQLK8 oh10boBIAOYM4Iq8/K+rkwW2zwbGGETufy+jym30raHPWa3FnnXkdxTWohrlqt/gkmC3piblVY6ZCLU/XxTDtCmHooJO9NaMlsvMv8IhG0fDujnhDOikn/hNeX7l7lrwRhx1zCPj6FL6J+v1kNfr4BazMQOgGg7fSMFZRUrC DoVxB1k4ZOM+P6BlzHW4wert68fFM76+7t6uZmKyAGhZVm1rlm 2UVr46uO/8jomU9cRiiUrs5QWKnX/wuPFbba8gEZgxku6pkfRCpdssfTv9vm+oNSdbi1WcKHzumh997 56dEjhw7tef75Pc8/f+TQoXd+enR66L2QWyF0AoCKXdgzXrFPtM4X9RNMKRfzngzyWW ki9Kt0qqeJ43mxzmEnTr/cqeiAa4Gw88X+O+svn41l+lowN21+CuJOFTO5sljdEcYwZFgJe zyYxbZGMo33uj0987Wq6Ou46EIfCnPMc/KhFq46CPqqY15OkBeux3VMzSvDjf5x+AyU+XmFG4fwX3hKuVh0 X2zUh5+dOBvJncax5Jln9xkH1a+zPeCqtSmukQgZOicHzhT27+ vv769UKktLS0tLS5VKpb+/v7B/3+TAmcC3EzoBYKg6PFTMK05RzvOxeFKRTWgW4u44Zd6r4fm/v/KaTsVZp5jUtyhsIh/mbmJpBwrxLs9VgMrcKSwcsLMBxF32T2zC7Uri7SPiJ+KM/nYil+2LGFZC5QD78kFZ/1PpUoOh05uzzb1oqhrXl+72XAXoHgphSVn8cn7nKfjOsPelu60 cY2ylnEmFqBnLCtulXMz63ZF+lCJx4WHXF55wOdWVsVwrbP3h1 8y3KceXogZKpN5vFI4BV36tla0/TOicHnrv0L5977//fq1Wu3Tp0unTp0+fPn3p0qVarfb+++8f2rcvsN5J6ASwEXnuNh XPFvqNyeLtyVZ9S7jb13Hqsq4hK8RdZ279NCk7RzZ2I5GzsGRs wlPClEQBSQesvRBPkFZcc/XTu7B6ZwNZ1bV8NngO0diRvnS33aViUuiJs9RaTCZiyaw8QFth JdQlAT5DkUqXjARmfgewNyGEG72uWYjbn4WZ24QdkawkHOubj7 BCR9xxrFaes42P1VrMr8TuiFnGVrwlTMm+6Fnf0QHZ2FrHtruf 3oXNLzzKKnsh7lyJ8zdC9cm26PDL5NxXvyjDsWO1jgu1vZcxiG tzvu4ec++Ayy+KkHQpTOh856dH+/v7FxYWzpw58+KLL5ZKpSNHjhw8eHBgYODOnTv9/f3v/PSo/xoInQA2IDENDFWHjdOqeQYtxCUxUbgHRTYXada93NnCPAFISiC +13SqamwJLVkQzjSOECyvnHk6YJyGJSUfa232rkkXVu6svZ6ge k9A6BQqeXaNUHqpg6OcqfdQlp/EsCIPHMWkPT6KvhljqI+/K987Cp96OHA+HMq5WmPo5PVC/6dK2R9owtkByVDYx7N3E/IvPJLBsTJuLFMQPnH3pR3yg9Y4eOyJAvP6ioTnW587d8oWFr/wSI4xsUJpd95cp3rrLTv8JN8kFTne9Y0l5pmI8PbQXXP1lLG9A y5bmzPvmsKEzuKhH1YqlfHx8UOHDv3617+enZ0dHBzcv3//gQMHJicnK5VK8dAP/ddA6ASw4XjPTFXvxViNi2X6JHnLPruHC53iM4lUu+CoPAXNyyv jRQQ7KxteVUE3qEQqydMrY96roRiluDfHKz4aY/dVn4Kaqy6oCCWuJ4C2YhzCX9oRNPWsfGNwibRl4vkhxR3cni+T 6uM/qMDcksNP9dXLG/u8Cd4zpPYh6hxhcbGwA95k6Nzz/PNLS0s///nPDx8+PDY2Njg4+Oabb7722mv5fH5gYGBpaWnP88/7r4HQCWCjUdThrP9fdzvvR5H/L1tykjAuuPRmCE/5UOdb6QxRifE9hagXti4MDXXiVC2s2Fn3DKDPMAZd05my967R3 KzPMEoTgKLCKtaQfO4+dt4W7RiWeN79oHXv1xh3CVyWfrwFUVk WaTASKdKza9PBj+sadu91YwuLN7iEoFpYfz04gXnGUFxh6Gzd+ OEX/IXKk5ilm3Dui+J5Va7fwZC/1ysKneVyOZ/P9/f3v/766/39/UePHs3n8+fOnVtcXMzt2eO/BkIngI1Gdtew496LFZNNb3lPh365doWPhg7XgSiUMyl5Tdd/jxwFyNV/rJK8Pm1Wc70VyiZvOXddgScbK/cdQtaLrXwelhFx5I9ZWOmDBVyXkIa7cac1ZE9pUN034x6QVT38 XPPd3uegScieAyC7R7DZAQ8TOg8fPDgzM/P+++8fOHBg3759x44dO3r06AsvvHDw4MFKpTIzM3P44MHArRA6 AWwsipn01j6x3FVykE5DN3b3ess74Fm+BSPQ/N/2dBd7oniAvIqscOi8uLCxfRHls1p3Lp1UVNCVdXGXJoJgX7o7E c9Ivk2pn1IU7qm0gRr9KFv1l1GbnElvqs8rEuJSbC/F1LmsHqy6atm41Uk6IGFC5y+OHT1+/PidO3fOnTt34MCBvXv37t2798CBAyMjI0tLS8ePH//FMW4kAgAP97k/gr8GXrXDymrmpyY7EPaJ002MbQMlZOXjpSIX+Achm37CkX4nSs Zze7IyDHkTSXPHj36XSW7V/zZPox+l8vqTpsgm9Fvf59b2M/SOu8Ol+MkGd14v+qYVj/pq6JFJi4uLN2/e/O1vf3vhwoVqtfrBBx/wyCQAQAM66+9ZYyNZ+3/eac0L/3D4Q/v2HT9+vFKpfPDBBx988EGlUjl+/PihfTwcHgDQHs67N9rfn3DsGcy2VAcF0j98BUSmoT+D+YtjR48 cOrR79+7du3cXD/3wF8f4M5gAAAAIIXzoXOFWCJ0AAAAbF6ETAAAAkSN0AgAAIHKE TgAAAESO0AkAAIDIEToBAAAQOUInAAAAIrfaoXOARqPRaDQajU aLrFHpBAAA2LgGmF4HAABA1AidAAAAiByhEwAAAJEjdAIAACBy hE4AAABEjtAJAAA6QV+6OxHL9LW7G4gKoRMAAHSAUi7WldC6c+ W292QtKCYT8Xz7u9EQQicAAMCaks9qXQmta40VhgmdAABb5fx7 M+eHZobPma/0pbsT+unNKZUutXbTfemko8RVzqTWTiGnEE8WVvR2c2CjyRDu7 nXu2JYKRc9xVc5kW32w+cpnnYPTl+7OFts+MpKxysUaqwq7f8X 8RTHshE4AgKFy/r3q8NBE+Z3q8FDVyJ2q0Nnq3JnPOlaoz7R2JbQVhblVUs6ktK4 V5BKzaqVFM7ns7l4Hj61syrgQX9V6Xl+62zEy5UxK/2g6NKaH5/oVCxB+2AvxrlQ6Y6y8mEzEMjnVewmdAICh6vBQZfi96vDQ6eN/m+t/4OW/f7I6rNc7jdDpPIUYlbnWRgFP4CjEm0lynnKOu3AVhb50d/MRvJhMaF2JWDIbi6SELO1ec2PrrZi2thimuJEonw3Mx62s3Xor iCE6IOGtmDZSaAwU/FXHsyONXQYadq/1eJrTj6hiMqF159KKDRE6AWDDqZx/Ty9qiq9Uh4dOHz/87dK//9tzie+ffPAn/+9b1eEhReg0clJrS2U+Z0Rjc2EKgaVczNnbYjJhnZutqtWKCpM SKwmdeoJPpUvyoY66ew2MbT7rLPj1pbvtdzWwHt9jQHJQBacfY +hakzv9pq0buBBCPPCM1drvWvkFFeYalCNjzVHYfYgmdDYgfOi snD83NnBmsPyObuDtE2MDZyrnz4XcCqETADrCjP0/buMHI3G+/tLT//cv8qe+sOvVB/b+7K+/89q/e+PVH/hXOld8jjfPi925suyMWMwYrzum9f0zjT5VbS9jxxEhcbYod+rz 1MlC46GzkLbGU+iw0cPWzLCLoUTSvSbG1uieHUSsuNzgZ+S/Ce97Q6QfswPNRn/zCod4Xho69c/LTooh8qInB9sfdEPrUXY4lukLnDF3FYC9v2LlTK7oeYvR7QZDp 2NVpVx6BZXOm+cGB0+dunDhwsTExMjIyNjY2NWrVy9cuDB46tT Nc4OBbyd0AkBHmDn/XnV4aPDEK/3Hnq0OD80Mn5seGqwOD50+/lL6yCeee/2Bp/9u63f6Pr/rtf/w3UJ8/Jdv+VzTGepMWcrFhXTlmT231xbPe86IpVysKxHPF+KNJol81hk o9UnbQrq72ZTsDrIGM+hkiw2GTnFi1FEzNq62DLcqYWzd09zWV Zt2DTXlXaCJsfWEwkK8uc9INbb5bNjQKZZd81l9Stcn7wpDJLl lzRGXPaHT+LykffPjuVpAPzIbXo/qELJ/d0IsnyvKr2CRf5/UkoUGQ6djVfoku3cfw4TOyvlzAyd/dvny5akb1383NjY6Ojo2NnZ5fLwyNXX58uWBkz8LrHcSOgGgUw y88fI3XvyTp1/dUnx5p/5K+fhLT774J/+r77PfPPKpzCufyf79nz+173OTZ05Xh4dWeiORkP8cRZd8Voit xrm5mJRM4us3JThOYKVcLKBI6c5A5UxKS+bS3a7qZrioZN3l4z 4B65dF6ivpcyfafE5YcyGd6XPkb3vTrppxIzPswtgWk/aO2JUqY0OJeN7TvabH1rNAs5+RYmzdXxjMF10JxkrVZoU4lukr Z1L6dbHSECZM3Bfi7kK4uUV965LOW/fKOD6aciblH8s8CzS5HsUHkdAjrGR/9Tqo/YpxAHh/xdyb1oOmPuDuYe9LZ8T7q/QUaw+UY1WKAyBM6BwbODM8PHzt6tXR0dHx8fGJiYmrZpu5devi xYtjA2f810DoBICO8Iv+QurAv/nmj+/7xkuf2Hnkj37yd39z5o0f79j38W/+eEvvgX+788X7njzyx5m9n716plw1JuJ9r+kMKtiUMylNSFf6S vT3ui4N1EOD+9Sbzxqvu/Ku7AwtVvuKyVS6JNz1UsrF9FOpaz0+l+4Z/6R+XI5xWpWezp2VRWsmVOi2ERO9XQo9PW2PrVG2HDI/LDFJ66FTkjYaGlshW/Slu7NFZwE7/HqCx1YaVtwvGmNujYA1ua+eFLYvP7XLzN5n0RuRV/JtpJi0L7oVyQKu+8DzHJkh1+M5kKQkodN7x5Lx2yf5FdN/NcSDKlkwBtw17I6B1T87Z/ccq5L/4oQJnWdPvDUxMfG7sbFLly5duXJlcnJyampqZmZmenp66uaNqa mpsyfe8l8DoRMAOsKRl3c+fuDe/7H3j5Lf+9jj+/71I9+755E9sR0HP/7o9z+2Pf/xxw/8q299/9OTZ09X7Us/FbU3q9AStEVJHFFN1qsSWLjyqnNDqXTJfeVcuNO8viozJQjz1J 7qo71+2QWjoXbEfSlkuO41OrahuxfiZiP9Q3dM3zewnuCxld/EE/BRhsu7PjV7596FXDLEzUZ6ZwIGX/0Fw3XVhGo97kNFVvvUi8HyXzFXpdMehwaHXTKS7m6ECZ2D5XfG xsbGx8cnJydv3LgxPT09Ozs7Pz+/sLBQqVSmpqYGjWe6KRE6AaBT/PBwz5f3/MuvPBd7+Lsf+dLuP/zy83/48Hc/8uXd93zlex95cs+fTQ6IiXMooNIZGDqFYKFP8qpOUTHZjRp+Z1 YvxwlVXk/y7oiM+GAgv7uMHTevuC+jdL3R2xl7Gc+jyH2Sk3RsAxK2cXPMC sbWGXeUcSREUA4aW8XzrZypV1IkFqut0jXYu6BPHPtGJd+YGPh Fy/lZS0vsIX93ZI8LDRx2+S3qRnFa9sG5LwAwR8k17I70nC26f+NC 7WDI0KnPqk9PT1er1du3by8sLNRqtVqtVq1Wb926RegEgLVBT5 P7X0z+t2f+6bb//S++8NQfPPTUP/vvT//zv/7OH3xt95Zr7sQ55F8f8uQwx3Rb2GDaaeT3kVgXCYhlPMczgxpm nLPd42Oe2l2vr/uxjW5DgU8X6kTSkZHf3e9UTCY8b/R90rvr2k3PQ8daKNT0+tsnrl27dm1yslqtLiwsLCwsLC4uLi0t 1Wq1udnZmZmZs2+fCNwKoRMAOoL+gKR9h77yn/7n7/3Vt37/P//N7//VU//kie92XXvXmziHGr973b382vs7LrKioPN6zeZ30L6lKVlQXhdrd kByrd46H9tIt7XGArqqtBk4XIo3emOo/WeEVm2swoTO3/zy9MWLF2emp2/cuDE/P7+4uLi4uFir1WZnZ2sL86Ojo2MDZwO3QugEgE5h5M4ffuXzX/9H3d/8xzu+/ceKxNkk87QXxR/XWQ2O07b8pqUmd1C/iyWtX2DH2EZeenQ8CLbt+76isWroa4Z74tsbIh1/RmjVxirkI5PePXVyYmJirlqtzszM6+327Tvz81euXHn31EkemQ QAa4yeO/ce/PLXvnvf9ZYmTgCQCv9w+HdPnRwZGalUKka7t/QAAApVSURBVLOzs7dv356bmxsZGXn31EkeDg8Aa5KYMkmcXi35 u45gbFfGvqZi7V1N4dHgn8E8O/D2Cf3PYJ498dbYwFn+DCYArGF61iRxAlgF4UPnCrdC6AQAANi4 CJ0AAACIHKETAAAAkSN0AgAAIHKETgAAAESO0AkAAIDIEToBAA AQudUOnQM0Go1Go9FoNFpkjUonAADAxjXA9DoAAACiRugEAABA 5AidAAAAiByhEwAAAJEjdAIAACByhE4AAABEjtAJAACAyBE6AQ AAWiSf1ZKF9nejIxE6AQAAWqIQ70poXQmtO1f2WSayVFrOZNMl 4ZVSLtZJCZjQCQAA1qhCvCubzqS0rmyx/Z3R9aW7U47k51SOsLeFeFcilukTepLQuhKrMDjlTErP2cVkIpb JObthI3QCAIC1KZ/VuhKxZDbWnUrnxX9yVxPdJcB2cqXSvnR360KhZ3K/mEzE802sqhAPF1XLmZQmFHeLyYTWnUsrNkroBAAA60s+q3WJua cv3e0/5d0q5vS6otRndkYInaVcrIXFSJ8rSo0NJZwjI1dM6kv6lWzFdY bMteFDZ+X8ubGBM4Pld3QDb58YGzhTOX8u5FYInQAAoNXyWW+a NMpvdvzSs6ARocziXAsnnQvpTJ+YOH1zp6vSGeYyUD/m7qTSJVnozOfSJUfiDJk7q/msKjfrW4znzdV6e17KpVdQ6bx5bnDw1KkLFy5MTEyMjIyMjY1d vXr1woULg6dO3Tw3GPh2QicAAGg567JFd4qyrjI0XynE9WXyWS F7yXJnKRfzq1Oa8llri8ZlmrL4q+izHTqtiyD9QmrSWq37sgGz JJkwQrY7dPaluxNaslDOpJq/p16Prc6RtDK9EXmdO65PsnuHIkzorJw/N3DyZ5cvX566cf13Y2Ojo6NjY2OXx8crU1OXL18eOPmzwHonoR MAALSe65pC+59KuZgzUxaTQqqzKn/ubGRVKwPqoM5QW4h3pdKZrCs4KqJeX7rbish6AO1Ld6fiSdUNR mZcHnbdjV6IC/03+uMNvvms1p0rWrVJ6Wi4xs2Tax1L6rlW3JA+mOK7PIOvCxM6 xwbODA8PX7t6dXR0dHx8fGJi4qrZZm7dunjx4tjAGf81EDoBAE DLGZU/4e5pK+v0pbuzxVIubgUm93yxZF7bCFjuS0IliklHMC0m9ezomM JWrUSIcY6MK7/pR6i82hVEvV4r5DxjBCRprxDvzpU9U/+q6zWFAbSG0bOhZMETK4VkbA2+Z+VhQufZE29NTEz8bmzs0qVL V65cmZycnJqampmZmZ6enrp5Y2pq6uyJt/zXQOgEAACtJs6VJwtV13RzV7bouZYxvMAZdue2PNRT7XZ11kOe dEPuhTxcyqhvNop799o1Ze+4PsFHk6FzsPzO2NjY+Pj45OTkjR s3pqenZ2dn5+fnFxYWKpXK1NTUYPkd/zUQOgEAQKtZacxMRc48ly2GDGFi5jPXGRA6ldkrxP1JjhAplki l7xUKqPrVmb4x1y8KB11yWs6kZHvtupA05JA2Hzr1WfXp6elqt Xr79u2FhYVarVar1arV6q1btwidAABgHROfW2mmwGieweRIfma 0bepZm81s2rMt2c6GvNfKI9T0+tsnrl27dm1yslqtLiwsLCwsL C4uLi0t1Wq1udnZmZmZs2+fCNwKoRMAAKxdrgpfKl3SL3DMua5 6XDl3OXPV/pSlonwrFoAbKOh6hAmdv/nl6YsXL85MT9+4cWN+fn5xcXFxcbFWq83OztYW5kdHR8cGzgZu hdAJAADWNnPy2ohc+sOS0vJZ6ZUJOcvfcu5w6frjSSsq8YZ8ZN K7p05OTEzMVavVmZl5vd2+fWd+/sqVK++eOskjkwAAAOAn/MPh3z11cmRkpFKpzM7O3r59e25ubmRk5N1TJ3k4PAAAAAI0+Gc wzw68fUL/M5hnT7w1NnCWP4MJAACAYOFD5wq3QugEAADYuAidAAAAiByhEw AAAJEjdAIAACByhE4AAABEjtAJAACAyBE6AQAAELnVDp0DNBqN RqPRaDRaZM0IndI/JA8AAACsnBA673sEAAAAiIIQOrc8qm15VNvyVfMHlcAFWm71t9 iqjjFWjBVjxVh1CMaKsWKsGKs2b1EInZ/cDgAAAERBCJ2f2gEAAABEQQidn04BAAAAURBC52eeBAAAAKIgh M7PfgsA1rGHkqlUKtXTkS2VSj2UTLV9iAAgOkLo/FwWANarLz6+c8+ePTdu3Ljbke3GjRt79uz54uM72z5QABARIXT +5TMAsF719vZOTU0tLy/f7si2vLw8NTXV29vb9oECgIgIofP+Xdr9z2r37xJ+eFb2ov7Ds 8J/7nK+vkux/C7ft6je612Vqw/Pyv7Vuxe7FEuq+uYdCp/RYKwYK8aq08eqp6fn7t277c6Wfu3u3bs9PT2dMFYcV4wVY8VYR TFWQuh8cA8ArFc9PT0ffvjh3IraT/7rx54edPwQ/l3Bb/nwww97enraPlAAEBH+9jqADUEPnbMraq984WNPv+v4Ify7gt9i hM52DxQARITQCWBD0ENndUXtlS98LDvg+CH8u4LfQugEsL4ROg FsCD09PcvLy5UVtR8/dO9TZx0/yNrZp+6996mzlbNP3fvQj+2Ffd9SqVQqleXlZUIngHWM0AlgQ9 BD5/SK2o8eujdzxvGDrJ3J3Htv5sz0mcy9D/3IXtj3LdPT09PThE4A6xuhE8CGoIfOWytqP/ov92Z+6fgh/LuC30LoBLC+EToBbAg9PT21Wu13K2oHH/zo1990/BD+XcFvqdVqhE4A6xihE8CG0GDoPPigpmmapjmSYgOh882vf/TBg4ROALAROgFsCHroHA3XXt/5Uc1q3fvtVz+68/XR0dHR/d32q8o1GEsY79rfbbxX2QidANY3IXTe9wgArFd66BxRt/3dWvd+4+fjO2Pmz8d3xjQxgEpeDGzd+0dG9nfHdh732fzIiBE6 2z1QABARQieADaGnp+fOnTsX1O2FB2Kpfuu/+lMx6z9feMAIjw+8IC7uHzQfeKE/FRPe5Vy9rN25c4fQCWAdE0LnnyYBYL3SQ+dv1O21J2La/XuFF/beH3viNZ83tLoZobPdAwUAERFD56MAsF719PQsLCz8yqcd673H Va38/P/xW77VbWFhoaenp+0DBQAREULnlq8CwHqlh87z/u3oDjt33rPjaMDSLW5G6Gz3QAFARITQ+YnHAGC96unpmZ+fHwp qr+645z9+f+jVHffcs+PVwIVb2+bn53t6eto+UAAQETF09gDAe tXb2zsxMTE9Pf1eR7bp6emJiYne3t62DxQAREQInZ98HADWq4c fe+K55567evXqfEe2q1evPvfccw8/9kTbBwoAIiKEzk89DgDr2Bcf6+3t7e3pyNbb2/vFx3rbPkQAEB0xdO4AAAAAoiCEzj/rBQAAAKIghM4/fwIAAACIghA6P/01AAAAIApi6NwJAAAAREEInX/xdQAAACAKQuj8zDcAAACAKNihc4BGo9FoNBqNRous6aHz/wNKmQ0/Zmps4AAAAABJRU5ErkJggg==
اللي اعرفه ان المجموعتين المتكافئتين هم اللي يتساوون بعدد العناصر مثال (1,2,3) و (أ,ب,ت) يعني ثلاث عناصر بكل مجموعه
بالنسبه للمتساويات (1,2,3) (1,2,3) يعني نفس عدد العناصر ونفس العناصر يعني
الي خلاني اسال هالسؤال حل بعض المجتهدين للاسالة الاختبارات الماضيه و بالاضافه لاسالة اختبر نفسك
ارجو توضيح الفرق بينهم .. وشكرا:004:
http://www.ckfu.org/vb/ qnJeWAAAgAElEQVR4nO3d/3Mb953f8f0LOv3lpjM3nd5MOx1lzsiM01F6M+0dfUpyl0tTpdf YNNqr0/Y04ySI4ZhyRSOKkwsKw62TyLKFJIWsLxF8MpTY6RU3tBQf5S9y pMRQJJoWxXyRSIaSKVFfKIIgRQqkac2gP+y3z+5+PrsLEEuA5P Mzjx9oaLH72Q+W3hfen92ltkSj0Wg0Go1Go0XctHZ3gEaj0Wg0 Go22/huhk0aj0Wg0Go0WedO0rgQAAAAQnaWlJW2ARqPRaDQajUaLrBm hs+3JFwAAAOuVEDrvewQAAACIghA6tzyqbXlU2/JV8weVwAVabvW32KqOMVaMFWPFWHUIxoqxYqwYqzZvUQidn9wO AAAAREEInZ/aAQAAAERBCJ2fTgEAAABREELnZ54EAAAAoiCEzs9+CwAAAIiCE Do/lwUAAACiIITOv3wGAAAAiIIQOu/fpd3/rHb/LuGHZ2Uv6j88K/znLufruxTL7/J9i+q93lW5+vCs7F+9e7FLsaSqb96h8BkNxoqxYqwYK8aKsWKs ohmrH4zX6/V6fWb3E+t0rH4wXq/Xj/2gpceVZNBaO1b/cKxer9fHtzUyVkLofHAPAABAJ3n9WL1er9eP5R3/abbq7q/pr/9o97W6q5lvabWvDY40vBW9e5e2WbtwbXCz+a+bjw5uW0F/Nh+tmuPgXHP+Ur1ubbRltg2KY2ysXNkHJ/72OgAA6FCbX75Zr9fr5cPmK4ePXXljs/7zM8P1er1ev7n74YTW9czuK/V6vT7y8jPRdunhN/TEeeyZhNZ1+Jj9sz+9e8Pbusx3WXvRldhWXlHPN7980xyEFq9Z te/1urUvwX0QEToBAEBn0rOanmY8jAy0uqHTSLp65Aq/Ub/QuUJ+gU/vrXpb28qKsVVuSL6zhE4AALCWGbHSUVSzGEVQI98Y+c+e9fatP m5++aYqKRqrdZRXRXp1MzhgOalDp5FiI6l0mr2VD2AASceMyq5 3lwmdAABgLdNDpzfBmHlIHm7Mfw0x6618b4jc6bPM4WPu11Wh0 7EqV4eFJOf92V7YN/D5loo93KuSdcwK5Z4XCZ0AAGCN0iOgPPm5Lq8UNT/Vvq3smq/31AjFCWtVkfLhN0bcLypC5zPDxtv1fXHuaetCpyJ/eybf7VX5dsybZQmdAABgLVNVOg2qcKl4XRnsrEzmiGhCALXpt+ ZYK3H9p2NDwnuNxcTqpv6zvYPeeXBxLxx75Lw9SMx/DVc69VU5d//m7of9O5bQuoRUGtwHG6ETAAB0JO81nc8M2wlPvHtd8ronJ6lDp 7IpZ/b9byRyX2Bad1RkHbHMyKMrbN442yVsy+eaTtflBCvpmLIPNkIn AADoTJ5CnTskmf/kfl0WsySz3rIVvjzstxLPW5RXjgqLOZeRxDJ5wrvyxmbrKUXiz/XhbfKnFzV897onc7t3OXT0VPdBIITO+x4BAADoHJtf0Z/T+VIr1vaSceP5F31eaQMr2B37diRrHnnl235jW//VttXqGKETAAB0rJeOtS73mDHL0VSZbNV2LapufPtX9Xq9fuXNz X7btQP3tnL92Ctvjlx5c3NkHRNC558mAQAAOosenupTu7/UirV96S1hYrpF62ySme2uvLV5VQfN2O7IK99Z5Y6JofNRAAAAI ApC6NzyVQAAACAKQuj8xGMAAABAFMTQ2QMAAABEQQidn3wcAAA AiIIQOj/1OAAAABAFO3QO0Gg0Go1Go9FokTUjdFaHhwAAAIAoEDoBAAAQO UInAAAAIkfoBAAAQOQInQAAAIgcoRMAAACRI3QCAAAgcoROAAA ARI7QCQAAgMgROgEAMOWWtU21svGfc/Gtc+Y/XU9vtV5vkVItpi0X277Lw0PV4aHi1k7picz19KZ6PNfuTZRq8e 3XW7xdx/HWXuLRHhVCJwBgo8rV0iXr52VtUy29ta5pRvgob7+raXVNz4W5 ZU2ra9rddGmoOny9mGs8fJRq6Zz9c0xbTm+/q2n1WMtzTBNKtZhm73gxNyddrLh9deLR9fT2OfvnTfX49lpMqz cSzsQ1hFg43CaKW+uavcxcsfEQXN5es5O953hrL8fRHnCEz8Xt Jc190eoWn90hdAIANqji1rpmVHeupzfVNe1uertdeRJDhnhKLm +/qzVeEypvv+tac3x7x1Q6xUitrL3NxVcnHpVqMSPcmx3bWmus0i muIeS+B29CP0KMA6a4tYlvC9fTm6x3SY639nIf7eoj3PhdMBcw fzXqYXInoRMAsCGUt991BIWSs7hVqsXcp/+5uOZMpZtqZf30HBgUcsvO07arODQX75C4aSpuFSK1rG/l0HXZ8va7jQVE52AWncW/4taGk26xwfJh2E2UajFjBK6nN9UDv3i4V2uk2zl7bZ0RN0320e 57hBvh29w1M4sby7v+043QCQBYR8yZPneMsGYAxdNh0BV1Ym6w MqsqltnM2WrHYv5XcNpvsSbxm2cVnxqIa1ZKzi2rOhCuvGfEjn CFQD2Lu3Z55VdwRnQN6PX0JqOfgV887PqfkE1DVRC9R2mzI+A+ AoNYR7vfEW78Holfnxwft3Oa3o3QCQBYR1Shc3hIDA32wp6zu3 hLjaM4asWycLO37kKXLHSWty8bM9phJyj1MOFdz13NNSVtUoU/q7Rpd8+8WlE1ja4InXYNuGq+3X/TLu4KtDQyum7iyS1Lephb1oRKZMOhU3KfkFjqdn6mueUQec5dz 5aGTv14M2a3HRTr17+fuNfj+BSca1Mdq+69sz8I9RHuvLB1SFn pVGRrQicAYB3xC50245YOb+i0p1DNtXnnQ0u1WGNFxFq6JA2dx llfvNzTn1UME1OatKgm1Lok4c8KJcI/WQlpLq7Ii7LQaW/FuAlJj2XhPgU3414rSWR0RmRXzBUG08hqkjU4buIxo54R+iWbG JJWYe1Ypq4HS+n3YElCp3G8zQmXe/qzBtxdG5YMuF0+93ZVVmN2fK1SfW3zHmn214yAuEzoBACsd9fT m1xnQfOWDmm9ynE5plissgqlfrfUFLe6T/DG7UrS6pERZF3XybmnLKvODgj3P9lZtrhVki2kIdWM2u6iqVnG u64KQI7tWuvfOmd0WNgRc1/m4uow7b300wzf0g64qtSei2L1T80YZM8a3IOvd8y1mGMTRsJ2l RUdXzzUFURZII7nhuTfLuyeCx+H42kJ3gPGcQR6PgX3oe5dlXz vnF88ZEe49Mi0P/TAawMInQCAdU0yFWtOLMrmtf3FFaU4g2SK1izLOa7aDMNbLjKj QOPdDkkPE6prN2VTwIHUyUwy0WzXKRsdHzGwxnMh19AcK5bJd0 2snlpHhV4+l97o7cc7SW1+TWrqswj/eSmOcOejtezDW3M9BYIbiQAAG5Gi2KZX+xoOglbolAYOb0l1qD psFSO9s5D+W5GuP7osVdeE0CntQMOZyQ4xbt56sPFhaWYpN3jN nkqnMHreNcQ2NdF5n+0qnj9QqsVklzMaxcgGvi34XtAZISt0yj 4gb+j0vqKq0Q4PVQmdAID1zP3oIosRRhutGPnNGisfgmOE0aDQ FuIaQU9qMUuSjSdaWXwx78JRXZPn2or01iXzYZ/6fyof+SnfhBFGQ0UrySUT9g661mDNPtuD4D9ixsplH9lycdgvX MovzTSWD/raEOLSXs8RK7+BLMzQyfbOvIBEdYQTOgEAMLhuYbHvaBYXc9+3 2xohbituhWg6v6qkVx96b+VpmOMu/nbQY5z31vtYa//0VG5ZspVV++Dc95+JcTngUU2ETgDAOiILnXIRhc5mK1jK3XE9W DRkTVR5DUAn8Kkyhgmd+iy867rDgIf1rA6fYnbTodN1ia3noUV qrX/+vGSQpbus2llCJwBgHXE/rEeVb6IIZMrJ0xUVpTxZNkx8kT0UqYOormoI6u1cXP/TkZrwt3MazqxRUn7xWHkFt9GjV/rg/ZUyeuLKsvztdQAAqsNDDT3SZeUiikHNhMigv7fUXk0EKfNPcdY cd45L//5TO3m+57Sm+NpMiGzqb8T7cv9FosYQOgEAwJrQydcMbBCuZ8o2 htAJAACAUIwSdVPlW0InAAAAQtIn+puZYSd0AgAAIHKETgAAAE SO0AkAAIDIEToBAAAQOUInAAAAIkfoBAAAQOQInQAAAIicHToH aDQajUaj0Wi0yBqVTgAAgI1rYGBgdbZC6AQAANi4CJ0AAACIHK ETAAAAkSN0AgAAIHKETgAAAESO0AkAAIDIEToBAIJSLtaVTWdS Wle22PbONKuYTMTz7e8GGpPPat25dDKhdefKbe8MIkDoBADYyp mU1pWIJbOx7myx1P7+NCOf1boSWlcilulrf2cQWjGZ0LoS8WSW 0LleEToBYG0oZ7JpIwX2FfNh45QeIr06PJA1t7O2Ui4WQXApZ1 LqAmpfOmlusVRoUV4X1tlhfIfCsxfd5oGXLLS954GKSavGXyh2 Ur28kTGXfQqZ9g8+oRMAOkY+q57UNs7c8fxQNZ8Nf/JWhc6g3FlItzOVNrmz0SrlYj7JyfjXbLGFk/v5rNaVSndAvbmcSWnJXLrb3Hf/oVCNmzk+gcun2xn1CvGuhD7s5Uyqg76bNTTmqrcL38TKmVQLK8 oh10boBIAOYM4Iq8/K+rkwW2zwbGGETufy+jym30raHPWa3FnnXkdxTWohrlqt/gkmC3piblVY6ZCLU/XxTDtCmHooJO9NaMlsvMv8IhG0fDujnhDOikn/hNeX7l7lrwRhx1zCPj6FL6J+v1kNfr4BazMQOgGg7fSMFZRUrC DoVxB1k4ZOM+P6BlzHW4wert68fFM76+7t6uZmKyAGhZVm1rlm 2UVr46uO/8jomU9cRiiUrs5QWKnX/wuPFbba8gEZgxku6pkfRCpdssfTv9vm+oNSdbi1WcKHzumh997 56dEjhw7tef75Pc8/f+TQoXd+enR66L2QWyF0AoCKXdgzXrFPtM4X9RNMKRfzngzyWW ki9Kt0qqeJ43mxzmEnTr/cqeiAa4Gw88X+O+svn41l+lowN21+CuJOFTO5sljdEcYwZFgJe zyYxbZGMo33uj0987Wq6Ou46EIfCnPMc/KhFq46CPqqY15OkBeux3VMzSvDjf5x+AyU+XmFG4fwX3hKuVh0 X2zUh5+dOBvJncax5Jln9xkH1a+zPeCqtSmukQgZOicHzhT27+ vv769UKktLS0tLS5VKpb+/v7B/3+TAmcC3EzoBYKg6PFTMK05RzvOxeFKRTWgW4u44Zd6r4fm/v/KaTsVZp5jUtyhsIh/mbmJpBwrxLs9VgMrcKSwcsLMBxF32T2zC7Uri7SPiJ+KM/nYil+2LGFZC5QD78kFZ/1PpUoOh05uzzb1oqhrXl+72XAXoHgphSVn8cn7nKfjOsPelu60 cY2ylnEmFqBnLCtulXMz63ZF+lCJx4WHXF55wOdWVsVwrbP3h1 8y3KceXogZKpN5vFI4BV36tla0/TOicHnrv0L5977//fq1Wu3Tp0unTp0+fPn3p0qVarfb+++8f2rcvsN5J6ASwEXnuNh XPFvqNyeLtyVZ9S7jb13Hqsq4hK8RdZ279NCk7RzZ2I5GzsGRs wlPClEQBSQesvRBPkFZcc/XTu7B6ZwNZ1bV8NngO0diRvnS33aViUuiJs9RaTCZiyaw8QFth JdQlAT5DkUqXjARmfgewNyGEG72uWYjbn4WZ24QdkawkHOubj7 BCR9xxrFaes42P1VrMr8TuiFnGVrwlTMm+6Fnf0QHZ2FrHtruf 3oXNLzzKKnsh7lyJ8zdC9cm26PDL5NxXvyjDsWO1jgu1vZcxiG tzvu4ec++Ayy+KkHQpTOh856dH+/v7FxYWzpw58+KLL5ZKpSNHjhw8eHBgYODOnTv9/f3v/PSo/xoInQA2IDENDFWHjdOqeQYtxCUxUbgHRTYXada93NnCPAFISiC +13SqamwJLVkQzjSOECyvnHk6YJyGJSUfa232rkkXVu6svZ6ge k9A6BQqeXaNUHqpg6OcqfdQlp/EsCIPHMWkPT6KvhljqI+/K987Cp96OHA+HMq5WmPo5PVC/6dK2R9owtkByVDYx7N3E/IvPJLBsTJuLFMQPnH3pR3yg9Y4eOyJAvP6ioTnW587d8oWFr/wSI4xsUJpd95cp3rrLTv8JN8kFTne9Y0l5pmI8PbQXXP1lLG9A y5bmzPvmsKEzuKhH1YqlfHx8UOHDv3617+enZ0dHBzcv3//gQMHJicnK5VK8dAP/ddA6ASw4XjPTFXvxViNi2X6JHnLPruHC53iM4lUu+CoPAXNyyv jRQQ7KxteVUE3qEQqydMrY96roRiluDfHKz4aY/dVn4Kaqy6oCCWuJ4C2YhzCX9oRNPWsfGNwibRl4vkhxR3cni+T 6uM/qMDcksNP9dXLG/u8Cd4zpPYh6hxhcbGwA95k6Nzz/PNLS0s///nPDx8+PDY2Njg4+Oabb7722mv5fH5gYGBpaWnP88/7r4HQCWCjUdThrP9fdzvvR5H/L1tykjAuuPRmCE/5UOdb6QxRifE9hagXti4MDXXiVC2s2Fn3DKDPMAZd05my967R3 KzPMEoTgKLCKtaQfO4+dt4W7RiWeN79oHXv1xh3CVyWfrwFUVk WaTASKdKza9PBj+sadu91YwuLN7iEoFpYfz04gXnGUFxh6Gzd+ OEX/IXKk5ilm3Dui+J5Va7fwZC/1ysKneVyOZ/P9/f3v/766/39/UePHs3n8+fOnVtcXMzt2eO/BkIngI1Gdtew496LFZNNb3lPh365doWPhg7XgSiUMyl5Tdd/jxwFyNV/rJK8Pm1Wc70VyiZvOXddgScbK/cdQtaLrXwelhFx5I9ZWOmDBVyXkIa7cac1ZE9pUN034x6QVT38 XPPd3uegScieAyC7R7DZAQ8TOg8fPDgzM/P+++8fOHBg3759x44dO3r06AsvvHDw4MFKpTIzM3P44MHArRA6 AWwsipn01j6x3FVykE5DN3b3ess74Fm+BSPQ/N/2dBd7oniAvIqscOi8uLCxfRHls1p3Lp1UVNCVdXGXJoJgX7o7E c9Ivk2pn1IU7qm0gRr9KFv1l1GbnElvqs8rEuJSbC/F1LmsHqy6atm41Uk6IGFC5y+OHT1+/PidO3fOnTt34MCBvXv37t2798CBAyMjI0tLS8ePH//FMW4kAgAP97k/gr8GXrXDymrmpyY7EPaJ002MbQMlZOXjpSIX+Achm37CkX4nSs Zze7IyDHkTSXPHj36XSW7V/zZPox+l8vqTpsgm9Fvf59b2M/SOu8Ol+MkGd14v+qYVj/pq6JFJi4uLN2/e/O1vf3vhwoVqtfrBBx/wyCQAQAM66+9ZYyNZ+3/eac0L/3D4Q/v2HT9+vFKpfPDBBx988EGlUjl+/PihfTwcHgDQHs67N9rfn3DsGcy2VAcF0j98BUSmoT+D+YtjR48 cOrR79+7du3cXD/3wF8f4M5gAAAAIIXzoXOFWCJ0AAAAbF6ETAAAAkSN0AgAAIHKE TgAAAESO0AkAAIDIEToBAAAQOUInAAAAIrfaoXOARqPRaDQajU aLrFHpBAAA2LgGmF4HAABA1AidAAAAiByhEwAAAJEjdAIAACBy hE4AAABEjtAJAAA6QV+6OxHL9LW7G4gKoRMAAHSAUi7WldC6c+ W292QtKCYT8Xz7u9EQQicAAMCaks9qXQmta40VhgmdAABb5fx7 M+eHZobPma/0pbsT+unNKZUutXbTfemko8RVzqTWTiGnEE8WVvR2c2CjyRDu7 nXu2JYKRc9xVc5kW32w+cpnnYPTl+7OFts+MpKxysUaqwq7f8X 8RTHshE4AgKFy/r3q8NBE+Z3q8FDVyJ2q0Nnq3JnPOlaoz7R2JbQVhblVUs6ktK4 V5BKzaqVFM7ns7l4Hj61syrgQX9V6Xl+62zEy5UxK/2g6NKaH5/oVCxB+2AvxrlQ6Y6y8mEzEMjnVewmdAICh6vBQZfi96vDQ6eN/m+t/4OW/f7I6rNc7jdDpPIUYlbnWRgFP4CjEm0lynnKOu3AVhb50d/MRvJhMaF2JWDIbi6SELO1ec2PrrZi2thimuJEonw3Mx62s3Xor iCE6IOGtmDZSaAwU/FXHsyONXQYadq/1eJrTj6hiMqF159KKDRE6AWDDqZx/Ty9qiq9Uh4dOHz/87dK//9tzie+ffPAn/+9b1eEhReg0clJrS2U+Z0Rjc2EKgaVczNnbYjJhnZutqtWKCpM SKwmdeoJPpUvyoY66ew2MbT7rLPj1pbvtdzWwHt9jQHJQBacfY +hakzv9pq0buBBCPPCM1drvWvkFFeYalCNjzVHYfYgmdDYgfOi snD83NnBmsPyObuDtE2MDZyrnz4XcCqETADrCjP0/buMHI3G+/tLT//cv8qe+sOvVB/b+7K+/89q/e+PVH/hXOld8jjfPi925suyMWMwYrzum9f0zjT5VbS9jxxEhcbYod+rz 1MlC46GzkLbGU+iw0cPWzLCLoUTSvSbG1uieHUSsuNzgZ+S/Ce97Q6QfswPNRn/zCod4Xho69c/LTooh8qInB9sfdEPrUXY4lukLnDF3FYC9v2LlTK7oeYvR7QZDp 2NVpVx6BZXOm+cGB0+dunDhwsTExMjIyNjY2NWrVy9cuDB46tT Nc4OBbyd0AkBHmDn/XnV4aPDEK/3Hnq0OD80Mn5seGqwOD50+/lL6yCeee/2Bp/9u63f6Pr/rtf/w3UJ8/Jdv+VzTGepMWcrFhXTlmT231xbPe86IpVysKxHPF+KNJol81hk o9UnbQrq72ZTsDrIGM+hkiw2GTnFi1FEzNq62DLcqYWzd09zWV Zt2DTXlXaCJsfWEwkK8uc9INbb5bNjQKZZd81l9Stcn7wpDJLl lzRGXPaHT+LykffPjuVpAPzIbXo/qELJ/d0IsnyvKr2CRf5/UkoUGQ6djVfoku3cfw4TOyvlzAyd/dvny5akb1383NjY6Ojo2NnZ5fLwyNXX58uWBkz8LrHcSOgGgUw y88fI3XvyTp1/dUnx5p/5K+fhLT774J/+r77PfPPKpzCufyf79nz+173OTZ05Xh4dWeiORkP8cRZd8Voit xrm5mJRM4us3JThOYKVcLKBI6c5A5UxKS+bS3a7qZrioZN3l4z 4B65dF6ivpcyfafE5YcyGd6XPkb3vTrppxIzPswtgWk/aO2JUqY0OJeN7TvabH1rNAs5+RYmzdXxjMF10JxkrVZoU4lukr Z1L6dbHSECZM3Bfi7kK4uUV965LOW/fKOD6aciblH8s8CzS5HsUHkdAjrGR/9Tqo/YpxAHh/xdyb1oOmPuDuYe9LZ8T7q/QUaw+UY1WKAyBM6BwbODM8PHzt6tXR0dHx8fGJiYmrZpu5devi xYtjA2f810DoBICO8Iv+QurAv/nmj+/7xkuf2Hnkj37yd39z5o0f79j38W/+eEvvgX+788X7njzyx5m9n716plw1JuJ9r+kMKtiUMylNSFf6S vT3ui4N1EOD+9Sbzxqvu/Ku7AwtVvuKyVS6JNz1UsrF9FOpaz0+l+4Z/6R+XI5xWpWezp2VRWsmVOi2ERO9XQo9PW2PrVG2HDI/LDFJ66FTkjYaGlshW/Slu7NFZwE7/HqCx1YaVtwvGmNujYA1ua+eFLYvP7XLzN5n0RuRV/JtpJi0L7oVyQKu+8DzHJkh1+M5kKQkodN7x5Lx2yf5FdN/NcSDKlkwBtw17I6B1T87Z/ccq5L/4oQJnWdPvDUxMfG7sbFLly5duXJlcnJyampqZmZmenp66uaNqa mpsyfe8l8DoRMAOsKRl3c+fuDe/7H3j5Lf+9jj+/71I9+755E9sR0HP/7o9z+2Pf/xxw/8q299/9OTZ09X7Us/FbU3q9AStEVJHFFN1qsSWLjyqnNDqXTJfeVcuNO8viozJQjz1J 7qo71+2QWjoXbEfSlkuO41OrahuxfiZiP9Q3dM3zewnuCxld/EE/BRhsu7PjV7596FXDLEzUZ6ZwIGX/0Fw3XVhGo97kNFVvvUi8HyXzFXpdMehwaHXTKS7m6ECZ2D5XfG xsbGx8cnJydv3LgxPT09Ozs7Pz+/sLBQqVSmpqYGjWe6KRE6AaBT/PBwz5f3/MuvPBd7+Lsf+dLuP/zy83/48Hc/8uXd93zlex95cs+fTQ6IiXMooNIZGDqFYKFP8qpOUTHZjRp+Z1 YvxwlVXk/y7oiM+GAgv7uMHTevuC+jdL3R2xl7Gc+jyH2Sk3RsAxK2cXPMC sbWGXeUcSREUA4aW8XzrZypV1IkFqut0jXYu6BPHPtGJd+YGPh Fy/lZS0vsIX93ZI8LDRx2+S3qRnFa9sG5LwAwR8k17I70nC26f+NC 7WDI0KnPqk9PT1er1du3by8sLNRqtVqtVq1Wb926RegEgLVBT5 P7X0z+t2f+6bb//S++8NQfPPTUP/vvT//zv/7OH3xt95Zr7sQ55F8f8uQwx3Rb2GDaaeT3kVgXCYhlPMczgxpm nLPd42Oe2l2vr/uxjW5DgU8X6kTSkZHf3e9UTCY8b/R90rvr2k3PQ8daKNT0+tsnrl27dm1yslqtLiwsLCwsLC4uLi0t 1Wq1udnZmZmZs2+fCNwKoRMAOoL+gKR9h77yn/7n7/3Vt37/P//N7//VU//kie92XXvXmziHGr973b382vs7LrKioPN6zeZ30L6lKVlQXhdrd kByrd46H9tIt7XGArqqtBk4XIo3emOo/WeEVm2swoTO3/zy9MWLF2emp2/cuDE/P7+4uLi4uFir1WZnZ2sL86Ojo2MDZwO3QugEgE5h5M4ffuXzX/9H3d/8xzu+/ceKxNkk87QXxR/XWQ2O07b8pqUmd1C/iyWtX2DH2EZeenQ8CLbt+76isWroa4Z74tsbIh1/RmjVxirkI5PePXVyYmJirlqtzszM6+327Tvz81euXHn31EkemQ QAa4yeO/ce/PLXvnvf9ZYmTgCQCv9w+HdPnRwZGalUKka7t/QAAApVSURBVLOzs7dv356bmxsZGXn31EkeDg8Aa5KYMkmcXi35 u45gbFfGvqZi7V1N4dHgn8E8O/D2Cf3PYJ498dbYwFn+DCYArGF61iRxAlgF4UPnCrdC6AQAANi4 CJ0AAACIHKETAAAAkSN0AgAAIHKETgAAAESO0AkAAIDIEToBAA AQudUOnQM0Go1Go9FoNFpkjUonAADAxjXA9DoAAACiRugEAABA 5AidAAAAiByhEwAAAJEjdAIAACByhE4AAABEjtAJAACAyBE6AQ AAWiSf1ZKF9nejIxE6AQAAWqIQ70poXQmtO1f2WSayVFrOZNMl 4ZVSLtZJCZjQCQAA1qhCvCubzqS0rmyx/Z3R9aW7U47k51SOsLeFeFcilukTepLQuhKrMDjlTErP2cVkIpb JObthI3QCAIC1KZ/VuhKxZDbWnUrnxX9yVxPdJcB2cqXSvnR360KhZ3K/mEzE802sqhAPF1XLmZQmFHeLyYTWnUsrNkroBAAA60s+q3WJua cv3e0/5d0q5vS6otRndkYInaVcrIXFSJ8rSo0NJZwjI1dM6kv6lWzFdY bMteFDZ+X8ubGBM4Pld3QDb58YGzhTOX8u5FYInQAAoNXyWW+a NMpvdvzSs6ARocziXAsnnQvpTJ+YOH1zp6vSGeYyUD/m7qTSJVnozOfSJUfiDJk7q/msKjfrW4znzdV6e17KpVdQ6bx5bnDw1KkLFy5MTEyMjIyMjY1d vXr1woULg6dO3Tw3GPh2QicAAGg567JFd4qyrjI0XynE9WXyWS F7yXJnKRfzq1Oa8llri8ZlmrL4q+izHTqtiyD9QmrSWq37sgGz JJkwQrY7dPaluxNaslDOpJq/p16Prc6RtDK9EXmdO65PsnuHIkzorJw/N3DyZ5cvX566cf13Y2Ojo6NjY2OXx8crU1OXL18eOPmzwHonoR MAALSe65pC+59KuZgzUxaTQqqzKn/ubGRVKwPqoM5QW4h3pdKZrCs4KqJeX7rbish6AO1Ld6fiSdUNR mZcHnbdjV6IC/03+uMNvvms1p0rWrVJ6Wi4xs2Tax1L6rlW3JA+mOK7PIOvCxM6 xwbODA8PX7t6dXR0dHx8fGJi4qrZZm7dunjx4tjAGf81EDoBAE DLGZU/4e5pK+v0pbuzxVIubgUm93yxZF7bCFjuS0IliklHMC0m9ezomM JWrUSIcY6MK7/pR6i82hVEvV4r5DxjBCRprxDvzpU9U/+q6zWFAbSG0bOhZMETK4VkbA2+Z+VhQufZE29NTEz8bmzs0qVL V65cmZycnJqampmZmZ6enrp5Y2pq6uyJt/zXQOgEAACtJs6VJwtV13RzV7bouZYxvMAZdue2PNRT7XZ11kOe dEPuhTxcyqhvNop799o1Ze+4PsFHk6FzsPzO2NjY+Pj45OTkjR s3pqenZ2dn5+fnFxYWKpXK1NTUYPkd/zUQOgEAQKtZacxMRc48ly2GDGFi5jPXGRA6ldkrxP1JjhAplki l7xUKqPrVmb4x1y8KB11yWs6kZHvtupA05JA2Hzr1WfXp6elqt Xr79u2FhYVarVar1arV6q1btwidAABgHROfW2mmwGieweRIfma 0bepZm81s2rMt2c6GvNfKI9T0+tsnrl27dm1yslqtLiwsLCwsL C4uLi0t1Wq1udnZmZmZs2+fCNwKoRMAAKxdrgpfKl3SL3DMua5 6XDl3OXPV/pSlonwrFoAbKOh6hAmdv/nl6YsXL85MT9+4cWN+fn5xcXFxcbFWq83OztYW5kdHR8cGzgZu hdAJAADWNnPy2ohc+sOS0vJZ6ZUJOcvfcu5w6frjSSsq8YZ8ZN K7p05OTEzMVavVmZl5vd2+fWd+/sqVK++eOskjkwAAAOAn/MPh3z11cmRkpFKpzM7O3r59e25ubmRk5N1TJ3k4PAAAAAI0+Gc wzw68fUL/M5hnT7w1NnCWP4MJAACAYOFD5wq3QugEAADYuAidAAAAiByhEw AAAJEjdAIAACByhE4AAABEjtAJAACAyBE6AQAAELnVDp0DNBqN RqPRaDRaZM0IndI/JA8AAACsnBA673sEAAAAiIIQOrc8qm15VNvyVfMHlcAFWm71t9 iqjjFWjBVjxVh1CMaKsWKsGKs2b1EInZ/cDgAAAERBCJ2f2gEAAABEQQidn04BAAAAURBC52eeBAAAAKIgh M7PfgsA1rGHkqlUKtXTkS2VSj2UTLV9iAAgOkLo/FwWANarLz6+c8+ePTdu3Ljbke3GjRt79uz54uM72z5QABARIXT +5TMAsF719vZOTU0tLy/f7si2vLw8NTXV29vb9oECgIgIofP+Xdr9z2r37xJ+eFb2ov7Ds 8J/7nK+vkux/C7ft6je612Vqw/Pyv7Vuxe7FEuq+uYdCp/RYKwYK8aq08eqp6fn7t277c6Wfu3u3bs9PT2dMFYcV4wVY8VYR TFWQuh8cA8ArFc9PT0ffvjh3IraT/7rx54edPwQ/l3Bb/nwww97enraPlAAEBH+9jqADUEPnbMraq984WNPv+v4Ify7gt9i hM52DxQARITQCWBD0ENndUXtlS98LDvg+CH8u4LfQugEsL4ROg FsCD09PcvLy5UVtR8/dO9TZx0/yNrZp+6996mzlbNP3fvQj+2Ffd9SqVQqleXlZUIngHWM0AlgQ9 BD5/SK2o8eujdzxvGDrJ3J3Htv5sz0mcy9D/3IXtj3LdPT09PThE4A6xuhE8CGoIfOWytqP/ov92Z+6fgh/LuC30LoBLC+EToBbAg9PT21Wu13K2oHH/zo1990/BD+XcFvqdVqhE4A6xihE8CG0GDoPPigpmmapjmSYgOh882vf/TBg4ROALAROgFsCHroHA3XXt/5Uc1q3fvtVz+68/XR0dHR/d32q8o1GEsY79rfbbxX2QidANY3IXTe9wgArFd66BxRt/3dWvd+4+fjO2Pmz8d3xjQxgEpeDGzd+0dG9nfHdh732fzIiBE6 2z1QABARQieADaGnp+fOnTsX1O2FB2Kpfuu/+lMx6z9feMAIjw+8IC7uHzQfeKE/FRPe5Vy9rN25c4fQCWAdE0LnnyYBYL3SQ+dv1O21J2La/XuFF/beH3viNZ83tLoZobPdAwUAERFD56MAsF719PQsLCz8yqcd673H Va38/P/xW77VbWFhoaenp+0DBQAREULnlq8CwHqlh87z/u3oDjt33rPjaMDSLW5G6Gz3QAFARITQ+YnHAGC96unpmZ+fHwp qr+645z9+f+jVHffcs+PVwIVb2+bn53t6eto+UAAQETF09gDAe tXb2zsxMTE9Pf1eR7bp6emJiYne3t62DxQAREQInZ98HADWq4c fe+K55567evXqfEe2q1evPvfccw8/9kTbBwoAIiKEzk89DgDr2Bcf6+3t7e3pyNbb2/vFx3rbPkQAEB0xdO4AAAAAoiCEzj/rBQAAAKIghM4/fwIAAACIghA6P/01AAAAIApi6NwJAAAAREEInX/xdQAAACAKQuj8zDcAAACAKNihc4BGo9FoNBqNRous6aHz/wNKmQ0/Zmps4AAAAABJRU5ErkJggg==