تسجيل الدخول

مشاهدة النسخة كاملة : الواجبات أسئلة الواجب الأول: مقرر رياضيات الادارة


Mr.Kaabi
2017- 3- 5, 12:45 PM
الأسئلة مطروحة للنقاش
واللي عنده نعمة التلذذ بالرياضيات لا يبخل علينا

http://vb.ckfu.org/ xGKwIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJc EhZcwAADsMAAA7DAcdvqGQAAD8pSURBVHhe7d1tSBxZ2j7wgSA SgjwEhmXIh+VPQCQsIiJIcETmCUIQkSBBkEHCECTL4ISQD8OAh CGE58PATFYmGz8IIjIJrhpCJrjiGonrmkzWZIzG9JiejO2uMa7 4lo6ukRAS8X91ndOd6qrq6ldf7vb6IbN1V506VbZ19TnV3dn+Y JiIhPtgg4iEY4yJxGOMicRjjInEY4yJxGOMicRjjInEY4yJxGO Miaye3b37TC+mRso7tGCMKX09a/tjaWnpN3d1Gauw3WwJDGyNs0vreaQ81Ywxpae73yA5hrhjbOyq 98Jy+P5GJP/YFlcMzR2Crc+kMcaUftToV/rHPxr/E39kTDnDYpyZdRIe3NT0acYYU/pBjI2cIC8JxTi4f0B4AkMCXceeRXOHEKHPxDHGlL4SjbE5Z5YE KsHhPmzD3W/eH8lYftb2TbABdjCdhmOfyWCMKX3FF2NT6rBnMGdOkVOhDB9TA 8kOlaorc4OwxowxUcziirF5MNVBNbxPdEggsoZAm1Dh5Ju291t N3Tv0mRTGmNJXPDEOS7EpxuYxOiQYXXOMv7n7PtCh9c4xduwzG Ywxpa84YhwIXaihSqBtN/PE2GiS2iE1CYwxpa/4RuNA25AICQ1rFVvHW4ExJlLeR9R1lNXNdk6GgTEmEo8xJhKPM SYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSY SjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSj zEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMaaAx99 9vL/2O/xnf+2PetWu8GNtWvzCjDFBIMX7939cW/vxx7U/PtYr0x9CbPj4O+G/M2NMO8fj72qDgXr8Y1xPJz/WxjGohvX9Y605xD/+KHJsZozJ5MfvtnNcUnMCY5Yb32TX2NHWPjDWOnUSuW/0I3NgZozpvW2+U1Rz3MAZBHLpGijrmYYHUHUU4PDr2Pp+PwcI7 LedD0DCGOO0ZwxVIS5XqXHxh13g7+OwRYNUKJ3ugQqe1/uzMsdYb414ypa+jcdHNbYlXArGOL2FZ9jgeJ0a7Wp/DMUIglkJcr6+jVZul360UIUJpTF6oMLvaUM7gjpi5CcBS9+quV oRWI68487FGKc1I52ha1YnyuE6xRajUfB/Tatcqf4tITUOow4S3G5w7M7UOAClKmI6vMG4nzfHWHcaOZC2vg PtjcaB8420107GGO8O+sI22K7TsLAFNxt7mK92h0tchSdsQ6gv 866ho9v3V+tDjVWPWAglywINwlejofUcDLbzf8/et+pEnZDzPjsbY5zejIvZwpqOUJiwJXg9h60Ose6pW7/fSafJ2DU8DqHe3vfh2Bh9GS30RivbG0vG3lhnOvGQwDbbSggdO PT2FnZXDZ26EYAxTmfGNQ76ysQ1GuCQjvd0GxvHizvYf2oZh0L X9kOagxeigh/xVBxOXPcdvotqpzoThzFOZ+G5DSbU/Tq15CGuxioLkZ4JrCI11uvtR9bxs1JNracS5LBHsO+wYxvtHJ8 nBGCM05nzpe2ezGgCfZp7MLKQXJexUr9O+LGMdVtz+B2MMU5z7 0ccXOs61klf9ZYh1GmIDIP2KUma5bhBKUtxoP+ov8xOxBhTYoK Rip6hYMuUBMQ6wUhl6pxGexkYY9oCCIjIUU4KxphIPMaYSDzGm Eg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYNktDQ4N eSsLTp0+PHTu2d+9eVX7gRG2KUWZmJnY5cOBAYWFhWVnZwsKCW o9D4EATExOqlIUxpk3R3t6ekZHx9u1bXScqJyenv79fF0aM9VJ CkNK8vDxdbGzU19d/+eWXutjY6Ovrw+F0IQpjTKnn9/tzc3NLS0tv3LihVyXKktskY4zz+fTTT3VhPNd89tlnujAk2f92 YYwp9U6dOtXW1tba2lpXV6dXJSq1MT5//vy3336ri42Nr7/+2jLzZ4yJAu7du1deXo6Fubm5gwcPqpUWSEskukUQZuZ6yWBvE JeqqqqbN2+q5ZWVFUyhcZKqVPbs2aOXRGGMKZVwM1xQUDA9Pa3 K/Px8r9erlhMwOzt7+PBhXRgQYwQ7KyurrKzs4sWLq6urekNssrO z0SdOsqenB+fW2dmpNwQVFhaigS7kYIwplSyz1vr6+sbGRl3ED 6HF5FwXJsjh8PDwhQsXMJzG/jSxvr6OwTYw4hsGBwf1BhPcLWOTLuRgjCllkCgMcbowDAwMVFR U6MJEBcmRbmGYmppS8/NIent7S0pKdBHN0NDQJ598opYx8ze/Rh2CQR4H1YUcjDGlTHFxsc6iSZJvO4XeMY4kMzNTL0WDgd38un Rpaak9sbH3tqMwxpQaTU1NZ86c0YVJdXV1d3e3LuKHJwK95MTj 8UR6Fc3u9OnTOEldGAPyiRMndBHkfrgdizGmFJidnc3NzXV8wa m5udkx3jGy5KqyshLxw10u9PT0IMPXr1/X24zGLjnEvpYnlCNHjoyPj+vC4LL7TsYYUwpUVVV1dXXpItzMz Ex2drYu4md5B6izsxO9YeX+/ftx0AcPHugNBvcYY5fXr1/rwoBnBNwM68LAN5yIUg8D5o0bNzD26toVmkW9l44E++JAOJyuR WGMaUdbWFg4efJkVlaWrl21t7eHXouOFw6BA4X+pYQsjDGlj5y cnOHhYV3sJowxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMM ZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMe0 0j7/7eH/td/jP/tof9aot8WPtFh8wdRhj2mECKd6//+Pa2o8/rv3xsV4ZBRL48Xff1WK372LcwwZdGBLvYRsxxiSfimBtLcIcc/Lhx9rw0RdPICJDzBjTjvXjd5sbKWPUlzqLtmCMaWeK+041MCS7 D6bWLi2jr+BcM8a0ExnT5HhmuOqO2m0fNfM2twiPcXC7xCAzxr TT6FHROnY6e/zdd4FG2AeNo46nP9Zaht/3pdoUyPLH3+lVcjDGtMMgSUa4gv8bxhgyTUFVsVPx0+w7OTBuv M0xNp4BtFq1ShDGmHYUc5ysI2tomympgXWBVirHH3/343e19hijUXhP6ikiuK9Bdx6YBTDGRMkIJdXIU9jIqkNntAjPs Tmijx1ibH1jSfWBdZYjKIwxUQqZZspxsAbTKdiBroNPCXaMMVH qhMXMiGcMybbEGH3YR9zgCO2cY8aYaGdRSQ2fVRvrLBNt0Rhjk sm4r43lY9QRBnAjxemSZ8aYZAqk08hxDCm0zp1DyTciHu15QAD GmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYtk1DQ 4NeSqlN6nYnY4xpe7S3t2dkZLx9+1bXKbJJ3e5wjDFtA7/fn5ubW1paeuPGDb0qFTap252PMaZtcOrUqba2ttbW1rq6Or0q3 P8ZdBHkuNIsarfpijGmrXbv3r3y8nIszM3NHTx4UK20s4TWUtr F0u0HkekWMjHGtKVw11pQUDA9Pa3K/Px8r9erlu1C0Q0tRBJXt+mHMaYtdf78+W+//VYXGxv19fWNjY26cIL04l7XPcMQb7dphjGmrYMREuOkLgwDAwM VFRW6cBJLjGPvVk+gnegWMjHGtHWKi4t1aExc3h9CelWAQwuO4 u02/TDGtEWamprOnDmjC5Pq6uru7m5dmFiiaylD4u02LTHGtBVmZ2d zc3NXV1d1bdLc3GzPoWNo7Svj7TZdMca0Faqqqrq6unQRbmZmJ js7Wxdx2qRuxWGMicRjjInEY4yJxGOMicRjjInEY4yJxGOMicR jjInEY4yJxGOMicRjjInEY4yJxGOMicRjjInEY4yJxGOMicRjj InEY4yJxGOMicRjjInEY4yJxGOMicRjjInE270xbmho0EtJePr 06bFjx/bu3atrw+rq6qeffooF/TUk4VQbO705nNqE3hz/H9VdhM4hJDMzEx0eOHCgsLCwrKxsYWFBb4jAsX2MZ5Lw0QO/s43aZD80HnY8+BMTE7p29e7du9FHjzqvXfv+0iX8YAElVurNwu 3SGLe3t6fkO35ycnL6+/t1YXj9+vXhw4d/+OEHLIcuwVi4NEZvRUVF6FnX0ZjPQcG1npeXpwvjCwe//PJLXTiJ1D6WM0nm6PE+CH19ffgT6CIy5P/K1au9t27hTP5rwAJKrIzlWWnn240x9vv9ubm5paWlN27c0KsSZ b/sPv/889AVnKoYA/pEz7qIxnwOCn5T8/CIZ7HPPvtMF05c2kc9k2SOnsCDEPVBxpD7w5Urd+7cefHCf+/+w+5bf8fP0M8jL/x+rMSmNBiT47jO0sapU6fa2tpaW1vr6ur0qkRZrqHx8fEjR47o IoYrzCxqY/Ts8Xh0EZnlHBTL1/9+/fXX7vcU7u1dziTJoyfwIETdBZNnDLzzC4tdf7t9e/CfQw8f3x/x/DQ03P+PnxaXlrAJDXRTseK4ztLDvXv3ysvLsTA3N3fw4EG10gJ XRiS6RRBm5nrJgOcF8whvb+8iauPr16+fPn1aF5FZzkGpqqq6e fOmWl5ZWcFEFL++Kh25t3c5kySPnsCDsGfPHr0UQUdHh8/nC+T2zv2fR8dHHnvHf/X5/jXl+cX7y/g4NqGBbirW7ooxboYLCgqmp6dVmZ+f7/V61XICZmdncROoCwMuUMzYdWFclMh5VlZWWVnZxYsX3W/DojZeWlqK5T7Qcg5KdnY2zha/fk9PD37rzs5OvSEC9/YuZ5Lk0RN4EAoLC9G5Lpx8f+kSbob/2nv74dgTz5PfJib/PTPzn/n5+bm5+Udjj7EJDXRTsXZXjC2zu/r6+sbGRl3ED9ccJue6MDiODLh8h4eHL1y4gOsv6rOGe+PMzEy9 FJn9HNbX17ESZ6sMDg7qDRHE0j7SmSR/dIjrQcCdNrrVhRMV477+Qe9vk1PPniPAL1++XF5exn8mfD4s//nyZd1UrF0UY1wQGAp0YRgYGKioqNCFibrgHOkWhqmpKTU/D7FfxGa9vb0lJSW6iMaxcWIxHhoa+uSTT9Qy7incX6OGWNrHHu N4j24Wy4OAcRt/CF04+Ut7++Tk5OiYZ/zJryrDr169Wltbw6wBc3tsQgPdVKxdFOPi4mKdRZMk33ayvGOM 0cM+pTSLJYchlsbo+dChQ7qIzH4OmDKYXxkuLS11v+6jtnc5k+ SPbhH1QYj6kI6MjNzq61taevFwZPTZ9DTGYcQYt+iLi4sYpbEJ DXRTsXZLjJuamhy/e766urq7u1sX8cMTgV4yOL7AE+LxeCK9qGZnb5zwS1zYC7++Lo wh8cSJE7pwErV9XC9xxXt0s1geBMufwC70htPy8sr08+eBG+OF Bb//JW68+YaTJLOzs7m5uY6vMDU3NzvGO0aWa8jydktlZSWuWtwcQk 9PD65IXIV6m7GveXf3xnD06FH0r5Yt+5rZ3/JBz5anKjRw6cq9PbicSZJHj+tBUMy7R4I/PeKKgXdiYgJDMfh8PpRY6XhViBP9IUgDVVVVXV1dugg3MzOTnZ 2ti/jZbwXNH37o7OxE52izf/9+nMODBw/UesVyBbs3bm1tNX/ywbKvheUDGOjQ8uEnRAW3lGrZ3pV7+6hnkszR43oQFPufwBGGX EyeO69d+1NDA346OjpQpsE4rES8FCgWGFgwh8TQoWvjo4i4CW9 padF1ZNjLcmsdCXpDn+YwuO8b+zlA7KcBsZzJJh3d8dB48C2D/+7EGCdlYWHh5MmTWVlZujZgnmb5hwGO2tvbQy/huqupqbHM/aLuG+M5QOynATGeyWYc3X5oPOx48KP+G4/dgDHeNjk5OcPDw7qIUzL7WiTZ1fbuTgpjTCQeY0wkHmNMJB5jT CQeY0wkHmNMJB5jTCQeY0wkHmNMJB5jTCQeY0wkHmNMJB5jTCQ eY0wkHmNMJB5jTCQeY0wkHmNMJB5jTCQeY0wkHmNMJB5jTCQeY 0wkHmNMJB5jTCTe7opxQ0ODXkrC06dPjx07ZvnmodDXnajvFrN Qbez05nBqE3qzfNdJVImdQ0hmZiaaHThwoLCwsKysTH2pSjKnE eLYs4sYzwR/AvwhJiYmdO3q3bt3o48edV679v2lS/jBAkp+FZs87e3tSX4puZKTk9Pf368Lw+vXrw8fPqy+RjCWwIS4 NEZvRUVF5m8ec5fwOSgIQ15eni42Nurr67/88kssJHMaSqSeI4nrTPr6+vDn0EVkyP+Vq1d7b91C5/81YAElVsb7JLUz7ZYY+/3+3Nzc0tJSl68Rj5E9JOavAk1VjAF92r8HNJKEz0HBw2IeQvGU 99lnn6nlhE9DcenZUbxnEvWXxZCrvqb8xQv/vfsPu2/9HT9DP4+88Pv5NeXCnDp1qq2trbW1ta6uTq9KlOW6sXwxdwpjD OjZ4/HoIrJkzkE5f/78t99+q4uNja+//tp8A5LYaSjuPdvFeyZRf1lMnjHwzi8sdv3t9u3Bfw49fHx/xPPT0HD/P35aXFrCJjTQTcWK++8t0b1798rLy7EwNzd38OBBtdICV0Mkuk UQZuZ6yYDnBfMIb2/vImrj69evnz59WheRJXMOSlVV1c2bN9XyysoKZqp4rFQJiZ2G4 t6zXbxnEvVryjs6Onw+XyC3d+7/PDo+8tg7/qvP968pzy/eX8bHsQkNdFOx0j/GuBkuKCiYnp5WZX5+vtfrVcsJmJ2dxb2fLgy4zjBj14URIeQ8K yurrKzs4sWL7rdeURsvLS3Fcu+XzDko2dnZ+NXwWPX09OAh6uz s1BsMiZ2G4t6zXbxnUlhYiPa6cPL9pUu4Gf5r7+2HY088T36bm Pz3zMx/5ufn5+bmH409xiY00E3FSv8YWyZp9fX1jY2NuogfEoLJuS4Mjq MBrsLh4eELFy7gmov6rOHeODMzUy9FluQ5rK+vowf8asrg4KDe YJLYacTSs1kCZ4KbZ7TUhRMV477+Qe9vk1PPniPAL1++XF5exn 8mfD4s//nyZd1UrDSPMS5fPKPrwjAwMFBRUaELE3XdONItDFNTU2p+HuIY oZDe3t6SkhJdROPYOOEYh0Q9h6GhodBX/uMGxPGV5MROI5aezRI4E8w48EfRhZO/tLdPTk6OjnnGn/yqMvzq1au1tTVMHDBdxyY00E3FSvMYFxcX6yyaJPm2k+UdY4x1 9pmkWSwBCLE0Rs+HDh3SRWRJngPmF+ZXj0tLSy3BSPg0ovZskc CZRH14R0ZGbvX1LS29eDgy+mx6GuMwYoy77sXFRYzS2IQGuqlY 6RzjpqamM2fO6MKkurq6u7tbF/HDE4FeMji+rhPi8XgivahmZ2+czGtLIVHPAYfAY6ULYxg8ceKE LgwJn0bUni0SOBPLn8Mu9IbT8vLK9PPngRvjhQW//+Xq6irfcNrpZmdnc3NzHV/daW5udox3jCzXjeVdlsrKSlx8uMeDnp4e5AdXnt5m7Gve3b0xH D16FP2rZcu+ZsmcA6C95XkNvYWOC4mdBrj3bO8qrjNRIp2MGS4 DxBUD78TEBIZi8Pl8KLEyltf/dr7oD4FQVVVVXV1dugg3MzOTnZ2ti/jZ7wDNn3no7OxE52izf/9+nMODBw/UesVy4bo3bm1tNX/awbKvRcLnAGhm+XQUngVwz6mWEz4NcO/Z3lVcZ6LY/xyOMORi8tx57dqfGhrw09HRgTINxmEl4t+DIsH4gKkjBjpdG59 AxE14S0uLriPDXpZb60jQG/o0X9Pu+27GOcDmnQYkfyb4Q1jG/92JMY7bwsLCyZMns7KydG3A3Mzy7wEctbe3h16JdVdTU2OZ70X dN+XnAJt3GpDkmeBPgD9E1H9osRswxlsqJydneHhYF3FKZl+zJ PtJ1WlACrva5RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvE YYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYY yLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RjjbdbQ0KC XkvD06dNjx45Zvkgl9O0N6quSLFQbO705nNqE3izf2+DI/q0RmZmZ6OTAgQOFhYVlZWVRv+fBsb396Ph98VtPTEzo2tW7d+9 GHz3qvHbt+0uX8IMFlPwOJ0qB9vb2JL9sWcnJyenv79eF4fXr1 4cPH1bfihbKYSxcGqO3oqIi87co2ZmPqyBmeXl5utjYqK+vd/+y8kjtHY/e19eH310XkSH/V65e7b11C53/14AFlFgZyxPTzscYbxu/35+bm1taWury1cQxsmfP/M2GqYoxoE/7dxqaWb5REfDbmQdnPHOZv4jczqW949Gj/nYYctX3G7944b93/2H3rb/jZ+jnkRd+P7/fmJJ16tSptra21tbWuro6vSpRlkvZ8j3DKYwxoGePx6OLcPbvN 4bz589/++23utjY+Prrr93vI9zb248e9YQxecbAO7+w2PW327cH/zn08PH9Ec9PQ8P9//hpcWkJm9BANxWLMd4e9+7dKy8vx8Lc3NzBgwfVSgtcoJHoFkGY meslg+Vb/+3tXURtbP++/xDLcZWqqqqbN2+q5ZWVFcyB8Sur0pF7e/vRo36/cUdHh8/nC+T2zv2fR8dHHnvHf/X5/jXl+cX7y/g4NqGBbioWY7wNcDNcUFAwPT2tyvz8fK/Xq5YTMDs7i9tRXRhw6WPGrgsjmch5VlZWWVnZxYsX3e8GozZeW lqKdDtqOa6SnZ2NM8Sv3NPTg9+0s7NTb4jAvb396IWFhWivCyf fX7qEm+G/9t5+OPbE8+S3icl/z8z8Z35+fm5u/tHYY2xCA91ULMZ4G1jmjfX19Y2NjbqIH4KHybkuDI4DFIIxPDx 84cIFxCDqs4Z748zMTL0Uzn7c9fV1rMQZKoODg3pDBLG0txwdN 89oqQsnKsZ9/YPe3yannj1HgF++fLm8vIz/TPh8WP7z5cu6qViM8VZDKjDI6MIwMDBQUVGhCxN1KTvSLQxTU1 Nqfh7iPs/s7e0tKSnRRTSOjWOP8dDQUOiLyHEf4f4aNcTS3nJ0zBrwCOjCy V/a2ycnJ0fHPONPflUZfvXq1draGiYOmK5jExropmIxxlutuLhYZ 9EkybedLO8YO05uzSLl0JGlMXo+dOiQLsLZj4tpgvl16dLSUvf IRW1vP3rU32VkZORWX9/S0ouHI6PPpqcxDiPGuOteXFzEKI1NaKCbisUYb6mmpqYzZ87ow qS6urq7u1sX8cMTgV4yOL7UFOLxeCK9qGZnbxzXS1xoiV9ZF8Y Ae+LECV04idrefnTL724XesNpeXll+vnzwI3xwoLf/xK3/XzDieI2Ozubm5vr+ApTc3OzY7xjZLmULW/8VFZWIg+47YSenh7EEmHQ24x9zbu7N4ajR4+if7Vs2df+hhN6s zw9oUGk3cG9PZiPrlh6cITHHHHFwDsxMYGhGHw+H0qsdH/BT4roDwGlSlVVVVdXly7CzczMZGdn6yJ+9ptS88cwOjs70Tna7 N+/H+fw4MEDtV6xZMm9cWtrq/kDGJZ9wfLxD3Ri+dwVniNwN6uW7bu7t7ccXXF/ISAEQy4mz53Xrv2poQE/HR0dKNNgHFYY43SAIQuzWYyfujY+FImb8JaWFl1Hhr0st9aRoD f0aY6Zfd/YjwuxHxocj47f2jL+706McTpYWFg4efJkVlaWrg2YLlr+iYKj9 vb20IvD7mpqaixTUMd9YzwuxH5osB8dvy9+66j/0GI3YIx3u5ycnOHhYV3EKZl9IcndKYQxJhKPMSYSjzEmEo8xJh KPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKP MSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMSYSjzEmEo8xJhKPMS YSjzEmEo8xJhJvG2Lc0NCgl5Lw9OnTY8eOWb4BKPS1I+o7vixU Gzu9OZzahN4sXzgSVWLnEJKZmYlmBw4cKCwsLCsrU99sksxphD j27CKZM0n46GhjpzbZD42/Pq6BiYkJXbt69+7d6KNHndeufX/pEn6wgJJfxZag9vb2JL+SW8nJyenv79eF4fXr14cPH1Zf5xf62 8fCpTF6KyoqMn/9l7uEz0HBFZmXl6eLjY36+nr1dfvJnIYSqedIkjmTZI4e79+ir 68PV4IuIkP+r1y92nvrFs7kvwYsoMTKWJ6Vdr4tjbHf78/NzS0tLXX5Eu0Y2f/e5q/kTFWMAX3av4wzkoTPQcHDYh7E8JQX+ur9hE9DcenZUTJnkszRE/hbRH2cMeSqryl/8cJ/7/7D7lt/x8/QzyMv/H5+TXkiTp061dbW1traWldXp1clyvLHs3xBdlwRitoYPXs8Hl1 Elsw5KOfPn//22291sbHx9ddfm29AEjsNxb1nu4TPJMmjJ/C3iLoLJs8YeOcXFrv+dvv24D+HHj6+P+L5aWi4/x8/LS4tYRMa6KZixX2pJezevXvl5eVYmJubO3jwoFppgT9JJLpFEG bmesmA5wXzCG9v7yJq4+vXr58+fVoXkSVzDkpVVdXNmzfV8srK CqaLeKxUCYmdhuLes13CZ5Lk0RP4W0T9mvKOjg6fzxfI7Z37P4 +Ojzz2jv/q8/1ryvOL95fxcWxCA91UrLgvtcTgZrigoGB6elqV+fn5Xq9XLSdg dnYWd1+6MODKwIxdF8bVgJxnZWWVlZVdvHjR/f4nauOlpSX0r4vIkjkHJTs7G78aHquenh48RJ2dnXqDIbHTUNx 7tkv4TJI8egJ/i8LCQnSuCyffX7qEm+G/9t5+OPbE8+S3icl/z8z8Z35+fm5u/tHYY2xCA91UrC2KsWVaVV9f39jYqIv44Y+NybkuDI5Pybhuhoe HL1y4gD981GcN98aZmZl6KbIkz2F9fR094FdTBgcH9QaTxE4jl p7NkjmT5I8Ocf0tcKeNbnXhRMW4r3/Q+9vk1LPnCPDLly+Xl5fxnwmfD8t/vnxZNxVrK2KMvwSeg3VhGBgYqKio0IWJ+ks70i0MU1NTan4eYr 96zHp7e0tKSnQRjWPjhGMcEvUchoaGQl+9jxsQx9dyEzuNWHo2 S+ZMkj+6WSx/C4zbuB504eQv7e2Tk5OjY57xJ7+qDL969WptbQ2zBsztsQkNdF OxtiLGxcXFOosmmDvhSVe3iJ/lHWM8bdvncmaxBCDE0hg9Hzp0SBeRJXkOmF+YX78tLS21XJ0Jn 0bUni2SOZPkj24R9W8R9S87MjJyq69vaenFw5HRZ9PTGIcRY9y iLy4uYpTGJjTQTcXa9Bg3NTWdOXNGFybV1dXd3d26iB+eCPSSw fGVlRCPxxPpRTU7e+NkXlsKiXoOOAQeK10YA9eJEyd0YUj4NKL 2bJHMmSR/dLNY/haWK8Eu9IbT8vLK9PPngRvjhQW//yVuvPmGU0xmZ2dzc3MdX91pbm52jHeMLH88y/sclZWVuFxwVwY9PT24FPDn19uMfc27uzeGo0ePon+1bNnXLJlz ALS3PK+ht9BxIbHTAPee7V0lcyZJHt39QQPzoRXz7pHgCkRcMf BOTExgKAafz4cSK2N56XHni/4QJKOqqqqrq0sX4WZmZrKzs3URP/s9mPlTB52dnegcbfbv349zePDggVqvWC4d98atra3mjxxY9rVI +BwAzSwfUcIFjRs/tZzwaYB7z/aukjyTZI4e199CsV8JjjDkYvLcee3anxoa8NPR0YEyDcZhJeKl sMPhGR2TNzxn69r4DCBuwltaWnQdGfay3FpHgt7Qp/kqdN93M84BNu80IOVnsklHdzw0rgHL4L87SY3xwsLCyZMns7Ky dG3ABMn8ob9I2tvbQ6+duqupqbFMuqLum/JzgM07DdiMM9mMo9sPjb8+roGo/8ZjN5Aa42Tk5OQMDw/rIk7J7GuWZD+pOg3Y3jNJ4S+ym+3GGBOlGcaYSDzGmEg8xphIP MaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMa YSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYS DzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDz GmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGm Eg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg 8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8x phIPMaYSDzGmEg8xphIPMaYSLwPholIOI7GROIxxkTiMcZE4jH GROIxxkTiMcZE4jHGROIxxkRWz+7efaYXUyPlHVowxpSe7n5TG vTNXb0uRs/a/vh+L1sCA1vj7DGsQ0h5qhljSkOmDCtx5c7YW++B5fB9jUj+sS2 uGJo7BFufSWOMKf2oFKusqZEw7hwH22Mxzsw6CQ9uavo0Y4wp7 ajkBpNiZDq+2KCD0A7hCQwJ9Bp7p+YOIUKfiWOMKa0ZIY578DP lzJJARQ/x4RvufvM+m8bys7Zvgg2wgym4jn0mgzGm9KUyHGuITanDnsGdn CKnQhk+pgaSHSpVV+YGYY0ZY6KYBGIVR4bDB1MdVMP7RIcE+za SGSqcfNP2fqupe4c+k8IYUxoKRsuUnGjCUmyKsXmMDjH3/375faBD651j7NhnMhhjSj96Mm1mzqiTQOhCbVQCbXuYJ8ZGk9Q OqUlgjCntOKQ4aoytO0VIaFirqH1uGcaYSHkfUddRVjfbORkGx phIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xph IPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIP MaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMa YSDzGmEg8xphIPMaY0k7v5cs+veiit7c38D++y/+7H74wiuBKaRhjSjOBXP5vWI57vwjF9L3eL8IbGRxXCsAYU9p5 H0Y91L4fbd9Dtt+v6/1CLYetFIQxJvkCw60pqqEYGymOkEtsC428oXbmlZIwxpROfL29 vvcxDgbcMcmmkddoZewjdDhmjEk23+Uv3o+fgTx+0WvNYmCwtQ +yWGtqpavwlWIwxiSa5VVpI4aB2NpZ46kTa4zEBsaYaDuEDcUG 3+XLvYEw6mia2GOMlvYYGyulYYxJMDWJ1gUE8itxNE0WY0yCOQ y7Sb3SjKcFvlJNtOXeT4ohyQwaffHemIi2AWNMJB5jTCQeY0wk HmNMJB5jTCQeY0wkHmNMJB5jnOY+MGRkZBQVFU1MTOi1lF4Y41 1hfX29sbExPz9f15ReGONdJDMzUy9RemGMd4uBgYGSkhJdUHph jKPDjHRubk4XMs3OzuLeeHJyUteUXhjjKHp6etQ/nvnDH/7w9u1btXJ1dfXTTz9Vyy7QBi11kaj+/v6ysrK9e/diSpydnX3mzJmlpSW9LTZPnz4tLy9HknWdIlv5ICTg7t27x48f z8rKysjIyMvLu3r1qt6QjhhjN8jtgQMHRkdHsTw+Pq5Wvn79+v Dhwz/88IMqXaANxkC013VCPvnkk+vXr79580aVOJmjR4+q5VggvXgWW FlZ0XWKbPGDkADcQbS1talnEPztcA4o1ab0wxi7QX6qq6t1EfT 555/HcvkqaIn2ukgRjDB6KQbIsNfr1UXqbPuDEK+pqanc3FxdpB3G2 M358+e/+eYbXRjwvH7kyBFdGJqbm7/66itdGM6dO4eVutjYQHuPx6OLpOH+NicnRxcG9xNQ7xuHqJWxW Ftb+/LLLz/88ENM5jE7raurCz0U2/4gJMbyQn3UcxaEMY6osrJSX/sffBCaj+FqvnHjhloOyc/PD70G1tLSgjZqWcGQfvr0aV0E6X6d6BY2OAQ6x+1xd3e3XhXkf gIJwN0EJqXILRbg4sWLe/bsCf3i2/ggJOzevXuYV+siKOWP23ZhjN1g3JuentaFAWv8fr8ugnp6es6e PYuFvr4+yzAFS0tLlvEzXvrSNjQ0NOi1Ju4nkIALFy7U19frwo Cnj9CLZNvyICQDd+aFhYV3797VdVDKH7ftwhhHtL6+vnfvXl0E YVDSS+FKS0sHBgby8vIcX0ZOyecukByMgbgccSC9ysT9BOL10U cfmfvBQ7Fv3z5dbOuDoJ/MnOgWNnjcjh07FumrElP7uG0XxjiioaGhTz75RBdBka5gDJIZG RljY2O6Dme/gvWl50S3iGB1dRVJ1oWJ+wnEZXh4uLi4WBcGy0Ox7Q9C7CYnJ5 Fhlw+Tp/Bx20aMcUS4H/7ss890EeQ4n1RvUWJ65viWBtofOnRIF6lgz4P7CcQL97E1NTW6 MFgeip3wIMTC6/XW1taura3p2ia1j9s2YowjOn36dFNTky6C7K/u4Pm+oqIC1wrGyYKCAvvczPHVnYRh3MBtqi4MUU8gXjdv3rS8z YZUm1/C3fYHIRZzc3NVVVVvg5/YsUv547aNGOOIKisr7a8JW95rWVhYKCsrC10BXV1dlnEMjh49G vroSAJKSko6OztxOeIGtb+////9v//X2tqqt8V2Ao5c5q4rKyu/+93v1Ide8F+MVwcOHDDfkG/9g5CA8vJylzfME37cdibGOKL9+/c7fvYo9MmHN2/eIOozMzNqvYJxrKenRxcbG4hckp98GBwcxBWJiTTgBhUXnN4Q2 wlE4hJjwID8+9//HjeNGKZ6e3s//PBDPInobYYtfhASoH5BC7UpmcdtZ2KMneHZ+qOPPtJFOGS7uLi 4paVF15GhDVpu/ecQY+H4Orwjj8djmWNDejwIaYMxdnDmzJmcnBzLR3zMcDcVy78 KwDwNLXWxw7S3t9tfh1cwF8Xgqd4lfvDgQVFRkePsNA0ehLTBG DsYHh6+fv26LtIUnqfwa+oiHFJ3+vTpffv2YbjGDeS2f4iSomK MicRjjInEY4yJxGOMicRjjInEY4yJxGOMicRjjInEY4yJxGOMi cRjjInEY4yJxGOMicRjjInEY4yJxGOMicRjjInEY4yJxGOMicR jjInEY4yJxGOMaXfrvXzZp5e+2A//GywlYYxpN/Nd/l+ZwQ3HGNPu1vtFKMaBTO//wvl7kHc2xph2GTV3DsU1FGOEGOuwVWCQGWPatXy9vb6wGBv5Rs KNrZIwxrSL+C5/8f5GODAsf9FrG359ly/rJTkYY9o93r8qbTCm0e8H4RCOxkQ7VdhQbMDA2xsIs45vEGNMt FOpSbQuIJBfgS9nOWGMabdwmD4br24h3tLfOmaMaRcJDMgh5le ohY/KjDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4j DFtovX19bm5OV3QpmGMabP09PSoTz3+4Q9/ePv2rV6bhNXV1U8//VQXkaENWupid2CMaVMgtwcOHBgdHcXy+Pi4WpmM169fHz58+Ic fftB1ZGhTVFSE9rreBRhj2hTXr1+vrq7WRSp8/vnnsWRYQUu018UuwBjTpjh//vw333yji6CFhYWTJ0/u27cvMzPzxIkTlgFzbW3tyy+//PDDD7H1+PHjdXV1oR4wnh85ckQtK83NzV999ZUuDOfOncNKXWx soL3H49FFumOMKfUqKys/CGpra1Mr/X5/bm5uS0vL+vr6ysoKxmqEVm0CTMJLSkqQWyzAxYsX9+zZc+PGDb UVkQ4th+Tn54deP0O3aKOWFUwHTp8+rYsgfU5OdAuZGGPaFDk5 OdPT07owILQIpy42NiYnJ7Ozs3WxsXHhwoX6+npdGLB1dnZWLa M3PAuo5ZCenp6zZ89ioa+vzzJWw9LSEvbSRbpjjCn1MN7u3btX FwaswWzZPIvG8v/8z//oYmPjo48+QvB0YbTH3FsXGxsYmfVSuNLS0oGBgby8PPO+IZic6 6V0xxhT6g0NDX3yySe6MAwPDxcXF+vCYG7jvhUixbihoSEjI2N sbEzX4ewx1hNoJ7qFTIwxpR7uhz/77DNdGG7evFlVVaULAxIYmkXjPrampkYtK5YeHCfVd+/ePX78OObVodtvM7Q/dOiQLtIdY0ypd/r06aamJl0YcB9bVlamC2POjIx5vV5VIuSWd6eQavPLzvaXuHBr XVFRsba2trq6WlBQYJ9UO77Ela4YY0q9ysrK7u5uXRjeGp8G6e rqwvLMzAwa/N///Z/aBCsrK7/73e/UZ0XwX4yxaIybXrUVLG84LSws4EkhFF10axnM4ejRoyn52IkIj DGl3v79++0fohocHMQIjFtZzJBbWlr02iAMyL///e+xFUNrb2/vhx9+iBFbbzOEPv7x5s0bPAvguUCtVzCYY8DXxcZGa2srP/5BlDgMlR999JEuEuLxeOyfAMPzQnFxsT3/dmiDlvbnkTTGGFMqnTlzBoOt5fNVUeEmGYOnepf4wYMHRUVFod tmsxj/aQQm2PynEUSJGx4evn79ui5ihtSdPn163759e/fuxU3v7vkQZaowxkTiMcZE4jHGROIxxkTiMcZE4jHGROIxxkTi McZE4jHGROIxxkTiMcZE4jHGROIxxkTiMcZE4jHGROIxxkTiMc ZE4jHGROIxxkTiMcZE4jHGROIxxiSM+ua0jIyMoqKiiYkJvTaa d+/ejT561Hnt2veXLuEHCyixUm8WjjEmkdbX1xsbG/Pz83XtanV19crVq723biH2/zVgASVWpsf/ozVjTILF8g3GGHJ/uHLlzp07L174791/2H3r7/gZ+nnkhd+PldiUBmMyY0xSDQwMlJSU6CIyTJ4x8M4vLHb97fbt wX8OPXx8f8Tz09Bw/z9+WlxawiY00E3FYoxJpNnZWdwbT05O6jqyjo4On88XyO2d+z+ Pjo889o7/6vP9a8rzi/eX8XFsQgPdVCzGmDbL06dPL1y4kJeXp+sg9fXiWVlZGRkZ2Hr1 6lW9IWbouby8XH3nU1TfX7qEm+G/9t5+OPbE8+S3icl/z8z8Z35+fm5u/tHYY2xCA91ULMaYNktNTU1TU9MHH1ivMcyE29ra1GtL4+PjGFR Rqk2xQHrLyspWVlZ0HY2KcV//oPe3yalnzxHgly9fLi8v4z8TPh+W/3z5sm4qFmNMm8seY4upqanc3FxdxAAZdvy+xUj+0t6OuffomGf 8ya8qw69evVpbW/P7/XNzc9iEBrqpWIwxba6oMQbLC87Nzc2Wr1Y9d+4cVqrlwLvGJmq li5GRkVt9fUtLLx6OjD6bnsY4jBhjMF9cXMQojU1ooJuKxRjT5 oqatHv37mFerYug/Px8DJVquaWlpa6uTi0nIPSG0/LyyvTz54Eb44UFv/8lZvV8w4koJu4xfv36dWFh4d27d3Ud1NPTc/bsWSz09fUdOXJErUwYEou4YuCdmJjAUAw+nw8lVvLjH0TRucQY d6fHjh3r7e3VdbjS0tKBgYG8vLylpSW9KgkYcjF57rx27U8NDf jp6OhAmQbjsMIY0+aKFOPJyUlk2OVD0Q0NDRkZGWNjY7qmyBhj 2lyOMfZ6vbW1tWtra7q2Ue8tY14d13tRuxZjTJvLHuO5ubmqqq q3b9/q2gYDdUVFBUKOG9eCgoKUTKrTG2NMm8se4/Lycpc3fhcWFsrKykLR7erqqqmpUcsUCWNMmwUBNtNrbesVtenN mzeVlZUzMzOqVKqrq3t6enRBThhjIvEYYyLxGGMi8RhjIvEYYy LxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLx GGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGG Mi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMi8RhjIvEYYyLxGGMS Rn2teUZGRlFR0cTEhF4bzbt370YfPeq8du37S5fwgwWUWKk3C8 cYk0jr6+uNjY35+fm6drW6unrl6tXeW7cQ+/8asIASK7FJN5KMMSbBMjMz9VJkGHJ/uHLlzp07L174791/2H3r7/gZ+nnkhd+PldiUBmMyY0xSDQwMlJSU6CIyTJ4x8M4vLHb97fbt wX8OPXx8f8Tz09Bw/z9+WlxawiY00E3FYoxJpNnZWdwbT05O6jqyjo4On88XyO2d+z+ Pjo889o7/6vP9a8rzi/eX8XFsQgPdVCzGmDbL06dPL1y4kJeXp+ugu3fvHj9+PCsrKyMj A1uvXr2qN8QMPZeXlyPJunb1/aVLuBn+a+/th2NPPE9+m5j898zMf+bn5+fm5h+NPcYmNNBNxWKMabPU1NQ0N TV98IH1GsNMuK2tTb22ND4+jkEVpdoUC6S3rKxsZWVF19GoGPf 1D3p/m5x69hwBfvny5fLyMv4z4fNh+c+XL+umYjHGtLnsMbaYmprKzc 3VRQyQYa/Xq4sY/KW9HXPv0THP+JNfVYZfvXq1trbm9/vn5uawCQ10U7EYY9pcUWMMlhecm5ubv/rqK10Yzp07h5VqOfCusYla6WJkZORWX9/S0ouHI6PPpqcxDiPGGMwXFxcxSmMTGuimYjHGtLmiJu3evXuYV +siKD8/H0OlWm5paamrq1PLCQi94bS8vDL9/Hngxnhhwe9/iVk933Aiiol7jF+/fl1YWHj37l1dB/X09Jw9exYLfX19R44cUSsThsQirhh4JyYmMBSDz+dDiZX8+Aft RsZM1pluES7SesDd6bFjx3p7e3UdrrS0dGBgIC8vb2lpSa9KAo ZcTJ47r137U0MDfjo6OlCmwTisMMa0uSLFeHJyEhl2+VB0Q0ND RkbG2NiYrikyxpg2l2OMvV5vbW3t2tqarm3Ue8uYV8f1XtSuxR jT5rLHeG5urqqq6u3bt7q2wUBdUVGBkOPGtaCgICWT6vTGGNPm sse4vLzc5Y3fhYWFsrKyUHS7urpqamrUMkXCGNNmQYDN9Frbek VtevPmTWVl5czMjCqV6urqnp4eXZATxphIPMaYSDzGmEg8xphI PMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPM aYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaY SDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSDzGmEg8xphIPMaYSD zGmIRRX2uekZFRVFQ0MTGh10bz7t270UePOq9d+/7SJfxgASVW6s3CMcYk0vr6emNjY35+vq5dra6uXrl6tffWLcT+ vwYsoMRKbNKNJGOMSbDMzEy9FBmG3B+uXLlz586LF/579x923/o7foZ+Hnnh92MlNqXBmMwYk1QDAwMlJSW6iAyTZwy88wuLXX+7 fXvwn0MPH98f8fw0NNz/j58Wl5awCQ10U7EYYxJpdnYW98aTk5O6jqyjo8Pn8wVye+f+z6 PjI4+947/6fP+a8vzi/WV8HJvQQDcVizGm7fHgwYOqqqqsrCxMjCsqKjC06g0xePr0aXl 5OZKsa1ffX7qEm+G/9t5+OPbE8+S3icl/z8z8Z35+fm5u/tHYY2xCA91ULMaYtkFTUxOiizRieWVl5erVq8XFxWpTVEhvWVk Z9tJ1NCrGff2D3t8mp549R4Bfvny5vLyM/0z4fFj+8+XLuqlYjDFttfHx8YKCAl3EDxn2er26iMFf2tsx9x4 d84w/+VVl+NWrV2tra36/f25uDpvQQDcVizGmrXbq1Km2tjZdOGlubv7qq690YTh37hxWqm X1vnGIWuliZGTkVl/f0tKLhyOjz6anMQ4jxhjMFxcXMUpjExropmIxxrTVcnJyot7W5 ufnY6hUyy0tLXV1dWo5AaE3nJaXV6afPw/cGC8s+P0vV1dX+YYTUYIyMzNxV1xZWbl3796MjAxMsHFvrLcF9 fT0nD17Fgt9fX1HjhxRKxOGxCKuGHgnJiYwFIPP50OJlfz4B5G Vnuk60S2MNhhsu7u73759u76+fvfu3ezs7MbGRr05qLS0dGBgI C8vb2lpSa9KAoZcTJ47r137U0MDfjo6OlCmwTisMMa01bKysmZ mZnRhGB0dPXDggC6CGhoaMFaPjY3pmiJjjGmrlZWVYRDWRRASq 5cMGKKPHz+OebX7i2GkMMa01TB/bg9/j8fr9RYWFupiY2NycrKiomJtbQ03rrhzTsmkOr0xxrTV3rx5U1 JS0tzcjHtjlENDQ7m5uX19fWrrwsIChutQdLu6umpqatQyRcIY 0zZAVmtra/ft27dnzx5EenBwUK1HwisrKy13ztXV1T09PbogJ4wxkXiMMZF4 jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jD GReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGR eIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReIwxkXiMMZF4jDGReI wxkXiMMZF4jDEJ84EhIyOjqKhoYmJCr43m3bt3o48edV679v2l S/jBAkqs1JuFY4xJpPX19cbGxvz8fF27Wl1dvXL1au+tW4j9fw1Y QImV2KQbScYYk2CZmZl6KTIMuT9cuXLnzp0XL/z37j/svvV3/Az9PPLC78dKbEqDMZkxJqkGBgZKSkp0ERkmzxh45xcWu/52+/bgP4cePr4/4vlpaLj/Hz8tLi1hExropmIxxiTS7Ows7o0nJyd1HVlHR4fP5wvk9s79n0 fHRx57x3/1+f415fnF+8v4ODahgW4qFmNM2+PBgwdVVVVZWVmYGFdUVGBo1 Rti8PTp0/LyciRZ166+v3QJN8N/7b39cOyJ58lvE5P/npn5z/z8/Nzc/KOxx9iEBrqpWIwxbYOmpiZEF2nE8srKytWrV4uLi9WmqJDesrI y7KXraFSM+/oHvb9NTj17jgC/fPlyeXkZ/5nw+bD858uXdVOxGGPaauPj4wUFBbqIHzLs9Xp1EYO/tLdj7j065hl/8qvK8KtXr9bW1vx+/9zcHDahgW4qFmNMW+3UqVNtbW26cNLc3PzVV1/pwnDu3DmsVMvqfeMQtdLFyMjIrb6+paUXD0dGn01PYxxGjDGYL y4uYpTGJjTQTcVijGmr5eTkRL2tzc/Px1CplltaWurq6tRyAkJvOC0vr0w/fx64MV5Y8Ptfrq6u8g0nogRlZmbirriysnLv3r0ZGRmYYOPeWG 8L6unpOXv2LBb6+vqOHDmiViYMiUVcMfBOTExgKAafz4cSK/nxD6JEYCaMwba7u/vt27fr6+t3797Nzs5ubGzUm4NKS0sHBgby8vKWlpb0qiRgyMXk ufPatT81NOCno6MDZRqMwwpjTFstKytrZmZGF4bR0dEDBw7oIq ihoQFj9djYmK4pMsaYtlpZWRkGYV0EIbF6yYAh+vjx45hXu78Y RgpjTFsN8+f28Pd4vF5vYWGhLjY2JicnKyoq1tbWcOOKO+eUTK rTG2NMW+3NmzclJSXNzc24N0Y5NDSUm5vb19enti4sLGC4DkW3 q6urpqZGLVMkjDFtA2S1trZ23759e/bsQaQHBwfVeiS8srLScudcXV3d09OjC3LCGBOJxxgTiccYE4nH GBOJxxgTiccYE4nHGBOJxxgTiccYE4nHGBOJxxgTiccYE4nHGB OJxxgTiccYE4nHGBOJxxgTiccYE4nHGBOJxxgTiccYE4nHGBOJ xxgTiccYE4nHGBOJxxgTiccYE4nHGBMJt7Hx/wGkt+tYfISdrAAAAABJRU5ErkJggg==

http://vb.ckfu.org/ xSHXcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJc EhZcwAADsMAAA7DAcdvqGQAACwNSURBVHhe7d1faBVn/sfxQpGSi17kZim9WIogUkSCCIu0UqwIRcQLEUEkSAmBpagUL0Q QLyQXixf+NtTNXggiYks2UYqKG7Ix6Lo2dXWriUkarc3Jrn+yJ f88JhslSA35fWfmOXNm5sz5Pyc5k+/7RYjzPPPMM8+cM5/zzMmJmbcWAKjx1l0AajDDA4oQeEARAg8oQuABRQg8oAiBBxQh8 IAiBB5QhMAD5XrS0/PELEYj8g5dBB4QPce3pBzvMXWFetL6+/RmGVm11hbZpa9DEWH+CTzgBMyjuIDaLxZmE1n2b2z3/fvWogLr7VBk9FkGAg/1nLw7ofQuF8yTSFkscuMw/ohH06eDwAMeEq6i8269Srib+LPqsvotvFtvhyJLn6Ug8IBhh72 kydSTyEBWHc51Q6DrnuPpFNvLT1qPpxrIBp6Ih/ZZGgIPeDnZLGRC9eRTAptKZFg4nfj652lrP27R6crbwNeYwAPR cWb2VL78pey8E7SJtC2dfZcVbpvVxi2EOd6aXuvpPqTPEhF4qG ci6ATMyXv+fPny7gm8d953pULuDfzxnnT03frwwIf2WRoCD5iU p+XPuxVPN5FOVt18pngvy+0mUU3TZSDwgEjPtgXGMvAakWUjX6 vMl4TFR+CB0qTDnPMlwjSrhrQLAg8oQuABRQg8oAiBBxQh8IAi BB5QhMADihB4QBECDyhC4AFFCDygCIEHFCHwgCIEHlCEwAOKEH hAEQIPKELgAUUIPKAIgQcUIfCAIgQeUITAA4oQeEARAg8oQuAB RQg8oAiBBxQh8IAiBB5QhMADCwtd+2ttn7YkTM0yReCBEImWli 57oavL+dcn99pqRuCBlHR8Ey2fyny/v0um/pBJP/faqkbgAYfE2I2vfYkvibYWrH8cXfud5fC1sUDgAZubYlsq/d5XAXtit1uErY0HAg/YaZfkeifs1LKnzn5JcAIesjYeCDzgRNnmnc5Tk7gn0qlS+NoYI PCAyfv+rnTwbVaWTaQDayyetfFB4IE0f66dSNufwGUNvPl8Li4 IPKAIgQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8 Nq9ZVuxYsVHH300PDxsapeCO5K6urrY/SWZuCDwsMzPz//5z39et26dKS+phw8f/va3vzUFRIrAI+2dd94xS0tKXn1qa2tNAZEi8DBu3LjxySefmML SmZqa2rdv35kzZ0wZkSLwFSfz1djYmClUq19++UXew4+MjJjyE nHexp87d86UETUCX1mdnZ3Of55es2bNr7/+6lTOzs7u2bPHWc5B2khLU6ikR48ebdu2TTJvyqW6fv361q1ba 2pq5K3BqlWrvvzyS5muzbqCzczMHDly5NSpU6ZcNZwXowCzLj4 IfAVJwt9///2+vj5ZHhoacirn5uY2bNhQyCQmbWTWlfamXBmSc0mpxMyUy7Bp 06Zvv/329evXTlEO/LPPPnOWi1UlP03wimO8MxH4CpKzf/fu3aaQ8sUXXxR+ySotpb0pVIak/eHDh6YQtXfffdcsFePmzZvr1683hSwWP34EHnkcO3bs+PHjpmC TeX7z5s2mYDt9+vThw4dNwXb06FGpNIWFBWk/ODhoCiXJvQvrwtTDqYzEyMjI6tWrTcFWyEhkbpfrgsePHzuV2e Qdau59lSDvHmOBwFfKjh077BPY0tra6lTu27fv4sWLzrJr3bp1 7k/1zpw5I22cZYdcJhw4cMAUUky/YUwLv9y7iJzsS/Yib+M7OjpMVUpUI8l2pF7RHnUhe6x+BL6CZH57+vSpKdikJplM mkJKZ2fnwYMHZaG7uzsw/4upqanAPFmC3LuIkP2aYzQ3N5taj6hGIv2bpeyiPWrZ44oVK+R NirwJ+r//+7/F+Xlq5Ah8pczPz9fU1JhCyttvv22W/LZs2XLjxo26urrQH2tH8hOs3LvIwQ5vONMig7yoyYXM7373O9m jqfJYzJHk3ZfZPoxp4ffrr7/evXu3qalJXoUr97OPyiHwlXL79u1NmzaZQkq2wMtkKLNHf3+/KftlBt6ckmFMiwy5d1EJMgdK5k3BI5KR5DhSr8oddVdXVzX8nl KxCHylyPv2zz//3BRSQi/pe3p6du7cKRef7lt9L2n/4YcfmkKpcu+icjJfqqIaSSGBr/RRV+Fnh3kR+Eo5cOBA5m+PZP7QbmRkZPv27a9evZL5cP369ZlX nqE/tCtK3l1UiMyrq1atMgVbhCPJG/hKH/Xg4ODKlStNIT4IfKXs2LEj82fUgY/lJiYmtm7d6p6LV65cqa+vd5Zdn332mftLOyUoZBdRkUvc8+fPy 7vc+fn569evf/DBB2fPnjXroh5J7sBX4qjlCb1165Ycmujs7JS0y2uxWRcfBL5S amtrQ39Jzv3Fm9evX8s5NDo66tQ7du/eLSeTKSwsSGDK+cWbQnYRoZs3b27btk0udMWmTZskZmbF4o6kQ vuS1zK5YHn77bflmd21a9e//vUvsyJWCHxFyAzz3nvvmYKfvAps3LjxTAH/G0zaSMtK/2otVCHw0fvyyy9Xr14d+DUvL3lXWch/npGrUGlpCkAUCHz07t69G8d3d9CAwAOKEHhAEQIPKELgAUUIPK AIgQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAi BB5QhMADihB4QBECDyhC4AFFCDygCIEHFCHwgCIEHgg1cOLj2s YT8q228ZKp8rrUWPvxiRONtfJ9wFTFAYEHQlmBtxMfnmgJvJP4 0JeDqkXgAUUIPBB06YRnUncK9nxv88/oAydOMMMDcXOp0Q2ycy1vSqZgXcCneC/xnQt7U4gDAg84uU4H2f6BnLfQ2Jia34XvPb21YaNZjgMCDzgzt edi/VKjJ9WpgpnlAz+kk8QTeCB2TJ5LQOCBmCkk7jK3hzYj8EB1k+D 6f0gnfO/NlysCD6UCk7UTdwn/8s49gYdiqdCb2T411wd/MLeMEHjAa5nP8QQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8I AiBB5QhMADihB4QBECDyhC4AFFCDwQ4s2bN33375+/cOGrkyflSxakKJVmdWwReCBodnb262++6bp6dXh4+H82WZCiVM oq0yieCDyWra6uLrNUDJnGz3399Xfffff8efLWnXsdV/8uX7d/6H2eTEqlrIr1PE/gESOJlk9r9xeaYqux07qrpSXh1BVALt1lMh+fmLzyt2vXbv7z9 r2BO72D39++e/0f309OTckqaWCaxhCBx+KyYvhpEfkz7PTWerbs2h/Sjb/zRMt+e1lqC36VWFhob29PJBJWwr+780PfUO/Aw6GfEol/Px788eGPQ0OyShqYpjFE4LF4Sgy7s2E6s3b4MyIc0nnXfqdV1/4i9vrVyZPypv2vXdfu9T8YfPDz8Mh/Rkf/Oz4+PjY2fr9/QFZJA9M0hgg8FlsqhkWQ6bzAS3lf56kp3hv4vHt3At99/ebDn0ceP3kmUX/x4sX09LR8G04kZPlPLS2maQwReCwuK7ve+dYNYOaCj7WdL/RhzbJ07r+mD+/f9Ze2tpGRkb7+waEHPzlpf/ny5atXr5LJ5NjYmKySBqZpDBF4LB5zZe5LnBtG/4LV1OFNpwTaLbrtDWsLqfB1npra/RnvyjlF9/b2Xu3unpp6fq+378nTpzK3S+BnZmYmJydl5pdV0sA0jSECj0Vj T9Li00+9UU20tDiFjAUrwhlvvtPZddvbQjtPX9N7Ay8bmqUw7s dy09MzT589s97AT0wkky9mZ2f5WA4oRSqdeezvyt3Qm+I0/zZ2G/sT+fRFQ+1+p2U2km0Jtkzmw8PDMr2LRCIhRankF2+AZUimcbl0 P3/hwh+bm+Wrvb1dirGe2x0EHktKpmPrqt2alc18bWpQEQQeS8W+x PZdlWfWIGIEHlCEwAOKEHhAEQIPKELgAUUIPKAIgQcUIfCAIgQ eUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAiBB5QhMADId5wu 2hACW4XjSWW487Hpd0UuXCV7r/ayDTu/F16bheNpWL+uqP/1guO9B9+LOqmyAWrdP+LzDqc3H8mk9tFYxFZJ6T5K83mhgp2yb mFintTxMxV9pZhZ7Knw9KUdtPlxeD529bZeB4o64FIPWa5cLto LBJ/Nv0l52ZJ5pZJYausf4Mns79dqbL3v3QKPLJ0M2spz4uDwe2isa j890FLcebZsGt6syp7IMM7zCe9Vb7+vbkqRO7xlDbavAq4GjC4 XTQWkXVierPjnv/2gi/w/lV27EJO6WCHOZXQv493+xxzqttzqNxr0+TIQg4sPYTg+O3L+/xdc7toLBITEd8J76bMnl99gfSvsv8NnM6ZHdonfY53srI+3Ufq p3RZ+8+Q3tzeJusG/p//BZPorM071C7rBTDz0sIdg/v4uAvCd4ChuF00Fod7hofeTdm5sA68GHhXWR34z+XMDhMJJxxW UMJnO/8cnbt/kejq8sXNbGLvWRpnS7x3L06+vS3ttfmGajYIeZ/hdp65YMs2KMP9WI7bRWORpJIaYJ2nOVbl+MQ8y1YieO5LNlrsi Pll6T+YdxNPu72zT1//qbXCU29q94ft18s/1NQh+Wstnr1kw+2iAWFlJTNBWflnTkue2TOrkIm6REUeQjYyjX O7aCwH1tToSUQ6tPacWVRWJFze9oGec0tfLtgzcjkZDT8EWY7q RWQZIfCwU2IrPnX+y+eiApbebfnBDBxC2S8hyxeBBxQh8IAiBB 5QhMADihB4QBECDyhC4AFFCDygCIEHFCHwgCIEHlCEwAOKEHhA EQIPKELgAUUIPKAIgQcUIfBAiDfcLhpQgttFx5u2Gx7noOqhKO 1gZRp3/i49t4teJImWTyP9c6PpP2mY94bHeRvkVubmlbfof91Rdrhkf0y yiOfdi9tFL7Ku9M2ArKcsguyn7pyS9+wr9PS0xpVu6P4t9iybR 3QUkUg9FAXwDruMQ/A8nX6VeFj8fRb8vPtwu+hFJU+O84xlOx+sE2i/70+OZ9YEpSKZ93YHBd8PwRpd6kS2/kZytv6zHcWSKexOEVEOWx6ejK6ifHJTQvos+Hn34nbRi0meNd9 zU+qdTPzSN0cLf+LdvXgb5N91qrV7xZi3/6VXxBTvHbb1ohZ+bPmFJd5WiYfF12fY8553p9wuehFZr9Ke5yN 4mjlPltUoPbsGa0KZZ1naZWkV2sBUWqOwZZ62dnvTLFV0Fj38R 5GjtwzWcYV06FNIG6/8B2V4h229pGW8mmXeaCrNO6osI/Q/LKmBWY1TrTNr8gnv0+rC00H6+QrF7aIXkfWEmWfDnCa+Z8d+4u zzLFUdrEmdx4Fz052Lsz7XZpb2Nwic52FnuGfEIqP/4FEU0Jvbnd3WbJnluHxtCmO2yDmMkGHbew/sRmqtB1/yGFgbGJW0C4w72L8l+FRm1mR7EBxhfaaO01dpPa1mKQy3i15E6 VPDfXJD7p1srzO1/pps9xhOX9t5n3gvc977G1iV0pV7glm7yTx1PVsE+884ity92a8 6po/UIdnFLMfla1Mg+6HIc1AZw7aZh8gjVWMNK91FxqikInCcOfpPb Z1Zk+3JdYT2Gf68S7dmKYz7sRy3i64867nM9kyWye4245NZ5+S xpRt4Kv2CQ5OGn7ZISt3q7J/8hhxFsLfAjmV13kN32wT68t7GOevRGJnD8PCPINjU7dp6X+MsW YKjkkLgFcXl779Y4UMPGXPwaeV20VXCek7Cn8Uq5DndTU0UPFf bJTPvT+zFCLrLotAnK1ZPaopM49wuehHkPDkyZ4occ0d8pC8L7 JeQbIdvTVyF5caTd3srSzQPU/qq3u63wOEU9CRltipsOxSl2gJvnfNhz3JmFHKGI15SoRSRnOEh Scn+XqNI6bEW+tjnz+2yfnKrTNUF3j5BeKrLZAfGa+keUZ7Oql KFgbfOVi7llgmeyypTjYEHUCEEHlCEwAOKEHhAEQIPKELgAUUI PKAIgQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBB0K84X bRgBLcLhrQQqZx5+/Sc7toIBLWn9zL8Yfu0n8bdylwu2ggKuava6b+zp1VzPybdxX8W/oF4HbRQDTyzOyuYm6dFTluFw1Ew/qj9hlRDkn3kl7Tc7toaFOBGTaVYftGFoHeM3YXDHyhVwb+rgrf yofbRWO5stPn4XlrbSUltdr/jtp7o0qbFSxHrnh5b0jhXbZ4741l8Qc+cPPpNHfH6VVm5MK7Vf iBZMHtorFMOfefkjRY0fBlzk5cltszpzNlkpSKUTDGAcEUe9oG Z3TvWnsXUgpLfHBownTl2yr3faaD3I/luF00lhsrF04A7ISULVeYnLh57G9J1wQ39AxHVjmlkDbWa034y N2tQnG7aCgUOmlWiBX3SPdW4cHLNM7torGsBN85u8zUWa70hbo 910abz4yfJNiyj9wawuK9vFUvAq9XomV/Rjjs6+7IgpG+qI48axmDj3bkyxaBV8zOSBRz+VKI9eCXDoFXLj 0JW2I2Q/oGz+xeCAIPKELgAUUIPKAIgQcUIfCAIgQeUITAA4oQeEARAg8o QuABRQg8oAiBBxQh8IAiBB5QhMADihB4QBECDyhC4AFFCDygCI EHFCHwgCIEHlCEwAOKEHhAEQIPKELgAUUIPKAIgQcUIfCAIgQe UITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAiBB5QhMADihB4QB ECDyhC4AFFCDygCIEHFCHwgCIEHlCEwAOKEHhAEQIPKELgAUUI PKAIgQcUIfCAIgQeUITAA4oQeECRt+4CUIMZHlCEwAOKEHhAEQ IPKELgAUUIPKAIgQcUIfCAIgQeKNeTnp4nZjEakXfoIvBAWs/xLeJ4jykW5knr79MbZWTVWltOhyLC/BN4IMWJe9GBtzcz28iyf2s7vL9vLSqw3g5FRp9lIPCAzZlWbcX Gy5NIWSwy3WH8EY+mTweBB4S5im4NXEwXRjZ2E5llOpbqIlLr7 VBk6bMUBB6w42jn3OS+2HR5EhnIqsPpNpD4nuPp/djLT1qPpxrIBp5BhPZZGgIP9ey4O4kqJvCefEoXqUSGhdOJr3+ etvbkFp2uvA18jQk8EBUn4xk82QznnaBNpG3p7LvcXVhtsuzPY d5T2Dzdh/RZIgIP5UoMvC/vnsB7531Xah/ewB/vSe/ZrQ8PfGifpSHwQJqTQW+Us7Aaus2crGZs5L0st5tENU2XgcADa QUH3kqzV5Ys+1oV0m2lEXigNOkw55y5TbNqSLsg8IAiBB5QhMA DihB4QBECDyhC4AFFCDygCIEHFCHwgCIEHlCEwAOKEHhAEQIPK ELgAUUIPKAIgQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAi BBxQh8IAiBB5QhMADihB4QBECDyhC4It2qbH24xMnGmvl+4CpQ tXjWXMQ+GLJmSMaG60TKH3qDJw4ccksolyXTkQeyvBnTSECH4m BEx9bJ1TwZAqdVi41uqWBE4324qXGxhJfLlI95ODpfODSpTyNM 0Q+M+YfjhPO2iwPiazNXON5GIo5xmyPXgGPalwR+BL5pvTsebd OXGtaaUydheZsttumNvtY/ikt8VZveZLo7NBuFJqV3IKHYA258YQ17tIGXMBwnBZZ+jcPWWC 1qbXqch+j/0LMs5mPNYI8j2psEfjSyLniOyWsc6fQc8Td1jm15XwL9laE3Cd 46qS2ey9mjNnY3VmJL7GjgoZjPS45DirzkN0HMs8xylrvyvRmh juz53tU44vAl8I5bX2nhFUVfo7Yp1WWk9CcWIETsRj5T81059Z ISjqPcx1CsQoZjqwpcm/uw5DjGEOeNXczm93A3rG/fjkh8EWzTqmPT1wKZjR1jlirLWatc5YJ34mVurA0Z386BK5Cf3 BVwKnpNrHGEtxPdu4oww6hjJ+rFTCc1OORsWfz4GZuldoia6fW lpnPmruZzendqnDH6NaaFbFH4ItknVDWuZD612WdI/JW18M0k/PEauw/g1Inj3Nm+c874d8glLn89J6aKfbW6Q7TvUtj/34Ma0TBE9odpbO5b0QFDM/L7t5tnn84dpPGRtmHy2pn7zUluKH05ewhtFNrU2t16l+Xu5lhD VUq0tW+nfqaOo2DddWOwBfHfo5TfCeWsyb19JsTxzlfpJ2U060 9p50sSn3GeWh3kHneepk9ZLazVtjcHqXGWTbbBLgb+FemBhV6C J5C4MeXVsH7qYO9ucXdOM9whLNNege+Sdsdrm9TaeS0CevU3cT i6cqzWYo0lQrnuymnefvNPK5YIPBFcZ9+++owfQLY9d5n3qqw1 7rnhXe1VKY2lYayKN+D543n07swdr/SwvrXex6anuwBpeqljdNXsLGP3aN3tVTYJWeFxTMid3jOARjOJ vI91dLa1qlJb+2uNisD7LaBcQQeHaeJv1VqHCGd2g+GJfCsWez NvB/D2Qfm78TszjsG08Be8/EJUxkHBL5k5jQonznBMvhP8kzOaeqezbmlwpDZaYEdRCt8OGUO xe4s9BjTQh5p52Ugzdq8qJE0mr7jgMCXIaKoWCdYWOJznbfOmW u38I/CSlJYZ3bCQn7BJ6xtUaz50e3C7MWURMgIbeHDKfMBNTvLOEa/jJ3IZr66zDFLTeBx8rUh8IicnHD2SWZzz7Tcp3YhfP1i2SPwVS drBAOTTBRxF9Jr5jzL/zNZrgh8lXFTHR7n1OoIsyj59u/Lun6wEx/NKwqqCYGvQlnn+MrI83kAlhMCD///KMGyRuABRQg8oAiBBxQh8IAiBB5QhMADihB4QBECDyhC4AFFCD yW0uzs7J49e0yhJI8ePWpqaqqrqzPlqIX2L2OWkZtCrBB4LJm5 ubkNGzacO3fOlEtSX19/6tSpt96q1Jkc2r+M+aOPPpLxm3J8EHgsmS+++KLMtLsqF3hHZv 8ychm/KcQHgcfSGBoa2rx5symUbfEDL2T8g4ODphATBB5LY9++fRcvXj SFsi1J4L/99tsDBw6YQkwQeCyN1atXJ5NJUyjbkgR+ampKjsIUYoLAY2m8/fbbZslPopWNaREm91ovp6tQpkWYbGvfeecdsxQTBB5LI1vgS5M 7ruUj8EBZlsElvYz/ww8/NIWYIPBYGvzQbkkQeCyNSn8sJzWhKS1NaFefffaZHIUpxASBx5 KJ5BdvnGC7TG10gXf6cZnahYWzZ8/yizdAEebm5jZu3HjmzBlTjtT8/HxNTY0pRE3GLCPnV2uB4pT/n2eyaWtr27RpkylErb6+nv88A1SR1atX37171xSQQuABRQg8oA iBBxQh8IAiBB5QhMADihB4QBECDyhC4AFFCDygCIEHFCHwgCIE HlCEwAOKEHhAEQIPKELgAUUIPOCTaGnpMovLEIEHFha6ulIhT7 R8Wltbu3+5Zp7AAxLyT1sSznLX/uWcdwIP+DPuTf/yQ+Chm6Rd8i3f3cRnW7Yv9v1zv/VSEa9XBwIP1azIOtzg+qf4rv1OxhMt++3XBc8qu0pa7zflOCDw 0MzkfX9XOvj5pOf41DYEHoibfImXnNvX9J7AO2UCDyxj8srgZt 68BJhSHBB4IERq9g79mZzvaoAf2gHLnsl8vNIuCDygCIEHFCHw gCIEHlCEwAOKEHhAEQIPKELggSI8evSoqamprq7OlOOGwANFqK +vP3Xq1FtvxTU4BB4oGoEHonTs2LHjx4+PjY0dOHDgN7/5zXvvvdfR0SH1yWTy4MGDtbW177777h/+8Aen8eIj8ECUdu3aJZlfv359a2vrr7/++vjx4w8++OCXX3755JNP2trapObp06fvvPOOvCKYDWySw2xMi 4hE3uGiIfCoRqtWrdq8ebPM56a8sPD+++83NjYGauQlwBQWF4E HIjM/P19TU/Pq1StTzl5jCmWwp/9wpkWY3GurGYFH1bl9+/amTZtMwVZIjXCCGsq0iEjkHS4aAo+qI+/bP//8c1OwFVKzmAg8EJkDBw6cOnXKFGyF1CwmAg9EZseOHc6HcK5Ca hYTgQciU1tbOzc3Zwq2QmoWh0Tdy9TGB4EHFCHwgCIEHlCEwAO KEHhAEQIPKELgAUUIPKAIgQcUIfCAIgQeUITAA4oQeEARAg8oQ uABRQg8oAiBBxQh8IAiBB5QhMADihB4QBECDyhC4IEiXWr8+MS AWY4bAg8U51JjrYhp5gk8UJyBEx9bia+tbbxkamKEwAPFsOLee MJkPn6RJ/BAMeSCXmJufW+US/vYXdgTeCCTzOPhWXav563VWVtVLwIPBA2caPTm2A15CAIPxJvk 2/PePCTtziW9jUt6IN7shAeDbFXGLtxhCDzgk+0CflnkncADGTIz H8eP3EMReEARAg+ESk/zy2Z6FwQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAiBB5Qh MADihB4QBECDyhC4AFFCDwQ4s2bN33375+/cOGrkyflSxakKJVmdWwReCBodnb262++6bp6dXh4+H82WZCiVM oq0yieCDzgI9P4ua+//u67754/T966c6/j6t/l6/YPvc+TSamUVbGe5wk8qkVDQ0NbW5sp2Jqbm48cOWIKxTt9+vTh w4dNwXb06FGpNIUs5NJdJvPxickrf7t27eY/b98buNM7+P3tu9f/8f3k1JSskgamaQwReFSLs2fPHjp0yBQWFl69erVq1aqpqSlTtr 2VnWnht27durGxMWf5zJkz+/btc5ZzaG9vTyQSVsK/u/ND31DvwMOhnxKJfz8e/PHhj0NDskoamKYxROBRLTo6Onbt2mUKCwvHjh1ramoyhVJ1dnY ePHhQFrq7uzdv3uxU5vbVyZPypv2vXdfu9T8YfPDz8Mh/Rkf/Oz4+PjY2fr9/QFZJA9M0hgg8qoVM5mvWrHGWJyYmVq5cOTc35xTLsWXLlhs3bt TV1QUuFrJxAt99/ebDn0ceP3kmUX/x4sX09LR8G04kZPlPLS2maQwReFSRmpoaZ0GmZXkD7yx7mcv3M KZFBulnxYoV/f39ppzPX9raRkZG+voHhx785KT95cuX8v4imUzKuwNZJQ1M0xg i8KgiGzdulEQJmd7n5+dNbRl6enp27twpLx+tra2mKp/e3t6r3d1TU8/v9fY9efpU5nYJ/MzMzOTkpMz8skoamKYxROBRRfbu3Xv58uU9e/acO3fOVJVBXji2b98uk/Ps7Oz69esLvKR3P5abnp55+uyZ9QZ+YiKZfCGd8LEcECW5/G5oaFi7dq0pl2FiYmLr1q1uyK9cuVJfX+8s5yXZlmDLZD48PCz Tu0gkElKUSn7xBojMxYsX5d24TPKmXKrXr1/v2LFjdHTUlG27d+/u7Ow0hXxkGpdL9/MXLvyxuVm+2tvbpRjrud1B4FFFJOobNmwwBVQAgUcVkYvwW7du mQIqgMCjWgwODm7bts0UUBkEHlCEwAOKEHhAEQIPKELgAUUIPK AIgQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAi BB5QhMADihB4QBECDyhC4AFFCDwQ4s2bN33375+/cOGrkyflSxakyI0ogGVodnb262++6bp6dXh4+H82WZCiVHKrKW BZkWncuZnk8+fJW3fudVz9u3zd/qH3eTLJzSSBcA0NDW3++6g3NzcfOXLEFBbF6dOnDx8+bAq2o0e PSqUpZCGX7jKZj09MXvnbtWs3/3n73sCd3sHvb9+9/o/vJ6emZJU0ME1jiMCjIs6ePXvo0CFTWFh49erVqlWrAjdsfis70 6Js69atGxsbc5bPnDmzb98+ZzmH9vb2RCJhJfy7Oz/0DfUOPBz6KZH49+PBHx/+ODQkq6SBaRpDBB4V0dHRsWvXLlNYWDh27FhTU5MpLKLOzs6DB w/KQnd39+bNm53K3L46eVLetP+169q9/geDD34eHvmPdYv48fGxsfH7/QOyShqYpjFE4FERMpmvWbPGWZ6YmFi5cuXc3JxTLIe5AAhjWmT YsmXLjRs36urqAtcX2TiB775+8+HPI4+fPJOov3jxYnp6Wr4NJ xKy/KeWFtM0hgg8KqWmpsZZkDlW3sA7y14mqWFMiyjIrlesWNHf32/K+fylrW1kZKSvf3DowU9O2l++fClvSZLJpLw7kFXSwDSNIQKPS tm4caPEQ8j0Pj8/b2oXV09Pz86dO+UVp7W11VTl09vbe7W7e2rq+b3evidPn8rcLo GfmZmZnJyUmV9WSQPTNIYIPCpl7969ly9f3rNnz7lz50zV4pLX mu3bt8vkPDs7u379+gIv6d2P5aanZ54+e2a9gZ+YSCZfSCd8LA dkJdfSDQ0Na9euNeXFNTExsXXrVjfkV65cqa+vd5bzkmxLsGUy Hx4eluldJBIJKUolv3gDhLt48aK8G5dJ3pQX0evXr3fs2DE6Om rKtt27d3d2dppCPjKNy6X7+QsX/tjcLF/t7e1SjPXc7iDwqBSJ+oYNG0wB1YHAo1LkivrWrVumgOpA4FERg 4OD27ZtMwVUDQIPKELgAUUIPKAIgQcUIfCAIgQeUITAA4oQeEA RAg8oQuABRQg8oAiBBxQh8IAiBB5QhMADihB4QBECDyhC4AFFC DygCIEHFCHwgCIEHlCEwGOZe/ToUVNTU11dnSkX5s2bN33375+/cOGrkyflSxakyJ1ngGpXX19/6tSpom5BPTs7+/U333RdvTo8PPw/myxIUSq5txywZAqPceEtZRp37h77/Hny1p17HVf/Ll+3f+h9nkxy91jo1dDQ0NbWZgq25ubmI0eOmELxTp8+ffjwYV OwHT16VCpNIUwlAi+X7jKZj09MXvnbtWs3/3n73sCd3sHvb9+9/o/vJ6emZJU0ME1jiMCjRGfPnj106JApLCy8evVq1apVgXuwS8yyM S381q1bNzY25iyfOXNm3759znI22frJVHjL9vb2RCJhJfy7Oz/0DfUOPBz6KZH49+PBHx/+ODQkq6SBaRpDBB4l6ujo2LVrlyksLBw7dqypqckUStXZ2Xnw4 EFZ6O7u3rx5s1OZQyUC/9XJk/Km/a9d1+71Pxh88PPwyH9GR/87Pj4+NjZ+v39AVkkD0zSGCDxKJJP5mjVrnOWJiYmVK1fOzc05 xXJs2bLlxo0bdXV1gYsFl0Q3G9MiTO61Xk7gu6/ffPjzyOMnzyTqL168mJ6elm/DiYQs/6mlxTSNIQKP0tXU1DgLMi3LG3hn2cvJYSjTIoP0s2LFiv7+flP OKUc/AYW3/Etb28jISF//4NCDn5y0v3z5Ut6wJJNJebshq6SBaRpDBB6l27hxowRAyPQ+Pz 9vasvQ09Ozc+dOeflobW01VTlVIvC9vb1Xu7unpp7f6+178vSp zO0S+JmZmcnJSZn5ZZU0ME1jiMCjdHv37r18+fKePXvOnTtnqs ogLxzbt2+XuXR2dnb9+vXZLum9KhF492O56emZp8+eWW/gJyaSyRcyKj6Wg2py+d3Q0LB27VpTLsPExMTWrVvdkF+5cqW+v t5ZzqESgReSbQm2TObDw8MyvYtEIiFFqeQXb6DXxYsXJUgyyZt yqV6/fr1jx47R0VFTtu3evbuzs9MUyiAj9DK1+cg0Lpfu5y9c+GNzs3 y1t7dLMdZzu4PAo3QS9Q0bNpgC4oDAo3RyEX7r1i1TQBwQeJRo cHBw27ZtpoCYIPCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBBx Qh8IAiBB5QhMADihB4QBECDyhC4AFFCDygCIEHFCHwgCIEHlCE wAOKEHhAEQIPKELgAUUIPKAIgQcUIfBY5h49etTU1FRXV2fKhX nz5k3f/fvnL1z46uRJ+ZIFKXJvOaDa1dfXnzp1qvDbSIrZ2dmvv/mm6+rV4eHh/9lkQYpSyd1jgRgo6r6xzv3hnz9P3rpzr+Pq3+Xr9g+9z5NJ7g8 PvRoaGtra2kzB1tzcfOTIEVMo3unTpw8fPmwKtqNHj0qlKZSn8 MDLpbtM5uMTk1f+du3azX/evjdwp3fw+9t3r//j+8mpKVklDUzTGCLwKNHZs2cPHTpkCgsLr169WrVq1dTUlCnbr BuyZ2Fa+K1bt25sbMxZPnPmzL59+5zl8mXbY6b29vZEImEl/Ls7P/QN9Q48HPopkfj348EfH/44NCSrpIFpGkMEHiXq6OjYtWuXKSwsHDt2rKmpyRRK1dnZefDg QVno7u7evHmzUxmJwgP/1cmT8qb9r13X7vU/GHzw8/DIf0ZH/zs+Pj42Nn6/f0BWSQPTNIYIPEokk/maNWuc5YmJiZUrV87NzTnFcmzZsuXGjRt1dXWBiwWXfX0QzrQI k3utlxP47us3H/488vjJM4n6ixcvpqen5dtwIiHLf2ppMU1jiMCjdDU1Nc6CTMvy Bt5Z9nJyGMq0yCD9rFixor+/35QjkmOPAX9paxsZGenrHxx68JOT9pcvX8oblmQyKW83ZJU0ME 1jiMCjdBs3bpQACJne5+fnTW0Zenp6du7cKS8fra2tpioihQe+ t7f3anf31NTze719T54+lbldAj8zMzM5OSkzv6ySBqZpDBF4lG 7v3r2XL1/es2fPuXPnTFUZ5IVj+/btMpfOzs6uX78+2yV9aQoPvPux3PT0zNNnz6w38BMTyeQLGRUf y0E1ufxuaGhYu3atKZdhYmJi69atbsivXLlSX1/vLEei8MALybYEWybz4eFhmd5FIpGQolTyizfQ6+LFixIkmeRNu VSvX7/esWPH6OioKdt2797d2dlpCmWQEXqZ2nxkGpdL9/MXLvyxuVm+2tvbpRjrud1B4FE6ifqGDRtMAXFA4FE6uQi/deuWKSAOCDxKNDg4uG3bNlNATBB4QBECDyhC4AFFCDygCIEHFC HwgCIEHlCEwAOKEHhAEQIPKELgAUUIPKAIgQcUIfCAIgQeUITA A4oQeEARAg8oQuABRQg8oAiBBxQh8IAiBB5QhMADihB4QBECDy hC4AFFCDygCIEHFCHwgCIEHlCEwAOKEHhAEQIPKELgAUUIPKAI gQcUIfCAIgQeUITAA4oQeEARAg8oQuABRQg8oAiBBxQh8IAiBB 5QhMADihB4QBECD6ixsPD/V3Kma5FDwdIAAAAASUVORK5CYII=

http://vb.ckfu.org/ fMLJFAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJc EhZcwAADsMAAA7DAcdvqGQAAETlSURBVHhe7d1/SJTp3j/whRCRQ3/4X8TzRwQiISIihLQh841AJGKRCEQkFpF9WHxE4iGC6I/wr/7oObLVw0MQIm141BALj8wxyeMx12NnTdNZc1vHc8w8h/FHZsdCxGS+77mvz4zz29EZHT/j+4W01+e6r7nnR/f7vq57Zlq/GiIizb5yE5FmzDCRbswwkW7MMJFuzDCRbswwkW7MMJFuzDCRbs ww0aa3/f1vpZkYCd9hKGaYUsvbpv886+9mv2yIhbmx3CQkfp6t29pd0A5 hNyLNDFNq6b9pRddnW6Gzbiy3QDvwtlYe/7NpWxn03yGE7DMRmGFKKTsJmh+/kKG58/34BKY2MfsMwgxTKjFrV59tT3q4vS9kESZNdG8jiP47hAj7jAsz TKnEE7BA24yMX8iC4mfISSJwQ//NzXux2m+bbnoH4AZ+DyHsPuPEDFMKMQmTlEjcYgixX+SQQW/IwuXNJDJwNvXcj680u/IfEDA43D7jxQxTyjIh3joz/tOopNSyGWcfs0s5M/iKcG42bW71232YfcaLGaYUYpbSkhKJmF+AwguIsF+G/WdnH29u/TN8s38zzb7+8BkOu884McOUSkyI/Ww963kS5wuZiZ8vcl7+62FrSMIn0zgww5Ri/GIcW9KCch/hRgGjQlOeRMww0WY+o6Zehu2rAAMzTKQbM0ykGzNMpBszTKQbM 0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0y kGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykG zNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTAfT46rMqsf S1o0ZpoMICbZ8fWtMevRihkm3x1XbmE7HHj/ezOzjKv8EP36sdVZmhkmzsVtfZ4auiT2zbLhkR14/Yz9qp2RmmHQJzmFg+rxr5LAZ9gQ+IKljt6qkjJR6DZhh0sSb0c 0o+mdYtkacUYOSak3iZnBIvBVhhkmbwOvY0AxHnk+DkmqGm46g eGvCDJNaj28hfv4Z9sYyYhqx2T//ftH1xJsZJtpNSFlgyEwgQ8Nn5Tgwql6+yPp4Ux00RWvCDJMOIZ 8heVLnCaQ3hf4iJVICv/lelme/ZmC43ejADJMG/qnzQeysQCLL4YSJJMZ6egNv4stw0ElCC2aYFJDsBTNzc6QQh7m FdzJHYDdZ48KeJHRghkkBE9PAedLqUzp1JhQzTBoETJybEhZhz/7DzfQaMMOkRPCSOZGRCzfPq8EME+nGDBPpxgwT6cYME+nGDBPp xgwT6cYME+nGDBPpxgwT6cYME+nGDBPpdlAyvLKyUl5ejkZPT0 9JSUlGRkZ6enpWVlZtbe3i4qIZs0u+Cke2RdXf33/hwoXDhw+npaXl5eU9fPhQNkSFp4knK0V8fC/a7nnz5k1dXR2endS75vPnzzU1Nb/73e/w915cXDw7O2v6E/hyJcuByPDq6mphYeGDBw/QttlsbW1ta2trZtPIyAj+Rk17l8SY2FBFRUVNTU3mCBsfHz916 hRKsykKPE2MxFOWeqf8X7TdU1FRce/evR2/RLGrrKy8du3a+vo6/uqvXr168uRJ05+olyuJDkSGv//++yjHIiY6ae2ORB2g09PTubm5UkSFJ4unLMVORX/RYhH7E9+DDGP6lZbbvbGxgaWNFAl6uZIo9TOMGezMmTNShJiam srOzpbCcv/+fZynpbBcv34dnVJsXwIPUP8DERNLc3OzFJb6+npMNaaNp+xwO Ex7B0JftB28LPsqw1hF+9bMyPB//Md/mLYR58uVXKmf4erq6vb2din8uFyuhoYGXBJ3dnZKl1d+fj62mj bGYA+mvTOJOkAHBgaw6pPC7W5sbLxy5YoU1vUenovv2h7XC7j8 M20fPJJIZIRX2Bdtuy9L6G4jiX3kjuHV+OGHH0wbr+R///d/m7YR9uXSIvUzjGl2aWlJCot10ArMXdLrx263X758GY3u7u4oc3 iMcC9YuWHFXlJS8j//8z87ewcFF2y4hOvv75fa7cap5+LFi1K43Tdu3Kirq5PC7UaYg9 YX2xL6osF2XxY8cWltJfaROzY6Ooq/BSgqKjpy5EhfX59ssMT5ciVX6mf40KFD0gqEYxRTDYLR29srXX 7Onj2L/ry8vEjvWntOABHIiEDr6+tDQ0OIGY6ViYkJ6Y0NHuo333zT1dU ltQUPLCcnx7Tn5+ePHz8e9MaM/8J7uyK9aAl/WYzoWyMxuw1LRnhNT0+Xl5f/61//Mu9l4i8CLxdSbbYa8bxcyXVwM2xgVvS9RekP8zPO2UF/zQmBKGIqkCIGuGJHgCcnJ6X2k5GRYRqYHkMXFKEHpRzg4cgIr0 gv2rZeltDdRhL7yJ0pLS0Nesw9PT02m00KCzO8f4VdFvoL/cszH8wiGLF8lrMDsR8umLGrqqpwrSt1oNOnTyPhgFllY2NDei1 4yidOnJBi+8K+aNt9WfZPhsO+4P6dcb5cyZX6GY70npaB03NWV pYUFkTi/PnziA2m6IKCgkiLxh1zOByInBRRuVwuXPFiES51iEuXLj158gS rxNAPgeJ8kyb0RdvBy7J/Mox8Bi1kxsfHcVUsBd/T2ueCPibBOra1tRXBwMSFBdWxY8caGxtlm3VhWVJS4jtAOzo6K ioqTHvHsJAbGBjA3YHdbkeAccTINuvwjXQEnzt3LvqVM1a2lZW VYT80Li4uxhOXYvuCXrSdvSyxJzN0pPWqJOzgxAuOGOOv2/wtoIG/hf/7v/+TzXG/XMmV+hkG/68r9PX1IRtYRwGuiHA4mn5YW1tD3nzfwjPKysoQPCl2BKcMTPW 4wszMzMS8+re//U02WKIcrGZTENlmwVSJHkzFUnvhrJTA73js0stimCflI72JzjD gbyE/Px8X8/h7x3ncf5WRkJcriQ5EhldXV3Hp2NDQIPV+gmnB99bUdiG9hYWF UnjhaeLJxv/lweS+aPG8LNuSqJcriQ5EhgFXcbv99f2daW5uDnqDNHZY32KVL oUXVrk7+wg6VBJftHhelm1J4MuVLAclw/tWdnb20NCQFNvhcDhwUSBFytnxy3IAMcNEujHDRLoxw0S6McNE ujHDRLoxw0S6McNEujHDRLoxw0S6McNEujHDRLoxw0S6McNEuj HDRLoxw0S6McO0f4zd+jqz6hb+yKx6LF174nHVHt9hQjHDtG94 IpyZ+XVV1ddfVz0ek84tIH5f37pVhZvdivEWIbALy873kFzMMO 3MDuaux1W+Wzx+nJh5z+SvqgpJjjn24PdILDh7aE0wM0w7Ezx3 xbIKNrfx3GKLyDy+tbt5suZ7xYvnIMzwwZSAiSdgFyYWCHHkvV pDTOg9aY6a9e0FzLO76M8meJdBT988eq2hZoYPIhMn2Nvj1pcc z/1HCp01W0dPZCDvk4l8G2uXASN8j8Ti3a40xczwQYXDOPSYHbt1 a4vjWEZ4D/vg5ERfBvumQ8/NwyTGimPVY9+wqOSRmOchtzRbwnlc5f9IAzJsNnke0te3pEsVZ vjA88utOY6DQzh2q8rvePeMeOydxz38khOSJKtjc4++6Hj6QxO HnVubvf8N4Lln/9t4H6vVb4TeKAzrLOOfYesxiirTpQszfNAETkhBcQqbLU9KAkd UbeYmMLOesZu798XLNwQ9Vtuzl+DE+WcpaK+b2/xu5H2s5l48J5bNU40PBgXuyTxA720tsnPP/M8M077nP6canghsJiPkmJdDPHSEHPnBSdw8RZi0mIh594kbmc2 y0Y/szxoctNWzCXuwRvj1o/Z/rKFPzXM3Qc/G2gf6Qu8fmGHa/0KOadgMjxE6ImRIXKz9I0Nh7sfHCv62BacyXKrlniM8I2aY9rn wyQk6nkNGRDjekZio2fbsJ9wA0x8mXf4CbmhlM4ZYB2UY+wida z07ivTImGHa96wcBB3Xnr6AroBD35ucMNHf90xMAx+51afxyUT BDB8k4ScfT4SRVb+vHQeP8xz0gSOSKeZH4j0BBbEinEJhZoYPm uAD2xzHnl4rGL7D2ptjb1BCRyTLdh5J8NnIF3vrZUj66SghmGE i3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3 ZhhIt2YYSLdmGEi3ZhhIt2YYUoR9+/fv3r1qhSW69evo1OKQJWVlc3NzVJY6uvrr127JoUqzDCljvz8f JfLZdoNDQ3V1dWmHaqxsfHKlStSuN2fP3/OyspaXFyUWhVmmFKH3W6/fPkyGt3d3WfOnDGdYXV2dl68eFEKt/vGjRt1dXVSaMMMU0o5e/Zsb29vXl5e9EkVW3Nyckx7fn7++PHjq6urplSHGaaUgsvatLS0 0dFRqSPLyMgwDUzduJVpa8QMU+ro7++/cOECMtnU1CRdkZ0+fXrKgkl4Y2NDehVihilFII3nz5///PnzyspKQUHBlm9QXbp06cmTJ+Xl5Q8ePJAunZhhSgW4pi0pKfH ltqOjo6KiwrSNryxSWLB+rqyszM3NlVotZpjUW1tbKy0tnZ2dl dpSVlZmt9ulCJfh9vZ29GAqllotZpgOBFzx+t7EMpDewsJCKTR jhulAaG5uttlsUliw9h4YGJBCM2aYDoTs7OyhoSEp3G6Hw3Hu3 DkplGOGiXRjhol0Y4aJdGOGiXRjhol0Y4aJdGOGiXRjhol0Y4a JdGOGiXRjhol0Y4aJdGOGiXRjhulAcN692yXNVMMM04HQ9V//765T2uF1/Vfm/7srbVWYYToYuv7rvyJOxM67/y8zM/LmfY4ZpoMhdRfTzDClEKyHIeyMGjHDvg3RZur9jBmmVIEVsRVC p9P/wteKNfr9M+zs6jJDrIY3u57bW73KMMOkWtdd71tVvmAGsLZbKf WbZr1pR+O/7jp96UbD+q8yzDBp1tXlm1zNOtpMupust6tMn29AZJyHifbW5i zsZc2s0vba+nMl1ZhhUiwgnWbKtWbhzenZ6gyYmVMOM0yayVJZ bGbVb92c0nOwBzNMqQGpTfm0hscMk3oHYL0cDTNMpBszTKQbM0 ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0yk GzNM0fT09JSUlGRkZKSnp2dlZdXW1i4uLsq2JOno6Pjqq20ct1 ++fBl59ar10aMfbt/GDxoo0Smb9WOGKRqbzdbW1ra2tmbKkZGR4uJi006KlZWVEydOx J5hjP/x4cOup08nJyf/bUEDJTqxSQYpxwzT9hw+fFhayfDdd9/dv38/xgxjsn3w44/Pnz9//35p4MXLzqd/xs/gz8Pvl5bQiU2pMRszwykFx/fVq1elsFy/fh2dUsRtamoqOztbiqgqKyubm5ulsNTX11+7dk2KHenv7z9z5g waMWYYa2ZMuXPzCx1/evas76+DL8deDDt+Ghzq+ctPC4uL2IQBMlQzZjjV5Ofnu1wu02 5oaKiurjZtf8hAJDIiBPaJveGSuLOzU7qiamxsvHLlihRu9+fP n3HboGtpuctwZIQfrOdzc3Onp6fRDjsgVEtLi9Pp9IT2+YufR8 aHxybGf3U6/z7t+GXil/FxbMIAGaoZM5xq7Hb75cuX0eju7jazVpxMqAzMpdK7FUT94sWL UrjdN27cqKurk2JHsL64c+eOaeORmEZ0P9y+jQvgP3Y9ezn62v H6t8mpf8zO/nNubs7lmns1OoZNGCBDNWOGU9DZs2d7e3vz8vIS+B7y0tJSe3v 7yZMnsWfpigp3nZOTY9rz8/PHjx9fXV015Q6Mjo6eOnVKim1muLunb+K3qem375DeDx8+LC8v 449JpxPtOzr/p/BBmOEUhNkyLS0Nx73UIaw5NTwZEcHKygpiLMVWMjIyTAPrgrAT uNxlODLCC3c6OTkpRcwZ/kNzMy7gR0Yd469/NQH+9OkTVvU4H+HSAJswQIZqxgynmv7+/gsXLiA2TU1N0pVQ6enp0trK6dOnkRPAJLyxsSG9O2KCHUo2RzA 8PPy0u3tx8f3L4ZG3MzOYgZHhjx8/LiwsYH7GJgyQoZoxwykFgTl//jymGkyYBQUFCf8+Bub2rKwsKbZy6dKlJ0+elJeXP3jwQLoSZMv 0Gr7PlpaXP868e+e5GJ6fX1r6gBeHny3RfoTLzpKSEl9uOzo6K ioqTHvHioqKWltb19fXMZH29PQcO3assbFRtnmnRylCYP1cWVm Zm5srdeLEmGFAXJFVTLlYimMSBqfTiRKd/I4H7S9ra2ulpaWzs7NSW8rKyux2uxQ70tfXd+7cOayfwWaz4bw gGyzRM9ze3o6tmIqlTpwodxoKky3WzK2PHv2+vh4/LS0tKFNjBjaYYdo5TM6+N65CIb2FhYVS0K5hhmnnmpubMTlLEQ IL+4GBASlo1zDDtHPZ2dlDQ0NSBHI4HFiES0G7iRkm0o0ZJtKN GSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGS bSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbS jRkm0o0ZJtKNGSbSjRmmFPfly5eRV69aHz364fZt/KCBkr9viQ6Knp6ekpKSjIyM9PT0rKys2trahP8+1O3q6OiI/Xemrays/PjwYdfTp5OTk/+2oIESnfy9h3Qg2Gy2tra2tbU1U46MjBQXF5t2UiB4J06ciDHD mGzN7x9+/35p4MXLzqd/xs/gz8Pvl5b4+4fp4Dp8+LC0kuG77767f/9+jBnGmhlT7tz8Qsefnj3r++vgy7EXw46fBod6/vLTwuIiNmGADNWMGd6/cLBevXpVCsv169fRKUUyTE1NZWdnSxFVZWVlc3OzFJb6+vpr16 5JsSP9/f1nzpxBI8YMt7S0OJ1OT2ifv/h5ZHx4bGL8V6fz79OOXyZ+GR/HJgyQoZoxw/tafn6+y+Uy7YaGhurqatP2hwM6EhmRCHgYeAC4JO7s7JSuqBob G69cuSKF2/3582fcNuhaWh5lODLCD9bzubm509PTaIcdEOqH27dxAfzHrmcv R187Xv82OfWP2dl/zs3NuVxzr0bHsAkDZKhmzPC+ZrfbL1++jEZ3d7eZgvaeCZWBuV R6t4KoX7x4UQq3+8aNG3V1dVLsCJYkd+7cMW08EtOIzmS4u6dv 4rep6bfvkN4PHz4sLy/jj0mnE+07d+/KUM2Y4f3u7Nmzvb29eXl5CXxD2AQyLBkRYmlpqb29/eTJk3gw0hUVHm1OTo5pz8/PHz9+fHV11ZQ7MDo6eurUKSlizvAfmpux+B8ZdYy//tUE+NOnT1gR4LlgWYFNGCBDNWOG9ztMfWlpaTiIpQ5hsheWjEi clZUVxFiKrWRkZJgGlhJhJ3B5lOHICC/c6eTkpBQxZ3h4ePhpd/fi4vuXwyNvZ2YwAyPDHz9+XFhYwPyMTRggQzVjhve1/v7+CxcuIANNTU3SlWzp6enS2srp06cx1wEm4Y2NDendERPsULI 5At9nS8vLH2fevfNcDM/PLy19wJmIny3RXsDRf/78eaz9cMwVFBQk/csVgOVAVlaWFFu5dOnSkydPysvLHzx4IF0JsmV6ffDSIauYcjG NYxIGp9OJEp3YJIOUY4b3KVxDlpSU+HLb0dFRUVFh2nupqKiot bV1fX0dE2lPT8+xY8caGxtlm3d6lCIE1s+VlZW5ublSJ07sGQZ Mtlgztz569Pv6evy0tLSgTI0Z2GCG96O1tbXS0tLZ2VmpLWVlZ Xa7XYq90tfXd+7cOayfwWaz4VQiGyzRM9ze3o6tmIqlTpwod3o A8bWgncPk7HvjKhTSW1hYKAXtGmaYdq65uRmTsxQhcC0wMDAgB e0aZph2Ljs7e2hoSIpADocDi3ApaDcxw0S6McNEujHDRLoxw0S 6McNEujHDRLoxw0S6McNEujHDRLoxw0S6McNEujHDRLoxw0S6M cNEujHDRLoxw0S6McNEujHDRLoxw0S6McNEujHDRLoxw0S6McN EujHDRLoxwwdIT09PSUlJRkZGenp6VlZWbW3tfvhditvV0dGxr d+39OXLl5FXr1ofPfrh9m38oIGSvzONVLLZbG1tbWtra6YcGRk pLi42bS1WVlZOnDgRe4Yx/seHD7uePp2cnPy3BQ2U6OTvLqVUcPjwYWkp8d13392/fz/GDGOyNb9D/P37pYEXLzuf/hk/gz8Pv19a4u8Qp23DkXf16lUpLNevX0enFMkwNTWVnZ0tRVSVlZ XNzc1SWOrr669duybFXunv7z9z5gwaMWYYa2ZMuXPzCx1/evas76+DL8deDDt+Ghzq+ctPC4uL2IQBMlQzZnjv5Ofnu1wu02 5oaKiurjZtfzg6I5ERiYCHgQeAS+LOzk7piqqxsfHKlStSuN2f P3/GbYOupeVRhiMj4oNLgNzc3OnpabRj3GdLS4vT6fSE9vmLn0fGh 8cmxn91Ov8+7fhl4pfxcWzCABmqGTO8d+x2++XLl9Ho7u4288n eM6EyMJdK71YQ9YsXL0rhdt+4caOurk6KvYJVzJ07d0wbD940o vvh9m1cAP+x69nL0deO179NTv1jdvafc3NzLtfcq9ExbMIAGao ZM7ynzp4929vbm5eXl8A3hE0gw5IRIZaWltrb20+ePIkHI11R4 dHm5OSY9vz8/PHjx1dXV00ZD3mU4cgIr9HR0VOnTkmxzQx39/RN/DY1/fYd0vvhw4fl5WX8Mel0on3n7l0ZqhkzvKcw9aWlpeGIlDqEOYL DkhGJs7KyghhLsRXf7/vHUiLsBC6PMhwZEQc8zsnJSSlizvAfmptxzT8y6hh//asJ8KdPn3AhgFMYriawCQNkqGbM8N7p7++/cOECMtDU1CRdyZaeni6trZw+fRoHPWAS3tjYkN69Ys4FoWRzBM PDw0+7uxcX378cHnk7M4MZGBn++PHjwsIC5mdswgAZqhkzvEdw 9J8/fx6TAGa/goKC/fDlCiwHsrKypNjKpUuXnjx5Ul5e/uDBA+lKni3Ta/g+W1pe/jjz7p3nYnh+fmnpA/4K+NkSbQ+uIUtKSny57ejoqKioMO29VFRU1Nraur6+jom0p6fn 2LFjjY2Nss0710kRAuvnysrK3NxcqZMqxgwD4oqsYsrFUhyTMD idTpTo5Hc8KFZra2ulpaWzs7NSW8rKyux2uxR7pa+v79y5c1g/g81mw6lENliiZ7i9vR1bMRVLnVRRHmcoTLZYM7c+evT7+nr8tL S0oEyNGdhghklgcva9cRUK6S0sLJSC9hNmmERzczMmZylC4Fpg YGBACtpPmGES2dnZQ0NDUgRyOBxYhEtB+wwzTKQbM0ykGzNMpB szTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBsz TKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTK QbM0ykGzNMpBszTCnuy5cvI69etT569MPt2/hBAyV/3xKp1NPTU1JSkpGRkZ6enpWVVVtbux9+hep2dXR0xP4701ZWVn 58+LDr6dPJycl/W9BAiU7+3kPSx2aztbW1ra2tmXJkZKS4uNi0tUDwTpw4EWOGMd ma3z/8/v3SwIuXnU//jJ/Bn4ffLy3x9w9Tijh8+LC0lPjuu+/u378fY4axZsaUOze/0PGnZ8/6/jr4cuzFsOOnwaGev/y0sLiITRggQzVjhvcvHKxXr16VwnL9+nV0ShG3qamp7OxsKaKq rKxsbm6WwlJfX3/t2jUp9kp/f/+ZM2fQiDHDLS0tTqfTE9rnL34eGR8emxj/1en8+7Tjl4lfxsexCQNkqGbM8L6Wn5/vcrlMu6Ghobq62rT94YCOREaEwD6xN1wSd3Z2SldUjY2NV65ck cLt/vz5M24bdC0tdxmOjIgPLgFyc3Onp6fRjnGfP9y+jQvgP3Y9ezn 62vH6t8mpf8zO/nNubs7lmns1OoZNGCBDNWOG9zW73X758mU0uru7zRQUJxMqA3O p9G4FUb948aIUbveNGzfq6uqk2CtYkty5c8e08eBNIzqT4e6ev onfpqbfvkN6P3z4sLy8jD8mnU6079y9K0M1Y4b3u7Nnz/b29ubl5SXwPeSlpaX29vaTJ09iz9IVFe46JyfHtOfn548fP766 umrKeJhTSVgywmt0dPTUqVNSxJzhPzQ343phZNQx/vpXE+BPnz5hEYGnj5UINmGADNWMGd7vMFumpaXhIJY6hDnow5I REaysrCDGUmwlIyPDNLAuCDuBy12GIyPigMc5OTkpRcwZHh4ef trdvbj4/uXwyNuZGczAyPDHjx8XFhYwP2MTBshQzZjhfa2/v//ChQuITVNTk3QlVHp6urS2cvr0aUxcgEl4Y2NDeveKOReEks0R+ D5bWl7+OPPunedieH5+aekDTl78bIn2AgJz/vx5rP1wzBUUFCT8+xiY27OysqTYyqVLl548eVJeXv7gwQPpSp4 t0+uDlw5ZxZSLaRyTMDidTpToxCYZpBwzvE/hsrOkpMSX246OjoqKCtPesaKiotbW1vX1dUykPT09x44da2xsl G3euU6KEFg/V1ZW5ubmSp1UsWcYMNlizdz66NHv6+vx09LSgjI1ZmCDGd6P1t bWSktLZ2dnpbaUlZXZ7XYpdqSvr+/cuXNYP4PNZsN5QTZYome4vb0dWzEVS51UUR7nAcTXggQmZ98bV 6GQ3sLCQiloP2GGSTQ3N2NyliIEFvYDAwNS0H7CDJPIzs4eGhq SIpDD4cAiXAraZ5hhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhI t2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2 YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YY SLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSL dmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdm GEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGE i3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3 ZhhIt2YYSLdvhoiIs04DxPpxgwT6cYME+nGDBPpxgwT6cYME+n GDBPpxgwTbXrb3/9WmomR8B2GYoYp1fTfPCv+s2mb+Xnb9J+42c1+UwTHz7NVtsUq YIewG5FmhimlbAbY2F7mrFvLTdAOvLGVx22eFvx3CCH7TARmmF KJibDJiX87Vn4hQ3Pb83iowNQmZp9BmGFKIVZs40kJ5lrfzQPj 5+O5j9jvwn+HEGGfcWGGKYWYDN+86bkI9dh+XvxCFhQ/w1zgBoW4/+bmHVntt003vQNwA79HEXafcWKGKYVYGQ4US4z9IoddeEMWLm8 mkYGzqSfWvtLsyn9AwGBmmCgqk2GJjCdbMYXYfxqVlFo24+wj+ zR79RXh3Gza3Oq3+zD7jBczTCnEpGozg0EBCi8gwn4Z9p+dfby 59YzZbG+m2dcfPsNh9xknZphSismtH/98huVJnG+QiV/ITfzXw9aQhE+mcWCGKdX4xXjLAHsExT5CPANGxbTfvcIME23mM +r8KsP2VYCBGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRk m0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0 o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0 ZJtKNGSbSjRkm0o0ZJnK7H1dlZlY9lkIZZpgOJqR2M7SeCKsNM TNMB5EJbWbm17fGpEcvZph0e1y1jelz7PHjzcw+rvJP8OPHSpf SzDCpNnbr6zBr4EhXtwHr5wDYj9opmRkmXYJzGJg+7xo5bIY9g Q9I6titKikjpV4DZpg08WZ0M4r+GZatEWfUoKRak7gZHBJvRZh h0ibwOjY0w5Hn06CkmuGmIyjemjDDpNbjW4iff4a9sYyYRmz2z 79fdD3xZoaJdhNSFhgyE8jQ8Fk5Doyqly+yPt5UB03RmjDDpEP IZ0ie1HkC6U2hv0iJlMBvvpfl2a8ZGG43OjDDpIF/6nwQOyuQyHI4YSKJsZ7ewJv4Mhx0ktCCGSYFJHvBzNwcKcRhbu GdzBHYTda4sCcJHZhhUsDENHCetPqUTp0JxQyTBgET5yZGGJhh UiJ4yRxucX0gMcNEujHDRLoxw0S6McNEujHDRLoxw0S6McNEuj HDRLoxw7Snenp6SkpKMjIy0tPTs7KyamtrFxcXZduu6e3tPX36 NO4R93vhwoWpqSnZkBKYYdpTNputra1tbW3NlCMjI8XFxaa9S7 q6unJycv72t79tbGysr6/fv38/Ozvb5XLJZv2YYUqyw4cPS2t3FBQUBE28ra2tV65ckUI/ZpiSCenCrCiFBfPk1atXpbBcv34dnVJs36FDh6TlhQk5Pz9fCv 2YYUoOrGYbGhpwSdzZ2SldXgiYb62LMdXV1aa9M8ePHx8aGpLC Mj09jQtjKfRjhmmvfeWnvr5eev3Y7fbLly+j0d3dfebMGdO5Y1 g5Hzt2rLe3F9MvdHR04ByRlpYmm/VjhilhJJfhyAg/S0tL7e3tJ0+eRLqky8/Zs2fRn5eXF+lda9lvODLCD3Zls9nSLRcvXpycnOQ8TJQYKysri LEUfjA/Y6ocHR2VOqFWV1fD3qlSzDAlGeZGaXn19/dfuHABy+mmpibpSqienp7r169LoR8zTMmEmTYrK0sKy9TU1Pnz 5z9//owpuqCgYDe+AXLt2rXZ2Vkp9GOGtdrY2ND4RYWioqLW1tb19XU 8fsyHx44da2xslG1u9/z8fElJiS+3HR0dFRUVpr1jZ86c8X2rBNGtq6t78uSJ2ZQamGGV 7Ha7+Z9K5eTkIA+mExNXeXm5aUeBMRgpxZ7r6+s7d+6ceXvJZr MhpbLB7UbMSktLg2bIsrIyPFkpdqS7uxt3dOjQocOHD2Nvu3SN nUTMsD4I7dGjR0dGRtAeHx83naurq4WFhQ8ePDBlFBhz6tQpjJ ealGOG9cHKEPOJFF7ff/99LAE2MBLjpSDlmGF9bty4cfPmTSksmI2Dvgux5TcWMd7hcEhB mjHDyuCKUb7K8NVXvo9eqqur29vbTdsn+jcWMZnX1NRI4SX7DU dG0P7Dvxt9srOzZ2ZmpLCgZ2lpSQqv6N9YXFxcDPrHBqQUM6zM xsZG6PcEQ/9pjhH9G4uhX67YFpmgU4U8K4WYYWUGBwdtNpsUXpEyHP0bi6EZ lsM5HBlB+w//bpTBNfC3334rhVfYtXT0byxi/IkTJ6QgzZhhZWpqau7duyeFV+h7Wlt+YzHse1qkETOsTGlpaeg/mg/6bCmWbywWFxf7vh9CqjHDymRmZob9ipXvOx6xfGOxsbGR3/FIGcywJphgjxw5IkUgBPv06dMNDQ1SR4YxGKniu5Z/+9vfLl68ePjw4fT0dFwahP2/BRAzrEZtbW12dnbQt6/8xfhvHrCuTuK/eYgdLvuR2zdv3qD98ePHhw8f4tRjNpE/ZliNoaGhtrY2KVIdrtULCgqkoKiYYdqPvvvuu136n3ikHmaY9i NcNfzrX/+SgqJihmk/Sk9Px5VwaWlpRkZGWloa1tW4HpZtFIgZpv3oq6++ys/P7+zsNP/Xnv7+/qysrP/93/+VzeSHGab96PDhw0EfcY+MjBw9elQK8sMM035UUlKC6VcKr1T6 5QwJxAzTfoRlc3NzsxSWiYmJVPofuycQM0z70draWlFR0f3798 3/tXNwcDA3N7e7u9tsJX/MMO1T8/PzVVVVv/vd7w4dOoQ89/X1yQYKxAwT6cYME+nGDBPpxgwT6cYME+nGDBPpxgwT6cYME+nG DBPpxgwT6cYME+nGDBPpxgwT6cYME+nGDBPpxgwT6cYME+nGDB 9gY7e+zqy6hT8yqx5L18H0uErzK8AMH1yeCGdmfl1V9fXXVY/HpPMAQoItX9/S+SIwwxTkcZVvTnr8OOLs5Ddq7LG6M4Dfo7fgdKY1wcww4YC+5 X/4mlnJc0RHO7A3R3mau7kQ9awWEpwvawGiePEchBk+8AIzKAtsC WfgkT52q0rC5DdqFzImzJ14xL3/4PMMdu2/T+ue1IaaGT7grAk1ICO+4zs4ndaR7u3YTEFI1BPDujdIwK6t5w ibT2bz0Xt4tytNMTN8gFkxqXocPEn56qB0mkPde+z7Rnn24heI +Fj3Ye3NZNhvx95Q7yxrj6v8H2NAhs0mzz1/fUu6VGGGDy4ctdaB7P2vl+8A96QmMC+eA116NmMQfPuItnzzyx vTzbv3FdZdewXfnbUtxmRbV/+bD37zTj2qTJcuzPBB5X/oBgUAkbBqz5CguPjl1TvKSlC4AAVOfWZ3vnHmneHA94dNsgKGm UeJ0jREwH59W4IeqgUb/e/BerDh7wM1Ho10qcIMH1CbmbAW08GpMLVs2Hwvyz+YvlEBgfDxv 5HFuke/G+MmQXcsZfDDQS3797SsR2z1W+TOA3a+KfgzJDMu9J4NZpjUkm z4s4599Hv+ax34YVmjsDmG9EC4/fjfMvL9xCjoLkNOIx7mOUW4K2aYtAo9pE12JQNhMm5YoQkXV0l/kM27kRtGWhZHgpsFPRbr9t6+wLvE3kLPLd6HG/6umGEiYaUqKEEhkfXwZMk/etYNA7O4UyamIblO1O73DWaYdkP4aS40wpZwU2siBO3Xy4pwCo WZGabdEhyhqInxDk5wrILPJb7zg3V/CTtbJBUzTKQbM0ykGzNMpBszTKQbM0ykGzNMpBszTKQbM0ykGz NM+8WbN2/q6ury8vKkptgww7RfVFRU3Lt376uveExuD18v2l+Y4e3i60W7Z WNjw+VySREzZni7+HrRrrDb7eZfGeTk5Kyvr6MH4QxlBvsL27m yslJeXi5FZBiDkVIcGMwwJR5Ce/To0ZGREbTHx8dNZ4xCM7y6ulpYWPjgwQOpI8OYU6dOYbzUBwMz TInX1tZWVlYmxTaFZvj777+PJcAGRmK8FAcDM0yJd+PGjZs3b0 qxTUEZxjR+5swZKSz379+/evWqFJbr16+jUwq3G+MdDocUBwAzTAlWWlqKHBpNTU3SGwO5jZ fprK6ubm9vN22f/Px837tlDQ0NGGPaBlYBNTU1UnjJTsOREWoxw5R42dnZMzMzUsQ Hu1paWpLCy263X758GY3u7u6gWRoWFxdxKykOAGaYEmxjYyMjI 0OKuB06dEhagc6ePdvb25uXl4fESpef9PR0aR0AzDAl2ODgoM1 mkyJukTJcX1+flpY2OjoqdaDQDMu6ORwZoRYzTAmGa+Bvv/1WiriFXUv39/dfuHABy+mw19sYf+LECSkOAGaYEqympubevXtSxC30Pa2pqanz 589//vx5ZWWloKAgdC0d9j2tFMYMU4KVlpZ2dnZKEbegz5bm5+dLSkp 8ue3o6KioqDBtn+Li4u1+sUQ1ZpgSLDMzM7HflPJ9x2NtbQ0ni NnZWdNvlJWV2e12KdzuxsZGfseDaOcwTx45ckSKBMEZ4fTp0w0 NDVJHhjEYye9aEu1QbW1tdnZ20JeoEiLGf/OAdTX/zQPRzg0NDbW1tUlBe4UZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o 0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0Z JtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0Z1u fNmzd1dXV5eXlSU1RfvnwZefWq9dGjH27fxg8aKNEpm/VjhvWpqKi4d+9eCvzy6z2wsrLy48OHXU+fTk5O/tuCBkp0psxvdeFxoBUzvCVMtg9+/PH58+fv3y8NvHjZ+fTP+Bn8efj90hI6sSk1ZmMeB8m3sbHhcrm kiBkzvCWsmTHlzs0vdPzp2bO+vw6+HHsx7PhpcKjnLz8tLC5iE wbIUM14HCSZ3W7PtOTk5Kyvr6MH4QxlBvsL2xnj7wfEmPhXkv3 9/RcuXDh8+HBaWhouzh8+fCgbdkFPT09JSUlGRkZ6enpWVlZtbW3 or/8P1dLS4nQ6PaF9/uLnkfHhsYnxX53Ov087fpn4ZXwcmzBAhmrGDCcTQnv06NGRkRG 0t/ur60MzvLq6WlhYaH7ddnQYc+rUqTh/T29RUVFTU5M5F+DBY4cozaaEs9lsbW1ta2trpsQrVlxcbNpR/HD7Ni6A/9j17OXoa8fr3yan/jE7+8+5uTmXa+7V6Bg2YYAM1YwZTiYcl2VlZVJsU2iGfb8vPxY Ymdjflz89PZ2bmyvF9oVdVkSB+V9akZkMd/f0Tfw2Nf32HdL74cOH5eVl/DHpdKJ95+5dGaoZM5xMN27cuHnzphTbFHTQYyY8c+aMFJb79+8 H/Trv69evo1MKtxvjHQ6HFImAha603O7Kysrm5mYpLPX19deuXZM ixLYyPDU1lZ2dLUVkf2huxsiRUcf4619NgD99+vT58+elpSWXy 4VNGCBDNWOGk6a0tBQHrrGtVajcxst0VldXt7e3m7ZPfn6+792 yhoYGjDFtA6uAmpoaKbxkp+HIiAgGBgawnJbC7W5sbLxy5YoUb jeSg+vYKBexW+7fwNPBE8GuOjs7pSuy4eHhp93di4vvXw6PvJ2 ZwQyMDH/8+HFhYQHzMzZhgAzVjBlOJkwmMzMzUsQHu8L0IoWX3W6/fPkyGt3d3UGzNCBRscxmscCl9cmTJ/v7+6V2u5GxixcvSmGtOOrq6qQIZ8sMW6cRgSldeqPyfba0vPxx 5t07z8Xw/PzS0gdcw/OzJUqAjY2NjIwMKeJ26NAhaQU6e/Zsb29vXl5e2DnQf/W7Yzh3fPPNN11dXVJbcHc5OTmmPT8/f/z48dC30CSR4ciIELgvLDdwvsCTkq6oEFdkFVPu5OQkJmFwOp0o 0Rn/O/P7BDOcNIODgzabTYq4Rcowpqy0tLTR0VGpA4VmWDIUjowIhKtK BBgJkdqP7wyFtcCWM2ek/YeF+CHGUmwFky3WzK2PHv2+vh4/LS0tKFNjBjaY4aTBNfC3334rRdzCrqXNR7iIUNjrbYw/ceKEFDsyMTFRVVWFa12pA50+fRoJB0zCWHRIbwTbyjAkZAWRGp jhpKmpqbl3754UcQt9TwvhOX/+PAKGWaugoCB0LR32Pa3YuVwuXPGa76WEdenSpSdPnpSXl8fyi de2MoxlRVZWlhQHHjOcNKWlpbG8uRqjoM+WcAlaUlLiy21HR0d FRYVp+xQXF2/3iyX+zp07h3lYinCwfq6srIzxQ+PoGS4qKmptbcX5AvN5T0/PsWPHGhsbZduBxwwnTWZmZpzflAri+47H2toaThCzs7Om3ygrK 7Pb7VJYn/3E+R0PpC6UbLNgXYAeTMVSx6Gvrw+nDKyfwWaz4ZQkG4gZThbM k0eOHJEiQXBGwCVoQ0OD1JFhDEYm9gwSCuktLCyUgnYNM5wEtb W12dnZQV+iSghc+sbybx6wrt6DT1awmB8YGJCCdg0znARDQ0Nt bW1SpCiHw4HVrxS0m5hhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3Z hhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3Zhh It2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt2YYSLdmGEi3ZhhIt 2YYSLdmGEi3ZhhIt2YYX3evHlTV1eXl5cnNUX15cuXkVevWh89 +uH2bfyggRKdslk/ZlifioqKe/fuBf3CbgprZWXlx4cPu54+nZyc/LcFDZTo3IPf3ro3eBxoxQxvCZPtgx9/fP78+fv3SwMvXnY+/TN+Bn8efr+0hE5sSo3ZmMdB8m1sbLhcLilixgxvCWtmTLlz8ws df3r2rO+vgy/HXgw7fhoc6vnLTwuLi9iEATJUMx4HSWa32zMtOTk56+vr6EE4Q 5nB/sJ2Yn1YXl4uRWQYE/9Ksr+//8KFC4cPH05LS8PF+cOHD2XDLujp6SkpKcnIyEhPT8/KyqqtrV1cXJRtkbW0tDidTk9on7/4eWR8eGxi/Fen8+/Tjl8mfhkfxyYMkKGaMcPJhNAePXp0ZGQE7fHxcdMZo9AMr66uF hYWPnjwQOrIMObUqVMYL/WOFBUVNTU1mXMBHjx2iNJsSjibzdbW1ra2tmZKvGLFxcWmHcUP t2/jAviPXc9ejr52vP5tcuofs7P/nJubc7nmXo2OYRMGyFDNmOFkwnFZVlYmxTaFZvj777+PJcAGRm K8FIkwPT2dm5srxe7D/C+tyEyGu3v6Jn6bmn77Dun98OHD8vIy/ph0OtG+c/euDNWMGU6mGzdu3Lx5U4ptCsowZsIzZ85IYbl///7Vq1elsFy/fh2dUrjdGO9wOKRIBCx0peV2V1ZWNjc3S2Gpr6+/du2aFPGZmprKzs6WIrI/NDdj5MioY/z1rybAnz59+vz589LSksvlwiYMkKGaMcNJU1paihwa21qFym28 TGd1dXV7e7tp++Tn5/veLWtoaMAY0zawCqipqZHCS3YajoyIYGBgAMtpKdzuxsbGK1eu SOF2Izm4jo3lIjY6PB08Eeyqs7NTuiIbHh5+2t29uPj+5fDI25 kZzMDI8MePHxcWFjA/YxMGyFDNmOFkwmQyMzMjRXywK0wvUnjZ7fbLly+j0d3dHTRLAx IVy2wWC1xanzx5sr+/X2q3Gxm7ePGiFNaKo66uToodkROJBVO69Ebl+2xpefnjzLt3no vh+fmlpQ+4hudnS5QAGxsbGRkZUsTt0KFD0gp09uzZ3t7evLy8 sHOg/+p3x3Du+Oabb7q6uqS24O5ycnJMe35+/vjx46FvoUkiw5ERIXBfWG7gfIEnJV1RIa7IKqbcyclJTMLgdDp RojP+d+b3CWY4aQYHB202mxRxi5RhTFlpaWmjo6NSBwrNsGQoH BkRCFeVCDASIrUf3xkKa4EYZ84YIX6IsRRbwWSLNXPro0e/r6/HT0tLC8rUmIENZjhpcA387bffShG3sGtp8xEuIhT2ehvjT5w4I cWOTExMVFVV4VpX6kCnT59GwgGTMBYd0psgCVlBpAZmOGlqamr u3bsnRdxC39NCeM6fP4+AYdYqKCgIXUuHfU8rdi6XC1e85nspY V26dOnJkyfl5eWxf+IVIywrsrKypDjwmOGkKS0tjeXN1RgFfba ES9CSkhJfbjs6OioqKkzbp7i4eLtfLPF37tw5zMNShIP1c2VlZ UI+NC4qKmptbcX5AvN5T0/PsWPHGhsbZduBxwwnTWZmZpzflAri+47H2toaThCzs7Om3ygrK 7Pb7VJYn/3E+R0PuUoOJNssWBegB1Ox1HHo6+vDKQPrZ7DZbDglyQZihpMF 8+SRI0ekSBCcEXAJ2tDQIHVkGIORiT2DhEJ6CwsLpaBdwwwnQW 1tbXZ2dtCXqBICl76x/JsHrKv34JMVLOYHBgakoF3DDCfB0NBQW1ubFCnK4XBg9SsF7SZ mmEg3ZphIN2aYSDdmmEg3ZphIN2aYSDdmmEg3ZphIN2aYSDdmm Eg3ZphIN2aYSDdmmEg3ZphIN2aYSDdmmEg3ZphIN2aYSDdmmEg 3ZphIN2aYSDdmmEg3ZphIN2aYSDdmmEg3ZphIN2aYSDdmmEg3Z jjJ3rx5U1dXl5eXJzUl2pcvX0ZevWp99OiH27fxgwZKdMpm/ZjhJKuoqLh3717Qb9+mRFlZWfnx4cOup08nJyf/bUEDJTr34Le37g0eOvsCM7wbMNk++PHH58+fv3+/NPDiZefTP+Nn8Ofh90tL6MSm1JiNeegk2MbGhsvlkiJmzPBuwJ oZU+7c/ELHn5496/vr4MuxF8OOnwaHev7y08LiIjZhgAzVjIdOItnt9kxLTk7O+vo6 ehDOUGawv7CdMf5Sf4xJyrKwv7//woULhw8fTktLw/X8w4cPZcMu6OnpKSkpycjISE9Pz8rKqq2tXVxclG2RtbS0OJ1O T2ifv/h5ZHx4bGL8V6fz79OOXyZ+GR/HJgyQoZoxwwmD0B49enRkZATt8fFx0xmj0Ayvrq4WFhY+ePBA6 sgw5tSpUxgv9V4pKipqamoypw88XzwGlGZTwtlstra2trW1NVP iRS4uLjbtKH64fRsXwH/sevZy9LXj9W+TU/+Ynf3n3NycyzX3anQMmzBAhmrGDCcMDrKysjIptik0w99//30sATYwEuOlSJLp6enc3Fwpdh/mf2lFZjLc3dM38dvU9Nt3SO+HDx+Wl5fxx6TTifadu3dlqGbMc MLcuHHj5s2bUmxTUIYxrZ05c0YKy/37969evSqF5fr16+iUwu3GeIfDIUWSYKErLbe7srKyublZCkt9 ff21a9ekiM/U1FR2drYUkf2huRkjR0Yd469/NQH+9OnT58+fl5aWXC4XNmGADNWMGU6M0tJS5NDY1pJSbuNlOq urq9vb203bJz8/3/duWUNDA8aYtoFVQE1NjRRestNwZETiDAwMYDkthdvd2Nh45coV KdxuJAfXsbFcxEaHVwDPHbvq7OyUrsiGh4efdncvLr5/OTzydmYGMzAy/PHjx4WFBczP2IQBMlQzZjhhMDPMzMxIER/sCnOFFF52u/3y5ctodHd3B83SgHjEMjXtElyNnzx5sr+/X2q3Gxm7ePGiFNYipa6uToodkXOPBVO69Ebl+2xpefnjzLt3no vh+fmlpQ+4hudnSxRsY2MjIyNDirgdOnRIWoHOnj3b29ubl5cX dkLzX8rumKQkHBkRAqebb775pqurS2oLHmFOTo5pz8/PHz9+PPRdN9lvODIiBO4LKxScL/A6SFdUiCuyiil3cnISkzA4nU6U6EzKm/m7gRlOjMHBQZvNJkXcImUY809aWtro6KjUgUIzLIEIR0bEDVeV CDASIrUf30kNy4cYZ84YIX6IsRRbwWSLNXPro0e/r6/HT0tLC8rUmIENZjgxcA387bffShG3sGtp83ks8hD2ehvjT5w4I cVemZiYqKqqwrWu1IFOnz6NhAMmYaxTpDdBErLoSA3McGLU1NT cu3dPiriFvqeFJJw/fx5pwRRUUFAQupYO+57WrnK5XLjiNV9lCevSpUtPnjwpLy+P/UOyGGElkpWVJcWBxwwnRmlpaSzvlMYo6LMlXE+WlJT4ctvR0VF RUWHaPsXFxdv9Ykmczp07h3lYinCwfq6srEzIh8ZFRUWtra04X 2A+7+npOXbsWGNjo2w78JjhxMjMzEzsN6V83/FYW1vDCWJ2dtb0G2VlZXa7XQrrg5y9/46HXFgHkm0WLCXQg6lY6jj09fXhlIH1M9hsNpzFZAMxwwmBefL IkSNSJAjOCLiebGhokDoyjMHIvf+u5ZaQ3sLCQilo1zDD8aqtr c3Ozg76ElVC4NI3ln/zgHX1/vyYBOv/gYEBKWjXMMPxGhoaamtrk4K8HA4HVr9S0G5ihol0Y4aJdGOGiX Rjhol0Y4aJdGOGiXRjhol0Y4aJdGOGiXRjhol0Y4aJdGOGiXRj hol0Y4aJdGOGiXRjhol0Y4aJdGOGiXRjhol0Y4aJdGOGiXRjho l0Y4aJdGOGiXRjhol0Y4aJdGOGiXRjhol0Y4aT7M2bN3V1dXl5 eVJTon358mXk1avWR49+uH0bP2igRKds1o8ZTrKKiop79+4F/fZtSpSVlZUfHz7sevp0cnLy3xY0UKJzf/7C1x3gobMvMMO7AZPtgx9/fP78+fv3SwMvXnY+/TN+Bn8efr+0hE5sSo3ZmIdOgm1sbLhcLilixgzvBqyZMeXOzS9 0/OnZs76/Dr4cezHs+GlwqOcvPy0sLmITBshQzXjoJJLdbs+05OTkrK+vow fhDGUG+wvbicVeeXm5FJFhTFKWhf39/RcuXDh8+HBaWhqu5x8+fCgbdkFPT09JSUlGRkZ6enpWVlZtbe3 i4qJsi6ylpcXpdHpC+/zFzyPjw2MT4786nX+fdvwy8cv4ODZhgAzVjBlOGIT26NGjIyMj aI+Pj5vOGIVmeHV1tbCw8MGDB1JHhjGnTp3CeKn3SlFRUVNTkz l94PniMaA0mxLOZrO1tbWtra2ZEi9ycXGxaUfxw+3buAD+Y9ez l6OvHa9/m5z6x+zsP+fm5lyuuVejY9iEATJUM2Y4YXCQlZWVSbFNoRn+/vvvYwmwgZEYL0WSTE9P5+bmSrF9YVciUWD+l1ZkJsPdPX0Tv01 Nv32H9H748GF5eRl/TDqdaN+5e1eGasYMJ8yNGzdu3rwpxTYFHcGY1s6cOSOF5f79+1 evXpXCcv36dXRK4XZjvMPhkCJJsNCVlttdWVnZ3NwshaW+vv7a tWtShNhWhqemprKzs6WI7A/NzRg5MuoYf/2rCfCnT58+f/68tLTkcrmwCQNkqGbMcGKUlpbiKDS2taSU23iZzurq6vb2dtP2 yc/P971b1tDQgDGmbWAVUFNTI4WX7DQcGZE4AwMDWE5L4XY3NjZeu XJFCrcbycF1bJSL2BgfEl4BPHfsqrOzU7oiGx4eftrdvbj4/uXwyNuZGczAyPDHjx8XFhYwP2MTBshQzZjhhMHMMDMzI0V8sCv MFVJ42e32y5cvo9Hd3R00SwPiEcvUtEtwNX7y5Mn+/n6p3W5k7OLFi1JYi5S6ujopwtkyw9aZR2BKl96ofJ8tLS9/nHn3znMxPD+/tPQB1/D8bImCbWxsZGRkSBG3Q4cOSSvQ2bNne3t78/Lywk5o/kvZHZOUhCMjQuB0880333R1dUltwSPMyckx7fn5+ePHj4e+6yb 7DUdGhMB9YYWC8wVeB+mKCnFFVjHlTk5OYhIGp9OJEp1JeTN/NzDDiTE4OGiz2aSIW6QMY/5JS0sbHR2VOlBohiUQ4ciIuOGqEgFGQqT24zupYfmw5cy5rYeE +CHGUmwFky3WzK2PHv2+vh4/LS0tKFNjBjaY4cTANfC3334rRdzCrqXN57HIQ9jrbYw/ceKEFHtlYmKiqqoK17pSBzp9+jQSDpiEsU6R3gi2e1pJyKIjNT DDiVFTU3Pv3j0p4hb6nhaScP78eaQFU1BBQUHoWjrse1q7yuVy 4YrXfJUlrEuXLj158qS8vDyWD8m2lWGsRLKysqQ48JjhxCgtLY 3lndIYBX22hOvJkpISX247OjoqKipM26e4uHi7XyyJ07lz5zAP SxEO1s+VlZUxfmgcPcNFRUWtra04X2A+7+npOXbsWGNjo2w78J jhxMjMzEzsN6V83/FYW1vDCWJ2dtb0G2VlZXa7XQrrg5y9/44HUhdKtlmwlEAPpmKp49DX14dTBtbPYLPZcBaTDcQMJwTmySN HjkiRIDgj4HqyoaFB6sgwBiP3/ruWW0J6CwsLpaBdwwzHq7a2Njs7O+hLVAmBS99Y/s0D1tX782MSrP8HBgakoF3DDMdraGiora1NCvJyOBxY/UpBu4kZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRk m0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0 o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0 ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJ tKNGSbSjRkm0o0ZJtKNGSbSjRkm0o0ZJtLM7f7/LS/4Y7O5fB0AAAAASUVORK5CYII=

Mr.Kaabi
2017- 3- 5, 02:57 PM
نتيجة المحاولة الأولى 2.5 من 3
والخطأ بالسؤال الثاني
اللي حله لا يبخل علينا

الصور المرفقة

Tariq-
2017- 3- 5, 06:42 PM
الله يعطيك العافية

بس شنو حلك اللي حطيته أنت للسؤال الثاني ؟؟

زين900
2017- 3- 5, 10:53 PM
انا حليت السؤال الثاني طلع الجواب الثالث

BLUE BLOOD
2017- 3- 6, 03:32 AM
نتيجة المحاولة الأولى 2.5 من 3
والخطأ بالسؤال الثاني
اللي حله لا يبخل علينا

الصور المرفقة




صباح الخير

اخترت الثالث والرابع وطلع الجواب خطأ مع ان الأخت زين قالت اختارت الجواب 3 إلا أنها ظهرت النتيجه ناقصه نص ... اي إجابه اخترت لانى الحين في الفرصه الثالثه دخلتها با الغلط وتوهقت :biggrin:

msr_44
2017- 3- 6, 07:50 AM
جرب 12x2


وان شاء الله تطلع صح

Ahzhanm
2017- 3- 6, 07:53 AM
2
الجواب 12 x

ابو هاني 1
2017- 3- 6, 09:24 AM
2
الجواب 12 x

معليش ممكن توضح
الاول او الثاني ؟

Mr.kh
2017- 3- 6, 09:57 AM
بسم الله الرحمن الرحيم ،.

Question 1


الدالة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930728_1/xid-5930728_1
تعتبر

الجواب

جميع ما ذكر صحيح




Question 2


أذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930710_1/xid-5930710_1
فإن معكوس الدالة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930711_1/xid-5930711_1

الجواب

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930712_1/xid-5930712_1




Question 3


إذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930498_1/xid-5930498_1
فإن قيمة المتغيرين
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930499_1/xid-5930499_1
تساوي

الجواب:

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930500_1/xid-5930500_1



Question 4


معادلة الخط المستقيم المار بالنقطة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930722_1/xid-5930722_1
وميله
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930723_1/xid-5930723_1
هي

الجواب

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5939135_1/xid-5939135_1





Question 5

إذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930716_1/xid-5930716_1
فإن
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930717_1/xid-5930717_1

الجواب:

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930718_1/xid-5930718_1




Question 6


إذا كان المجموعة a
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930704_1/xid-5930704_1
فإن قيمة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930705_1/xid-5930705_1
الجواب :

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930706_1/xid-5930706_1

Mr.Kaabi
2017- 3- 6, 10:01 AM
صباح الخير

اخترت الثالث والرابع وطلع الجواب خطأ مع ان الأخت زين قالت اختارت الجواب 3 إلا أنها ظهرت النتيجه ناقصه نص ... اي إجابه اخترت لانى الحين في الفرصه الثالثه دخلتها با الغلط وتوهقت :biggrin:


عذرا على التاخير بالرد

إن شاء الله ضبطت معك وفل الدرجة:biggrin:

انا اخترت الثالثه وخطأ:017:

اللي جاب الدرجة الكاملة يعطينا الأجوبة :33_asmilies-com:

Mr.kh
2017- 3- 6, 11:15 AM
عذرا على التاخير بالرد

إن شاء الله ضبطت معك وفل الدرجة:biggrin:

انا اخترت الثالثه وخطأ:017:

اللي جاب الدرجة الكاملة يعطينا الأجوبة :33_asmilies-com:

موجود الحل يا بعدي ..

Danah_
2017- 3- 6, 12:13 PM
الحل مايفتح معاي ممكن تضيفونه بصيغة بي دي اف

Mr.kh
2017- 3- 6, 12:38 PM
الحل مايفتح معاي ممكن تضيفونه بصيغة بي دي اف

تفضل ..

Danah_
2017- 3- 6, 12:57 PM
يعطيكم العافيه

Mr.Kaabi
2017- 3- 6, 02:25 PM
موجود الحل يا بعدي ..


:106::106::106:

asma bent yahya
2017- 3- 6, 02:44 PM
الله يعطيكم العافيه جميع ."

ديما.s
2017- 3- 6, 06:20 PM
بسم الله الرحمن الرحيم ،.

Question 1


الدالة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930728_1/xid-5930728_1
تعتبر

الجواب

جميع ما ذكر صحيح




Question 2


أذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930710_1/xid-5930710_1
فإن معكوس الدالة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930711_1/xid-5930711_1

الجواب

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930712_1/xid-5930712_1




Question 3


إذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930498_1/xid-5930498_1
فإن قيمة المتغيرين
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930499_1/xid-5930499_1
تساوي

الجواب:

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930500_1/xid-5930500_1



Question 4


معادلة الخط المستقيم المار بالنقطة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930722_1/xid-5930722_1
وميله
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930723_1/xid-5930723_1
هي

الجواب

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5939135_1/xid-5939135_1





Question 5

إذا كان
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930716_1/xid-5930716_1
فإن
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930717_1/xid-5930717_1

الجواب:

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930718_1/xid-5930718_1




Question 6


إذا كان المجموعة a
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930704_1/xid-5930704_1
فإن قيمة
https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930705_1/xid-5930705_1
الجواب :

https://vle.uod.edu.sa/bbcswebdav/pid-1425533-dt-content-rid-5930706_1/xid-5930706_1



شكراً ما تقصر

ديما.s
2017- 3- 6, 06:21 PM
نتيجة المحاولة الأولى 2.5 من 3
والخطأ بالسؤال الثاني
اللي حله لا يبخل علينا

الصور المرفقة



شكراً ماتقصر

خالد سعيد علي
2017- 3- 6, 07:05 PM
السلام عليكم يعطيكم العافيه هل جميع الاجوبه صحيحه ؟

مرتضى سعيد
2017- 3- 6, 08:19 PM
تفضل ..

اكيد كل الاجبات صحيحه ؟!

*V E L V E T
2017- 3- 7, 12:20 AM
يعطيك العافيه

ديما.s
2017- 3- 7, 12:27 AM
السلام عليكم يعطيكم العافيه هل جميع الاجوبه صحيحه ؟


أي
إجابات Mr.kh

ديما.s
2017- 3- 7, 12:28 AM
اكيد كل الاجبات صحيحه ؟!


أي ان شاء الله
إجابات Mr.kh

jaf2000sa
2017- 3- 7, 01:41 PM
يعطيكم العافية

BLUE BLOOD
2017- 3- 7, 02:38 PM
جرب 12x2


وان شاء الله تطلع صح

ماقصرت شكرا لك ...

BLUE BLOOD
2017- 3- 7, 02:39 PM
2
الجواب 12 x

مشكوره يعطيك العافيه..

BLUE BLOOD
2017- 3- 7, 02:40 PM
عذرا على التاخير بالرد

إن شاء الله ضبطت معك وفل الدرجة:biggrin:

انا اخترت الثالثه وخطأ:017:

اللي جاب الدرجة الكاملة يعطينا الأجوبة :33_asmilies-com:

الحمد لله الفل مارك ابشرك .. ماقصرت :16.jpg:

BLUE BLOOD
2017- 3- 7, 02:41 PM
تفضل ..

كل الشكر لك بارك الله فيك ..:d5:

88-MeRoO
2017- 3- 7, 08:54 PM
السلام عليكم ..

يعطيكم العافيه في خطأ بالسؤال بس ماعرفت اي واحد ممكن احد فيكم يساعدني !!

BLUE BLOOD
2017- 3- 7, 09:32 PM
السلام عليكم ..

يعطيكم العافيه في خطأ بالسؤال بس ماعرفت اي واحد ممكن احد فيكم يساعدني !!


وعليكم السلام

الإجابات جميعها صحيحة.. ارجو التركيز أثناء الاجابه على علامات -

با التوفيق :106:

BLUE BLOOD
2017- 3- 7, 09:38 PM
مساء الخير ..

اتمني من الاخوه أو الاخوات بمساعدتي بكتابه واجب الرياضيات على شكل كويز ولكم جزيل الشكر .. :106: :d5:

بتلاء الدوسري
2017- 3- 8, 01:11 AM
حليت نفس الحل نقصت نص😭💔 بكل المحاولات

Mr.Kaabi
2017- 3- 8, 09:06 AM
مساء الخير ..

اتمني من الاخوه أو الاخوات بمساعدتي بكتابه واجب الرياضيات على شكل كويز ولكم جزيل الشكر .. :106: :d5:

ماعندي مشكلة أسويها .... حاولت بس عقدتني كتابة الأقواس ماتضبط معي اذا حد يعرف طريقة كتابة الأقواس في الكويز علمنا

students
2017- 3- 8, 09:41 AM
السلام عليكم يعطيكم العافيه على مجهودكم بس في خطأ بسؤال الميل والجواب هو 2- x- للي يقولون ناقصين نص درجه اختارو ذالجواب ومبروك عليكم الدرجه الكامله مقدما :004:

Mr.Kaabi
2017- 3- 8, 09:50 AM
حليت نفس الحل نقصت نص😭💔 بكل المحاولات


كلامك صحيح

BLUE BLOOD
2017- 3- 8, 09:53 AM
ماعندي مشكلة أسويها .... حاولت بس عقدتني كتابة الأقواس ماتضبط معي اذا حد يعرف طريقة كتابة الأقواس في الكويز علمنا

نفس المشكله معي ... يعطيك العافيه ماقصرت.. إذا ما ضبط مو لازم كويزات للرياضيات ..

BLUE BLOOD
2017- 3- 8, 10:08 AM
السلام عليكم يعطيكم العافيه على مجهودكم بس في خطأ بسؤال الميل والجواب هو 2- x- للي يقولون ناقصين نص درجه اختارو ذالجواب ومبروك عليكم الدرجه الكامله مقدما :004:


وعليكم السلام
الله يعافيك اخوي ... هو مافيه خطأ هي سؤالين مختلفة الآخ MR.KH وضحها في المرفق بس شكلكم ما شفتوه

سؤال جوابه


أوجد معادلة الخط المستقيم الذي ميله m=-1 و يمر بالنقطتين (-1،-1)

الحل: y= - X - 2


سؤال جوابه

معادلة الخط المستقيم المار بالنقطه (-1,-1)
m=-1
هي
y=x
y=x+1
y=-x
y=x-1



بالنسبة الي طلعت لهم هالخيارات الجواب هو

y=-x



وبتوفيق لكم :106:

students
2017- 3- 8, 11:34 AM
السلام عليكم يعطيكم العافيه على مجهودكم بس في خطأ بسؤال الميل والجواب هو 2- x- للي يقولون ناقصين نص درجه اختارو ذالجواب ومبروك عليكم الدرجه الكامله مقدما :004:

وعليكم السلام
الله يعافيك اخوي ... هو مافيه خطأ هي سؤالين مختلفة الآخ MR.KH وضحها في المرفق بس شكلكم ما شفتوه

سؤال جوابه


أوجد معادلة الخط المستقيم الذي ميله m=-1 و يمر بالنقطتين (-1،-1)

الحل: y= - X - 2


سؤال جوابه

معادلة الخط المستقيم المار بالنقطه (-1,-1)
m=-1
هي
y=x
y=x+1
y=-x
y=x-1



بالنسبة الي طلعت لهم هالخيارات الجواب هو

y=-x



وبتوفيق لكم :106:



شكرا لك اخوي على التوضيحح يعطيك العافيه :d5:

BLUE BLOOD
2017- 3- 8, 11:58 AM
شكرا لك اخوي على التوضيحح يعطيك العافيه :d5:

العفووو .. الله يعافيك .. وفالكم التوفيق جميعآ

مرتضى سعيد
2017- 3- 8, 07:03 PM
السلام عليكم
ممكن تكتبون الاجبات الصحيحة مره ثانية لاني والله ضعت مرتين جبت 2.5

مرتضى سعيد
2017- 3- 8, 07:19 PM
وعليكم السلام

الإجابات جميعها صحيحة.. ارجو التركيز أثناء الاجابه على علامات -

با التوفيق :106:

حليت نفس الإجابات وبعد ما حليت تأكدت وصورتهم بجوالي وطابقتهم ب الإجابات
وهم خذت 2.5

BLUE BLOOD
2017- 3- 8, 07:22 PM
حليت نفس الإجابات وبعد ما حليت تأكدت وصورتهم بجوالي وطابقتهم ب الإجابات
وهم خذت 2.5


الحين باقي لك فرصه وحده لا تدخل خلك .. ارسل الصور يا اخوي انا جاوبت نفس إلى هنا وأخذت 3 ليش يصير معكم كذا مدري انت تتأكد انه حفظ الإجابات قبل الإرسال .. ان شاء الله اقدر اساعدك ...

مرتضى سعيد
2017- 3- 8, 07:39 PM
الحين باقي لك فرصه وحده لا تدخل خلك .. ارسل الصور يا اخوي انا جاوبت نفس إلى هنا وأخذت 3 ليش يصير معكم كذا مدري انت تتأكد انه حفظ الإجابات قبل الإرسال .. ان شاء الله اقدر اساعدك ...


الله يعطيك العافيه
اي متاكد اي احفظ الاجابات
مره حطيت الاجابه الثانيه
ومره حطيت الرابعه

BLUE BLOOD
2017- 3- 8, 07:50 PM
الله يعطيك العافيه
اي متاكد اي احفظ الاجابات
مره حطيت الاجابه الثانيه
ومره حطيت الرابعه

هذا السؤال إلى تنقص فيه الدرجه .. ؟ ؟ اسمع راح ارسل ايميل الدكتور واكتب له انك متأكد من الاجابه بس يحسبها لك غلط وأرسل له الصوره وقله باقي لى فرصه وحده وين المشكله ليش يحسبها غلط ارسل له كل الإجابات إلى جاوبتها بس لا تدخل للمحاوله الثالثه انتبه .. انتظر ردك بتوفيق... أرسله الجواب رقم 2

ralkhasawneh@uod.edu.sa

Mr.kh
2017- 3- 9, 10:16 AM
الله يعطيك العافيه
اي متاكد اي احفظ الاجابات
مره حطيت الاجابه الثانيه
ومره حطيت الرابعه


بعد راسي تأكد زين من اجاباتك الفايل اللي حطيته بالمرفق الاجابات الصحيحة 100 % انا حليت الواجب لي ولصاحبي من نفس الفايل الاجابات صحيحة بس تعرف ارقام تلخبط بالواحد اذا تبي مساعدة كلمني وابشر :106: ..

tn toon
2017- 3- 11, 06:29 PM
انا حليت الواجب ويعطيني بالمحاولتين 2,5 من 3

وين المشكله مع العلم نفس الاجابات اللي بالمرفق

الله يعافيكم اللي حله وطلع عنده 3 من 3 ومتاكد منها

ينقذنا بالاجابات باقي لي محاوله اخيره فقط

88-MeRoO
2017- 3- 12, 05:06 PM
نفس المشكله يا جماعه حليت الواجب محاولتين يعطيني نفس النتيجخ ٢ونص من ٣

شالمشكله ؟؟

alwaafi
2017- 3- 13, 05:32 PM
نفس المشكله يا جماعه حليت الواجب محاولتين يعطيني نفس النتيجخ ٢ونص من ٣

شالمشكله ؟؟

نفس الوضع

tariq alayashi1
2017- 3- 13, 08:42 PM
نفس المشكلة 2 ونص من 3 :rolleyes:

بندر الشيباني
2017- 3- 16, 05:16 PM
بعد راسي تأكد زين من اجاباتك الفايل اللي حطيته بالمرفق الاجابات الصحيحة 100 % انا حليت الواجب لي ولصاحبي من نفس الفايل الاجابات صحيحة بس تعرف ارقام تلخبط بالواحد اذا تبي مساعدة كلمني وابشر :106: ..

حليت من نفس فايلك وخذت 3 من 3 ترتيب الخيارات يختلف ركزوا بس

dossary
2017- 3- 18, 12:09 AM
نفس وضعكم حليت اول محاولتين من الصور المرفقة وأخذت ٢.٥ من ٣ ! هل نرسل للدكتور والا ؟

FAYSALEH
2017- 3- 18, 01:58 AM
واحي ماده الاداره ليه مافي حل

BLUE BLOOD
2017- 3- 18, 03:24 AM
نفس وضعكم حليت اول محاولتين من الصور المرفقة وأخذت ٢.٥ من ٣ ! هل نرسل للدكتور والا ؟

ارسل لدكتور.. الإجابات صحيحه ولاكن تحسب الدرجه ناقصه

وبتوفيق

BLUE BLOOD
2017- 3- 18, 03:26 AM
واحي ماده الاداره ليه مافي حل

تقصدين مبادئ الاداره .. الحل في خطه التفوق لمبادئ الاداره

بتوفيق

BLUE BLOOD
2017- 5- 12, 12:42 PM
UP

BLUE BLOOD
2017- 5- 15, 09:58 AM
UP