

- تبلغ قيمة المحفظة الاستثمارية لأحد المستثمرين (1000000 ريال)
- تتكون المحفظة الاستثمارية لهذا المستثمر من استثمارين (أ) و (ب)
 - قيمة الاستثمار (أ) = 600000 ريال
 - قيمة الاستثمار (ب) = 400000 ريال
 - العائد من الاستثمار (أ) = 8 %
 - العائد من الاستمار (ب) = 15 %

أولا : حساب عائد المحفظة باستخدم طريقة النسبة :

تُانياً: حساب عائد المحفظة باستخدام المتوسط المرجح:

$$\frac{600000}{100000} = 0.6 = (أ) = 0.6$$

$$\frac{400000}{1000000} = 0.4 = (ب) = 0.4$$

المتوسط المرجح للمحفظة = (0.0 × 0.0) + (0.0 × = 10.8 %
 المتوسط المرجح للمحفظة = (0.01 × 0.0) + (0.015 %

- محفظة استثمارة تتكون من استثمارين (أ) و (ب) بقيمة 25000 ريال
 - قيمة الاستثمار (أ) = 15000 ريال
 - قيمة الاستثمار (ب) = 10000 ريال
- الحالات الاقتصادية واحتمال حدوثها والعائد المتوقع من كل مشروع كما يلى:

العائد المتوقع (%)		أحتمال الحدوث	الحالة الأقتصادية
المشروع (ب)	المشروع (أ)		
%2	%5	0.5	ركود
%20	%15	0.5	أزدهار

الحل :

أولاً: حساب وزن كل مشروع:

$$\frac{10000}{25000} = 0.4 = (ب)$$

تُانياً: حساب العائد المتوقع من كل مشروع:

يمكن حساب العائد المتوقع لكل مشروع في شكل جدول كالتالي:

Ri×Pi	العائد المتوقع للمشروع(أ) (Ri)	أحتمالات حدوث الحالة الاقتصادية (pi)	الحالة الأقتصادية
0.025	%5	0.5	رکو <u>د</u>
0.075	%15	0.5	أزدهار
0.10	العائد المتوقع		

يمكن حساب العائد المتوقع لكل مشروع في شكل جدول كالتالي :

Ri×Pi	العائد المتوقع للمشروع(ب) (Ri)	أحتمالات حدوث الحالة الاقتصادية (pi)	الحالة الأقتصادية
0.01	%2	0.5	ركود
0.10	%20	0.5	أزدهار
0.11	العائد المتوقع		_

تُالثاً: حساب العائد المتوقع من المحفظة بتطبيق المعادلة:

$$\mathbf{E}(\mathbf{R})\boldsymbol{p} = \sum_{i=1}^{n} Wi(ERi)$$

العائد المتوقع للمحفظة = E(Rp) = (0.11 × 0.4) + (0.1 × 0.6) = E(Rp)

فيما يلي البيانات الخاصة بمشروعات الاستثمارية (أ- ب- ج) التي تتكون منها المحفظة الاستثمارية لإحدى الشركات: (المشروع أ

الوزن والعائد المتوقع لكل مشروع (%)			الإحتمال	الحالة الاقتصادية
وزن(ج)= 0.2	وزن (ب)= 0.4	وزن(أ)=0.4		
%12	%10	%8	%30	اژدهار
%6	%6	%6	%40	ظروف عادية
%1	%2	%4	%30	انكماش

أولاً: حساب عائد محفظة الاستثمار في كل الحالات الاقتصادية:

$$0.029 = [(0.12 \times 0.2) + (0.1 \times 0.4) + (0.8 \times 0.4)] = 0.029$$

$$0.024$$
= [(0.06×0.2)+(0.06×0.4)+(0.06×0.4)]0.4 = $\frac{0.008}{0.008}$ = [(0.01×0.2)+(0.02×0.4)+(0.04×0.4)]0.3 = $\frac{0.06}{0.06}$ =

تباين عائد المحفظة:

$$0.04 = \sqrt{0.0016} = \sqrt{0.0016}$$
 الأنحراف المعياري = التباين

(%	عائد من المشاريع (%	الاحتمال	الحالة	
المشروع(ج)%	المشروع(ب)%	المشروع(أ)%		الاقتصادية
0.5	0.6	0.6	0.3	ركود
0.2	0.1	0	0.4	ظروف طبيعية
- 0.1	- 0.2	- 0.1	0.3	أزدهار

المطلوب: حساب الانحراف المعياري لكل محفظة استثمارية ممكنة مكونة من استثمارين:

أولاً: حساب العائد المتوقع من كل مشروع:

$$0.15 = (0.1 - \times 0.3) + (0.4 \times 0) + (0.3 \times 0.6) = (ER)a$$

 $0.16 = (0.2 - \times 0.3) + (0.4 \times 0.1) + (0.3 \times 0.6) = (ER)b$
 $0.20 = (0.1 - \times 0.3) + (0.4 \times 0.2) + (0.3 \times 0.5) = (ER)c$

أولاً: حساب الانحراف المعياري لكل مشروع:

بتطبيق الصيغة الرياضية المعروفة لحساب الانحراف المعياري لكل مشروع منفرد:

$$\sigma = \sqrt{\sum_{i=1}^{n} Pi (Ri - ER)^2}$$

$$\sigma(a) = \sqrt{0.3(0.6 - 0.15)^2 + 0.4(0 - 0.15)^2 + 0.3(-0.1 - 0.15)^2} = 0.297$$

$$\sigma(b) = \sqrt{0.3(0.6-0.16)^2 + 0.4(10-0.16)^2 + 0.3(-0.2-0.16)^2} = 0.314$$

$$\sigma(c) = \sqrt{0.3(0.5-0.20)^2 + 0.4(0.2-0.2)^2 + 0.3(-0.1-0.2)^2} = 0.232$$

المشروع A

7	6	5	4	3	2	1
PI(Ri-ER) ²	(Ri-ER) ²	(Ri×ER)	(pi×Ri)	معدل العائد Ri	الأحتمل pi	الحالة الأقتصادية (s)
0.06075	0.2025	0.450	0.18	0.60	0.3	أزدهار
0.009	0.0225	- 0.150	0	0	0.4	عادية
0.01875	0.0625	- 0.250	- 0.03	- 0.1		الركود
0.0885	التباين		0.1500	العائد المتوقع ER	1	
0.297	الانحراف المعياري					

المشروع B

7	6	5	4	3	2	1
PI(Ri-ER) ²	(Ri-ER) ²	(Ri×ER)	(pi×Ri)	معدل العائد Ri	الأحت <i>مل</i> pi	الحالة الأقتصادية (s)
0.05808	0.1936	0.440	0.18	0.60	0.3	أزدهار
0.00144	0.0036	- 0.060	0.04	0	0.4	عادية
0.03888	0.1296	- 0.360	- 0.06	- 0.2	0.3	الركود
0.0984	التباين		0.1600	العائد المتوقع ER	1	
0.314	الانحراف المعياري					

المشروع C

7	6	5	4	3	2	1
PI(Ri-ER) ²	(Ri-ER) ²	(Ri×ER)	(pi×Ri)	معدل العائد Ri	الأحتمل pi	الحالة الأقتصادية (s)
0.027	0.09	0.300	0.15	0.50	0.3	أزدهار
0	0	0.000	0.08	0.2	0.4	عادية
0.027	0.09	- 0.300	- 0.03	- 0.1	0.3	الركود
0.054	التباين		0.20	العائد المتوقع ER	1	
0.232	الانحراف المعياري				-	

تُانياً: حساب الانحراف المشترك (التغاير) لكل مشروعين يمكن أن يشكلا محفظة أستثمارية بإستخدام الصيغة الرياضية السابق ذكرها:

$$COV_{(a,b)} = \sum_{i=1}^{n} Pi [(R_a - ER_a)(R_b - ER_b)]$$

$$COV_{(a,b)} = [0.3(0.6 - 0.15)(0.6 - 0.16)] + [0.4(0 - 0.15)(0.1 - 0.16)] + [0.3(-0.1 - 0.15)(-0.2 - 0.16)] = 0.09$$

$$COV_{(a,c)} = [0.3(0.6 - 0.15)(0.5 - 0.2)] + [0.4(0 - 0.15)(0.2 - 0.2]$$

+[0.3(-0.1- 0.15)(-0.1- 0.2)] = 0.063

$$COV_{(b,c)} = [0.3(0.6 - 0.16)(0.5 - 0.2)] + [0.4(0.1 - 0.16)(0.2 - 0.2)] + [0.3(0.2 - 0.16)(-0.1 - 0.2)] = 0.072$$

الأنحراف المشترك (التغاير) بين المشروعين (b,a)

6	5	4	3	2	1
Pi(Rb-ERb)+(Ra-Era)	(Rb-ERb)+(Ra-Era)	(Rb –Erb)	(Ra – ERa)	الأحتمل pi	الحالة الأقتصادية
0.0756	0.252	0.56	0.45	0.3	أزدهار
-0.0036	-0.009	0.06	- 0.15	0.4	عادية
0.018	0.06	- 0.24	- 0.25	0.3	الركود
0.09	التغاير بين B,A			1.00	

الأنحراف المشترك (التغاير) بين المشروعين (c,a)

6	5	4	3	2	1
Pi(Rb-ERb)+(Ra-Era)	(Rc-ERc)+(Ra-Era)	(RC –ErC)	(Ra – ERa)	الأحتمل pi	الحالة الأقتصادية
0.0405	0.135	0.300	0.45	0.3	أزدهار
0	0.000	0.000	- 0.15	0.4	عادية
0.0225	0.075	- 0.300	- 0.25	0.3	الركود
0.063	التغاير بينC,A			1.00	

الأنحراف المشترك (التغاير) بين المشروعين (c,b)

6	5	4	3	2	1
Pi(Rb-ERb)+(Ra-Era)	(Rc-ERc)+(Rb-Erb)	(RC –ErC)	(Rb – ERb)	الأحت <i>مل</i> pi	الحالة الأقتصادية
0.0396	0.132	0.300	0.44	0.3	أزدهار
0	0.000	0.000	- 0.06	0.4	عادية
0.0324	0.108	- 0.300	- 0.36	0.3	الركود
0.072	التغاير بين C,B			1.00	

ثالثاً: حساب معامل الارتباط لكل مشروعين يمكن أن يشكلا محفظة استثمارية بإستخدام الصيغة الرياضية السابق ذكرها:

$$P_{(a.b)} = \frac{cov_{(a.b)}}{\sigma_a \times \sigma_b}$$

$$p_{(a,b)} = \frac{0.09}{0.0297 \times 0.314} = 0.097$$
 :(a,b) خامل الارتباط (a,b)

$$p_{(a,c)} = \frac{0.063}{0.0297 \times 0.232} = 0.091$$
 :(a,c) الارتباط (a,c)

$$p_{(b,c)} = \frac{0.072}{0.0314 \times 0.232} = 0.099$$
 :(b,c) خامل الارتباط (b,c)

حساب الانحراف المعياري للمحافظ الاستثمارية الممكنة:

1- بإستخدام الصيغة الرياضية التي تستخدم الانحراف المشترك (التغاير) بين المشروعين:

$$\sigma_{(a.b)} = \sqrt{W_a^2 \sigma_a^2 + W_b^2 \sigma_b^2 + 2W_a W_b COV_{(a.b)}}$$

باستخدام الصيغة السابقة نحسب الانحراف المعياري للمحفظة الاستثمارية المكونة من المشروعين (a,b) على أعتبار أن رأس المال موزع بين الاستثمارين بالتساوي، أي أن:

 $W_a = 0.5$: (a) وزن المشروع

 $W_b = 0.5$: (b) وزن المشروع

$$\sigma_{(a.b)} = \sqrt{(0.5)^2 (0.297)^2 + (0.5)^2 (0.314)^2 + 2(0.5 \times 0.5)0.09}$$

$$= 0.303$$

2- بإستخدام الصيغة الرياضية التي تستخدم معامل الأرتباط:

$$\sigma_{(a.b)} = \sqrt{W_a^2 \sigma_a^2 + W_b^2 \sigma_b^2 + 2W_a W_b P_{(a.b)} \sigma_a \sigma_b}$$

$$\sigma_{(a.b)} = \sqrt{(0.5)^2 (0.297)^2 + (0.5)^2 (0.314)^2 + 2(0.5 \times 0.5 \times 0.097 \times 0.297 \times 0.314)}$$

= 0.303

إذا توفرت لدى أحد المستثمرين فرصة الاستثمار في مشروع استثماري يمكنه أن يحقق عوائد محتملة إما 20000 ريال أو صفر ريال بإحتمالات متساوية (50%)..

العائد المتوقع من هذا الاستثمار (غير مؤكد):

العائد المتوقع من الأستثمار = (20000 × 0.5) + (0 × 0.5) = 10000 لو تصورنا ان هذا المستثمر تتساوى عنده منفعة تحقيق مبلغ 8000 ريال مؤكدة مع تحقيق مبلغ 10000 غير مؤكدة ، فإنه يمكن القول أن : 8000 ريال (مؤكدة) = 10000 ريال (مؤكدة)

من خلال التحليل السابق يمكن حساب معامل معادل التأكد كالتالي :

$$\alpha_i = \frac{CCF_i}{RCF_i}$$

معامل معادل التأكد وتتراوح قيمتها بين الصفر والواحد الصحيح $lpha_i$

CCFi = التدفقات النقدية المؤكدة للفترة i .

RCFi = التدفقات النقدية غير المؤكدة للفترة i .

 $CCF_i = lpha_i imes RCF_i = المؤكدة المؤكدة عليه يمكن حساب التدفقات النقدية المؤكدة$

بالتطبيق على المثال السابق:

$$\alpha_i = \frac{CCF_i}{RCF_i} = \frac{8000}{10000} = 0.8$$

وتكون التدفقات النقدية المؤكدة =

 $CCF_i = \alpha_i \times RCF_i = 0.8 \times 10000 = 8000$

تقوم إحدى الشركات بتقويم مشروع استثماري بالمعلومات التالية:

تكلفة المشروع = 130000ريال

معدل العائد المطلوب = 12%

معدل العائد على الاستثمارات عديمة المخاطر = 5 %

التدفقات النقدية المتوقعة من المشروع على النحو التالي:

معامل معادل التأكد (α)	التدفقات النقدية المتوقعة	السنة
0.9	10000	1
0.9	20000	2
0.8	40000	3
0.75	80000	4
0.6	80000	5

الحل :

حساب صافي القيمة الحالية للمشروع:

أولاً: حساب التدفقات النقدية المؤكدة للمشروع:

التدفقات النقدية المؤكدة	معامل معادل التأكد (α)	التدفقات النقدية المتوقعة	السنة
9000	0.9	10000	1
18000	0.9	20000	2
32000	0.8	40000	3
60000	0.75	80000	4
48000	0.6	80000	5

تانياً: حساب صافي القيمة الحالية بتطبيق المعادلة:

$$NPV = \sum_{i=1}^{n} \frac{\alpha_i RFC_i}{(1 + R_f)} - K$$

القيمة الحالية للتدفقات النقدية	معامل القيمة الحالية (عند 5%)	التدفقات النقدية المؤكدة	السنة
8568	0.952	9000	1
16326	0.907	18000	2
27648	0.864	32000	3
49380	0.823	60000	4
37632	0.784	48000	5
139554	مجموع القيمة الحالية		
130000	 تكلفة المشروع 		
9554	NPV	ص ق ح	

الخطوة 1 و 2 بنفس الجدول:

القيمة الحالية للتدفقات النقدية	معامل القيمة الحالية (عند 5%)	التدفقات النقدية المؤكدة	معامل معادل التأكد (a)	التدفقات النقدية المتوقعة
8568	0.952	9000	0.9	10000
16326	0.907	18000	0.9	20000
27648	0.864	32000	8.0	40000
49380	0.823	60000	0.75	80000
37632	0.784	48000	0.6	80000
139554	مجموع (ق ح)			
130000	- تكلفة المشروع			
9554	NPV	ص ق ح		

إذا توفرت لديك البيانات التالية عن الأستثمار في سهم إحدى الشركات:

- ✓ معمل بيتا للشركة = 1.2
- ✓ معدل العائد الخالي من المخاطر = 9%
 - ✓ عائد السوق = 19%
- ✓ هناك أحتمال 90% بعد سنة من الأستثمار أن يرتفع سعر السهم إلى 10 ريال
- ✔ هناك أحتمال 10% بعد سنة من الأستثمار أن يرتفع سعر السهم إلى 20 ريال

المطلوب:

ماهي القيمة الحالية لسهم الشركة (على أعتبار عدم وجود أرباح موزعة) ؟

خطوات الحل:

1 - حساب التدفقات النقدية المتوقعة للفترة القادمة على النحو التالي:

التدفقات النقدية المتوقعة = $(0.9 \times 0.1) + (10 \times 0.9) = 11$ ريال

1.2 = (قيمة معطاة) = 1.2 حقيمة بيتا (β) لعائدات السهم (قيمة معطاة)

3 - حساب العائد المتوقع للسهم بتطبيق المعادلة :

$$E(R) = R_f + \beta (R_m - R_f) = 0.09 + 1.2 (19 - 0.09) = 0.21$$

4 - حساب القيمة الحالية للتدفقات النقدية المحسوبة في الخطوة 1

يال 9.09 =
$$\frac{11}{(0.21+1)}$$
 =

تشتري شركة ناصر الصناعية من موردها بتسهيلات أئتمانية محددة وفق التالي:

✓ شروط الائتمان التجاري: (2/ 15 / صافي 45)

✓ متوسط مشتريات الشركة 100000 ريال .

المطلوب:

ماهي التكلفة السنوية في حالة عدم الاستفادة من الخصم النقدي؟

خطوات الحل:

تحدید معنی شروط الائتمان التجاري وفق الصیغة (2/ 15 / صافي 45)
 وتعنی :

الأستفادة بخصم نقدي 2 % في حالة السداد خلال مهلة 15 يوماً أو تسديد المبلغ كاملاً بعد فترة 45 يوماً

- إذا قررت الشركة الأستفادة من الخصم النقدي فإنها تحصل على مبلغ خصم قدرة (0.02 × 0.000) = 20000 ريال
 ويكون المبلغ المدفوع = 100000 2000 = 980000 ريال
 ويعد هذا التمويل في حكم التمويل المجاني .
 - إذا قررت الشركة الاستفادة من كامل فترة الائتمان التجاري

ويكون المبلغ المدفوع = 100000 ريال وعدم الاستفادة من مقدار الخصم 2000ريال لغرض الاستفادة من المبالغ المالية في أغراض أخرى ، وتحسب التكلفة السنوية لضياع هذه الفرصة بالصيغة التالية :

$$AR = \frac{\% D}{\% 100 - \% D} \times \frac{360}{CP - DP}$$

نحصل على:

$$AR = \frac{2}{100-2} \times \frac{360}{45-15} = 24.5\%$$

وهذا يدل على ان الشركة بقرارها عدم الاستفادة من الخصم النقدي تتحمل فرصة ضائعة (تمثل تكلفة) قدرها \$24.5 %

تود شركة الحصول على قرض مقداره 1000000 ريال لمدة عام من البنك الاهلي بمعدل فائدة اسمى 20%.

المطلوب:

حساب معدل الفائدة الفعلي في الحالات التالية:

1 - دفع الفائدة في نهاية العام .

2 - خصم الفائدة مقدماً من القرض.

خطوات الحل:

أولاً: حساب الفائدة على القرض = 1000000 × 0.2 = 200000 ريال ثانياً: حساب معدل الفائدة الفعلي عند دفع الفائدة في نهاية العام:

$$AR = \frac{200000}{1000000} = 20 \%$$

ثالثاً: حساب معدل الفائدة الفعلي في حالة خصم الفائدة من قيمة القرض:

المبلغ المستفاد منه = 1000000 – 200000 = ويال

$$AR = \frac{200000}{800000} = 25 \% = \frac{200000}{800000}$$

تحديد المبلغ المستفاد منه في حالة خصم الفائدة من قيمة القرض:

في المثال السابق في حالة رغبت الشركة أن يكون المبلغ المستفاد منه 1000000 ريال ريال ويال مبلغاً أكبر من 1000000 ريال

$$TL = \frac{L}{1-I} = \text{lilling in the limits}$$

حيث :

TL = قيمة المبلغ الذي يجب أقتراضه.

المبلغ المستفاد منه .

معدل الفائدة .

$$TL = \frac{1000000}{1-0.2} = 1250000 = قيمة المبلغ الذي يجب أقتر اضه$$

في هذه الحالة فإن المنشأة ستدفع فائدة مقدماً = 1250000 × 0.2 = 250000 ريال ويكون :

$$AR = \frac{250000}{1000000}$$
 = معدل الفائدة الفعلي

شركة تطلب قرض بقيمة 1000000 ريال الفائدة الأسمية = 15% الرصيد التعويضي المشترط من البنك = 25% من قيمة القرض

المطلوب:

حساب معدل الفائدة الفعلي في الحالات التالية:

خطوات الحل:

حساب قيمة الفائدة = 1000000 × 0.15 = 150000 ريال الرصيد التعويضي = 1000000 × 0.25 = 250000 ريال صافى المبلغ الذي تستلمه المنشأة = 1000000 – 250000 = 250000 ريال

معدل الفائدة الفعلي = % = 20 = $\frac{150000}{750000}$ = 20 % معدل الفائدة الفعلي = % (فائدة وتوضح النتيجة أن الاحتفاظ بالرصيد المعوض رفع معدل الفائدة من 15% (فائدة أسمية) إلى 20% (فائدة فعلية) .

أبرمت شركة الدوسري اتفاقا مع البنك الأهلي على أن يقوم البنك بتوفير 3 مليون ريال في شكل تسهيل ائتماني متجدد بفائدة اسمية 15% وقد اشترط البنك رسوم أرتباط 0.5% فإذا قامت الشركة بسحب مبلغ 2 مليون ريال من المبلغ فما هو معدل الفائدة الفعلي.

خطوات الحل:

1 - المبلغ الغير المسحوب = 3000000 - 2000000 = 1000000 ريال

2 - المبلغ الغير المسحوب = 0.15 × 2000000 = 300000 ريال

3 - رسوم الارتباط = 0.005 × 1000000 = 5000 ريال

4 - مجموع التكاليف على الشركة = 300000 + 5000 = 305000 ريال

معدل الفائدة الفعلى = 305000 ÷ 2000000 = 15.25%

تقوم شركة الصقر بمنح عملائها أئتماناً تجارياً بالصيغة (2\10 صافي 45) وقد تقدمت المنشأة بطلب الحصول على قرض قصير الأجل من البنك الفرنسي وقدمت الحسابات المدينة كضمان للقرض.

المطلوب:

تحديد المبلغ الذي يمكن للبنك أن يقرضه للشركة ؟ علما أن الحسابات المدينة المقدمة كانت كالتالي :

الذمم المدينة لشركة الصقر

متوسط فترة الدفع الماضية للعميل (يوم)	عمر الحساب(يوم)	قيمة الذمم المدينة	العميل
50	40	40000	Í
60	30	50000	ب
40	45	30000	٤
60	60	20000	۵
45	35	35000	_&
38	42	15000	و
55	55	10000	j

خطوات الحل:

- 1- إن البنك سيقوم في أول خطوة بإستبعاد حسابات العميلين (د، ز) نظراً لأن
 عمر هما يزيد عن 45 يوم.
- 2 الخطوة الثانية تحليل نمط الدفع للفترات الماضية من قبل العملاء ويتضح من الجدول أن التجربة مع الحسابات الخاصة بالعملاء (أ،ب) لم يكن مرضيا (أستبعاد)
 - 3 إن قيمة الذمم المدينة الممكن قبولها من طرف البنك كضمان لمنح القرض
 - = 80000 ريال مجموع الذمم الخاصة بالعملاء (ج،ه، و) (35000 + 35000 + 35000)

- 4 تحديد نسبة القرض إلى حجم الذمم المدينة التي سيستخدمها البنك في تحديد قيمة القرض على سبيل المثال (80%)
 - فإذا رأى البنك أعتماد قيمة الذمم المدينة كما هي (8000 ريال)
 قيمة القرض = 80% × قيمة الذمم المدينة المقبولة
 قيمة القرض = 8.0 × 80000 = 64000 ريال
- إذا رأى البنك تعديل قيمة الذمم المدينة بنسبة معينة (مثلا 10%) فإن قيمة الذمم المدينة المعتمدة ستكون = 80000 × 0.9 = 720000 ريال وتكون قيمة القرض = 80% × 720000 = 720000

تقوم شركة بإصدار أوراق تجارية للحصول على أحتياجاتها التمويلية قصيرة الأجل وقد توفرت المعلومات التالية:

- قيمة الأوراق التجارية المصدرة 10 مليون ريال
 - فترة الأستحقاق 9 أشهر.

الفائدة السنوية المخصومة = 12%

- تدفع المنشأة 100000 ريال مصاريف لمؤسسات الوساطة المالية .

المطلوب:

تحديد معدل الفائدة الفعلي:

خطوات الحل:

ريال 900000 = $\frac{270}{360}$ × (0.12 × 10000000 = فيمة الفائدة

✓ معدل الفائدة الفعلي (AR) يحسب بالصيغة التالية :

$$AR = -\frac{I}{(V-E-I)} \times \left(\frac{1}{\frac{270}{360}}\right) : \frac{1}{270}$$

$$\frac{900000}{(900000-10000-1000000)}$$
 × $\frac{1}{\frac{270}{360}}$ = 13.3% = معدل الفائدة الفعلي

قامت منشأة الدوسري بإصدار أوراق تجارية :

- قيمة أسميه مقدارها 1000000 ريال
 - فترة أستحقاق 90 يوماً
- تباع بقيمة مخصومة قدرها 970000 ريال بنهاية فترة التسعين يوماً

خطوات الحل:

- تحديد قيمة الفائدة : المشتري لهذه الأوراق التجارية يحصل على 1000000ريال بمعنى 1000000 - 30000 ريال

$$\frac{30000}{970000}$$
 × $\frac{1}{\frac{90}{360}}$ = 12.4 % = معدل الفائدة الفعلي

يرغب احد المستثمرين الاستثمار في أسهم إحدى الشركات وقد تبين أن العائد المتوقع = 10%

القيمة الاسمية لسهم شركة البراق = 12 ريال

وتوزع الشركة أرباحا بنسبة 15%

المطلوب: ما القيمة التي يكون المستثمر مستعداً لدفها مقابل سهم الشرك؟

$$p_0 = \frac{P \times \%D}{R}$$
 بتطبیق المعادلة

$$p_0 = \frac{12 \times 0.15}{0.1} = 18$$

مثال عن حقوق شراء:

تحتاج الشركة العربية إلى تمويل قدره 2 مليون ريال وقد قررت إصدار أسهم عادية جديدة من أجل الحصول على هذا المبلغ على أن تعطي الأولوية للمساهمين القدامى في شراء الإصدارات الجديدة، وقد تبين الآتي:

- ◄ سعر بيع الأسهم الجديدة 160 ريال للسهم
 - ◄ القيمة السوقية للسهم 200 ريال للسهم
- ◄ عدد الأسهم العادية المصدرة 100000 سهم
- ◄ قيمة المنشأة سترتفع بنفس قيمة المبلغ الذي تم الحصول عليه من الإصدارات الجديدة.

المطلوب:

- 1- ما عدد الأسهم التي يجب إصدارها للحصول على التمويل المطلوب؟
- 2- ما عدد الحقوق التي يجب أن يمتلكها المساهم القديم حتى يتمكن من شراء سبهم جديد بالسعر المنخفض؟
- 3- ما تأثير الإصدارات الجديدة على قيمة المنشأة (قيمة السهم بعد الإصدار)؟
 - 4- ما قيمة الحق الذي يسمح للمساهم بشراء سهم جديد؟

خطوات الحل:

المطلوب الأول: عدد الأسهم التي يجب إصدارها يحس بالمعادلة التالية:

$$NI = \frac{C}{P_0}$$

NI عدد الأسهم التي يجب إصدارها

c الاحتياجات المالية للشركة

PO= سعر السهم للمساهمين القدامي

$$NI = \frac{C}{P_0} = \frac{2000000}{160} = 12500$$

المطلوب الثاني: عدد الحقوق التي يجب أن يتملكها المساهمين القدامي

$$Q = \frac{N}{NI} = \frac{100000}{12500} = 8$$

ويعني ذلك أن المساهمين القدامى لهم الحق في الحصول على سهم جديد مقابل كل 8 أسهم يمتلكها حاليا بالإضافة إلى سعر السهم وهو 160 ريال أي أن: سعر السهم بالنسبة للمساهم = 160 ريال + 8 حقوق

المطلوب الثالث:

قيمة المنشأة قبل الإصدار = 100000 سهم × 200 ريال= 20000000 ريال القيمة السوقية للمنشأة بعد الاصدارات الجديدة= 12500 سهم × 160 ريال= 2000000 ريال

إجمالي القيمة السوقية الجديدة = 20000000 + 2000000 ريال

عدد الأسهم المصدرة = 112500 + 100000 سهم

 $\frac{22000000}{112500}$ =195.56 لقيمة السوقية للسهم

أي أن القيمة السوقية للسهم انخفضت من 200 ريال على 195.56 ريال

المطلوب الرابع: قيمة الحق

ويحسب بإحدى الصيغتين:

$$PQ = \frac{P_1 - P_0}{Q - 1}$$
 الصيغة الثانية

$$PQ = \frac{P_2 - P_0}{Q}$$
 الصيغة الأولى عيث:

PO= قيمة الحق

السهم بعد الإصدارات الجديدة المعر السهم قبل الإصدارات الجديدة عدد الحقوق اللازمة لشراء السهم

$$PQ = \frac{P_2 - P_0}{Q} = \frac{195.56 - 160}{8} = 4.44$$

$$PQ = \frac{P_1 - P_0}{Q - 1} = \frac{200 - 160}{8 - 1} = 4.44$$
 :قيمة الحق بتطبيق الصيغة الثانية

إذا قامت منشأة بإصدار أسهم بقيمة اسمية ١٠٠ ريال للسهم عن طريق بنك الاستثمار الذي يتقاضى ١٠٠% من قيمة السهم مقابل إدارة الاصدار وتسويق السهم.

صافي المبلغ الذي تستلمه الشركة مقابل كل سهم= (١٠٠ - ١٠) = ٩٠ ريالاً

إذا كان مالك السهم (المشتري) يتوقع عائداً ١٠% على السهم، على الشركة تحقيق عائد قدره = ١٠٠ ÷ ١٠ + ١٠%

ملاحظة: إذا كانت الشركة تحقق:

- > عائداً = تكلفة رأس المال = يتوقع أن تبقى القيمة السوقية للسهم ثابتة.
 - ◄ عائداً > تكلفة رأس المال = يتوقع أن ترتفع القيمة السوقية للسهم.
 - > عائداً < تكلفة رأس المال = يتوقع أن تنخفض القيمة السوقية للسهم.

- > قامت شركة المدينة بإصدار سندات بقيمة ١٠٠٠ ريال.
 - 🗢 معدل الفائدة الاسمى ١٠%.
 - ◄ فترة الاستحقاق ١٠ سنوات.
 - تكاليف الاصدار ۱۰۰ ريال.
 - نسبة الضريبة عل الأرباح ٤٠%

المطلوب: حساب تكلفة الدين

الحل:

- ✓ صافى المبلغ الذي تحصل عليه الشركة = (١٠٠٠ ١٠٠١) = ٩٠٠ ريال
- الفوائد السنوية التي تدفها الشركة = $100 \times 100 = 100$ ريال لمدة (n).
 - ✓ بنهاية السنة العاشرة ستدفع الشركة القيمة الاسمية للسندات.

بتطبيق المعادلة السابقة لحساب قيمة (r)

$$P_0 = \frac{100}{(1+r)^1} + \frac{100}{(1+r)^2} + \dots + \frac{100}{(1+r)^{10}} + \frac{1000}{(1+r)^{10}}$$

يمكن الحصول على قيمة (r) عن طريقة التجربة والخطأ باستخدام الجداول المالية بنفس الكيفية التي يتم بها حساب معدل العائد الداخلي عند تقييم المقترحات الاستثمارية في موضوع الموازنة الرأسمالية.

حيث:

قيمة (r) المطلوبة بعد الضريبة = (r) قبل الضريبة × (1-T)

T= نسبة الضريبة

بعد تطبيق التجرية والخطأ نجد.

%7.8 =(1-0.4) 11.8 =r

بمعنى أن الشركة يجب أن تحقق معدل 7.8% على الأموال المستثمرة لتحقق معدل عاند للملاك = 11.8%

قامت شركة المدينة بإصدار سندات بقيمة ١٠٠٠ ريال.

معدل الفائدة الاسمى ٨%.

فترة الاستحقاق ۱۰ سنوات.

🔪 نسبة الضريبة عل الأرباح ٤٠%

المطلوب: حساب تكلفة الدين في الحالات التالية:

١- السند يباع بقيمته الاسمية

٧- السند بياع بخصم ٥%

٣- السند يباع بعلاوة مقدارها ٦%.

٤- بيع السند بقيمته الاسمية مع وجوب دفع تكلفة إصدار ٢% من قيمة السند

الحل:

١- في حالة بيع السند بقيمته الاسمية فإن:

معدل الفائدة الفعلى بعد الضريبة = معدل الفائدة الاسمى قبل الضريبة

 $%$^{,,} = (., -1) \times \Lambda = 1$ بعد الضريبة = $(., -1) \times K$ بعد الضريبة

١- في حالة بيع السند بأقل من قيمته الاسمية فإن:

٨٠ المعطيات نجد أن:

ا= قيمة الفائدة = ٨٠

D= قيمة الخصم = ٥٠

n = عدد سنوات الاستحقاق = ۱۰

القيمة الاسمية للسندات = ١٠٠٠

P0= القيمة السوقية للسندات = ٩٥٠

 $80 + \frac{50}{10}$ بتطبيق المعادلة لحساب تكلفة السنح بقيمة خصم: $K_i = \frac{1000 + 950}{2} = 8.72\%$

Ki بعد الضريبة = ۸,۷۲ × (۱- ۱۰٫٤) = ۲۳,۰%

١- في حالة بيع السند بأكبر من قيمته الاسمية فإن:

من المعطيات نجد أن:

ا= قيمة الفائدة = ٠٠

A= قيمة العلاوة = ٦٠

n= عدد سنوات الاستحقاق = ١٠

P= القيمة الاسمية للسندات = ١٠٠٠

P0= القيمة السوقية للسندات = ١٠٦٠

$$K_i = \frac{\frac{80 - \frac{60}{10}}{1000 + 1060}}{2} = 7.18\%$$

بتطبيق المعادلة لحساب تكلفة السنح بقيمة خصم:

Ki بعد الضريبة = ۲٫۱ × (۱- ۰۰،۴) = ۴٬۲۱ %

١- في حالة بيع السند بقيمته الاسمية مع دفع تكلفة إصدار:

في هذه الحالة فإن القيمة السوقية للسند ستكون ١٠٠٠ - ٢٠ = ٩٨٠ ريال

 $\frac{80}{980} = 8.16\%$ = 8.16% قبل الضريبة

تكلفة السند بعد الضريبة = ١٠,١٦ (١-٤,٠) = ٤,٩%

- ◄ قامت شركة مكة باقتراض مبلغ ١٠٠٠٠٠ ريال
 - ➤ الفائدة السنوية ٨%
 - طریقة السداد = دفعات شهریة لمدة ٥ سئوات
 - نسبة الضريبة = ٠٤%

المطلوب: حساب التكلفة الفعلية للدين بعد الضريبة

الحل:

F= إجمالي الفائدة المستحقة على القرض ٨٠٠٠ ريال

t= عدد الأقساط في السنة = ١٢

P0 قيمة القرض الأصلية = ١٠٠٠٠٠ ريال

n= إجمالي عدد دفعات القرض (٥× ١٢)= ٦٠ دفعة

$$K_i = \frac{2 \times T \times F}{P_0(n+1)} = \frac{2 \times 1.2 \times 40000}{100000(60+1)} = 15.74\%$$
 : بتطبیق المعادلة السابقة:

ملاحظة: يلاحظ أن التكلفة الفعلية ضعف التكلفة الاسمية تقريبا لأن الشركة لم تستفد من الميلغ المقترض (١٠٠٠٠) طوال الخمسة سنوات

> قامت شركة بإصدار أسهم ممتازة بقيمة اسمية ١٠٠٠ ريال

> يباع السهم في السوق بقيمته الاسمية

الأرباح الثابتة للسهم = ١٢%

المطلوب: حساب تكلفة التمويل

الحل:

في حالة بيع السهم بقيمة = القيمة الاسمية

$$K_p = \frac{D}{p_0} = \frac{120}{1000} = 12\%$$

في حالة بيع السهم بقيمة (٩٠٠ ريال) < القيمة الاسمية (١٠٠٠)

$$K_p = \frac{D}{p_0} = \frac{120}{900} = 13.3\%$$

في حالة بيع السهم بقيمة (١٠٠٠ ريال) > القيمة الاسمية (١٠٠٠) في حالة بيع السهم بقيمة $K_p = \frac{D}{p_0} = \frac{120}{1100} = 10.91\%$

حساب تكلفة الأسهم الممتازة في حالة وجود تكلفة إصدار:

في المثال السابق باعتبار وجود تكلفة إصدار Z = 0% من القيمة الاسمية للسهم الممتاز: بتطبيق المعادلة:

$$K_p = \frac{120}{1000(1-0.05)} = 12.63\%$$
 : السهم بقيمته الاسمية : - بيغ السهم بقيمته الاسمية

$$K_p = \frac{120}{900(1-0.05)} = 14\%$$
 : السهم < من قيمته الاسمية : -۲

$$K_p = \frac{120}{1100(1-0.05)} = 11.48\%$$
 : السمية > من قيمته الاسمية - ۳

تريد شركة حساب تكلفة الأسهم العادية لديها حيث:

$$K_e = \frac{D}{P_0(1-z)} + g = \frac{8}{100(1-0.05)} + 0.08 = 16.42\%$$

مثال:

المطلوب: حساب تكلفة التمويل باستخدام الأرباح المحتجزة.

بتطبيق المعادلة:

$$K_{re} = K_e(1-T)(1-z) = 0.16(1-0.4)(1-0.05) = 9.12\%$$

مثال:

يتكون هيكل رأس مال إحدى الشركات من العناصر التالية:

$$K_0 = \sum_{s}^{n} W_s k_s = (0.3 \times 0.05) + (0.1 \times 0.08) + (0.6 \times 0.12) = 9.5\%$$

حمعدل الفائدة الفائدة السوقي على السندات المشابهة = ١٠%

$$PVB = \frac{100}{(1+0.1)^1} + \frac{100}{(1+0.1)^2} + \dots + \frac{100}{(1+0.1)^{10}} + \frac{1000}{(1+0.1)^{10}}$$
 ; يتطبيق المعادلة السابقة:

ملاحظة:

- ♦ التدفقات النقدية (الفوائد) من السنة ١ إلى السنة ١٠ = منتظمة (١٠٠ ريال)
 ويستخدم لها الجدول المالي (رقم ٤)
 - ♦ التدفق النقدي (قيمة السند في نهاية الفترة) عند السنة العاشرة يستخدم له الجدول المالي (رقم٣)

 $PVB = (100 \times 6.144) + (1000 \times 0.3855) = 614.46 + 385.5 = 1000$ قيمة السند

مثال: إذا كانت:

◄ الأرباح الموزعة للأسهم الممتازة ٨ ريال للسهم.

بتطبيق المعادلة السابقة فإن قيمة الأسهم الممتازة =

$$PVP = \frac{D}{R} = \frac{8}{0.10} = 80$$

مثال:

حإذا كان السعر الحالي للسهم الممتاز = ١٢٠ ريال.

الأرباح الموزعة = ١٠ ربال للسهم.

◄ المطلوب: ما هو معدل العائد المطلوب على السهم:

يحسب معدل العائد المطلوب م المعادلة السابقة كالتالي:

$$R = \frac{D}{PVP} = \frac{10}{120} = 8.33\%$$