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PREFACE

The study of real analysis is indispensable for a prospective graduate student of pure or

applied mathematics. It also has great value for any student who wishes to go beyond the

routine manipulations of formulas because it develops the ability to think deductively,

analyze mathematical situations and extend ideas to new contexts. Mathematics has

become valuable in many areas, including economics and management science as well

as the physical sciences, engineering, and computer science. This book was written to

provide an accessible, reasonably paced treatment of the basic concepts and techniques of

real analysis for students in these areas. While students will find this book challenging,

experience has demonstrated that serious students are fully capable of mastering the

material.

The first three editions were very well received and this edition maintains the same

spirit and user-friendly approach as earlier editions. Every section has been examined.

Some sections have been revised, new examples and exercises have been added, and a new

section on the Darboux approach to the integral has been added to Chapter 7. There is more

material than can be covered in a semester and instructors will need to make selections and

perhaps use certain topics as honors or extra credit projects.

To provide some help for students in analyzing proofs of theorems, there is an

appendix on ‘‘Logic and Proofs’’ that discusses topics such as implications, negations,

contrapositives, and different types of proofs. However, it is a more useful experience to

learn how to construct proofs by first watching and then doing than by reading about

techniques of proof.

Results and proofs are given at a medium level of generality. For instance, continuous

functions on closed, bounded intervals are studied in detail, but the proofs can be readily

adapted to a more general situation. This approach is used to advantage in Chapter 11

where topological concepts are discussed. There are a large number of examples to

illustrate the concepts, and extensive lists of exercises to challenge students and to aid them

in understanding the significance of the theorems.

Chapter 1 has a brief summary of the notions and notations for sets and functions that

will be used. A discussion of Mathematical Induction is given, since inductive proofs arise

frequently. There is also a section on finite, countable and infinite sets. This chapter can

used to provide some practice in proofs, or covered quickly, or used as background material

and returning later as necessary.

Chapter 2 presents the properties of the real number system. The first two sections deal

with Algebraic and Order properties, and the crucial Completeness Property is given in

Section 2.3 as the Supremum Property. Its ramifications are discussed throughout the

remainder of the chapter.

In Chapter 3, a thorough treatment of sequences is given, along with the associated

limit concepts. The material is of the greatest importance. Students find it rather natural

though it takes time for them to become accustomed to the use of epsilon. A brief

introduction to Infinite Series is given in Section 3.7, with more advanced material

presented in Chapter 9.

vii
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Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute the

heart of the book. The discussion of limits and continuity relies heavily on the use of

sequences, and the closely parallel approach of these chapters reinforces the understanding

of these essential topics. The fundamental properties of continuous functions on intervals

are discussed in Sections 5.3 and 5.4. The notion of a gauge is introduced in Section 5.5 and

used to give alternate proofs of these theorems. Monotone functions are discussed in

Section 5.6.

The basic theory of the derivative is given in the first part of Chapter 6. This material is

standard, except a result of Carath�eodory is used to give simpler proofs of the Chain Rule

and the Inversion Theorem. The remainder of the chapter consists of applications of the

Mean Value Theorem and may be explored as time permits.

In Chapter 7, the Riemann integral is defined in Section 7.1 as a limit of Riemann

sums. This has the advantage that it is consistent with the students’ first exposure to the

integral in calculus, and since it is not dependent on order properties, it permits immediate

generalization to complex- and vector-values functions that students may encounter in later

courses. It is also consistent with the generalized Riemann integral that is discussed in

Chapter 10. Sections 7.2 and 7.3 develop properties of the integral and establish the

Fundamental Theorem of Calculus. The new Section 7.4, added in response to requests

from a number of instructors, develops the Darboux approach to the integral in terms of

upper and lower integrals, and the connection between the two definitions of the integral is

established. Section 7.5 gives a brief discussion of numerical methods of calculating the

integral of continuous functions.

Sequences of functions and uniform convergence are discussed in the first two sections

of Chapter 8, and the basic transcendental functions are put on a firm foundation in

Sections 8.3 and 8.4. Chapter 9 completes the discussion of infinite series that was begun

in Section 3.7. Chapters 8 and 9 are intrinsically important, and they also show how the

material in the earlier chapters can be applied.

Chapter 10 is a presentation of the generalized Riemann integral (sometimes called the

‘‘Henstock-Kurzweil’’ or the ‘‘gauge’’ integral). It will be new to many readers and they

will be amazed that such an apparently minor modification of the definition of the Riemann

integral can lead to an integral that is more general than the Lebesgue integral. This

relatively new approach to integration theory is both accessible and exciting to anyonewho

has studied the basic Riemann integral.

Chapter 11 deals with topological concepts. Earlier theorems and proofs are extended

to a more abstract setting. For example, the concept of compactness is given proper

emphasis and metric spaces are introduced. This chapter will be useful to students

continuing on to graduate courses in mathematics.

There are lengthy lists of exercises, some easy and some challenging, and ‘‘hints’’ to

many of them are provided to help students get started or to check their answers. More

complete solutions of almost every exercise are given in a separate Instructor’s Manual,

which is available to teachers upon request to the publisher.

It is a satisfying experience to see how the mathematical maturity of the students

increases as they gradually learn to work comfortably with concepts that initially seemed

somysterious. But there is no doubt that a lot of hard work is required on the part of both the

students and the teachers.

Brief biographical sketches of some famous mathematicians are included to enrich the

historical perspective of the book. Thanks go to Dr. Patrick Muldowney for his photograph

of Professors Henstock and Kurzweil, and to John Wiley & Sons for obtaining portraits of

the other mathematicians.

viii PREFACE
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Many helpful comments have been received from colleagues who have taught from

earlier editions of this book and their remarks and suggestions have been appreciated. I

wish to thank them and express the hope that they find this new edition even more helpful

than the earlier ones.

November 20, 2010

Urbana, Illinois Donald R. Sherbert
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L l Lambda C c Psi

M m Mu V v Omega
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CHAPTER 1

PRELIMINARIES

In this initial chapter we will present the background needed for the study of real

analysis. Section 1.1 consists of a brief survey of set operations and functions, two vital

tools for all of mathematics. In it we establish the notation and state the basic

definitions and properties that will be used throughout the book. We will regard the

word ‘‘set’’ as synonymous with the words ‘‘class,’’ ‘‘collection,’’ and ‘‘family,’’ and

we will not define these terms or give a list of axioms for set theory. This approach,

often referred to as ‘‘naive’’ set theory, is quite adequate for working with sets in the

context of real analysis.

Section 1.2 is concerned with a special method of proof called Mathematical

Induction. It is related to the fundamental properties of the natural number system and,

though it is restricted to proving particular types of statements, it is important and used

frequently. An informal discussion of the different types of proofs that are used in

mathematics, such as contrapositives and proofs by contradiction, can be found in

Appendix A.

In Section 1.3 we apply some of the tools presented in the first two sections of this

chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions

are given and some basic consequences of these definitions are derived. The important

result that the set of rational numbers is countably infinite is established.

In addition to introducing basic concepts and establishing terminology and notation,

this chapter also provides the reader with some initial experience in working with precise

definitions and writing proofs. The careful study of real analysis unavoidably entails the

reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is a

starting point.

Section 1.1 Sets and Functions

To the reader: In this section we give a brief review of the terminology and notation that

will be used in this text. We suggest that you look through it quickly and come back later

when you need to recall the meaning of a term or a symbol.

If an element x is in a set A, we write

x 2 A

and say that x is a member of A, or that x belongs to A. If x is not in A, we write

x =2 A:

If every element of a set A also belongs to a set B, we say that A is a subset of B and write

A � B or B � A:

1
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We say that a set A is a proper subset of a set B if A � B, but there is at least one element of

B that is not in A. In this case we sometimes write

A � B:

1.1.1 Definition Two sets A and B are said to be equal, and we write A ¼ B, if they

contain the same elements.

Thus, to prove that the sets A and B are equal, we must show that

A � B and B � A:

A set is normally defined by either listing its elements explicitly, or by specifying a

property that determines the elements of the set. If P denotes a property that is meaningful

and unambiguous for elements of a set S, then we write

x 2 S : P xð Þf g
for the set of all elements x in S for which the property P is true. If the set S is understood

from the context, then it is often omitted in this notation.

Several special sets are used throughout this book, and they are denoted by standard

symbols. (We will use the symbol :¼ to mean that the symbol on the left is being defined

by the symbol on the right.)

� The set of natural numbers N :¼ 1; 2; 3; . . .f g,
� The set of integers Z :¼ 0; 1; � 1; 2; � 2; . . .f g,
� The set of rational numbers Q :¼ m=n : m; n 2 Z and n 6¼ 0f g,
� The set of real numbers R .

The set R of real numbers is of fundamental importance and will be discussed at length

in Chapter 2.

1.1.2 Examples (a) The set

x 2 N : x2 � 3xþ 2 ¼ 0
� �

consists of those natural numbers satisfying the stated equation. Since the only solutions of

this quadratic equation are x ¼ 1 and x ¼ 2, we can denote this set more simply by {1, 2}.

(b) A natural number n is even if it has the form n ¼ 2k for some k 2 N . The set of even

natural numbers can be written

2k : k 2 Nf g;
which is less cumbersome than n 2 N : n ¼ 2k; k 2 Nf g. Similarly, the set of odd natural

numbers can be written

2k � 1 : k 2 Nf g: &

Set Operations

We now define the methods of obtaining new sets from given ones. Note that these set

operations are based on the meaning of the words ‘‘or,’’ ‘‘and,’’ and ‘‘not.’’ For the union, it

is important to be aware of the fact that the word ‘‘or’’ is used in the inclusive sense,

allowing the possibility that x may belong to both sets. In legal terminology, this inclusive

sense is sometimes indicated by ‘‘and/or.’’

2 CHAPTER 1 PRELIMINARIES
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1.1.3 Definition (a) The union of sets A and B is the set

A [ B :¼ x : x 2 A or x 2 Bf g:
(b) The intersection of the sets A and B is the set

A \ B :¼ x : x 2 A and x 2 Bf g:
(c) The complement of B relative to A is the set

AnB :¼ x : x 2 A and x =2 Bf g:

The set that has no elements is called the empty set and is denoted by the symbol ;.
Two sets A and B are said to be disjoint if they have no elements in common; this can be

expressed by writing A \ B ¼ ;.
To illustrate the method of proving set equalities, we will next establish one of the

De Morgan laws for three sets. The proof of the other one is left as an exercise.

1.1.4 Theorem If A, B, C are sets, then

(a) An B [ Cð Þ ¼ AnBð Þ \ AnCð Þ,
(b) An B \ Cð Þ ¼ AnBð Þ [ AnCð Þ.

Proof. To prove (a), we will show that every element in An B [ Cð Þ is contained in both

(AnB) and (AnC), and conversely.

If x is in An B [ Cð Þ, then x is in A, but x is not in B [ C. Hence x is in A, but x is neither

in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus, x 2 AnB and

x 2 AnC, which shows that x 2 AnBð Þ \ AnCð Þ.
Conversely, if x 2 AnBð Þ \ AnCð Þ, then x 2 AnBð Þ and x 2 AnCð Þ. Hence x 2 A and

both x =2 B and x =2 C. Therefore, x 2 A and x =2 B [ Cð Þ, so that x 2 An B [ Cð Þ.
Since the sets AnBð Þ \ AnCð Þ and An B [ Cð Þ contain the same elements, they are

equal by Definition 1.1.1. Q.E.D.

There are times when it is desirable to form unions and intersections of more than two

sets. For a finite collection of sets {A1, A2, . . . , An}, their union is the set A consisting of

all elements that belong to at least one of the sets Ak, and their intersection consists of all

elements that belong to all of the sets Ak.

This is extended to an infinite collection of sets {A1, A2, . . . , An, . . . } as follows.

Their union is the set of elements that belong to at least one of the sets An. In this case we

write

[1
n¼1

An :¼ x : x 2 An for some n 2 Nf g:

Figure 1.1.1 (a) A [ B (b) A \ B (c) AnB

1.1 SETS AND FUNCTIONS 3
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Similarly, their intersection is the set of elements that belong to all of these sets An. In this

case we write

\1
n¼1

An :¼ x : x 2 An for all n 2 Nf g:

Functions

In order to discuss functions, we define the Cartesian product of two sets.

1.1.5 Definition If A and B are nonempty sets, then the Cartesian product A � B of A

and B is the set of all ordered pairs (a, b) with a 2 A and b 2 B. That is,

A� B :¼ a; bð Þ : a 2 A; b 2 Bf g:
Thus if A ¼ {1, 2, 3} and B ¼ {1, 5}, then the set A � B is the set whose elements are

the ordered pairs

1; 1ð Þ; 1; 5ð Þ; 2; 1ð Þ; 2; 5ð Þ; 3; 1ð Þ; 3; 5ð Þ:
Wemay visualize the set A� B as the set of six points in the plane with the coordinates that

we have just listed.

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of

two sets A and B. However, it should be realized that this diagram may be a simplification.

For example, if A :¼ x 2 R : 1 � x � 2f g and B :¼ y 2 R : 0 � y � 1 or 2 � y � 3f g,
then instead of a rectangle, we should have a drawing such as Figure 1.1.3.

We will now discuss the fundamental notion of a function or a mapping.

To the mathematician of the early nineteenth century, the word ‘‘function’’ meant a

definite formula, such as f xð Þ :¼ x2 þ 3x� 5, which associates to each real number x

another number f (x). (Here, f (0) ¼ �5, f (1) ¼ �1, f (5) ¼ 35.) This understanding

excluded the case of different formulas on different intervals, so that functions could not be

defined ‘‘in pieces.’’

As mathematics developed, it became clear that a more general definition of

‘‘function’’ would be useful. It also became evident that it is important to make a clear

distinction between the function itself and the values of the function. A revised definition

might be:

Figure 1.1.2 Figure 1.1.3

4 CHAPTER 1 PRELIMINARIES
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A function f from a set A into a set B is a rule of correspondence that assigns to

each element x in A a uniquely determined element f (x) in B.

But however suggestive this revised definition might be, there is the difficulty of

interpreting the phrase ‘‘rule of correspondence.’’ In order to clarify this, we will express

the definition entirely in terms of sets; in effect, we will define a function to be its graph.

While this has the disadvantage of being somewhat artificial, it has the advantage of being

unambiguous and clearer.

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered

pairs in A� B such that for each a 2 A there exists a unique b 2 Bwith (a, b) 2 f. (In other

words, if (a, b) 2 f and (a, b0) 2 f, then b ¼ b0.)

The set A of first elements of a function f is called the domain of f and is often denoted

by D( f ). The set of all second elements in f is called the range of f and is often denoted by

R( f ). Note that, although D( f ) ¼ A, we only have Rðf Þ � B. (See Figure 1.1.4.)

The essential condition that:

a; bð Þ 2 f and ða; b0Þ 2 f implies that b ¼ b0

is sometimes called the vertical line test. In geometrical terms it says every vertical line

x ¼ a with a 2 A intersects the graph of f exactly once.

The notation

f : A ! B

is often used to indicate that f is a function from A into B. We will also say that f is a

mapping of A into B, or that fmaps A into B. If (a, b) is an element in f, it is customary to

write

b ¼ f að Þ or sometimes a 7! b:

If b ¼ f (a), we often refer to b as the value of f at a, or as the image of a under f.

Transformations and Machines

Aside from using graphs, we can visualize a function as a transformation of the setD( f )¼
A into the set Rðf Þ � B. In this phraseology, when (a, b) 2 f, we think of f as taking the

Figure 1.1.4 A function as a graph

1.1 SETS AND FUNCTIONS 5
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element a from A and ‘‘transforming’’ or ‘‘mapping’’ it into an element b ¼ f (a) in

Rðf Þ � B. We often draw a diagram, such as Figure 1.1.5, even when the sets A and B are

not subsets of the plane.

There is another way of visualizing a function: namely, as a machine that accepts

elements ofD( f )¼A as inputs andproduces corresponding elements ofRðf Þ � B asoutputs.

If we take an element x2D( f ) and put it into f, then out comes the corresponding value f (x).

If we put a different element y2D( f ) into f, then out comes f (y), whichmay ormay not differ

from f (x). Ifwe try to insert something that does not belong toD( f ) into f, we find that it is not

accepted, for f can operate only on elements from D( f ). (See Figure 1.1.6.)

This last visualization makes clear the distinction between f and f (x): the first is the

machine itself, and the second is the output of the machine f when x is the input. Whereas

no one is likely to confuse a meat grinder with ground meat, enough people have confused

functions with their values that it is worth distinguishing between them notationally.

Direct and Inverse Images

Let f : A ! B be a function with domain D( f ) ¼ A and range Rðf Þ � B.

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset f (E)

of B given by

f ðEÞ :¼ f ðxÞ : x 2 Ef g:

Figure 1.1.5 A function as a transformation

Figure 1.1.6 A function as a machine

6 CHAPTER 1 PRELIMINARIES
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IfH is a subset of B, then the inverse image ofH under f is the subset f�1(H) of A given by

f �1ðHÞ :¼ x 2 A : f ðxÞ 2 Hf g:

Remark The notation f�1(H) used in this connection has its disadvantages. However, we

will use it since it is the standard notation.

Thus, if we are given a set E � A, then a point y1 2 B is in the direct image f (E) if and

only if there exists at least one point x1 2 E such that y1 ¼ f (x1). Similarly, given a set

H � B, then a point x2 is in the inverse image f�1(H) if and only if y2 :¼ f (x2) belongs toH.

(See Figure 1.1.7.)

1.1.8 Examples (a) Let f : R ! R be defined by f (x) :¼ x2. Then the direct image of

the set E :¼ x : 0 � x � 2f g is the set f Eð Þ ¼ y : 0 � y � 4f g.
If G :¼ y : 0 � y � 4f g, then the inverse image of G is the set f �1ðGÞ ¼ x : �2 �f

x � 2g. Thus, in this case, we see that f �1 f Eð Þð Þ 6¼ E.

On the other hand, we have f f �1 Gð Þ� � ¼ G. But if H :¼ y : �1 � y � 1f g, then we
have f f �1 Hð Þ� � ¼ y : 0 � y � 1f g 6¼ H.

A sketch of the graph of f may help to visualize these sets.

(b) Let f : A ! B, and let G, H be subsets of B. We will show that

f �1 G \ Hð Þ � f �1 Gð Þ \ f �1 Hð Þ:
For, if x 2 f �1 G \ Hð Þ, then f xð Þ 2 G \ H, so that f (x) 2G and f (x) 2H. But this implies

that x 2 f �1 Gð Þ and x 2 f �1 Hð Þ, whence x 2 f �1 Gð Þ \ f �1 Hð Þ. Thus the stated impli-

cation is proved. [The opposite inclusion is also true, so that we actually have set equality

between these sets; see Exercise 15.] &

Further facts about direct and inverse images are given in the exercises.

Special Types of Functions

The following definitions identify some very important types of functions.

1.1.9 Definition Let f : A ! B be a function from A to B.

(a) The function f is said to be injective (or to be one-one) if whenever x1 6¼ x2, then

f x1ð Þ 6¼ f x2ð Þ. If f is an injective function, we also say that f is an injection.

(b) The function f is said to be surjective (or to map A onto B) if f (A) ¼ B; that is, if the

range R( f ) ¼ B. If f is a surjective function, we also say that f is a surjection.

Figure 1.1.7 Direct and inverse images

1.1 SETS AND FUNCTIONS 7
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(c) If f is both injective and surjective, then f is said to be bijective. If f is bijective, we

also say that f is a bijection.

� In order to prove that a function f is injective, we must establish that:

for all x1; x2 in A; if f x1ð Þ ¼ f x2ð Þ; then x1 ¼ x2:

To do this we assume that f (x1) ¼ f (x2) and show that x1 ¼ x2.

[In other words, the graph of f satisfies the first horizontal line test: Every horizontal line

y ¼ b with b 2 B intersects the graph f in at most one point.]

� To prove that a function f is surjective, we must show that for any b 2 B there exists at

least one x 2 A such that f (x) ¼ b.

[In other words, the graph of f satisfies the second horizontal line test: Every horizontal

line y ¼ b with b 2 B intersects the graph f in at least one point.]

1.1.10 Example Let A :¼ x 2 R : x 6¼ 1f g and define f xð Þ :¼ 2x= x� 1ð Þ for all x 2 A.

To show that f is injective, we take x1 and x2 in A and assume that f (x1) ¼ f (x2). Thus we

have

2x1

x1 � 1
¼ 2x2

x2 � 1
;

which implies that x1 x2 � 1ð Þ ¼ x2 x1 � 1ð Þ, and hence x1 ¼ x2. Therefore f is injective.

To determine the range of f, we solve the equation y ¼ 2x= x� 1ð Þ for x in terms of y.

We obtain x ¼ y=ðy� 2Þ, which is meaningful for y 6¼ 2. Thus the range of f is the set

B :¼ y 2 R : y 6¼ 2f g. Thus, f is a bijection of A onto B. &

Inverse Functions

If f is a function from A into B, then f is a special subset of A � B (namely, one passing the

vertical line test.) The set of ordered pairs in B� A obtained by interchanging the members

of ordered pairs in f is not generally a function. (That is, the set f may not pass both of the

horizontal line tests.) However, if f is a bijection, then this interchange does lead to a

function, called the ‘‘inverse function’’ of f.

1.1.11 Definition If f : A ! B is a bijection of A onto B, then

g :¼ b; að Þ 2 B� A : a; bð Þ 2 ff g
is a function on B into A. This function is called the inverse function of f, and is denoted

by f�1. The function f�1 is also called the inverse of f.

We can also express the connection between f and its inverse f�1 by noting that

D( f ) ¼ R( f�1) and R( f ) ¼ D( f�1) and that

b ¼ f ðaÞ if and only if a ¼ f �1ðbÞ :
For example, we saw in Example 1.1.10 that the function

f ðxÞ :¼ 2x

x� 1

is a bijection of A :¼ x 2 R : x 6¼ 1f g onto the set B :¼ y 2 R : y 6¼ 2f g. Solving y¼ f(x)

for x in terms of y, we find the function inverse to f is given by

f �1ðyÞ :¼ y
y�2

for y 2 B:

8 CHAPTER 1 PRELIMINARIES
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Remark We introduced the notation f�1(H) in Definition 1.1.7. It makes sense even if f

does not have an inverse function. However, if the inverse function f�1 does exist, then

f�1(H) is the direct image of the set H � B under f�1.

Composition of Functions

It often happens that we want to ‘‘compose’’ two functions f, g by first finding f (x) and then

applying g to get g ( f (x)); however, this is possible only when f(x) belongs to the domain of

g. In order to be able to do this for all f (x), we must assume that the range of f is contained

in the domain of g. (See Figure 1.1.8.)

1.1.12 Definition If f : A ! B and g : B ! C, and if Rðf Þ � DðgÞ ¼ B, then the

composite function g 	 f (note the order!) is the function from A into C defined by

g 	 fð Þ xð Þ :¼ g f xð Þð Þ for all x 2 A:

1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f

and g be the functions whose values at x 2 R are given by

f ðxÞ :¼ 2x and gðxÞ :¼ 3x2 � 1:

SinceDðgÞ ¼ R and R fð Þ � R ¼ D gð Þ, then the domainD(g 	 f ) is also equal toR , and the
composite function g 	 f is given by

g 	 fð Þ xð Þ ¼ 3 2xð Þ2 � 1 ¼ 12x2 � 1:

On the other hand, the domain of the composite function f 	 g is also R , but

f 	 gð Þ xð Þ ¼ 2 3x2 � 1
� � ¼ 6x2 � 2:

Thus, in this case, we have g 	 f 6¼ f 	 g.

(b) In considering g 	 f, some care must be exercised to be sure that the range of f is

contained in the domain of g. For example, if

f xð Þ :¼ 1� x2 and g xð Þ :¼ ffiffiffi
x

p
;

then, since D gð Þ ¼ x : x 
 0f g, the composite function g 	 f is given by the formula

g 	 fð Þ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

only for x 2 D fð Þ that satisfy f (x) 
 0; that is, for x satisfying �1 � x � 1.

Figure 1.1.8 The composition of f and g

1.1 SETS AND FUNCTIONS 9
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We note that if we reverse the order, then the composition f 	 g is given by the formula

f 	 gð Þ xð Þ ¼ 1� x;

but only for those x in the domain D gð Þ ¼ x : x 
 0f g. &

We now give the relationship between composite functions and inverse images. The

proof is left as an instructive exercise.

1.1.14 Theorem Let f :A ! B and g :B ! C be functions and let H be a subset of C.

Then we have

g 	 fð Þ�1
Hð Þ ¼ f �1 g�1 Hð Þ� �

:

Note the reversal in the order of the functions.

Restrictions of Functions

If f :A ! B is a function and if A1 � A, we can define a function f1:A1 ! B by

f 1 xð Þ :¼ f xð Þ for x 2 A1:

The function f1 is called the restriction of f to A1. Sometimes it is denoted by f 1 ¼ f jA1.

It may seem strange to the reader that one would ever choose to throw away a part of a

function, but there are some good reasons for doing so. For example, if f : R ! R is the

squaring function:

f xð Þ :¼ x2 for x 2 R ;

then f is not injective, so it cannot have an inverse function. However, if we restrict f to the set

A1 :¼ x : x 
 0f g, then the restriction f jA1 is a bijection of A1 onto A1. Therefore, this

restriction has an inverse function, which is the positive square root function. (Sketch a

graph.)

Similarly, the trigonometric functions S(x) :¼ sin x andC(x) :¼ cosx are not injective on

all ofR .However, bymaking suitable restrictionsof these functions, onecanobtain the inverse

sine and the inverse cosine functions that the reader has undoubtedly already encountered.

Exercises for Section 1.1

1. Let A :¼ k : k 2 N ; k � 20f g; B :¼ 3k � 1 : k 2 Nf g; andC :¼ 2k þ 1 : k 2 Nf g:
Determine the sets:

(a) A \ B \ C,

(b) A \ Bð ÞnC,
(c) A \ Cð ÞnB.

2. Draw diagrams to simplify and identify the following sets:

(a) An(BnA),
(b) An(AnB),
(c) A \ BnAð Þ.

3. If A and B are sets, show that A � B if and only if A \ B ¼ A.

4. Prove the second De Morgan Law [Theorem 1.1.4(b)].

5. Prove the Distributive Laws:

(a) A \ B [ Cð Þ ¼ A \ Bð Þ [ A \ Cð Þ,
(b) A [ B \ Cð Þ ¼ A [ Bð Þ \ A [ Cð Þ.

10 CHAPTER 1 PRELIMINARIES
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6. The symmetric difference of two sets A and B is the setD of all elements that belong to either A

or B but not both. Represent D with a diagram.

(a) Show that D ¼ AnBð Þ [ BnAð Þ.
(b) Show that D is also given by D ¼ A [ Bð Þn A \ Bð Þ.

7. For each n 2 N , let An ¼ nþ 1ð Þk : k 2 Nf g.
(a) What is A1 \ A2?

(b) Determine the sets [ An : n 2 Nf g and \ An : n 2 Nf g.
8. Draw diagrams in the plane of the Cartesian products A � B for the given sets A and B.

(a) A ¼ x 2 R : 1 � x � 2 or 3 � x � 4f g; B ¼ x 2 R : x ¼ 1 or x ¼ 2f g.
(b) A ¼ 1; 2; 3f g; B ¼ x 2 R : 1 � x � 3f g.

9. Let A :¼ B :¼ x 2 R : �1 � x � 1f g and consider the subset C :¼ x; yð Þ : x2 þ y2 ¼ 1
� �

of

A � B. Is this set a function? Explain.

10. Let f xð Þ :¼ 1=x2; x 6¼ 0; x 2 R .

(a) Determine the direct image f (E) where E :¼ x 2 R : 1 � x � 2f g.
(b) Determine the inverse image f�1(G) where G :¼ x 2 R : 1 � x � 4f g.

11. Let g(x) :¼ x2 and f (x) :¼ x þ 2 for x 2 R, and let h be the composite function h :¼ g 	 f.

(a) Find the direct image h(E) of E :¼ x 2 R : 0 � x � 1f g.
(b) Find the inverse image h�1(G) of G :¼ x 2 R : 0 � x � 4f g.

12. Let f (x) :¼ x2 for x 2 R, and let E :¼ x 2 R : �1 � x � 0f g and F :¼ x 2 R : 0 � x � 1f g.
Show that E \ F ¼ 0f g and f E \ Fð Þ ¼ 0f g, while f Eð Þ ¼ f Fð Þ ¼ y 2 R : 0 � y � 1f g.
Hence f E \ Fð Þ is a proper subset of f Eð Þ \ f Fð Þ. What happens if 0 is deleted from the sets E

and F?

13. Let f and E, F be as in Exercise 12. Find the sets EnF and f (E)n f ( f ) and show that it is not true

that f EnFð Þ � f Eð Þn f Fð Þ.
14. Show that if f : A ! B and E, F are subsets of A, then f E [ Fð Þ ¼ f Eð Þ [ f Fð Þ and

f E \ Fð Þ � f Eð Þ \ f Fð Þ.
15. Show that if f : A ! B and G, H are subsets of B, then f �1 G [ Hð Þ ¼ f �1 Gð Þ [ f �1 Hð Þ and

f �1 G \ Hð Þ ¼ f �1 Gð Þ \ f �1 Hð Þ.
16. Show that the function f defined by f xð Þ :¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
; x 2 R , is a bijection of R onto

y : �1 < y < 1f g.
17. For a, b 2 R with a < b, find an explicit bijection of A :¼ x : a < x < bf g onto

B :¼ y : 0 < y < 1f g.
18. (a) Give an example of two functions f, g on R to R such that f 6¼ g, but such that f 	 g¼ g 	 f.

(b) Give an example of three functions f, g, h on R such that f 	 gþ hð Þ 6¼ f 	 gþ f 	 h.
19. (a) Show that if f : A ! B is injective and E � A, then f �1ð f ðEÞÞ ¼ E. Give an example to

show that equality need not hold if f is not injective.

(b) Show that if f : A! B is surjective and H � B, then f f �1ðHÞ� � ¼ H. Give an example to

show that equality need not hold if f is not surjective.

20. (a) Suppose that f is an injection. Show that f�1 	 f (x)¼ x for all x2D( f ) and that f 	 f�1(y)¼ y

for all y 2 R( f ).

(b) If f is a bijection of A onto B, show that f�1 is a bijection of B onto A.

21. Prove that if f : A ! B is bijective and g : B ! C is bijective, then the composite g 	 f is a

bijective map of A onto C.

22. Let f : A ! B and g : B ! C be functions.

(a) Show that if g 	 f is injective, then f is injective.

(b) Show that if g 	 f is surjective, then g is surjective.

23. Prove Theorem 1.1.14.

24. Let f, g be functions such that (g 	 f )(x)¼ x for all x 2 D( f ) and ( f 	 g)(y)¼ y for all y 2 D (g).

Prove that g ¼ f �1.

1.1 SETS AND FUNCTIONS 11
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Section 1.2 Mathematical Induction

Mathematical Induction is a powerful method of proof that is frequently used to establish

the validity of statements that are given in terms of the natural numbers. Although its utility

is restricted to this rather special context, Mathematical Induction is an indispensable tool

in all branches of mathematics. Since many induction proofs follow the same formal lines

of argument, wewill often state only that a result follows fromMathematical Induction and

leave it to the reader to provide the necessary details. In this section, we will state the

principle and give several examples to illustrate how inductive proofs proceed.

We shall assume familiarity with the set of natural numbers:

N ¼ 1; 2; 3; . . .f g;
with the usual arithmetic operations of addition and multiplication, and with the meaning

of a natural number being less than another one. We will also assume the following

fundamental property of N .

1.2.1 Well-Ordering Property of N Every nonempty subset of N has a least element.

A more detailed statement of this property is as follows: If S is a subset of N and if

S 6¼ ;, then there exists m 2 S such that m � k for all k 2 S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle

of Mathematical Induction that is expressed in terms of subsets of N .

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the

two properties:

(1) The number 1 2 S.

(2) For every k 2 N , if k 2 S, then k þ 1 2 S.

Then we have S ¼ N .

Proof. Suppose to the contrary that S 6¼ N . Then the set NnS is not empty, so by theWell-

Ordering Principle it has a least element m. Since 1 2 S by hypothesis (1), we know that

m> 1. But this implies thatm� 1 is also a natural number. Sincem� 1<m and sincem is

the least element in N such that m =2 S, we conclude that m� 1 2 S.

We now apply hypothesis (2) to the element k :¼ m � 1 in S, to infer that k þ 1 ¼
m� 1ð Þ þ 1 ¼ m belongs to S. But this statement contradicts the fact that m =2 S. Since m

was obtained from the assumption that NnS is not empty, we have obtained a contradiction.

Therefore we must have S ¼ N . Q.E.D.

The Principle of Mathematical Induction is often set forth in the framework of

statements about natural numbers. If P(n) is a meaningful statement about n 2 N , then P(n)

may be true for some values of n and false for others. For example, if P1(n) is the statement:

‘‘n2 ¼ n,’’ then P1(1) is true while P1(n) is false for all n > 1, n 2 N . On the other hand, if

P2(n) is the statement: ‘‘n2 > 1,’’ then P2(1) is false, while P2(n) is true for all n > 1.

In this context, the Principle of Mathematical Induction can be formulated as follows.

For each n 2 N , let P(n) be a statement about n. Suppose that:

(10) P(1) is true.

(20) For every k 2 N , if P(k) is true, then P(k þ 1) is true.

Then P(n) is true for all n 2 N .

12 CHAPTER 1 PRELIMINARIES
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The connection with the preceding version of Mathematical Induction, given in 1.2.2,

is made by letting S :¼ n 2 N : PðnÞ is truef g. Then the conditions (1) and (2) of 1.2.2

correspond exactly to the conditions (10) and (20), respectively. The conclusion that S ¼ N

in 1.2.2 corresponds to the conclusion that P(n) is true for all n 2 N .

In (20) the assumption ‘‘if P(k) is true’’ is called the induction hypothesis. In

establishing (20), we are not concerned with the actual truth or falsity of P(k), but only

with the validity of the implication ‘‘if P(k), then P(k þ 1).’’ For example, if we

consider the statements P(n): ‘‘n ¼ n þ 5,’’ then (20) is logically correct, for we can

simply add 1 to both sides of P(k) to obtain P(k þ 1). However, since the statement

P(1): ‘‘1 ¼ 6’’ is false, we cannot use Mathematical Induction to conclude that n ¼ n þ 5

for all n 2 N .

It may happen that statements P(n) are false for certain natural numbers but then are

true for all n 
 n0 for some particular n0. The Principle of Mathematical Induction can be

modified to deal with this situation. We will formulate the modified principle, but leave its

verification as an exercise. (See Exercise 12.)

1.2.3 Principle of Mathematical Induction (second version) Let n0 2 N and let P(n)

be a statement for each natural number n 
 n0. Suppose that:

(1) The statement P(n0) is true.

(2) For all k 
 n0, the truth of P(k) implies the truth of P(k þ 1).

Then P(n) is true for all n 
 n0.

Sometimes the number n0 in (1) is called the base, since it serves as the starting point,

and the implication in (2), which can be written P kð Þ ) P k þ 1ð Þ, is called the bridge,
since it connects the case k to the case k þ 1.

The following examples illustrate how Mathematical Induction is used to prove

assertions about natural numbers.

1.2.4 Examples (a) For each n 2 N , the sum of the first n natural numbers is given by

1þ 2þ � � � þ n ¼ 1
2
n nþ 1ð Þ:

To prove this formula, we let S be the set of all n 2 N for which the formula is true.

We must verify that conditions (1) and (2) of 1.2.2 are satisfied. If n ¼ 1, then we have

1 ¼ 1
2
� 1 � 1þ 1ð Þ so that 1 2 S, and (1) is satisfied. Next, we assume that k 2 S and wish to

infer from this assumption that k þ 1 2 S. Indeed, if k 2 S, then

1þ 2þ � � � þ k ¼ 1
2
k k þ 1ð Þ:

If we add k þ 1 to both sides of the assumed equality, we obtain

1þ 2þ � � � þ k þ k þ 1ð Þ¼ 1
2
k k þ 1ð Þ þ k þ 1ð Þ

¼ 1
2
k þ 1ð Þ k þ 2ð Þ:

Since this is the stated formula for n ¼ k þ 1, we conclude that k þ 1 2 S. Therefore,

condition (2) of 1.2.2 is satisfied. Consequently, by the Principle of Mathematical

Induction, we infer that S ¼ N , so the formula holds for all n 2 N .

(b) For each n 2 N , the sum of the squares of the first n natural numbers is given by

12 þ 22 þ � � � þ n2 ¼ 1
6
n nþ 1ð Þ 2nþ 1ð Þ:

1.2 MATHEMATICAL INDUCTION 13
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To establish this formula, we note that it is true for n¼ 1, since 12 ¼ 1
6
� 1 � 2 � 3. If we

assume it is true for k, then adding (k þ 1)2 to both sides of the assumed formula gives

12 þ 22 þ � � � þ k2 þ k þ 1ð Þ2 ¼ 1
6
k k þ 1ð Þ 2k þ 1ð Þ þ k þ 1ð Þ2

¼ 1
6
k þ 1ð Þ 2k2 þ k þ 6k þ 6

� �
¼ 1

6
k þ 1ð Þ k þ 2ð Þ 2k þ 3ð Þ:

Consequently, the formula is valid for all n 2 N .

(c) Given two real numbers a and b, we will prove that a � b is a factor of an � bn for all

n 2 N .

First we see that the statement is clearly true for n¼ 1. If we now assume that a� b is a

factor of ak � bk, then

akþ1 � bkþ1 ¼ akþ1 � abk þ abk � bkþ1

¼ a ak � bk
� �þ bk a� bð Þ:

By the induction hypothesis, a � b is a factor of a (ak � bk) and it is plainly a factor of

bk(a � b). Therefore, a � b is a factor of akþ1 � bkþl, and it follows from Mathematical

Induction that a � b is a factor of an � bn for all n 2 N .

A variety of divisibility results can be derived from this fact. For example, since

11 � 7 ¼ 4, we see that 11n � 7n is divisible by 4 for all n 2 N .

(d) The inequality 2n > 2n þ 1 is false for n ¼ 1, 2, but it is true for n ¼ 3. If we assume

that 2k > 2k þ 1, then multiplication by 2 gives, when 2k þ 2 > 3, the inequality

2kþ1 > 2 2k þ 1ð Þ ¼ 4k þ 2 ¼ 2k þ 2k þ 2ð Þ > 2k þ 3 ¼ 2 k þ 1ð Þ þ 1:

Since 2kþ 2> 3 for all k
 1, the bridge is valid for all k
 1 (even though the statement is

false for k ¼ 1, 2). Hence, with the base n0 ¼ 3, we can apply Mathematical Induction to

conclude that the inequality holds for all n 
 3.

(e) The inequality 2n � (n þ 1)! can be established by Mathematical Induction.

We first observe that it is true for n ¼ 1, since 21 ¼ 2 ¼ 1 þ 1. If we assume that

2k � (k þ 1)!, it follows from the fact that 2 � k þ 2 that

2kþ1 ¼ 2 � 2k � 2 k þ 1ð Þ! � k þ 2ð Þ k þ 1ð Þ! ¼ k þ 2ð Þ!:

Thus, if the inequality holds for k, then it also holds for k þ 1. Therefore, Mathematical

Induction implies that the inequality is true for all n 2 N .

(f) If r 2 R , r 6¼ 1, and n 2 N , then

1þ rþ r2 þ � � � þ rn ¼ 1� rnþ1

1� r
:

This is the formula for the sum of the terms in a ‘‘geometric progression.’’ It can

be established using Mathematical Induction as follows. First, if n ¼ 1, then 1 þ r ¼
(1 � r2)=(1 � r). If we assume the truth of the formula for n ¼ k and add the term rkþ1

to both sides, we get (after a little algebra)

1þ rþ rk þ � � � þ rkþ1 ¼ 1� rkþ1

1� r
þ rkþ1 ¼ 1� rkþ2

1� r
;

which is the formula for n¼ kþ 1. Therefore, Mathematical Induction implies the validity

of the formula for all n 2 N .
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[This result can also be proved without using Mathematical Induction. If we let

sn :¼ 1þ rþ r2 þ � � � þ rn, then rsn ¼ rþ r2 þ � � � þ rnþ1, so that

1� rð Þsn ¼ sn � rsn ¼ 1� rnþ1:

If we divide by 1 � r, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd

conclusions. The reader is invited to find the error in the ‘‘proof’’ of the following assertion.

Claim: If n 2 N and if the maximum of the natural numbers p and q is n, then p ¼ q.

‘‘Proof.’’ Let S be the subset of N for which the claim is true. Evidently, 1 2 S since if

p, q2N and their maximum is 1, then both equal 1 and so p¼ q. Now assume that k2 S and

that the maximum of p and q is kþ 1. Then the maximum of p� 1 and q� 1 is k. But since

k 2 S, then p � 1 ¼ q � 1 and therefore p ¼ q. Thus, k þ 1 2 S, and we conclude that the

assertion is true for all n 2 N .

(h) There are statements that are true for many natural numbers but that are not true for

all of them.

For example, the formula p (n) :¼ n2� nþ 41 gives a prime number for n¼ 1, 2, . . . ,

40. However, p(41) is obviously divisible by 41, so it is not a prime number.

Another version of the Principle of Mathematical Induction is sometimes quite useful.

It is called the ‘‘Principle of Strong Induction,’’ even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

(100) 1 2 S.

(200) For every k 2 N , if 1; 2; . . . ; kf g � S, then k þ 1 2 S.

Then S ¼ N .

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

1. Prove that 1=1 � 2þ 1=2 � 3þ � � � þ 1=n nþ 1ð Þ ¼ n= nþ 1ð Þ for all n 2 N .

2. Prove that 13 þ 23 þ � � � þ n3 ¼ 1
2
n nþ 1ð Þ� �2

for all n 2 N .

3. Prove that 3þ 11þ � � � þ 8n� 5ð Þ ¼ 4n2 � n for all n 2 N .

4. Prove that 12 þ 32 þ � � � þ 2n� 1ð Þ2 ¼ 4n3 � nð Þ=3 for all n 2 N .

5. Prove that 12 � 22 þ 32 þ � � � þ �1ð Þnþ1
n2 ¼ �1ð Þnþ1

n nþ 1ð Þ=2 for all n 2 N .

6. Prove that n3 þ 5n is divisible by 6 for all n 2 N .

7. Prove that 52n � 1 is divisible by 8 for all n 2 N .

8. Prove that 5n � 4n � 1 is divisible by 16 for all n 2 N .

9. Prove that n3 þ (n þ 1)3 þ (n þ 2)3 is divisible by 9 for all n 2 N .

10. Conjecture a formula for the sum 1=1 � 3þ 1=3 � 5þ � � � þ 1= 2n� 1ð Þ 2nþ 1ð Þ, and prove your
conjecture by using Mathematical Induction.

11. Conjecture a formula for the sum of the first n odd natural numbers 1þ 3þ � � � þ 2n� 1ð Þ, and
prove your formula by using Mathematical Induction.

12. Prove the Principle of Mathematical Induction 1.2.3 (second version).

1.2 MATHEMATICAL INDUCTION 15
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13. Prove that n < 2n for all n 2 N .

14. Prove that 2n < n! for all n 
 4, n 2 N .

15. Prove that 2n� 3 � 2n�2 for all n 
 5, n 2 N .

16. Find all natural numbers n such that n2 < 2n. Prove your assertion.

17. Find the largest natural number m such that n3 � n is divisible by m for all n 2 N . Prove your

assertion.

18. Prove that 1=
ffiffiffi
1

p þ 1=
ffiffiffi
2

p þ � � � þ 1=
ffiffiffi
n

p
>

ffiffiffi
n

p
for all n 2 N , n > 1.

19. Let S be a subset of N such that (a) 2k 2 S for all k 2 N , and (b) if k 2 S and k 
 2, then

k � 1 2 S. Prove that S ¼ N .

20. Let the numbers xn be defined as follows: x1 :¼ 1, x2 :¼ 2, and xnþ2 :¼ 1
2
xnþ1 þ xnð Þ for all

n 2 N . Use the Principle of Strong Induction (1.2.5) to show that 1 � xn � 2 for all n 2 N .

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say ‘‘one, two, three, . . . ,’’ stopping when we

have exhausted the set. From a mathematical perspective, what we are doing is defining a

bijective mapping between the set and a portion of the set of natural numbers. If the set is

such that the counting does not terminate, such as the set of natural numbers itself, then we

describe the set as being infinite.

The notions of ‘‘finite’’ and ‘‘infinite’’ are extremely primitive, and it is very likely that

the reader has never examined these notions very carefully. In this section we will define

these terms precisely and establish a few basic results and state some other important

results that seem obvious but whose proofs are a bit tricky. These proofs can be found in

Appendix B and can be read later.

1.3.1 Definition (a) The empty set ; is said to have 0 elements.

(b) If n 2 N , a set S is said to have n elements if there exists a bijection from the set

Nn :¼ 1; 2; . . . ; nf g onto S.

(c) A set S is said to be finite if it is either empty or it has n elements for some n 2 N .

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n

elements if and only if there is a bijection from S onto the set {1, 2, . . . , n}. Also,

since the composition of two bijections is a bijection, we see that a set S1 has n

elements if and only if there is a bijection from S1 onto another set S2 that has n

elements. Further, a set T1 is finite if and only if there is a bijection from T1 onto

another set T2 that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the

definitions do not lead to conclusions that conflict with our experience of counting. From

the definitions, it is not entirely clear that a finite set might not have n elements for more

than one value of n. Also it is conceivably possible that the set N :¼ f1; 2; 3; . . .gmight be

a finite set according to this definition. The reader will be relieved that these possibilities do

not occur, as the next two theorems state. The proofs of these assertions, which use the

fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a

unique number in N .
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1.3.3 Theorem The set N of natural numbers is an infinite set.

The next result gives some elementary properties of finite and infinite sets.

1.3.4 Theorem (a) If A is a set with m elements and B is a set with n elements and if

A \ B ¼ ; , then A [ B has m þ n elements.

(b) If A is a set with m 2 N elements and C � A is a set with 1 element, then AnC is a set

with m � 1 elements.

(c) If C is an infinite set and B is a finite set, then CnB is an infinite set.

Proof. (a) Let f be a bijection of Nm onto A, and let g be a bijection of Nn onto B. We

define h on Nmþn by h(i) :¼ f (i) for i ¼ 1; . . . ; m and h(i) :¼ g(i � m) for

i ¼ mþ 1; . . . ; mþ n. We leave it as an exercise to show that h is a bijection from

Nmþn onto A [ B.

The proofs of parts (b) and (c) are left to the reader, see Exercise 2. Q.E.D.

It may seem ‘‘obvious’’ that a subset of a finite set is also finite, but the assertion must

be deduced from the definitions. This and the corresponding statement for infinite sets are

established next.

1.3.5 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a finite set, then T is a finite set.

(b) If T is an infinite set, then S is an infinite set.

Proof. (a) If T ¼ ;, we already know that T is a finite set. Thus we may suppose that

T 6¼ ;. The proof is by induction on the number of elements in S.

If S has 1 element, then the only nonempty subset T of Smust coincide with S, so T is a

finite set.

Suppose that every nonempty subset of a set with k elements is finite. Now let S be a

set having k þ 1 elements (so there exists a bijection f of Nkþ1 onto S), and let T � S. If

f k þ 1ð Þ =2 T , we can consider T to be a subset of S1 :¼ Sn f k þ 1ð Þf g, which has k

elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, T is a finite set.

On the other hand, if f k þ 1ð Þ 2 T , then T1 :¼ Tn f k þ 1ð Þf g is a subset of S1. Since
S1 has k elements, the induction hypothesis implies that T1 is a finite set. But this implies

that T ¼ T1 [ f k þ 1ð Þf g is also a finite set.

(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a

discussion of the contrapositive.) Q.E.D.

Countable Sets

We now introduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there

exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or denumerable.

(c) A set S is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that S is denumerable if and only if there

exists a bijection of S onto N . Also a set S1 is denumerable if and only if there exists a

1.3 FINITE AND INFINITE SETS 17
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bijection from S1 onto a set S2 that is denumerable. Further, a set T1 is countable if and only

if there exists a bijection from T1 onto a set T2 that is countable. Finally, an infinite

countable set is denumerable.

1.3.7 Examples (a) The setE :¼ 2n : n 2 Nf gof even natural numbers is denumerable,

since the mapping f : N ! E defined by f (n) :¼ 2n for n 2 N is a bijection of N onto E.

Similarly, the set O :¼ 2n� 1 : n 2 Nf g of odd natural numbers is denumerable.

(b) The set Z of all integers is denumerable.

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural

numbers onto the setN of positive integers, and wemap the set of odd natural numbers onto

the negative integers. This mapping can be displayed by the enumeration:

Z ¼ 0; 1; � 1; 2; � 2; 3; � 3; . . .f g:
(c) The union of two disjoint denumerable sets is denumerable.

Indeed, if A ¼ a1; a2; a3; . . .f g and B ¼ b1; b2; b3; . . .f g, we can enumerate the

elements of A [ B as:

a1; b1; a2; b2; a3; b3; . . . :
&

1.3.8 Theorem The set N � N is denumerable.

Informal Proof. Recall that N � N consists of all ordered pairs (m, n), where m, n 2 N .

We can enumerate these pairs as:

1; 1ð Þ; 1; 2ð Þ; 2; 1ð Þ; 1; 3ð Þ; 2; 2ð Þ; 3; 1ð Þ; 1; 4ð Þ; . . . ;
according to increasing sum m þ n, and increasing m. (See Figure 1.3.1.) Q.E.D.

The enumeration just described is an instance of a ‘‘diagonal procedure,’’ since we

move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.

The bijection indicated by the diagram can be derived as follows. We first notice that

the first diagonal has one point, the second diagonal has two points, and so on, with k points

in the kth diagonal. Applying the formula in Example 1.2.4(a), we see that the total number

of points in diagonals 1 through k is given by

c kð Þ ¼ 1þ 2þ � � � þ k ¼ 1
2
k k þ 1ð Þ

Figure 1.3.1 The set N � N
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The point (m, n) lies in the kth diagonal when k¼mþ n� 1, and it is themth point in

that diagonal as we move downward from left to right. (For example, the point (3, 2) lies

in the 4th diagonal since 3þ 2� 1¼ 4, and it is the 3rd point in that diagonal.) Therefore,

in the counting scheme displayed by Figure 1.3.1, we count the point (m, n) by first

counting the points in the first k� 1¼mþ n� 2 diagonals and then addingm. Therefore,

the counting function h : N � N ! N is given by

h m; nð Þ :¼ c mþ n� 2ð Þ þm

¼ 1
2
mþ n� 2ð Þ mþ n� 1ð Þ þm:

For example, the point (3, 2) is counted as number h 3; 2ð Þ ¼ 1
2
� 3 � 4þ 3 ¼ 9, as

shown by Figure 1.3.1. Similarly, the point (17, 25) is counted as number h (17, 25)¼ c(40)
þ 17 ¼ 837.

This geometric argument leading to the counting formula has been suggestive and

convincing, but it remains to be proved that h is, in fact, a bijection of N � N onto N .

A detailed proof is given in Appendix B.

The construction of an explicit bijection between sets is often complicated. The next

two results are useful in establishing the countability of sets, since they do not involve

showing that certain mappings are bijections. The first result may seem intuitively clear,

but its proof is rather technical; it will be given in Appendix B.

1.3.9 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a countable set, then T is a countable set.

(b) If T is an uncountable set, then S is an uncountable set.

1.3.10 Theorem The following statements are equivalent:

(a) S is a countable set.

(b) There exists a surjection of N onto S.

(c) There exists an injection of S into N .

Proof. (a) ) (b) If S is finite, there exists a bijection h of some set Nn onto S and we

define H on N by

HðkÞ :¼ hðkÞ for k ¼ 1; . . . ; n;
hðnÞ for k > n:

	

Then H is a surjection of N onto S.

If S is denumerable, there exists a bijectionH of N onto S, which is also a surjection of

N onto S.

(b) ) (c) If H is a surjection of N onto S, we define H1 : S ! N by letting H1(s) be the

least element in the set H�1ðsÞ :¼ n 2 N : HðnÞ ¼ sf g. To see that H1 is an injection of S

into N , note that if s, t 2 S and nst :¼ H1ðsÞ ¼ H1ðtÞ, then s ¼ H(nst) ¼ t.

(c) ) (a) If H1 is an injection of S into N , then it is a bijection of S onto H1ðSÞ � N . By

Theorem 1.3.9(a), H1(S) is countable, whence the set S is countable. Q.E.D.

1.3.11 Theorem The set Q of all rational numbers is denumerable.

Proof. The idea of the proof is to observe that the set Qþ of positive rational numbers is

contained in the enumeration:

1
1
; 1

2
; 2

1
; 1

3
; 2

2
; 3

1
; 1

4
; . . . ;
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which is another ‘‘diagonal mapping’’ (see Figure 1.3.2). However, this mapping is not an

injection, since the different fractions 1
2
and 2

4
represent the same rational number.

To proceed more formally, note that since N � N is countable (by Theorem 1.3.8), it

follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N � N . If g :
N � N ! Q

þ is the mapping that sends the ordered pair (m, n) into the rational number

having a representationm=n, then g is a surjection ontoQþ. Therefore, the composition g 	 f
is a surjection of N onto Q

þ, and Theorem 1.3.10 implies that Qþ is a countable set.

Similarly, the set Q� of all negative rational numbers is countable. It follows as in

Example 1.3.7(b) that the set Q ¼ Q
� [ f0g [ Q

þ is countable. Since Q contains N , it

must be a denumerable set. Q.E.D.

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need

not be worried about possible overlapping of the sets. Also, we do not have to construct a

bijection.

1.3.12 Theorem If Am is a countable set for each m 2 N, then the union A :¼ S1
m¼1 Am

is countable.

Proof. For eachm 2 N , let wm be a surjection ofN onto Am. We define b : N � N ! A by

bðm; nÞ :¼ wmðnÞ:
We claim that b is a surjection. Indeed, if a 2 A, then there exists a least m 2 N such that

a 2 Am, whence there exists a least n 2 N such that a ¼ wmðnÞ. Therefore, a ¼ b (m, n).

Since N � N is countable, it follows from Theorem 1.3.10 that there exists a surjection

f : N ! N � N whence b 	 f is a surjection of N onto A. Now apply Theorem 1.3.10 again

to conclude that A is countable. Q.E.D.

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to

enumerate the elements of Am, m 2 N , as:

A1 ¼ a11; a12; a13; . . .f g;
A2 ¼ a21; a22; a23; . . .f g;
A3 ¼ a31; a32; a33; . . .f g;

� � � � � � � � � :

Figure 1.3.2 The set Qþ
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We then enumerate this array using the ‘‘diagonal procedure’’:

a11; a12; a21; a13; a22; a31; a14; . . . ;

as was displayed in Figure 1.3.1.

Georg Cantor
Georg Cantor (1845–1918) was born in St. Petersburg, Russia. His father,

a Danish businessman working in Russia, moved the family to Germany

several years later. Cantor studied briefly at Zurich, then went to the

University of Berlin, the best in mathematics at the time. He received his

doctorate in 1869, and accepted a position at the University of Halle,

where he worked alone on his research, but would occasionally travel the

seventy miles to Berlin to visit colleagues.

Cantor is known as the founder of modern set theory and he was the first to study the

concept of infinite set in rigorous detail. In 1874 he proved that Q is countable and, in

contrast, that R is uncountable (see Section 2.5), exhibiting two kinds of infinity. In a series of

papers he developed a general theory of infinite sets, including some surprising results. In

1877 he proved that the two-dimensional unit square in the plane could be put into one-one

correspondence with the unit interval on the line, a result he sent in a letter to his colleague

Richard Dedekind in Berlin, writing ‘‘I see it, but I do not believe it.’’ Cantor’s Theorem on

sets of subsets shows there are many different orders of infinity and this led him to create a

theory of ‘‘transfinite’’ numbers that he published in 1895 and 1897. His work generated

considerable controversy among mathematicians of that era, but in 1904, London’s Royal

Society awarded Cantor the Sylvester Medal, its highest honor.

Beginning in 1884, he suffered from episodes of depression that increased in severity as the

years passed. Hewas hospitalized several times for nervous breakdowns in the Halle Nervenklinik

and spent the last seven months of his life there.

We close this section with one of Cantor’s more remarkable theorems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set

PðAÞ of all subsets of A.

Proof. Suppose that w : A ! PðAÞ is a surjection. Since w(a) is a subset of A, either a

belongs to w(a) or it does not belong to this set. We let

D :¼ a 2 A : a =2 wðaÞf g:

Since D is a subset of A, if w is a surjection, then D ¼ w a0ð Þ for some a0 2 A.

We must have either a0 2 D or a0 =2 D. If a0 2 D, then since D ¼ w a0ð Þ, we must have

a0 2 w a0ð Þ, contrary to the definition of D. Similarly, if a0 =2 D, then a0 =2 w a0ð Þ so that

a0 2 D, which is also a contradiction.

Therefore, w cannot be a surjection. Q.E.D.

Cantor’s Theorem implies that there is an unending progression of larger and larger

sets. In particular, it implies that the collection PðNÞ of all subsets of the natural numbers

N is uncountable.
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Exercises for Section 1.3

1. Prove that a nonempty set T1 is finite if and only if there is a bijection from T1 onto a finite set T2.

2. Prove parts (b) and (c) of Theorem 1.3.4.

3. Let S :¼ {1, 2} and T :¼ {a, b, c}.

(a) Determine the number of different injections from S into T.

(b) Determine the number of different surjections from T onto S.

4. Exhibit a bijection between N and the set of all odd integers greater than 13.

5. Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).

6. Exhibit a bijection between N and a proper subset of itself.

7. Prove that a set T1 is denumerable if and only if there is a bijection from T1 onto a denumerable

set T2.

8. Give an example of a countable collection of finite sets whose union is not finite.

9. Prove in detail that if S and T are denumerable, then S [ T is denumerable.

10. (a) If (m, n) is the 6th point down the 9th diagonal of the array in Figure 1.3.1, calculate its

number according to the counting method given for Theorem 1.3.8.

(b) Given that h(m, 3) ¼ 19, find m.

11. Determine the number of elements in PðSÞ, the collection of all subsets of S, for each of the

following sets:

(a) S :¼ {1, 2},

(b) S :¼ {1, 2, 3},

(c) S :¼ {1, 2, 3, 4}.

Be sure to include the empty set and the set S itself in PðSÞ.
12. Use Mathematical Induction to prove that if the set S has n elements, then PðSÞ has 2n elements.

13. Prove that the collection FðNÞ of all finite subsets of N is countable.
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CHAPTER 2

THE REAL NUMBERS

In this chapter we will discuss the essential properties of the real number system R .

Although it is possible to give a formal construction of this system on the basis of a more

primitive set (such as the set N of natural numbers or the set Q of rational numbers), we

have chosen not to do so. Instead, we exhibit a list of fundamental properties associated

with the real numbers and show how further properties can be deduced from them. This

kind of activity is much more useful in learning the tools of analysis than examining the

logical difficulties of constructing a model for R.

The real number system can be described as a ‘‘complete ordered field,’’ and we will

discuss that description in considerable detail. In Section 2.1, we first introduce the

‘‘algebraic’’ properties—often called the ‘‘field’’ properties in abstract algebra—that are

based on the two operations of addition and multiplication. We continue the section with

the introduction of the ‘‘order’’ properties of R and we derive some consequences of these

properties and illustrate their use in working with inequalities. The notion of absolute

value, which is based on the order properties, is discussed in Section 2.2.

In Section 2.3, we make the final step by adding the crucial ‘‘completeness’’ property

to the algebraic and order properties of R . It is this property, which was not fully

understood until the late nineteenth century, that underlies the theory of limits and

continuity and essentially all that follows in this book. The rigorous development of

real analysis would not be possible without this essential property.

In Section 2.4, we apply the Completeness Property to derive several fundamental

results concerning R , including the Archimedean Property, the existence of square roots,

and the density of rational numbers in R . We establish, in Section 2.5, the Nested Interval

Property and use it to prove the uncountability of R . We also discuss its relation to binary

and decimal representations of real numbers.

Part of the purpose of Sections 2.1 and 2.2 is to provide examples of proofs of

elementary theorems from explicitly stated assumptions. Students can thus gain experience

in writing formal proofs before encountering the more subtle and complicated arguments

related to the Completeness Property and its consequences. However, students who have

previously studied the axiomatic method and the technique of proofs (perhaps in a course

on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A

brief discussion of logic and types of proofs can be found in Appendix A at the back of the

book. Terms such as ‘‘contrapositive’’ and ‘‘converse’’ are explained there and several

proofs are examined in detail.

Section 2.1 The Algebraic and Order Properties of R

We begin with a brief discussion of the ‘‘algebraic structure’’ of the real number system.

We will give a short list of basic properties of addition and multiplication from which all

other algebraic properties can be derived as theorems. In the terminology of abstract

23
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algebra, the system of real numbers is a ‘‘field’’ with respect to addition and multiplication.

The basic properties listed in 2.1.1 are known as the field axioms. A binary operation

associates with each pair (a, b) a unique element B(a, b), but we will use the conventional

notations of a þ b and a � b when discussing the properties of addition and multiplication.

2.1.1 Algebraic Properties of R On the set R of real numbers there are two binary

operations, denoted byþ and � and called addition andmultiplication, respectively. These

operations satisfy the following properties:

(A1) aþ b ¼ bþ a for all a, b in R (commutative property of addition);

(A2) ðaþ bÞ þ c ¼ aþ ðbþ cÞ for all a, b, c in R (associative property of addition);

(A3) there exists an element 0 in R such that 0þ a ¼ a and aþ 0 ¼ a for all a in R

(existence of a zero element);

(A4) for each a in R there exists an element �a in R such that aþ ð�aÞ ¼ 0 and ð�aÞ þ
a ¼ 0 (existence of negative elements);

(M1) a � b ¼ b � a for all a, b in R (commutative property of multiplication);

(M2) ða � bÞ � c ¼ a � ðb � cÞ for all a, b, c in R (associative property of multiplication);

(M3) there exists an element 1 in R distinct from 0 such that 1 � a ¼ a and a � 1 ¼ a for all

a in R (existence of a unit element);

(M4) for each a 6¼ 0 in R there exists an element 1=a in R such that a � ð1=aÞ ¼ 1 and

ð1=aÞ � a ¼ 1 (existence of reciprocals);

(D) a � ðbþ cÞ ¼ ða � bÞ þ ða � cÞ and ðbþ cÞ � a ¼ ðb � aÞ þ ðc � aÞ for all a, b, c in R

(distributive property of multiplication over addition).

These properties should be familiar to the reader. The first four are concerned with

addition, the next four with multiplication, and the last one connects the two operations.

The point of the list is that all the familiar techniques of algebra can be derived from these

nine properties, in much the same spirit that the theorems of Euclidean geometry can be

deduced from the five basic axioms stated by Euclid in his Elements. Since this task more

properly belongs to a course in abstract algebra, we will not carry it out here. However, to

exhibit the spirit of the endeavor, we will sample a few results and their proofs.

We first establish the basic fact that the elements 0 and 1, whose existence were

asserted in (A3) and (M3), are in fact unique. We also show that multiplication by 0 always

results in 0.

2.1.2 Theorem (a) If z and a are elements in R with zþ a ¼ a, then z ¼ 0.

(b) If u and b 6¼ 0 are elements in R with u � b ¼ b, then u ¼ 1.

(c) If a 2 R , then a � 0 ¼ 0.

Proof. (a) Using (A3), (A4), (A2), the hypothesis zþ a ¼ a, and (A4), we get

z ¼ zþ 0 ¼ zþ ðaþ ð�aÞÞ ¼ ðzþ aÞ þ ð�aÞ ¼ aþ ð�aÞ ¼ 0:

(b) Using (M3), (M4), (M2), the assumed equality u � b ¼ b, and (M4) again, we get

u ¼ u � 1 ¼ u � ðb � ð1=bÞÞ ¼ ðu � bÞ � ð1=bÞ ¼ b � ð1=bÞ ¼ 1:

(c) We have (why?)

aþ a � 0 ¼ a � 1þ a � 0 ¼ a � ð1þ 0Þ ¼ a � 1 ¼ a:

Therefore, we conclude from (a) that a � 0 ¼ 0. Q.E.D.
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Wenext establish two importantproperties ofmultiplication: theuniquenessof reciprocals

and the fact that a product of two numbers is zero only when one of the factors is zero.

2.1.3 Theorem (a) If a 6¼ 0 and b in R are such that a � b ¼ 1, then b ¼ 1=a.

(b) If a � b ¼ 0, then either a ¼ 0 or b ¼ 0.

Proof. (a) Using (M3), (M4), (M2), the hypothesis a � b ¼ 1, and (M3), we have

b ¼ 1 � b ¼ ðð1=aÞ � aÞ � b ¼ ð1=aÞ � ða � bÞ ¼ ð1=aÞ � 1 ¼ 1=a:

(b) It suffices to assume a 6¼ 0 and prove that b ¼ 0. (Why?) We multiply a � b by 1=a and
apply (M2), (M4), and (M3) to get

ð1=aÞ � ða � bÞ ¼ ðð1=aÞ � aÞ � b ¼ 1 � b ¼ b:

Since a � b ¼ 0, by 2.1.2(c) this also equals

ð1=aÞ � ða � bÞ ¼ ð1=aÞ � 0 ¼ 0:

Thus we have b ¼ 0. Q.E.D.

These theorems represent a small sample of the algebraic properties of the real number

system. Some additional consequences of the field properties are given in the exercises.

The operation of subtraction is defined by a� b :¼ aþ ð�bÞ for a, b in R . Similarly,

division is defined for a, b in R with b 6¼ 0 by a=b :¼ a � ð1=bÞ. In the following, we will

use this customary notation for subtraction and division, and we will use all the familiar

properties of these operations. We will ordinarily drop the use of the dot to indicate

multiplication and write ab for a � b. Similarly, we will use the usual notation for exponents

and write a2 for aa, a3 for ða2Þa; and, in general, we define anþ1 :¼ ðanÞa for n 2 N. We

agree to adopt the convention that a1 ¼ a. Further, if a 6¼ 0, we write a0 ¼ 1 and a�1 for

1=a, and if n 2 N , we will write a�n for ð1=aÞn, when it is convenient to do so. In general,

we will freely apply all the usual techniques of algebra without further elaboration.

Rational and Irrational Numbers

We regard the set N of natural numbers as a subset of R , by identifying the natural number

n 2 N with the n-fold sum of the unit element 1 2 R . Similarly, we identify 0 2 Z with the

zero element of 0 2 R , and we identify the n-fold sum of�1 with the integer�n. Thus, we

consider N and Z to be subsets of R .

Elements of R that can be written in the form b=a where a; b 2 Z and a 6¼ 0 are called

rational numbers. The set of all rational numbers in R will be denoted by the standard

notation Q . The sum and product of two rational numbers is again a rational number (prove

this), and moreover, the field properties listed at the beginning of this section can be shown

to hold for Q .

The fact that there are elements in R that are not in Q is not immediately apparent. In

the sixth century B.C. the ancient Greek society of Pythagoreans discovered that the

diagonal of a square with unit sides could not be expressed as a ratio of integers. In view of

the Pythagorean Theorem for right triangles, this implies that the square of no rational

number can equal 2. This discovery had a profound impact on the development of Greek

mathematics. One consequence is that elements of R that are not in Q became known as

irrational numbers, meaning that they are not ratios of integers. Although the word

‘‘irrational’’ in modern English usage has a quite different meaning, we shall adopt the

standard mathematical usage of this term.
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Wewill now prove that there does not exist a rational number whose square is 2. In the

proof we use the notions of even and odd numbers. Recall that a natural number is even if it

has the form 2n for some n 2 N , and it is odd if it has the form 2n� 1 for some n 2 N .

Every natural number is either even or odd, and no natural number is both even and odd.

2.1.4 Theorem There does not exist a rational number r such that r2 ¼ 2.

Proof. Suppose, on the contrary, that p and q are integers such that ðp=qÞ2 ¼ 2. We may

assume that p and q are positive and have no common integer factors other than 1. (Why?)

Since p2 ¼ 2q2, we see that p2 is even. This implies that p is also even (because if p ¼
2n� 1 is odd, then its square p2 ¼ 2ð2n2 � 2nþ 1Þ � 1 is also odd). Therefore, since p and

q do not have 2 as a common factor, then q must be an odd natural number.

Since p is even, then p ¼ 2m for somem 2 N , and hence 4m2 ¼ 2q2, so that 2m2 ¼ q2.

Therefore, q2 is even, and it follows that q is an even natural number.

Since the hypothesis that ðp=qÞ2 ¼ 2 leads to the contradictory conclusion that q is

both even and odd, it must be false. Q.E.D.

The Order Properties of R

The ‘‘order properties’’ of R refer to the notions of positivity and inequalities between real

numbers. As with the algebraic structure of the system of real numbers, we proceed by

isolating three basic properties from which all other order properties and calculations with

inequalities can be deduced. The simplest way to do this is to identify a special subset of R

by using the notion of ‘‘positivity.’’

2.1.5 The Order Properties of R There is a nonempty subset P of R , called the set of

positive real numbers, that satisfies the following properties:

(i) If a, b belong to P, then a þ b belongs to P.

(ii) If a, b belong to P, then ab belongs to P.

(iii) If a belongs to R , then exactly one of the following holds:

a 2 P; a ¼ 0; � a 2 P:

The first two conditions ensure the compatibility of order with the operations of

addition and multiplication, respectively. Condition 2.1.5(iii) is usually called the

Trichotomy Property, since it divides R into three distinct types of elements. It states

that the set f�a : a 2 Pg of negative real numbers has no elements in common with the set

P of positive real numbers, and, moreover, the set R is the union of three disjoint sets.

If a 2 P, wewrite a > 0 and say that a is a positive (or a strictly positive) real number.

If a 2 P [ f0g, we write a � 0 and say that a is a nonnegative real number. Similarly, if

�a 2 P, we write a < 0 and say that a is a negative (or a strictly negative) real number.

If �a 2 P [ f0g, we write a � 0 and say that a is a nonpositive real number.

The notion of inequality between two real numbers will now be defined in terms of the

set P of positive elements.

2.1.6 Definition Let a, b be elements of R .

(a) If a� b 2 P, then we write a > b or b < a.

(b) If a� b 2 P [ f0g, then we write a � b or b � a.
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The Trichotomy Property 2.1.5(iii) implies that for a; b 2 R exactly one of the

following will hold:

a > b; a ¼ b; a < b:

Therefore, if both a � b and b � a, then a ¼ b.

For notational convenience, we will write

a < b < c

to mean that both a < b and b < c are satisfied. The other ‘‘double’’ inequalities

a � b < c, a � b � c, and a < b � c are defined in a similar manner.

To illustrate how the basicOrder Properties are used to derive the ‘‘rules of inequalities,’’we

will now establish several results that the reader has used in earlier mathematics courses.

2.1.7 Theorem Let a, b, c be any elements of R .

(a) If a > b and b > c , then a > c.

(b) If a > b, then aþ c > bþ c.

(c) If a > b and c > 0, then ca > cb.

If a > b and c < 0, then ca < cb.

Proof. (a) If a� b 2 P and b� c 2 P, then 2.1.5(i) implies that ða� bÞ þ ðb� cÞ ¼
a� c belongs to P. Hence a > c.

(b) If a� b 2 P, then ðaþ cÞ � ðbþ cÞ ¼ a� b is in P. Thus aþ c > bþ c.

(c) If a� b 2 P and c 2 P, then ca� cb ¼ cða� bÞ is in P by 2.1.5(ii). Thus ca > cb

when c > 0.

On the other hand, if c< 0, then �c 2 P, so that cb� ca ¼ ð�cÞða� bÞ is in P. Thus
cb > ca when c < 0. Q.E.D.

It is natural to expect that the natural numbers are positive real numbers. This property

is derived from the basic properties of order. The key observation is that the square of any

nonzero real number is positive.

2.1.8 Theorem

(a) If a 2 R and a 6¼ 0, then a2 > 0.

(b) 1 > 0.

(c) If n 2 N , then n > 0.

Proof. (a) By the Trichotomy Property, if a 6¼ 0, then either a 2 P or �a 2 P. If a 2 P,

then by 2.1.5(ii), we have a2 ¼ a � a 2 P. Also, if �a 2 P, then a2 ¼ ð�aÞð�aÞ 2 P. We

conclude that if a 6¼ 0, then a2 > 0.

(b) Since 1 ¼ 12, it follows from (a) that 1 > 0.

(c) We useMathematical Induction. The assertion for n¼ 1 is true by (b). If we suppose the

assertion is true for the natural number k, then k 2 P, and since 1 2 P, we havek þ 1 2 P by

2.1.5(i). Therefore, the assertion is true for all natural numbers. Q.E.D.

It is worth noting that no smallest positive real number can exist. This follows by

observing that if a > 0, then since 1
2
> 0 (why?), we have that

0 < 1
2
a < a:
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Thus if it is claimed that a is the smallest positive real number, we can exhibit a smaller

positive number 1
2
a.

This observation leads to the next result, which will be used frequently as a method of

proof. For instance, to prove that a number a � 0 is actually equal to zero, we see that it

suffices to show that a is smaller than an arbitrary positive number.

2.1.9 Theorem If a 2 R is such that 0 � a < e for every e > 0, then a ¼ 0.

Proof. Suppose to the contrary that a> 0. Then if we take e0 :¼ 1
2
a, we have 0 < e0 < a.

Therefore, it is false that a < e for every e > 0 and we conclude that a ¼ 0. Q.E.D.

Remark It is an exercise to show that if a 2 R is such that 0 � a � e for every e > 0,

then a ¼ 0.

The product of two positive numbers is positive. However, the positivity of a product

of two numbers does not imply that each factor is positive. The correct conclusion is given

in the next theorem. It is an important tool in working with inequalities.

2.1.10 Theorem If ab > 0, then either

(i) a > 0 and b > 0, or

(ii) a < 0 and b < 0.

Proof. First we note that ab > 0 implies that a 6¼ 0 and b 6¼ 0. (Why?) From the Trichotomy

Property, either a > 0 or a < 0. If a > 0, then 1=a > 0, and therefore b ¼ ð1=aÞ ðabÞ > 0.

Similarly, if a < 0, then 1=a < 0, so that b ¼ ð1=aÞðabÞ < 0. Q.E.D.

2.1.11 Corollary If ab < 0, then either

(i) a < 0 and b > 0, or

(ii) a > 0 and b < 0.

Inequalities

We now show how the Order Properties presented in this section can be used to ‘‘solve’’

certain inequalities. The reader should justify each of the steps.

2.1.12 Examples (a) Determine the set A of all real numbers x such that 2xþ 3 � 6.

We note that we havey

x 2 A () 2xþ 3 � 6 () 2x � 3 () x � 3
2
:

Therefore A ¼ x 2 R : x � 3
2

� �
.

(b) Determine the set B :¼ fx 2 R : x2 þ x > 2g.
We rewrite the inequality so that Theorem 2.1.10 can be applied. Note that

x 2 B () x2 þ x� 2 > 0 () ðx� 1Þðxþ 2Þ > 0:

Therefore, we either have (i) x� 1 > 0 and xþ 2 > 0, or we have (ii) x� 1 < 0 and

xþ 2 < 0. In case (i) we must have both x > 1 and x > �2, which is satisfied if and only

yThe symbol () should be read ‘‘if and only if.’’
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if x > 1. In case (ii) we must have both x < 1 and x < �2, which is satisfied if and only

if x < �2.

We conclude that B ¼ fx 2 R : x > 1g [ fx 2 R : x < �2g.
(c) Determine the set

C :¼ x 2 R :
2xþ 1

xþ 2
< 1

� �
:

We note that

x 2 C () 2xþ 1

xþ 2
� 1 < 0 () x� 1

xþ 2
< 0:

Therefore we have either (i) x� 1 < 0 and xþ 2 > 0, or (ii) x� 1 > 0 and xþ 2 < 0.

(Why?) In case (i) we must have both x < 1 and x > �2, which is satisfied if and only if

�2 < x < 1. In case (ii), we must have both x > 1 and x < �2, which is never satisfied.

We conclude that C ¼ fx 2 R : �2 < x < 1g. &

The following examples illustrate the use of the Order Properties of R in establishing

certain inequalities. The reader should verify the steps in the arguments by identifying the

properties that are employed.

It should be noted that the existence of square roots of positive numbers has not yet

been established; however, we assume the existence of these roots for the purpose of these

examples. (The existence of square roots will be discussed in Section 2.4.)

2.1.13 Examples (a) Let a � 0 and b � 0. Then

ð1Þ a < b () a2 < b2 () ffiffiffi
a

p
<

ffiffiffi
b

p

We consider the casewhere a > 0 and b > 0, leaving the case a ¼ 0 to the reader. It follows

from 2.1.5(i) that aþ b > 0. Since b2 � a2 ¼ ðb� aÞðbþ aÞ, it follows from 2.1.7(c) that

b� a > 0 implies that b2 � a2 > 0. Also, it follows from 2.1.10 that b2 � a2 > 0 implies

that b� a > 0.

If a > 0 and b > 0, then
ffiffiffi
a

p
> 0 and

ffiffiffi
b

p
> 0. Since a ¼ ffiffiffi

a
pð Þ2 and b ¼ ffiffiffi

b
p� �2

, the

second implication is a consequence of the first one when a and b are replaced by
ffiffiffi
a

p
andffiffiffi

b
p

, respectively.

We also leave it to the reader to show that if a � 0 and b � 0, then

ð10Þ a � b () a2 � b2 () ffiffiffi
a

p � ffiffiffi
b

p

(b) If a and b are positive real numbers, then their arithmetic mean is 1
2
ðaþ bÞ and their

geometric mean is
ffiffiffiffiffi
ab

p
. The Arithmetic-Geometric Mean Inequality for a, b is

ð2Þ
ffiffiffiffiffi
ab

p
� 1

2
ðaþ bÞ

with equality occurring if and only if a ¼ b.

To prove this, note that if a > 0; b > 0, and a 6¼ b, then
ffiffiffi
a

p
> 0;

ffiffiffi
b

p
> 0, andffiffiffi

a
p 6¼ ffiffiffi

b
p

. (Why?) Therefore it follows from 2.1.8(a) that
ffiffiffi
a

p � ffiffiffi
b

p� �2
> 0. Expanding

this square, we obtain

a� 2
ffiffiffiffiffi
ab

p
þ b > 0;

whence it follows that ffiffiffiffiffi
ab

p
< 1

2
ðaþ bÞ:
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Therefore (2) holds (with strict inequality) when a 6¼ b. Moreover, if a ¼ bð> 0Þ, then both
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds for a > 0; b > 0.

On the other hand, suppose that a > 0; b > 0 and that
ffiffiffiffiffi
ab

p ¼ 1
2
ðaþ bÞ. Then,

squaring both sides and multiplying by 4, we obtain

4ab ¼ ðaþ bÞ2 ¼ a2 þ 2abþ b2;

whence it follows that

0 ¼ a2 � 2abþ b2 ¼ ða� bÞ2:
But this equality implies that a ¼ b. (Why?) Thus, equality in (2) implies that a ¼ b.

Remark The general Arithmetic-Geometric Mean Inequality for the positive real

numbers a1; a2; . . . ; an is

ð3Þ ða1a2 � � � anÞ1=n � a1 þ a2 þ � � � þ an

n

with equality occurring if and only if a1 ¼ a2 ¼ � � � ¼ an. It is possible to prove this more

general statement using Mathematical Induction, but the proof is somewhat intricate. A more

elegant proof that uses properties of the exponential function is indicated in Exercise 8.3.9 in

Chapter 8.

(c) Bernoulli’s Inequality. If x > �1, then

ð4Þ ð1þ xÞn � 1þ nx for all n 2 N

The proof usesMathematical Induction. The case n ¼ 1 yields equality, so the assertion

is valid in this case. Next, we assume the validity of the inequality (4) for k 2 N and will

deduce it for k þ 1. Indeed, the assumptions that ð1þ xÞk � 1þ kx and that 1þ x > 0

imply (why?) that

ð1þ xÞkþ1 ¼ ð1þ xÞk � ð1þ xÞ
� ð1þ kxÞ � ð1þ xÞ ¼ 1þ ðk þ 1Þxþ kx2

� 1þ ðk þ 1Þx:

Thus, inequality (4) holds for n ¼ k þ 1. Therefore, (4) holds for all n 2 N . &

Exercises for Section 2.1

1. If a; b 2 R , prove the following.

(a) If aþ b ¼ 0, then b ¼ �a, (b) �ð�aÞ ¼ a,

(c) ð�1Þa ¼ �a, (d) ð�1Þð�1Þ ¼ 1.

2. Prove that if a; b 2 R , then

(a) �ðaþ bÞ ¼ ð�aÞ þ ð�bÞ, (b) ð�aÞ � ð�bÞ ¼ a � b,
(c) 1=ð�aÞ ¼ �ð1=aÞ, (d) �ða=bÞ ¼ ð�aÞ=b if b 6¼ 0.

3. Solve the following equations, justifying each step by referring to an appropriate property or

theorem.

(a) 2xþ 5 ¼ 8; (b) x2 ¼ 2x;
(c) x2 � 1 ¼ 3; (d) ðx� 1Þðxþ 2Þ ¼ 0:
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4. If a 2 R satisfies a � a ¼ a, prove that either a ¼ 0 or a ¼ 1.

5. If a 6¼ 0 and b 6¼ 0, show that 1=ðabÞ ¼ ð1=aÞð1=bÞ.
6. Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational

number s such that s2 ¼ 6.

7. Modify the proof of Theorem 2.1.4 to show that there does not exist a rational number t such that

t2 ¼ 3.

8. (a) Show that if x, y are rational numbers, then xþ y and xy are rational numbers.

(b) Prove that if x is a rational number and y is an irrational number, then xþ y is an irrational

number. If, in addition, x 6¼ 0, then show that xy is an irrational number.

9. Let K :¼ sþ t
ffiffiffi
2

p
: s; t 2 Q

� �
. Show that K satisfies the following:

(a) If x1; x2 2 K, then x1 þ x2 2 K and x1x2 2 K.

(b) If x 6¼ 0 and x 2 K, then 1=x 2 K.

(Thus the set K is a subfield of R . With the order inherited from R , the set K is an ordered field

that lies between Q and R .)

10. (a) If a < b and c � d, prove that aþ c < bþ d.

(b) If 0 < a < b and 0 � c � d , prove that 0 � ac � bd.

11. (a) Show that if a > 0, then 1=a > 0 and 1=ð1=aÞ ¼ a.

(b) Show that if a < b, then a < 1
2
ðaþ bÞ < b.

12. Let a, b, c, d be numbers satisfying 0 < a < b and c < d < 0. Give an example where ac < bd,

and one where bd < ac.

13. If a; b 2 R , show that a2 þ b2 ¼ 0 if and only if a ¼ 0 and b ¼ 0.

14. If 0 � a < b, show that a2 � ab < b2. Show by example that it does not follow that

a2 < ab < b2.

15. If 0 < a < b, show that (a) a <
ffiffiffiffiffi
ab

p
< b, and (b) 1=b < 1=a.

16. Find all real numbers x that satisfy the following inequalities.

(a) x2 > 3xþ 4; (b) 1 < x2 < 4;
(c) 1=x < x; (d) 1=x < x2:

17. Prove the following form of Theorem 2.1.9: If a 2 R is such that 0 � a � e for every e > 0, then

a ¼ 0.

18. Let a; b 2 R , and suppose that for every e > 0 we have a � bþ e. Show that a � b.

19. Prove that 1
2
ðaþ bÞ	 
2 � 1

2
ða2 þ b2Þ for all a; b 2 R . Show that equality holds if and only if

a ¼ b.

20. (a) If 0 < c < 1, show that 0 < c2 < c < 1.

(b) If 1 < c, show that 1 < c < c2.

21. (a) Prove there is no n 2 N such that 0 < n < 1. (Use the Well-Ordering Property of N .)

(b) Prove that no natural number can be both even and odd.

22. (a) If c > 1, show that cn � c for all n 2 N , and that cn > c for n > 1.

(b) If 0 < c < 1, show that cn � c for all n 2 N , and that cn < c for n > 1.

23. If a > 0; b > 0; and n 2 N , show that a < b if and only if an < bn. [Hint: Use Mathematical

Induction.]

24. (a) If c > 1 and m; n 2 N , show that cm > cn if and only if m > n.

(b) If 0 < c < 1 and m; n 2 N , show that cm < cn if and only if m > n.

25. Assuming the existence of roots, show that if c > 1, then c1=m < c1=n if and only if m > n.

26. Use Mathematical Induction to show that if a 2 R and m; n 2 N , then amþn ¼ aman and

ðamÞ ¼ amn.
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Section 2.2 Absolute Value and the Real Line

From the Trichotomy Property 2.1.5(iii), we are assured that if a 2 R and a 6¼ 0, then

exactly one of the numbers a and �a is positive. The absolute value of a 6¼ 0 is defined to

be the positive one of these two numbers. The absolute value of 0 is defined to be 0.

2.2.1 Definition The absolute value of a real number a, denoted by jaj, is defined by

jaj :¼
a if a > 0;
0 if a ¼ 0;
�a if a < 0:

8<
:

For example, j5j ¼ 5 and j � 8j ¼ 8. We see from the definition that jaj � 0 for all

a 2 R , and that jaj ¼ 0 if and only if a ¼ 0. Also j � aj ¼ jaj for all a 2 R . Some

additional properties are as follows.

2.2.2 Theorem (a) jabj ¼ jajjbj for all a; b 2 R :

(b) jaj2 ¼ a2 for all a 2 R .

(c) If c � 0, then jaj � c if and only if �c � a � c.

(d) �jaj � a � jaj for all a 2 R .

Proof. (a) If either a or b is 0, then both sides are equal to 0. There are four other cases to

consider. If a > 0; b > 0, then ab > 0, so that jabj ¼ ab ¼ jajjbj. If a > 0; b < 0, then

ab < 0, so that jabj ¼ �ab ¼ að�bÞ ¼ jajjbj. The remaining cases are treated similarly.

(b) Since a2 � 0, we have a2 ¼ ja2j ¼ jaaj ¼ jajjaj ¼ jaj2.
(c) If jaj � c, thenwehave botha � c and�a � c (why?),which is equivalent to�c � a � c.

Conversely, if �c � a � c, then we have both a � c and �a � c (why?), so that jaj � c.

(d) Take c ¼ jaj in part (c).
Q.E.D.

The following important inequality will be used frequently.

2.2.3 Triangle Inequality If a; b 2 R , then jaþ bj � jaj þ jbj.

Proof. From 2.2.2(d), we have �jaj � a � jaj and �jbj � b � jbj. On adding these

inequalities, we obtain

�ðjaj þ jbjÞ � aþ b � jaj þ jbj:
Hence, by 2.2.2(c) we have jaþ bj � jaj þ jbj. Q.E.D.

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0,

which is equivalent to saying that a and b have the same sign. (See Exercise 2.)

There are many useful variations of the Triangle Inequality. Here are two.

2.2.4 Corollary If a; b 2 R , then

(a)
��jaj � jbj�� � ja� bj;

(b) ja� bj � jaj þ jbj:

Proof. (a) We write a ¼ a� bþ b and then apply the Triangle Inequality to get

jaj ¼ jða� bÞ þ bj � ja� bj þ jbj. Now subtract jbj to get jaj � jbj � ja� bj. Similarly,
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from jbj ¼ jb� aþ aj � jb� aj þ jaj, we obtain �ja� bj ¼ �jb� aj � jaj � jbj. If we
combine these two inequalities, using 2.2.2(c), we get the inequality in (a).

(b) Replace b in the Triangle Inequality by�b to get ja� bj � jaj þ j � bj. Since j � bj ¼
jbj we obtain the inequality in (b). Q.E.D.

A straightforward application of Mathematical Induction extends the Triangle In-

equality to any finite number of elements of R .

2.2.5 Corollary If a1; a2; . . . ; an are any real numbers, then

ja1 þ a2 þ � � � þ anj � ja1j þ ja2j þ � � � þ janj:
The following examples illustrate how the properties of absolute value can be used.

2.2.6 Examples (a) Determine the set A of x 2 R such that j2xþ 3j < 7.

From a modification of 2.2.2(c) for the case of strict inequality, we see that x 2 A if

and only if �7 < 2xþ 3 < 7, which is satisfied if and only if �10 < 2x < 4. Dividing by

2, we conclude that A ¼ fx 2 R : �5 < x < 2g.
(b) Determine the set B :¼ fx 2 R : jx� 1j < jxjg.

One method is to consider cases so that the absolute value symbols can be removed.

Here we take the cases

ðiÞ x � 1; ðiiÞ 0 � x < 1; ðiiiÞ x < 0:

(Why did we choose these three cases?) In case (i) the inequality becomes x� 1 < x,

which is satisfied without further restriction. Therefore all x such that x � 1 belong to the

set B. In case (ii), the inequality becomes �ðx� 1Þ < x, which requires that x > 1
2
. Thus,

this case contributes all x such that 1
2
< x < 1 to the set B. In case (iii), the inequality

becomes �ðx� 1Þ < �x, which is equivalent to 1 < 0. Since this statement is false, no

value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we

conclude that B ¼ x 2 R : x > 1
2

� �
.

There is a second method of determining the set B based on the fact that a < b if and

only if a2 < b2 when both a � 0 and b � 0. (See 2.1.13(a).) Thus, the inequality jx� 1j <
jxj is equivalent to the inequality jx� 1j2 < jxj2. Since jaj2 ¼ a2 for any a by 2.2.2(b), we

can expand the square to obtain x2 � 2xþ 1 < x2, which simplifies to x > 1
2
. Thus, we

again find that B ¼ x 2 R : x > 1
2

� �
. This method of squaring can sometimes be used to

advantage, but often a case analysis cannot be avoided when dealing with absolute values.

A graphical view of the inequality is obtained by sketching the graphs of y ¼ jxj and
y ¼ jx� 1j, and interpreting the inequality jx� 1j < jxj to mean that the graph of y ¼
jx� 1j lies underneath the graph of y ¼ jxj. See Figure 2.2.1.

y

x

y = | x |

y = | x – 1|

11
2

Figure 2.2.1 jx� 1j < jxj
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(c) Solve the inequality j2x� 1j � xþ 1.

There are two cases to consider. If x � 1
2
, then j2x� 1j ¼ �2xþ 1 and the inequality

becomes�2xþ 1 � xþ 1, which is x � 0. Thus case one gives us 0 � x � 1
2
. For case two

we assume x � 1
2
, which gives us the inequality 2x� 1 � xþ 1, or x � 2. Since x � 1

2
, we

obtain 1
2
� x � 2. Combining the two cases, we get 0 � x � 2. See Figure 2.2.2.

(d) Let the function f be defined by f ðxÞ :¼ ð2x2 þ 3xþ 1Þ=ð2x� 1Þ for 2 � x < 3.

Find a constant M such that j f ðxÞj � M for all x satisfying 2 � x � 3.

We consider separately the numerator and denominator of

j f ðxÞj ¼ j2x2 þ 3xþ 1j
j2x� 1j :

From the Triangle Inequality, we obtain

j2x2 þ 3xþ 1j � 2jxj2 þ 3jxj þ 1 � 2 � 32 þ 3 � 3þ 1 ¼ 28

since jxj � 3 for the x under consideration. Also, j2x� 1j � 2jxj � 1 � 2 � 2� 1 ¼ 3

since jxj � 2 for the x under consideration. Thus, 1=j2x� 1j � 1=3 for x � 2. (Why?)

Therefore, for 2 � x � 3 we have j f ðxÞj � 28=3. Hence we can take M ¼ 28=3. (Note
that we have found one such constant M; evidently any number H > 28=3 will also

satisfy j f ðxÞj � H. It is also possible that 28=3 is not the smallest possible choice

for M.) &

The Real Line

A convenient and familiar geometric interpretation of the real number system is the real

line. In this interpretation, the absolute value jaj of an element a in R is regarded as the

distance from a to the origin 0. More generally, the distance between elements a and b in R

is ja� bj. (See Figure 2.2.3.)

y

x

y = x + 1

21–1

y = |2x – 1|
(0, 1)

(2, 3)

Figure 2.2.2 j2x� 1j � xþ 1

Figure 2.2.3 The distance between a ¼ �2 and b ¼ 3
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Later we will need precise language to discuss the notion of one real number being

‘‘close to’’ another. If a is a given real number, then saying that a real number x is ‘‘close

to’’ a should mean that the distance jx� aj between them is ‘‘small.’’ A context in which

this idea can be discussed is provided by the terminology of neighborhoods, which we

now define.

2.2.7 Definition Let a 2 R and e > 0. Then the e-neighborhood of a is the set

V eðaÞ :¼ fx 2 R : jx� aj < eg.

For a 2 R, the statement that x belongs to VeðaÞ is equivalent to either of the

statements (see Figure 2.2.4)

�e < x� a < e () a� e < x < aþ e:

2.2.8 Theorem Let a 2 R . If x belongs to the neighborhood V eðaÞ for every e > 0, then

x ¼ a.

Proof. If a particular x satisfies jx� aj < e for every e > 0, then it follows from 2.1.9 that

jx� aj ¼ 0, and hence x ¼ a. Q.E.D.

2.2.9 Examples (a) LetU :¼ fx : 0 < x < 1g. If a 2 U, then let e be the smaller of the

two numbers a and 1� a. Then it is an exercise to show that V eðaÞ is contained in U. Thus
each element of U has some e-neighborhood of it contained in U.

(b) If I :¼ fx : 0 � x � 1g, then for any e > 0, the e-neighborhood V eð0Þ of 0 contains

points not in I, and so Veð0Þ is not contained in I. For example, the number xe :¼ �e=2 is in
V eð0Þ but not in I.

(c) If jx� aj < e and jy� bj < e, then the Triangle Inequality implies that

jðxþ yÞ � ðaþ bÞj ¼ jðx� aÞ þ ðy� bÞj
� jx� aj þ jy� bj < 2e:

Thus if x, y belong to the e-neighborhoods of a, b, respectively, then xþ y belongs to the

2e-neighborhood of aþ b (but not necessarily to the e-neighborhood of aþ b). &

Exercises for Section 2.2

1. If a; b 2 R and b 6¼ 0, show that:

(a) jaj ¼
ffiffiffiffiffi
a2

p
; (b) ja=bj ¼ jaj=jbj:

2. If a; b 2 R , show that jaþ bj ¼ jaj þ jbj if and only if ab � 0.

3. If x; y; z 2 R and x � z, show that x � y � z if and only if jx� yj þ jy� zj ¼ jx� zj. Interpret
this geometrically.

Figure 2.2.4 An e-neighborhood of a
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4. Show that jx� aj < e if and only if a� e < x < aþ e.

5. If a < x < b and a < y < b, show that jx� yj < b� a. Interpret this geometrically.

6. Find all x 2 R that satisfy the following inequalities:

(a) j4x� 5j � 13; (b) jx2 � 1j � 3:

7. Find all x 2 R that satisfy the equation jxþ 1j þ jx� 2j ¼ 7.

8. Find all values of x that satisfy the following equations:

(a) xþ 1 ¼ j2x� 1j, (b) 2x� 1 ¼ jx� 5j.
9. Find all values of x that satisfy the following inequalities. Sketch graphs.

(a) jx� 2j � xþ 1, (b) 3jxj � 2� x:

10. Find all x 2 R that satisfy the following inequalities.

(a) jx� 1j > jxþ 1j; (b) jxj þ jxþ 1j < 2:

11. Sketch the graph of the equation y ¼ jxj � jx� 1j.
12. Find all x 2 R that satisfy the inequality 4 < jxþ 2j þ jx� 1j < 5.

13. Find all x 2 R that satisfy both j2x� 3j < 5 and jxþ 1j > 2 simultaneously.

14. Determine and sketch the set of pairs ðx; yÞ in R � R that satisfy:

(a) jxj ¼ jyj; (b) jxj þ jyj ¼ 1;
(c) jxyj ¼ 2, (d) jxj � jyj ¼ 2:

15. Determine and sketch the set of pairs (x, y) in R � R that satisfy:

(a) jxj � jyj; (b) jxj þ jyj � 1;
(c) jxyj � 2; (d) jxj � jyj � 2:

16. Let e > 0 and d > 0, and a 2 R . Show that V eðaÞ \ VdðaÞ and V eðaÞ [ VdðaÞ are g-neighbor-

hoods of a for appropriate values of g.

17. Show that if a; b 2 R , and a 6¼ b, then there exist e-neighborhoods U of a and V of b such that

U \ V ¼ ;.
18. Show that if a; b 2 R then

(a) max a; bf g ¼ 1
2
ðaþ bþ ja� bjÞ and min a; bf g ¼ 1

2
ðaþ b� ja� bjÞ:

(b) minfa; b; cg ¼ minfminfa; bg; cg:
19. Show that if a; b; c 2 R , then the ‘‘middle number’’ is midfa; b; cg ¼ minfmaxfa; bg;

maxfb; cg;maxfc; agg.

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real number

system R . In this section we shall present one more property of R that is often called the

‘‘Completeness Property.’’ The system Q of rational numbers also has the algebraic and order

properties described in the preceding sections, butwe have seen that
ffiffiffi
2

p
cannot be represented

as a rational number; therefore
ffiffiffi
2

p
does not belong toQ . This observation shows the necessity

of an additional property to characterize the real number system. This additional property, the

Completeness (or theSupremum)Property, is an essential property ofR , andwewill say thatR

is a complete ordered field. It is this special property that permits us to define and develop the

various limiting procedures that will be discussed in the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to

give what is probably the most efficient approach by assuming that each nonempty

bounded subset of R has a supremum.
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Suprema and Infima

We now introduce the notions of upper bound and lower bound for a set of real numbers.

These ideas will be of utmost importance in later sections.

2.3.1 Definition Let S be a nonempty subset of R .

(a) The set S is said to be bounded above if there exists a number u 2 R such that s � u

for all s 2 S. Each such number u is called an upper bound of S.

(b) The set S is said to be bounded below if there exists a number w 2 R such that w � s

for all s 2 S. Each such number w is called a lower bound of S.

(c) A set is said to be bounded if it is both bounded above and bounded below. A set is

said to be unbounded if it is not bounded.

For example, the set S :¼ fx 2 R : x < 2g is bounded above; the number 2 and any

number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set is

not bounded below. Thus it is unbounded (even though it is bounded above).

If a set has one upper bound, then it has infinitely many upper bounds, because if u is an

upper bound of S, then the numbers uþ 1; uþ 2; . . . are also upper bounds of S. (A similar

observation is valid for lower bounds.)

In the set of upper bounds of S and the set of lower bounds of S, we single out their least

and greatest elements, respectively, for special attention in the following definition. (See

Figure 2.3.1.)

2.3.2 Definition Let S be a nonempty subset of R .

(a) If S is bounded above, then a number u is said to be a supremum (or a least upper

bound) of S if it satisfies the conditions:

(1) u is an upper bound of S, and

(2) if v is any upper bound of S, then u � v.

(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower

bound) of S if it satisfies the conditions:

(10) w is a lower bound of S, and

(20) if t is any lower bound of S, then t � w.

It is not difficult to see that there can be only one supremum of a given subset S of R .

(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that u1
and u2 are both suprema of S. If u1 < u2, then the hypothesis that u2 is a supremum implies

that u1 cannot be an upper bound of S. Similarly, we see that u2 < u1 is not possible.

Therefore, we must have u1 ¼ u2. A similar argument can be given to show that the

infimum of a set is uniquely determined.

If the supremum or the infimum of a set S exists, we will denote them by

sup S and inf S:

Figure 2.3.1 inf S and sup S
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We also observe that if u0 is an arbitrary upper bound of a nonempty set S, then sup S � u0.
This is because sup S is the least of the upper bounds of S.

First of all, it needs to be emphasized that in order for a nonempty set S in R to have a

supremum, it must have an upper bound. Thus, not every subset of R has a supremum;

similarly, not every subset of R has an infimum. Indeed, there are four possibilities for a

nonempty subset S of R : it can

(i) have both a supremum and an infimum,

(ii) have a supremum but no infimum,

(iii) have an infimum but no supremum,

(iv) have neither a supremum nor an infimum.

We also wish to stress that in order to show that u ¼ sup S for some nonempty subset S

of R , we need to show that both (1) and (2) of Definition 2.3.2(a) hold. It will be instructive

to reformulate these statements.

The definition of u ¼ sup S asserts that u is an upper bound of S such that u � v for any

upper bound v of S. It is useful to have alternative ways of expressing the idea that u is the

‘‘least’’ of the upper bounds of S. One way is to observe that any number smaller than u is

not an upper bound of S. That is, if z < u, then z is not an upper bound of S. But to say that z

is not an upper bound of Smeans there exists an element sz in S such that z < sz. Similarly,

if e > 0, then u � e is smaller than u and thus fails to be an upper bound of S.

The following statements about an upper bound u of a set S are equivalent:

(1) if v is any upper bound of S, then u � v,

(2) if z < u, then z is not an upper bound of S,

(3) if z < u, then there exists sz 2 S such that z < sz,

(4) if e > 0, then there exists se 2 S such that u� e < se.

Therefore, we can state two alternate formulations for the supremum.

2.3.3 Lemma A number u is the supremum of a nonempty subset S of R if and only if u

satisfies the conditions:

(1) s � u for all s 2 S,

(2) if v < u, then there exists s0 2 S such that v < s0.

For future work with limits, it is useful to have this condition expressed in terms of

e > 0. This is done in the next lemma.

2.3.4 Lemma An upper bound u of a nonempty set S in R is the supremum of S if and

only if for every e > 0 there exists an se 2 S such that u� e < se.

Proof. If u is an upper bound of S that satisfies the stated condition and if v < u, then we

put e :¼ u� v. Then e > 0, so there exists se 2 S such that v ¼ u� e < se. Therefore, v is

not an upper bound of S, and we conclude that u ¼ sup S.

Conversely, suppose that u ¼ sup S and let e > 0. Since u� e < u, then u� e is not an
upper bound of S. Therefore, some element se of S must be greater than u� e; that is,
u� e < se. (See Figure 2.3.2.) Q.E.D.

It is important to realize that the supremum of a set may or may not be an element of

the set. Sometimes it is and sometimes it is not, depending on the particular set. We

consider a few examples.
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2.3.5 Examples (a) If a nonempty set S1 has a finite number of elements, then it can be

shown that S1 has a largest element u and a least element w. Then u¼ sup S1 andw¼ inf S1,
and they are both members of S1. (This is clear if S1 has only one element, and it can be

proved by induction on the number of elements in S1; see Exercises 12 and 13.)

(b) The set S2 :¼ fx : 0 � x � 1g clearly has 1 for an upper bound. We prove that 1 is its

supremum as follows. If v< 1, there exists an element s0 2 S2 such that v < s0. (Name one

such element s0.) Therefore v is not an upper bound of S2 and, since v is an arbitrary number

v< 1, we conclude that sup S2 ¼ 1. It is similarly shown that inf S2 ¼ 0. Note that both the

supremum and the infimum of S2 are contained in S2.

(c) The set S3 :¼ fx : 0 < x < 1g clearly has 1 for an upper bound. Using the same

argument as given in (b), we see that sup S3 ¼ 1. In this case, the set S3 does not contain its

supremum. Similarly, inf S3 ¼ 0 is not contained in S3. &

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of R that were

discussed in Section 2.1 that every nonempty subset of R that is bounded above has a

supremum in R . However, it is a deep and fundamental property of the real number system

that this is indeed the case. We will make frequent and essential use of this property,

especially in our discussion of limiting processes. The following statement concerning the

existence of suprema is our final assumption about R . Thus, we say that R is a complete

ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has

an upper bound also has a supremum in R .

This property is also called the SupremumProperty ofR . The analogous property for

infima can be deduced from the Completeness Property as follows. Suppose that S is a

nonempty subset of R that is bounded below. Then the nonempty set S :¼ �s : s 2 Sf g is

bounded above, and the Supremum Property implies that u :¼ sup S exists in R . The reader

should verify in detail that –u is the infimum of S.

Exercises for Section 2.3

1. Let S1 :¼ fx 2 R : x � 0g. Show in detail that the set S1 has lower bounds, but no upper

bounds. Show that inf S1 ¼ 0.

2. Let S2 :¼ fx 2 R : x > 0g. Does S2 have lower bounds? Does S2 have upper bounds? Does

inf S2 exist? Does sup S2 exist? Prove your statements.

3. Let S3 ¼ f1=n : n 2 NÞ. Show that sup S3 ¼ 1 and inf S3 � 0. (It will follow from the

Archimedean Property in Section 2.4 that inf S3 ¼ 0.)

4. Let S4 :¼ 1� �1ð Þn=n : n 2 Nf g. Find inf S4 and sup S4.

Figure 2.3.2 u ¼ sup S
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5. Find the infimum and supremum, if they exist, of each of the following sets.

(a) A :¼ x 2 R : 2xþ 5 > 0f g; (b) B :¼ x 2 R : xþ 2 � x2
� �

;
(c) C :¼ x 2 R : x < 1=xf g; (d) D :¼ x 2 R : x2 � 2x� 5 < 0

� �
:

6. Let S be a nonempty subset of R that is bounded below. Prove that inf S ¼ �supf�s : s 2 Sg.
7. If a set S � R contains one of its upper bounds, show that this upper bound is the supremum of S.

8. Let S � R be nonempty. Show that u 2 R is an upper bound of S if and only if the conditions

t 2 R and t > u imply that t =2 S.

9. Let S � R be nonempty. Show that if u ¼ sup S, then for every number n 2 N the number

u� 1=n is not an upper bound of S, but the number uþ 1=n is an upper bound of S. (The

converse is also true; see Exercise 2.4.3.)

10. Show that if A and B are bounded subsets of R , then A [ B is a bounded set. Show that

supðA [ BÞ ¼ sup supA; sup Bf g.
11. Let S be a bounded set in R and let S0 be a nonempty subset of S. Show that

inf S � inf S0 � sup S0 � sup S.

12. Let S � R and suppose that s� :¼ sup S belongs to S. If u =2 S, show that

sup S [ fugð Þ ¼ supfs�; ug.
13. Show that a nonempty finite set S � R contains its supremum. [Hint: Use Mathematical

Induction and the preceding exercise.]

14. Let S be a set that is bounded below. Prove that a lower bound w of S is the infimum of S if and

only if for any e > 0 there exists t 2 S such that t < wþ e.

Section 2.4 Applications of the Supremum Property

We will now discuss how to work with suprema and infima. We will also give some very

important applications of these concepts to derive fundamental properties of R . We begin

with examples that illustrate useful techniques in applying the ideas of supremum and

infimum.

2.4.1 Examples (a) It is an important fact that taking suprema and infima of sets is

compatible with the algebraic properties of R . As an example, we present here the

compatibility of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in R .

Define the set aþ S :¼ aþ s : s 2 Sf g. We will prove that

supðaþ SÞ ¼ aþ sup S:

If we let u :¼ sup S, then x � u for all x 2 S, so that aþ x � aþ u. Therefore, aþ u

is an upper bound for the set aþ S ; consequently, we have supðaþ SÞ � aþ u.

Now if v is any upper bound of the set aþ S, then aþ x � v for all x 2 S.

Consequently x � v� a for all x 2 S, so that v� a is an upper bound of S. Therefore,

u ¼ sup S � v� a, which gives us aþ u � v. Since v is any upper bound of aþ S, we can

replace v by sup aþ Sð Þ to get aþ u � supðaþ SÞ.
Combining these inequalities, we conclude that

supðaþ SÞ ¼ aþ u ¼ aþ sup S:

For similar relationships between the suprema and infima of sets and the operations of

addition and multiplication, see the exercises.
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(b) If the suprema or infima of two sets are involved, it is often necessary to establish

results in two stages, working with one set at a time. Here is an example.

Suppose that A and B are nonempty subsets of R that satisfy the property:

a � b for all a 2 A and all b 2 B:

We will prove that

sup A � inf B:

For, given b 2 B, we have a � b for all a 2 A. This means that b is an upper bound of A, so

that sup A � b. Next, since the last inequality holds for all b 2 B, we see that the number

sup A is a lower bound for the set B. Therefore, we conclude that sup A � inf B. &

Functions

The idea of upper bound and lower bound is applied to functions by considering the range

of a function. Given a function f : D ! R , we say that f is bounded above if the set

f ðDÞ ¼ f xð Þ : x 2 Df g is bounded above in R ; that is, there exists B 2 R such that f ðxÞ �
B for all x 2 D. Similarly, the function f is bounded below if the set f (D) is bounded below.

We say that f is bounded if it is bounded above and below; this is equivalent to saying that

there exists B 2 R such that f xð Þj � Bj for all x 2 D.

The following example illustrates how to work with suprema and infima of functions.

2.4.2 Examples Suppose that f and g are real-valued functions with common domain

D � R . We assume that f and g are bounded.

(a) If f ðxÞ � gðxÞ for all x 2 D, then sup f Dð Þ � sup g Dð Þ, which is sometimes written:

sup
x2D

f ðxÞ � sup
x2D

gðxÞ:

We first note that f ðxÞ � gðxÞ � sup gðDÞ, which implies that the number sup g(D) is

an upper bound for f (D). Therefore, sup f ðDÞ � sup gðDÞ.
(b) We note that the hypothesis f ðxÞ � gðxÞ for all x 2 D in part (a) does not imply any

relation between sup f(D) and inf g(D).

For example, if f ðxÞ :¼ x2 and gðxÞ :¼ x withD ¼ x : 0 � x � 1f g, then f ðxÞ � gðxÞ
for all x 2 D. However, we see that sup f ðDÞ ¼ 1 and inf gðDÞ ¼ 0. Since sup gðDÞ ¼ 1, the

conclusion of (a) holds.

(c) If f ðxÞ � gðyÞ for all x, y 2 D, then we may conclude that sup f ðDÞ � infgðDÞ, which
we may write as:

sup
x2D

f ðxÞ � inf
y2D

gðyÞ:

(Note that the functions in (b) do not satisfy this hypothesis.)

The proof proceeds in two stages as in Example 2.4.l(b). The reader should write out

the details of the argument. &

Further relationships between suprema and infima of functions are given in the exercises.

The Archimedean Property

Because of your familiarity with the set R and the customary picture of the real line, it may

seem obvious that the set N of natural numbers is not bounded in R . How can we prove this
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‘‘obvious’’ fact? In fact, we cannot do so by using only the Algebraic and Order Properties

given in Section 2.1. Indeed, we must use the Completeness Property of R as well as the

Inductive Property of N (that is, if n 2 N , then nþ 1 2 N).

The absence of upper bounds for N means that given any real number x there exists a

natural number n (depending on x) such that x < n.

2.4.3 Archimedean Property If x 2 R , then there exists nx 2 N such that x � nx.

Proof. If the assertion is false, then n � x for all n 2 N; therefore, x is an upper bound

ofN . Therefore, by the Completeness Property, the nonempty setN has a supremum u 2 R .

Subtracting 1 from u gives a number u� 1, which is smaller than the supremum u of N .

Therefore u� 1 is not an upper bound of N , so there existsm 2 N with u� 1 < m. Adding

1 gives u < mþ 1, and since mþ 1 2 N , this inequality contradicts the fact that u is an

upper bound of N . Q.E.D.

2.4.4 Corollary If S :¼ f1=n : n 2 Ng, then inf S ¼ 0.

Proof. Since S 6¼ ; is bounded below by 0, it has an infimum and we let w :¼ inf S. It is

clear that w � 0. For any e > 0, the Archimedean Property implies that there exists n 2 N

such that 1=e < n, which implies 1=n < e. Therefore we have

0 � w � 1=n < e:

But since e > 0 is arbitrary, it follows from Theorem 2.1.9 that w ¼ 0. Q.E.D.

2.4.5 Corollary If t > 0, there exists nt 2 N such that 0 < 1=nt < t.

Proof. Since inf 1=n : n 2 Nf g ¼ 0 and t > 0, then t is not a lower bound for the set

f1=n : n 2 Ng. Thus there exists nt 2 N such that 0 < 1=nt < t. Q.E.D.

2.4.6 Corollary If y > 0, there exists ny 2 N such that ny � 1 � y � ny.

Proof. The Archimedean Property ensures that the subset Ey :¼ m 2 N : y < mf g of

N is not empty. By the Well-Ordering Property 1.2.1, Ey has a least element, which

we denote by ny. Then ny � 1 does not belong to Ey, and hence we have

ny � 1 � y < ny. Q.E.D.

Collectively, the Corollaries 2.4.4–2.4.6 are sometimes referred to as the Archimedean

Property of R .

The Existence of
ffiffiffi
2

p

The importance of the Supremum Property lies in the fact that it guarantees the existence of

real numbers under certain hypotheses. We shall make use of it in this way many times. At

the moment, we shall illustrate this use by proving the existence of a positive real number x

such that x2 ¼ 2; that is, the positive square root of 2. It was shown earlier (see Theorem

2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence of

at least one irrational number.
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2.4.7 Theorem There exists a positive real number x such that x2 ¼ 2.

Proof. Let S :¼ s 2 R : 0 � s; s2 < 2
� �

. Since 1 2 S, the set is not empty. Also, S is

bounded above by 2, because if t > 2, then t2 > 4 so that t =2 S. Therefore the Supremum

Property implies that the set S has a supremum inR , and we let x :¼ sup S. Note that x > 1.

Wewill prove that x2 ¼ 2 by ruling out the other two possibilities: x2 < 2 and x2 > 2.

First assume that x2 < 2. We will show that this assumption contradicts the fact that

x ¼ sup S by finding an n 2 N such that xþ 1=n 2 S, thus implying that x is not an upper

bound for S. To see how to choose n, note that 1=n2 � 1=n so that

xþ 1

n

� 
2

¼ x2 þ 2x

n
þ 1

n2
� x2 þ 1

n
ð2xþ 1Þ:

Hence if we can choose n so that

1

n
ð2xþ 1Þ < 2� x2;

then we get ðxþ 1=nÞ2 < x2 þ ð2� x2Þ ¼ 2. By assumption we have 2� x2 > 0, so that

ð2� x2Þ=ð2xþ 1Þ > 0. Hence the Archimedean Property (Corollary 2.4.5) can be used to

obtain n 2 N such that

1

n
<

2� x2

2xþ 1
:

These steps can be reversed to show that for this choice of n we have xþ 1=n 2 S, which

contradicts the fact that x is an upper bound of S. Therefore we cannot have x2 < 2.

Now assume that x2 > 2. We will show that it is then possible to findm 2 N such that

x� 1=m is also an upper bound of S, contradicting the fact that x ¼ sup S. To do this, note

that

x� 1

m

� 
2

¼ x2 � 2x

m
þ 1

m2
> x2 � 2x

m
:

Hence if we can choose m so that

2x

m
< x2 � 2;

then ðx� 1=mÞ2 > x2 � ðx2 � 2Þ ¼ 2. Now by assumption we have x2 � 2 > 0, so that

ðx2 � 2Þ=2x > 0. Hence, by the Archimedean Property, there exists m 2 N such that

1

m
<

x2 � 2

2x
:

These steps can be reversed to show that for this choice of m we have ðx� 1=mÞ2 > 2.

Now if s 2 S, then s2 < 2 < ðx� 1=mÞ2, whence it follows from 2.1.13(a) that

s < x� 1=m. This implies that x�1/m is an upper bound for S, which contradicts the

fact that x ¼ sup S. Therefore we cannot have x2 > 2.

Since the possibilities x2 < 2 and x2 > 2 have been excluded, we must have

x2 ¼ 2. Q.E.D.

By slightly modifying the preceding argument, the reader can show that if a > 0, then

there is a unique b> 0 such that b2¼ a. We call b the positive square root of a and denote

it by b ¼ ffiffiffi
a

p
or b ¼ a1=2. A slightly more complicated argument involving the binomial
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theorem can be formulated to establish the existence of a unique positive nth root of a,

denoted by
ffiffiffi
an

p
or a1=n, for each n 2 N .

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational

numbers T :¼ fr 2 Q : 0 � r; r2 < 2g, the argument then gives the conclusion that y :¼
sup T satisfies y2 ¼ 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational

number, it follows that the set T that consists of rational numbers does not have a supremum

belonging to the set Q . Thus the ordered field Q of rational numbers does not possess the

Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely
ffiffiffi
2

p
. Actually there

are ‘‘more’’ irrational numbers than rational numbers in the sense that the set of rational

numbers is countable (as shown in Section 1.3), while the set of irrational numbers is

uncountable (see Section 2.5). However, we next show that in spite of this apparent disparity,

the set of rational numbers is ‘‘dense’’ inR in the sense that given any two real numbers there

is a rational number between them (in fact, there are infinitely many such rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there

exists a rational number r 2 Q such that x < r < y.

Proof. It is no loss of generality (why?) to assume that x> 0. Since y� x > 0, it follows

from Corollary 2.4.5 that there exists n 2 N such that 1=n < y� x. Therefore, we have

nxþ 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m 2 N with

m� 1 � nx < m. Therefore, m � nxþ 1 < ny, whence nx < m < ny. Thus, the rational

number r :¼ m=n satisfies x < r < y. Q.E.D.

To round out the discussion of the interlacing of rational and irrational numbers, we

have the same ‘‘betweenness property’’ for the set of irrational numbers.

2.4.9 Corollary If x and y are real numbers with x < y, then there exists an irrational

number z such that x < z < y.

Proof. If we apply the Density Theorem 2.4.8 to the real numbers x=
ffiffiffi
2

p
and y=

ffiffiffi
2

p
, we

obtain a rational number r 6¼ 0 (why?) such that

xffiffiffi
2

p < r <
yffiffiffi
2

p :

Then z :¼ r
ffiffiffi
2

p
is irrational (why?) and satisfies x < z < y. Q.E.D.

Exercises for Section 2.4

1. Show that supf1� 1=n : n 2 Ng ¼ 1.

2. If S :¼ f1=n� 1=m : n;m 2 Ng, find inf S and sup S.

3. Let S � R be nonempty. Prove that if a number u in R has the properties: (i) for every n 2 N the

number u� 1=n is not an upper bound of S, and (ii) for every number n 2 N the number uþ 1=n
is an upper bound of S, then u ¼ sup S. (This is the converse of Exercise 2.3.9.)
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4. Let S be a nonempty bounded set in R .

(a) Let a > 0, and let aS :¼ fas : s 2 Sg. Prove that

infðaSÞ ¼ a inf S; supðaSÞ ¼ a sup S:

(b) Let b < 0 and let bS ¼ fbs : s 2 Sg. Prove that

infðbSÞ ¼ b sup S; supðbSÞ ¼ b inf S:

5. Let S be a set of nonnegative real numbers that is bounded above and let T :¼ fx2 : x 2 Sg.
Prove that if u ¼ sup S, then u2 ¼ sup T . Give an example that shows the conclusion may be

false if the restriction against negative numbers is removed.

6. Let X be a nonempty set and let f : X ! R have bounded range in R . If a 2 R , show that

Example 2.4.l(a) implies that

supfaþ f ðxÞ : x 2 Xg ¼ aþ supf f ðxÞ : x 2 Xg:
Show that we also have

inffaþ f ðxÞ : x 2 Xg ¼ aþ inff f ðxÞ : x 2 Xg:

7. Let A and B be bounded nonempty subsets of R , and let Aþ B :¼ faþ b : a 2 A; b 2 Bg. Prove
that supðAþ BÞ ¼ sup Aþ sup B and infðAþ BÞ ¼ inf Aþ inf B.

8. Let X be a nonempty set, and let f and g be defined onX and have bounded ranges inR . Show that

supf f ðxÞ þ gðxÞ : x 2 Xg � supf f ðxÞ : x 2 Xg þ supfgðxÞ : x 2 Xg

and that

inff f ðxÞ : x 2 Xg þ inffgðxÞ : x 2 Xg � inff f ðxÞ þ gðxÞ : x 2 Xg:
Give examples to show that each of these inequalities can be either equalities or strict

inequalities.

9. Let X ¼ Y :¼ fx 2 R : 0 < x < 1g. Define h : X � Y ! R by hðx; yÞ :¼ 2xþ y.

(a) For each x 2 X, find f ðxÞ :¼ supfhðx; yÞ : y 2 Yg; then find inff f ðxÞ : x 2 Xg.
(b) For each y 2 Y , find gðyÞ :¼ inffhðx; yÞ : x 2 Xg; then find supfgðyÞ : y 2 Yg. Compare

with the result found in part (a).

10. Perform the computations in (a) and (b) of the preceding exercise for the function h : X � Y ! R

defined by

hðx; yÞ :¼ 0 if x < y;
1 if x � y:

�

11. Let X and Y be nonempty sets and let h : X � Y ! R have bounded range in R . Let f : X ! R

and g : Y ! R be defined by

f ðxÞ :¼ supfhðx; yÞ : y 2 Yg; gðyÞ :¼ inffhðx; yÞ : x 2 Xg:
Prove that

supfgðyÞ : y 2 Yg � inff f ðxÞ : x 2 Xg:
We sometimes express this by writing

sup
y

inf
x
hðx; yÞ � inf

x
sup
y

hðx; yÞ:

Note that Exercises 9 and 10 show that the inequality may be either an equality or a strict

inequality.
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12. Let X and Y be nonempty sets and let h : X � Y ! R have bounded range in R . Let F : X ! R

and G : Y ! R be defined by

FðxÞ :¼ supfhðx; yÞ : y 2 Yg; GðyÞ :¼ supfhðx; yÞ : x 2 Xg:

Establish the Principle of the Iterated Suprema:

supfhðx; yÞ : x 2 X; y 2 Yg ¼ supfFðxÞ : x 2 Xg ¼ supfGðyÞ : y 2 Yg

We sometimes express this in symbols by

sup
x;y

hðx; yÞ ¼ sup
x

sup
y

hðx; yÞ ¼ sup
y

sup
x

hðx; yÞ:

13. Given any x 2 R, show that there exists a unique n 2 Z such that n� 1 � x < n.

14. If y > 0, show that there exists n 2 N such that 1=2n < y.

15. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such

that y2 ¼ 3.

16. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real

number z such that z2 ¼ a.

17. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such

that u3 ¼ 2.

18. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

19. If u > 0 is any real number and x < y, show that there exists a rational number r such that

x < ru < y. (Hence the set fru : r 2 Qg is dense in R .)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called ‘‘intervals.’’

The notations and terminology for these special sets will be familiar from earlier

courses. If a; b 2 R satisfy a < b, then the open interval determined by a and b is

the set

ða; bÞ :¼ fx 2 R : a < x < bg:
The points a and b are called the endpoints of the interval; however, the endpoints are not

included in an open interval. If both endpoints are adjoined to this open interval, then we

obtain the closed interval determined by a and b; namely, the set

½a; b	 :¼ fx 2 R : a � x � bg:
The two half-open (or half-closed) intervals determined by a and b are [a, b), which

includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b� a. If a ¼ b, the

corresponding open interval is the empty set ða; aÞ ¼ ;, whereas the corresponding closed
interval is the singleton set ½a; a	 ¼ fag.

There are five types of unbounded intervals for which the symbols1ðorþ1Þ and�1
are used as notational convenience in place of the endpoints. The infinite open intervals are

the sets of the form

ða;1Þ :¼ fx 2 R : x > ag and ð�1; bÞ :¼ fx 2 R : x < bg:
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The first set has no upper bounds and the second one has no lower bounds. Adjoining

endpoints gives us the infinite closed intervals:

½a;1Þ :¼ fx 2 R : a � xg and ð�1; b	 :¼ fx 2 R : x � bg:
It is often convenient to think of the entire set R as an infinite interval; in this case, we write

ð�1;1Þ :¼ R . No point is an endpoint of ð�1;1Þ.
Warning It must be emphasized that 1 and �1 are not elements of R , but only

convenient symbols.

Characterization of Intervals

An obvious property of intervals is that if two points x, y with x< y belong to an interval I,

then any point lying between them also belongs to I. That is, if x < t < y, then the point t

belongs to the same interval as x and y. In other words, if x and y belong to an interval I,

then the interval [x, y] is contained in I. We now show that a subset of R possessing this

property must be an interval.

2.5.1 Characterization Theorem If S is a subset of R that contains at least two points

and has the property

ð1Þ if x; y 2 S and x < y; then ½x; y	 � S;

then S is an interval.

Proof. There are four cases to consider: (i) S is bounded, (ii) S is bounded above but not

below, (iii) S is bounded below but not above, and (iv) S is neither bounded above nor

below.

Case (i): Let a :¼ inf S and b :¼ sup S. Then S � ½a; b	 and we will show that

ða; bÞ � S.

If a < z < b, then z is not a lower bound of S, so there exists x 2 S with x < z. Also, z

is not an upper bound of S, so there exists y 2 Swith z < y. Therefore z 2 ½x; y	, so property
(1) implies that z 2 S. Since z is an arbitrary element of ða; bÞ, we conclude that ða; bÞ � S.

Now if a 2 S and b 2 S, then S ¼ ½a; b	. (Why?) If a =2 S and b =2 S, then S ¼ ða; bÞ.
The other possibilities lead to either S ¼ ða; b	 or S ¼ ½a; bÞ.

Case (ii): Let b :¼ sup S. Then S � ð�1; b	 and we will show that ð�1; bÞ � S. For,

if z < b, then there exist x; y 2 S such that z 2 ½x; y	 � S. (Why?) Therefore ð�1; bÞ � S.

If b 2 S, then S ¼ ð�1; b	, and if b =2 S, then S ¼ ð�1; bÞ.
Cases (iii) and (iv) are left as exercises. Q.E.D.

Nested Intervals

We say that a sequence of intervals In; n 2 N , is nested if the following chain of inclusions

holds (see Figure 2.5.1):

I1 
 I2 
 � � � 
 In 
 Inþ1 
 � � �
For example, if In :¼ ½0; 1=n	 for n 2 N, then In 
 Inþ1 for each n 2 N so that this

sequence of intervals is nested. In this case, the element 0 belongs to all In and the

Archimedean Property 2.4.3 can be used to show that 0 is the only such common point.

(Prove this.) We denote this by writing
T1

n¼1In ¼ f0g.
It is important to realize that, in general, a nested sequence of intervals need not have a

common point. For example, if Jn :¼ ð0; 1=nÞ for n 2 N, then this sequence of intervals is
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nested, but there is no common point, since for every given x > 0, there exists (why?)

m 2 N such that 1=m < x so that x =2 Jm. Similarly, the sequence of intervals

Kn :¼ ðn;1Þ; n 2 N , is nested but has no common point. (Why?)

However, it is an important property of R that every nested sequence of closed,

bounded intervals does have a common point, as we will now prove. Notice that the

completeness of R plays an essential role in establishing this property.

2.5.2 Nested Intervals Property If In ¼ ½an; bn	; n 2 N , is a nested sequence of closed

bounded intervals, then there exists a number j 2 R such that j 2 In for all n 2 N .

Proof. Since the intervals are nested, we have In � I1 for all n 2 N , so that an � b1 for all

n 2 N . Hence, the nonempty set fan : n 2 Ng is bounded above, and we let j be its

supremum. Clearly an � j for all n 2 N .

We claim also that j � bn for all n. This is established by showing that for any

particular n, the number bn is an upper bound for the set fak : k 2 Ng. We consider two

cases. (i) If n � k, then since In 
 Ik, we have ak � bk � bn. (ii) If k < n, then since

Ik 
 In, we have ak � an � bn. (See Figure 2.5.2.) Thus, we conclude that ak � bn for all

k, so that bn is an upper bound of the set fak : k 2 Ng. Hence, j � bn for each n 2 N . Since

an � j � bn for all n, we have j 2 In for all n 2 N . Q.E.D.

2.5.3 Theorem If In :¼ an; bn½ 	; n 2 N , is a nested sequence of closed, bounded intervals

such that the lengths bn � an of In satisfy

inf bn � an : n 2 Nf g ¼ 0;

then the number j contained in In for all n 2 N is unique.

Proof. If h :¼ inf bn : n 2 Nf g, then an argument similar to the proof of 2.5.2 can be used

to show that an � h for all n, and hence that j � h. In fact, it is an exercise (seeExercise 10) to

show thatx 2 In for all n 2 N if and only if j � x � h. Ifwe have inf bn � an : n 2 Nf g ¼ 0,

Figure 2.5.1 Nested intervals

Figure 2.5.2 If k < n, then In � Ik
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then for any e > 0, there exists an m 2 N such that 0 � h� j � bm � am < e. Since this

holds for all e > 0, it follows from Theorem 2.1.9 that h� j ¼ 0. Therefore, we conclude

that j ¼ h is the only point that belongs to In for every n 2 N. Q.E.D.

The Uncountability of R

The concept of a countable set was discussed in Section 1.3 and the countability of the set

Q of rational numbers was established there. We will now use the Nested Interval Property

to prove that the set R is an uncountable set. The proof was given by Georg Cantor in 1874

in the first of his papers on infinite sets. He later published a proof that used decimal

representations of real numbers, and that proof will be given later in this section.

2.5.4 Theorem The set R of real numbers is not countable.

Proof. We will prove that the unit interval I :¼ 0; 1½ 	 is an uncountable set. This implies

that the set R is an uncountable set, for if R were countable, then the subset Iwould also be

countable. (See Theorem 1.3.9(a).)

The proof is by contradiction. If we assume that I is countable, then we can enumerate

the set as I ¼ x1; x2; . . . ;xn; . . .f g. We first select a closed subinterval I1 of I such that

x1 =2 I1, then select a closed subinterval I2 of I1 such that x2 =2 I2, and so on. In this way, we

obtain nonempty closed intervals

I1 
 I2 
 � � � 
 In 
 � � �
such that In � I and xn =2 In for all n. The Nested Intervals Property 2.5.2 implies that there

exists a point j 2 I such that j 2 In for all n. Therefore j 6¼ xn for all n 2 N , so the

enumeration of I is not a complete listing of the elements of I, as claimed. Hence, I is an

uncountable set. Q.E.D.

The fact that the setR of real numbers is uncountable can be combined with the fact that

the setQ of rational numbers is countable to conclude that the setRnQ of irrational numbers

is uncountable. Indeed, since the union of two countable sets is countable (see 1.3.7(c)), if

RnQ is countable, then since R ¼ Q [ RnQð Þ, we conclude that R is also a countable set,

which is a contradiction. Therefore, the set of irrational numbers RnQ is an uncountable set.

Note: The set of real numbers can also be divided into two subsets of numbers called

algebraic numbers and transcendental numbers. A real number is called algebraic if it is a

solution of a polynomial equation P xð Þ ¼ 0 where all the coefficients of the polynomial P

are integers. A real number is called transcendental if it is not an algebraic number. It can

be proved that the set of algebraic numbers is countably infinite, and consequently the set of

transcendental numbers is uncountable. The numbers p and e are transcendental numbers,

but the proofs of these facts are very deep. For an introduction to these topics, we refer the

interested reader to the book by Ivan Niven listed in the References.

yBinary Representations

Wewill digress briefly to discuss informally the binary (and decimal) representations of real

numbers. It will suffice to consider real numbers between 0 and 1, since the representations

for other real numbers can then be obtained by adding a positive or negative number.

yThe remainder of this section can be omitted on a first reading.

2.5 INTERVALS 49



C02 12/09/2010 15:11:39 Page 50

If x 2 0; 1½ 	, we will use a repeated bisection procedure to associate a sequence (an) of
0s and 1s as follows. If x 6¼ 1

2
belongs to the left subinterval 0; 1

2

	 

we take a1 :¼ 0, while if

x belongs to the right subinterval 1
2
; 1

	 

we take a1 ¼ 1. If x ¼ 1

2
, then we may take a1 to

be either 0 or 1. In any case, we have

a1

2
� x � a1 þ 1

2
:

Wenowbisect the interval 1
2
a1;

1
2
a1 þ 1ð Þ	 


. If x is not the bisection point and belongs to the

left subinterval we take a2 :¼ 0, and if x belongs to the right subinterval we take a2 :¼ 1. If

x ¼ 1
4
or x ¼ 3

4
, we can take a2 to be either 0 or 1. In any case, we have

a1

2
þ a2

22
� x � a1

2
þ a2 þ 1

22
:

We continue this bisection procedure, assigning at the nth stage the value an :¼ 0 if x is

not the bisection point and lies in the left subinterval, and assigning the value an :¼ 1 if x

lies in the right subinterval. In this way we obtain a sequence (an) of 0s or 1s that

correspond to a nested sequence of intervals containing the point x. For each n, we have

the inequality

ð2Þ a1

2
þ a2

22
þ � � � þ an

2n
� x � a1

2
þ a2

22
þ � � � þ an þ 1

2n
:

If x is the bisection point at the nth stage, then x ¼ m=2n with m odd. In this case, we may

choose either the left or the right subinterval; however, once this subinterval is chosen,

then all subsequent subintervals in the bisection procedure are determined. [For instance, if

we choose the left subinterval so that an ¼ 0, then x is the right endpoint of all subsequent

subintervals, and hence ak ¼ 1 for all k � nþ 1. On the other hand, if we choose the right

subinterval so that an ¼ 1, then x is the left endpoint of all subsequent subintervals, and

hence ak ¼ 0 for all k � nþ 1. For example, if x ¼ 3
4
, then the two possible sequences for

x are 1, 0, 1, 1, 1, . . . and 1, 1, 0, 0, 0, . . . .]

To summarize: If x 2 0; 1½ 	, then there exists a sequence (an) of 0s and 1s such that

inequality (2) holds for all n 2 N . In this case we write

ð3Þ x ¼ :a1a2 � � � an � � �ð Þ2;
and call (3) a binary representation of x. This representation is unique except when

x ¼ m=2n for m odd, in which case x has the two representations

x ¼ :a1a2 � � � an�11000 � � �ð Þ2 ¼ :a1a2 � � � an�10111 � � �ð Þ2;
one ending in 0s and the other ending in 1s.

Conversely, each sequence of 0s and 1s is the binary representation of a unique real

number in [0,1]. The inequality corresponding to (2) determines a closed interval with

length 1=2n and the sequence of these intervals is nested. Therefore, Theorem 2.5.3 implies

that there exists a unique real number x satisfying (2) for every n 2 N. Consequently, x has

the binary representation :a1a2 � � � an � � �ð Þ2.

Remark The concept of binary representation is extremely important in this era of digital

computers. A number is entered in a digital computer on ‘‘bits,’’ and each bit can be put in

one of two states—either it will pass current or it will not. These two states correspond to

the values 1 and 0, respectively. Thus, the binary representation of a number can be stored

in a digital computer on a string of bits. Of course, in actual practice, since only finitely

many bits can be stored, the binary representations must be truncated. If n binary digits are
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used for a number x 2 0; 1½ 	, then the accuracy is at most 1=2n. For example, to assure four-

decimal accuracy, it is necessary to use at least 15 binary digits (or 15 bits).

Decimal Representations

Decimal representations of real numbers are similar to binary representations, except that

we subdivide intervals into ten equal subintervals instead of two.

Thus, given x 2 0; 1½ 	, if we subdivide [0,1] into ten equal subintervals, then x belongs

to a subinterval b1=10; b1 þ 1ð Þ=10½ 	 for some integer b1 in 0; 1; . . . ; 9f g. Proceeding as in
the binary case, we obtain a sequence (bn) of integers with 0 � bn � 9 for all n 2 N such

that x satisfies

ð4Þ b1

10
þ b2

102
þ � � � þ bn

10n
� x � b1

10
þ b2

102
þ � � � þ bn þ 1

10n
:

In this case we say that x has a decimal representation given by

x ¼ :b1b2 � � � bn � � � :
If x � 1 and if B 2 N is such that B � x < Bþ 1, then x ¼ B:b1b2 � � � bn � � � where the

decimal representation of x� B 2 0; 1½ 	 is as above. Negative numbers are treated

similarly.

The fact that each decimal determines a unique real number follows from Theorem

2.5.3, since each decimal specifies a nested sequence of intervals with lengths 1=10n.
The decimal representation of x 2 0; 1½ 	 is unique except when x is a subdivision point at

some stage, which can be seen to occur when x ¼ m=10n for somem; n 2 N ; 1 � m � 10n.

(We may also assume thatm is not divisible by 10.) When x is a subdivision point at the nth

stage, one choice for bn corresponds to selecting the left subinterval, which causes all

subsequent digits to be 9, and the other choice corresponds to selecting the right subinterval,

which causes all subsequent digits to be 0. [For example, if x ¼ 1
2

then x ¼
:4999 � � � ¼ :5000 � � �, and if y ¼ 38=100 then y ¼ :37999 � � � ¼ :38000 � � �.]

Periodic Decimals

A decimal B:b1b2 � � � bn � � � is said to be periodic (or to be repeating), if there exist k; n 2 N

such that bn ¼ bnþm for all n � k. In this case, the block of digits bkbkþ1 � � � bkþm�1 is

repeated once the kth digit is reached. The smallest numbermwith this property is called the

period of the decimal. For example, 19=88 ¼ :2159090 � � � 90 � � � has period m ¼ 2 with

repeating block 90 starting at k ¼ 4. A terminating decimal is a periodic decimal where the

repeated block is simply the digit 0.

We will give an informal proof of the assertion: A positive real number is rational if

and only if its decimal representation is periodic.

Suppose that x ¼ p=q where p; q 2 N have no common integer factors. For

convenience we will also suppose that 0 < p < q. We note that the process of ‘‘long

division’’ of q into p gives the decimal representation of p=q. Each step in the division

process produces a remainder that is an integer from 0 to q� 1. Therefore, after at most q

steps, some remainder will occur a second time and, at that point, the digits in the quotient

will begin to repeat themselves in cycles. Hence, the decimal representation of such a

rational number is periodic.

Conversely, if a decimal is periodic, then it represents a rational number. The idea of

the proof is best illustrated by an example. Suppose that x ¼ 7:31414 � � � 14 � � �. We

multiply by a power of 10 to move the decimal point to the first repeating block; here
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obtaining 10x ¼ 73:1414 � � �. We now multiply by a power of 10 to move one block to the

left of the decimal point; here getting 1000x ¼ 7314:1414 � � �. We now subtract to obtain

an integer; here getting 1000x� 10x ¼ 7314� 73 ¼ 7241, whence x ¼ 7241=990, a
rational number.

Cantor’s Second Proof

We will now give Cantor’s second proof of the uncountability of R . This is the elegant

‘‘diagonal’’ argument based on decimal representations of real numbers.

2.5.5 Theorem The unit interval 0; 1½ 	 :¼ x 2 R : 0 � x � 1f g is not countable.

Proof. The proof is by contradiction.Wewill use the fact that every real number x 2 0; 1½ 	
has a decimal representation x ¼ 0:b1b2b3 � � �, where bi ¼ 0; 1; . . . ; 9. Suppose that there is
an enumeration x1; x2; x3 � � � of all numbers in [0,1], which we display as:

x1 ¼ 0:b11b12b13 � � � b1n � � � ;
x2 ¼ 0:b21b22b23 � � � b2n � � � ;
x3 ¼ 0:b31b32b33 � � � b3n � � � ;

� � � � � �
xn ¼ 0:bn1bn2bn3 � � � bnn � � � ;

� � � � � �
We now define a real number y :¼ 0:y1y2y3 � � � yn � � � by setting y1 :¼ 2 if b11 � 5 and

y1 :¼ 7 if b11 � 4; in general, we let

yn :¼ 2 if bnn � 5;
7 if bnn � 4:

�

Then y 2 0; 1½ 	. Note that the number y is not equal to any of the numbers with two decimal

representations, since yn 6¼ 0; 9 for all n 2 N . Further, since y and xn differ in the nth

decimal place, then y 6¼ xn for any n 2 N. Therefore, y is not included in the enumeration of

[0,1], contradicting the hypothesis. Q.E.D.

Exercises for Section 2.5

1. If I :¼ a; b½ 	 and I0 :¼ a0; b0½ 	 are closed intervals in R , show that I � I0 if and only if a0 � a and

b � b0.

2. If S � R is nonempty, show that S is bounded if and only if there exists a closed bounded interval

I such that S � I.

3. If S � R is a nonempty bounded set, and IS :¼ inf S; sup S½ 	, show that S � IS. Moreover, if J is

any closed bounded interval containing S, show that IS � J.

4. In the proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S.

5. Write out the details of the proof of Case (iv) in Theorem 2.5.1.

6. If I1 
 I2 
 � � � 
 In 
 � � � is a nested sequence of intervals and if In ¼ an; bn½ 	, show that

a1 � a2 � � � � � an � � � � and b1 � b2 � � � � � bn � � � �.
7. Let In :¼ 0; 1=n½ 	 for n 2 N. Prove that

T1
n¼1In ¼ 0f g.

8. Let Jn :¼ 0; 1=nð Þ for n 2 N. Prove that
T1

n¼1Jn ¼;.
9. Let Kn :¼ n;1ð Þ for n 2 N. Prove that

T1
n¼1Kn ¼;.
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10. With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have h 2 T1
n¼1In.

Also show that j; h½ 	 ¼ T1
n¼1In.

11. Show that the intervals obtained from the inequalities in (2) form a nested sequence.

12. Give the two binary representations of 3
8
and 7

16
.

13. (a) Give the first four digits in the binary representation of 1
3
.

(b) Give the complete binary representation of 1
3
.

14. Show that if ak; bk 2 0; 1; . . . ; 9f g and if

a1

10
þ a2

102
þ � � � þ an

10n
¼ b1

10
þ b2

102
þ � � � þ bm

10m
6¼ 0;

then n ¼ m and ak ¼ bk for k ¼ 1; . . . ; n.

15. Find the decimal representation of � 2
7
.

16. Express 1
7
and 2

19
as periodic decimals.

17. What rationals are represented by the periodic decimals 1:25137 � � � 137 � � � and

35:14653 � � � 653 � � �?
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CHAPTER 3

SEQUENCES AND SERIES

Now that the foundations of the real number system R have been laid, we are prepared to

pursue questions of a more analytic nature, and we will begin with a study of the

convergence of sequences. Some of the early results may be familiar to the reader

from calculus, but the presentation here is intended to be rigorous and will lead to certain

more profound theorems than are usually discussed in earlier courses.

We will first introduce the meaning of the convergence of a sequence of real numbers

and establish some basic, but useful, results about convergent sequences. We then present

some deeper results concerning the convergence of sequences. These include the

Monotone Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy

Criterion for convergence of sequences. It is important for the reader to learn both the

theorems and how the theorems apply to special sequences.

Because of the linear limitations inherent in a book it is necessary to decide where to

locate the subject of infinite series. It would be reasonable to follow this chapter with a full

discussion of infinite series, but this would delay the important topics of continuity,

differentiation, and integration. Consequently, we have decided to compromise. A brief

introduction to infinite series is given in Section 3.7 at the end of this chapter, and a more

extensive treatment is given later in Chapter 9. Thus readers whowant a fuller discussion of

series at this point can move to Chapter 9 after completing this chapter.

Augustin-Louis Cauchy
Augustin-Louis Cauchy (1789–1857) was born in Paris just after the start of

the French Revolution. His father was a lawyer in the Paris police

department, and the family was forced to flee during the Reign of Terror.

As a result, Cauchy’s early years were difficult and he developed strong

anti-revolutionary and pro-royalist feelings. After returning to Paris, Cau-

chy’s father became secretary to the newly-formed Senate, which included

the mathematicians Laplace and Lagrange. They were impressed by young

Cauchy’s mathematical talent and helped him begin his career.

He entered the �Ecole Polytechnique in 1805 and soon established

a reputation as an exceptional mathematician. In 1815, the year royalty was restored, he was

appointed to the faculty of the �Ecole Polytechnique, but his strong political views and his

uncompromising standards in mathematics often resulted in bad relations with his colleagues.

After the July revolution of 1830, Cauchy refused to sign the new loyalty oath and left France for

eight years in self-imposed exile. In 1838, he accepted a minor teaching post in Paris, and in 1848

Napoleon III reinstated him to his former position at the �Ecole Polytechnique, where he remained

until his death.

Cauchy was amazingly versatile and prolific, making substantial contributions to many

areas, including real and complex analysis, number theory, differential equations, mathematical

physics and probability. He published eight books and 789 papers, and his collected works fill

26 volumes. He was one of the most important mathematicians in the first half of the nineteenth

century.

#Bettmann/CORBIS
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Section 3.1 Sequences and Their Limits

A sequence in a set S is a function whose domain is the setN of natural numbers, and whose

range is contained in the set S. In this chapter, we will be concerned with sequences in R

and will discuss what we mean by the convergence of these sequences.

3.1.1 Definition A sequence of real numbers (or a sequence in R) is a function defined

on the set N ¼ f1; 2; . . .g of natural numbers whose range is contained in the set R of real

numbers.

In other words, a sequence in R assigns to each natural number n ¼ 1, 2, . . . a

uniquely determined real number. If X : N ! R is a sequence, we will usually denote the

value of X at n by the symbol xn rather than using the function notation XðnÞ. The values xn
are also called the terms or the elements of the sequence. We will denote this sequence by

the notations

X; ðxnÞ; ðxn : n 2 NÞ:
Of course, we will often use other letters, such as Y ¼ ðykÞ; Z ¼ ðziÞ, and so on, to denote
sequences.

We purposely use parentheses to emphasize that the ordering induced by the natural

order of N is a matter of importance. Thus, we distinguish notationally between the

sequence ðxn : n 2 NÞ, whose infinitely many terms have an ordering, and the set of values

fxn : n 2 Ng in the range of the sequence that are not ordered. For example, the sequence

X :¼ ðð�1Þn : n 2 N Þ has infinitely many terms that alternate between �1 and 1, whereas

the set of values fð�1Þn : n 2 Ng is equal to the set {�1, 1}, which has only two elements.

Sequences are often defined by giving a formula for the nth term xn. Frequently, it is

convenient to list the terms of a sequence in order, stopping when the rule of formation

seems evident. For example, we may define the sequence of reciprocals of the even

numbers by writing

X :¼ 1

2
;
1

4
;
1

6
;
1

8
; � � �

� �
;

though a more satisfactory method is to specify the formula for the general term and write

X :¼ 1

2n
: n 2 N

� �

or more simply X ¼ ð1=2nÞ.
Another way of defining a sequence is to specify the value of x1 and give a formula for

xnþ1ðn � 1Þ in terms of xn. More generally, we may specify x1 and give a formula for

obtaining xnþ1 from x1; x2; . . . ; xn. Sequences defined in this manner are said to be

inductively (or recursively) defined.

3.1.2 Examples (a) If b 2 R , the sequence B :¼ ðb; b; b; . . .Þ, all of whose terms equal

b, is called the constant sequence b. Thus the constant sequence 1 is the sequence

ð1; 1; 1; . . .Þ, and the constant sequence 0 is the sequence ð0; 0; 0; . . .Þ.
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(b) If b 2 R , then B :¼ ðbnÞ is the sequence B ¼ ðb; b2; b3; . . . ; bn; . . .Þ. In particular, if

b ¼ 1
2
, then we obtain the sequence

1

2n
: n 2 N

� �
¼ 1

2
;
1

4
;
1

8
; . . . ;

1

2n
; . . .

� �
:

(c) The sequence of ð2n : n 2 NÞ of even natural numbers can be defined inductively by

x1 :¼ 2; xnþ1 :¼ xn þ 2;

or by the definition

y1 :¼ 2; ynþ1 :¼ y1 þ yn:

(d) The celebrated Fibonacci sequence F :¼ ð f nÞ is given by the inductive definition

f 1 :¼ 1; f 2 :¼ 1; f nþ1 :¼ f n�1 þ f n ðn � 2Þ:
Thus each term past the second is the sum of its two immediate predecessors. The first ten

terms of F are seen to be ð1; 1; 2; 3; 5; 8; 13; 21; 34; 55; . . .Þ. &

The Limit of a Sequence

There are a number of different limit concepts in real analysis. The notion of limit of a

sequence is the most basic, and it will be the focus of this chapter.

3.1.3 Definition A sequence X ¼ ðxnÞ in R is said to converge to x 2 R , or x is said to

be a limit of ðxnÞ, if for every e > 0 there exists a natural number KðeÞ such that for all

n � KðeÞ, the terms xn satisfy jxn � xj < e.
If a sequence has a limit, we say that the sequence is convergent; if it has no limit, we

say that the sequence is divergent.

Note The notation KðeÞ is used to emphasize that the choice of K depends on the value

of e. However, it is often convenient to write K instead of KðeÞ. In most cases, a ‘‘small’’

value of e will usually require a ‘‘large’’ value of K to guarantee that the distance jxn � xj
between xn and x is less than e for all n � K ¼ KðeÞ.

When a sequence has limit x, we will use the notation

lim X ¼ x or limðxnÞ ¼ x:

We will sometimes use the symbolism xn ! x, which indicates the intuitive idea that the

values xn ‘‘approach’’ the number x as n ! 1.

3.1.4 Uniqueness of Limits A sequence in R can have at most one limit.

Proof. Suppose that x0 and x 00 are both limits of ðxnÞ. For each e > 0 there exist K0 such
that jxn � x0j < e=2 for all n � K 0, and there exists K 00 such that jxn � x 00j < e=2 for all

n � K 00. We let K be the larger of K0 and K 00. Then for n � K we apply the Triangle

Inequality to get

jx0 � x 00j ¼ jx0 � xn þ xn � x 00j
� jx0 � xnj þ jxn � x 00j < e=2þ e=2 ¼ e:

Since e > 0 is an arbitrary positive number, we conclude that x0 � x 00 ¼ 0. Q.E.D.
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For x 2 R and e > 0, recall that the e-neighborhood of x is the set

V eðxÞ :¼ fu 2 R : ju� xj < eg:
(See Section 2.2.) Since u 2 V eðxÞ is equivalent to ju� xj < e, the definition of conver-

gence of a sequence can be formulated in terms of neighborhoods.We give several different

ways of saying that a sequence xn converges to x in the following theorem.

3.1.5 Theorem Let X ¼ (xn) be a sequence of real numbers, and let x 2 R . The

following statements are equivalent.

(a) X converges to x.

(b) For every e > 0, there exists a natural number K such that for all n � K, the terms xn
satisfy jxn � xj < e.
(c) For every e> 0, there exists a natural number K such that for all n � K, the terms xn
satisfy x� e < xn < xþ e.
(d) For every e-neighborhood V eðxÞ of x, there exists a natural number K such that for

all n � K, the terms xn belong to VeðxÞ.

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c), and

(d) follows from the following implications:

ju� xj < e () �e < u� x < e () x� e < u < xþ e () u 2 VeðxÞ:
Q.E.D.

With the language of neighborhoods, one can describe the convergence of the

sequence X ¼ ðxnÞ to the number x by saying: for each e-neighborhood Ve(x) of x, all

but a finite number of terms of X belong to Ve (x). The finite number of terms that may not

belong to the e-neighborhood are the terms x1; x2; . . . ; xK�1.

Remark The definition of the limit of a sequence of real numbers is used to verify that a

proposed value x is indeed the limit. It does not provide a means for initially determining

what that value of x might be. Later results will contribute to this end, but quite often it is

necessary in practice to arrive at a conjectured value of the limit by direct calculation of a

number of terms of the sequence. Computers can be helpful in this respect, but since they

can calculate only a finite number of terms of a sequence, such computations do not in any

way constitute a proof of the value of the limit.

The following examples illustrate how the definition is applied to prove that a

sequence has a particular limit. In each case, a positive e is given and we are required

to find a K, depending on e, as required by the definition.

3.1.6 Examples (a) lim(l=n) ¼ 0.

If e > 0 is given, then 1=e > 0. By the Archimedean Property 2.4.3, there is a natural

number K ¼ KðeÞ such that 1=K < e. Then, if n � K, we have 1=n � 1=K < e. Conse-
quently, if n � K, then

1

n
� 0

����
���� ¼ 1

n
< e:

Therefore, we can assert that the sequence (1=n) converges to 0.
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(b) lim(l=(n2 þ 1)) ¼ 0.

Let e > 0 be given. To find K, we first note that if n 2 N , then

1

n2 þ 1
<

1

n2
� 1

n
:

Now choose K such that 1=K < e, as in (a) above. Then n � K implies that 1=n < e, and
therefore

1

n2 þ 1
� 0

����
���� ¼ 1

n2 þ 1
<

1

n
< e:

Hence, we have shown that the limit of the sequence is zero.

(c) lim
3nþ 2

nþ 1

� �
¼ 3:

Given e > 0, we want to obtain the inequality

ð1Þ 3nþ 2

nþ 1
� 3

����
���� < e

when n is sufficiently large. We first simplify the expression on the left:

3nþ 2

nþ 1
� 3

����
���� ¼ 3nþ 2� 3n� 3

nþ 1

����
���� ¼ �1

nþ 1

����
���� ¼ 1

nþ 1
<

1

n
:

Now if the inequality 1=n < e is satisfied, then the inequality (1) holds. Thus if 1=K < e,
then for any n � K, we also have 1=n < e and hence (1) holds. Therefore the limit of the

sequence is 3.

(d) limð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p Þ ¼ 0.

We multiply and divide by
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p
to get

ð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p Þð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p Þffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p ¼ nþ 1� nffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p � 1ffiffiffi
n

p

For a given e > 0, we obtain 1=
ffiffiffi
n

p
< e if and only if 1=n < e2 or n > 1=e2. Thus if we take

K > 1=e2, then
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p
< e for all n > K. (For example, if we are given e ¼ 1=10,

then K > 100 is required.)

(e) If 0 < b < 1, then limðbnÞ ¼ 0.

We will use elementary properties of the natural logarithm function. If e > 0 is given,

we see that

bn < e () n ln b< ln e () n > ln e=ln b:

(The last inequality is reversed because ln b< 0.) Thus if we choose K to be a number such

that K > ln e=ln b, then we will have 0 < bn < e for all n � K. Thus we have limðbnÞ ¼ 0.

For example, if b ¼ .8, and if e ¼ .01 is given, then we would need K >
ln :01=ln :8 � 20:6377. Thus K ¼ 21 would be an appropriate choice for e ¼ .01. &

Remark The KðeÞGame In the notion of convergence of a sequence, one way to keep

in mind the connection between the e and the K is to think of it as a game called the KðeÞ
Game. In this game, Player A asserts that a certain number x is the limit of a sequence (xn).

Player B challenges this assertion by giving Player A a specific value for e > 0. Player A

must respond to the challenge by coming up with a value of K such that jxn � xj < e for all
n > K. If Player A can always find a value of K that works, then he wins, and the sequence

is convergent. However, if Player B can give a specific value of e > 0 for which Player A
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cannot respond adequately, then Player B wins, and we conclude that the sequence does

not converge to x.

In order to show that a sequence X ¼ ðxnÞ does not converge to the number x, it is

enough to produce one number e0 > 0 such that nomatter what natural numberK is chosen,

one can find a particular nK satisfying nK � K such that jxnK � xj � e0. (This will be

discussed in more detail in Section 3.4.)

3.1.7 Example The sequence ð0; 2; 0; 2; . . . ; 0; 2; . . .Þ does not converge to the

number 0.

If Player A asserts that 0 is the limit of the sequence, he will lose the KðeÞ Game when

Player B gives him a value of e < 2. To be definite, let Player B give Player A the value

e0 ¼ 1. Then no matter what value Player A chooses for K, his response will not be

adequate, for Player B will respond by selecting an even number n > K. Then the

corresponding value is xn ¼ 2 so that jxn � 0j ¼ 2 > 1 ¼ e0. Thus the number 0 is not

the limit of the sequence. &

Tails of Sequences

It is important to realize that the convergence (or divergence) of a sequence X ¼ ðxnÞ
depends only on the ‘‘ultimate behavior’’ of the terms. By this we mean that if, for any

natural numberm, we drop the firstm terms of the sequence, then the resulting sequence Xm

converges if and only if the original sequence converges, and in this case, the limits are the

same. We will state this formally after we introduce the idea of a ‘‘tail’’ of a sequence.

3.1.8 Definition If X ¼ ðx1; x2; . . . ; xn; . . .Þ is a sequence of real numbers and if m is a

given natural number, then the m-tail of X is the sequence

Xm :¼ ðxmþn : n 2 NÞ ¼ ðxmþ1; xmþ2; . . .Þ
For example, the 3-tail of the sequence X ¼ ð2; 4; 6; 8; 10; . . . ; 2n; . . .Þ, is the sequence

X3 ¼ ð8; 10; 12; . . . ; 2nþ 6; . . .Þ.
3.1.9 Theorem Let X ¼ ðxn : n 2 NÞ be a sequence of real numbers and let m 2 N .

Then the m-tail Xm ¼ ðxmþn : n 2 NÞ of X converges if and only if X converges. In this

case, lim Xm ¼ lim X.

Proof. We note that for any p 2 N, the pth term of Xm is the (p þ m)th term of X.

Similarly, if q > m, then the qth term of X is the ðq�mÞth term of Xm.

Assume X converges to x. Then given any e> 0, if the terms of X for n � KðeÞ satisfy
jxn � xj < e, then the terms of Xm for k � KðeÞ �m satisfy jxk � xj < e. Thus we can take
KmðeÞ ¼ KðeÞ �m, so that Xm also converges to x.

Conversely, if the terms of Xm for k � KmðeÞ satisfy jxk � xj < e, then the terms of X

for n � KðeÞ þm satisfy jxn � xj < e. Thus we can take KðeÞ ¼ KmðeÞ þm.

Therefore, X converges to x if and only if Xm converges to x. Q.E.D.

We shall sometimes say that a sequence X ultimately has a certain property

if some tail of X has this property. For example, we say that the sequence

ð3; 4; 5; 5; 5; . . . ; 5; . . .Þ is ‘‘ultimately constant.’’ On the other hand, the sequence

ð3; 5; 3; 5; . . . ; 3; 5; . . .Þ is not ultimately constant. The notion of convergence can be

stated using this terminology: A sequence X converges to x if and only if the terms of

X are ultimately in every e-neighborhood of x. Other instances of this ‘‘ultimate

terminology’’ will be noted later.
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Further Examples

In establishing that a number x is the limit of a sequence (xn), we often try to simplify

the difference jxn � xj before considering an e > 0 and finding a KðeÞ as required by the

definition of limit. This was done in some of the earlier examples. The next result is a

more formal statement of this idea, and the examples that follow make use of this

approach.

3.1.10 Theorem Let (xn) be a sequence of real numbers and let x 2 R . If (an) is a

sequence of positive real numbers with limðanÞ ¼ 0 and if for some constant C > 0 and

some m 2 N we have

jxn � xj � Can for all n � m;

then it follows that limðxnÞ ¼ x.

Proof. If e > 0 is given, then since limðanÞ ¼ 0, we know there exists K ¼ Kðe=CÞ such
that n � K implies

an ¼ jan � 0j < e=C:

Therefore it follows that if both n � K and n � m, then

jxn � xj � Can < Cðe=CÞ ¼ e:

Since e > 0 is arbitrary, we conclude that x ¼ limðxnÞ. Q.E.D.

3.1.11 Examples (a) If a > 0, then lim
1

1þ na

� �
¼ 0.

Since a > 0, then 0 < na < 1 þ na, and therefore 0 < 1=(1 þ na) < 1=(na). Thus
we have

1

1þ na
� 0

����
���� � 1

a

� �
1

n
for all n 2 N :

Since limð1=nÞ ¼ 0, we may invoke Theorem 3.1.10 with C¼ 1=a andm¼ 1 to infer that

lim ð1=ð1þ naÞÞ ¼ 0.

(b) If 0 < b < 1, then limðbnÞ ¼ 0.

This limit was obtained earlier in Example 3.1.6(e). We will give a second proof that

illustrates the use of Bernoulli’s Inequality (see Example 2.1.13(c)).

Since 0 < b < 1, we can write b ¼ 1=(1 þ a), where a :¼ (1=b) �1 so that a > 0. By

Bernoulli’s Inequality, we have ð1þ aÞn � 1þ na. Hence

0 < bn ¼ 1

ð1þ aÞn �
1

1þ na
<

1

na
:

Thus from Theorem 3.1.10 we conclude that limðbnÞ ¼ 0.

In particular, if b ¼ .8, so that a¼ .25, and if we are given e¼ .01, then the preceding

inequality gives us KðeÞ ¼ 4=ð:01Þ ¼ 400. Comparing with Example 3.1.6(e), where we

obtained K ¼ 21, we see this method of estimation does not give us the ‘‘best’’ value of K.

However, for the purpose of establishing the limit, the size of K is immaterial.

(c) If c > 0, then limðc1=nÞ ¼ 1.

The case c ¼ 1 is trivial, since then (c1/n) is the constant sequence ð1; 1; . . .Þ, which
evidently converges to 1.
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If c> 1, then c1/n¼ 1þ dn for some dn> 0. Hence by Bernoulli’s Inequality 2.1.13(c),

c ¼ ð1þ dnÞn � 1þ ndn for n 2 N :

Therefore we have c� 1 � ndn, so that dn � ðc� 1Þ=n. Consequently we have

jc1=n � 1j ¼ dn � ðc� 1Þ 1
n

for n 2 N :

We now invoke Theorem 3.1.10 to infer that limðc1=nÞ ¼ 1 when c > 1.

Now suppose that 0 < c < 1; then c1/n ¼ 1=(1 þ hn) for some hn > 0. Hence

Bernoulli’s Inequality implies that

c ¼ 1

ð1þ hnÞn �
1

1þ nhn
<

1

nhn
;

from which it follows that 0 < hn < 1=nc for n 2 N. Therefore we have

0 < 1� c1=n ¼ hn

1þ hn
< hn <

1

nc

so that

jc1=n � 1j < 1

c

� �
1

n
for n 2 N :

We now apply Theorem 3.1.10 to infer that limðc1=nÞ ¼ 1 when 0 < c < 1.

(d) limðn1=nÞ ¼ 1

Since n1=n > 1 for n > 1, we can write n1=n ¼ 1þ kn for some kn > 0 when n > 1.

Hence n ¼ ð1þ knÞn for n > 1. By the Binomial Theorem, if n > 1 we have

n ¼ 1þ nkn þ 1
2
nðn� 1Þk2n þ � � � � 1þ 1

2
nðn� 1Þk2n;

whence it follows that

n� 1 � 1
2
nðn� 1Þk2n:

Hence k2n � 2=n for n > 1. If e> 0 is given, it follows from the Archimedean Property that

there exists a natural number Ne such that 2=Ne < e2. It follows that if n � supf2;Neg then
2=n < e2, whence

0 < n1=n � 1 ¼ kn � ð2=nÞ1=2 < e:

Since e > 0 is arbitrary, we deduce that limðn1=nÞ ¼ 1. &

Exercises for Section 3.1

1. The sequence (xn) is defined by the following formulas for the nth term.Write the first five terms

in each case:

(a) xn :¼ 1þ ð�1Þn; (b) xn :¼ ð�1Þn=n;

(c) xn :¼ 1

nðnþ 1Þ ; (d) x :¼ 1

n2 þ 2
:
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2. The first few terms of a sequence (xn) are given below. Assuming that the ‘‘natural pattern’’

indicated by these terms persists, give a formula for the nth term xn.

(a) 5, 7, 9, 11, . . . , (b) 1=2, –1=4, 1=8, –1=16, . . . ,
(c) 1=2, 2=3, 3=4, 4=5, . . . , (d) 1, 4, 9, 16, . . . .

3. List the first five terms of the following inductively defined sequences.

(a) x1 :¼ 1; xnþ1 :¼ 3xn þ 1;
(b) y1 :¼ 2; ynþ1 :¼ 1

2
ðyn þ 2=ynÞ;

(c) z1 :¼ 1; z2 :¼ 2; znþ2 :¼ ðznþ1 þ znÞ=ðznþ1 � znÞ;
(d) s1 :¼ 3; s2 :¼ 5; snþ2 :¼ sn þ snþ1:

4. For any b 2 R, prove that limðb=nÞ ¼ 0.

5. Use the definition of the limit of a sequence to establish the following limits.

(a) lim
n

n2 þ 1

� �
¼ 0; (b) lim

2n

nþ 1

� �
¼ 2;

(c) lim
3nþ 1

2nþ 5

� �
¼ 3

2
; (d) lim

n2 � 1

2n2 þ 3

� �
¼ 1

2
:

6. Show that

(a) lim
1ffiffiffiffiffiffiffiffiffiffiffi
nþ 7

p
� �

¼ 0; (b) lim
2n

nþ 2

� �
¼ 2;

(c) lim

ffiffiffi
n

p
nþ 1

� �
¼ 0; (d) lim

ð�1Þnn
n2 þ 1

� �
¼ 0:

7. Let xn :¼ 1=lnðnþ 1Þ for n 2 N .

(a) Use the definition of limit to show that limðxnÞ ¼ 0.

(b) Find a specific value ofK(e) as required in the definition of limit for each of (i) e¼ 1=2, and
(ii) e ¼ 1=10.

8. Prove that limðxnÞ ¼ 0 if and only if limðjxnjÞ ¼ 0. Give an example to show that the

convergence of ðjxnjÞ need not imply the convergence of ðxnÞ.
9. Show that if xn � 0 for all n 2 N and limðxnÞ ¼ 0, then limð ffiffiffiffiffi

xn
p Þ ¼ 0.

10. Prove that if limðxnÞ ¼ x and if x > 0, then there exists a natural numberM such that xn > 0 for

all n � M.

11. Show that lim
1

n
� 1

nþ 1

� �
¼ 0:

12. Show that limð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
� nÞ ¼ 0:

13. Show that limð1=3nÞ ¼ 0.

14. Let b 2 R satisfy 0 < b < 1. Show that limðnbnÞ ¼ 0. [Hint: Use the Binomial Theorem as in

Example 3.1.11(d).]

15. Show that lim
�
ð2nÞ1=n

�
¼ 1.

16. Show that limðn2=n!Þ ¼ 0.

17. Show that limð2n=n!Þ ¼ 0. [Hint: If n � 3, then 0 < 2n=n! � 2 2
3

� 	n�2
.]

18. If limðxnÞ ¼ x > 0, show that there exists a natural number K such that if n � K, then
1
2
x < xn < 2x.
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Section 3.2 Limit Theorems

In this section we will obtain some results that enable us to evaluate the limits of certain

sequences of real numbers. These results will expand our collection of convergent

sequences rather extensively. We begin by establishing an important property of conver-

gent sequences that will be needed in this and later sections.

3.2.1 Definition A sequence X ¼ ðxnÞ of real numbers is said to be bounded if there

exists a real number M > 0 such that jxnj � M for all n 2 N .

Thus, the sequence (xn) is bounded if and only if the set fxn : n 2 Ng of its values is a
bounded subset of R .

3.2.2 Theorem A convergent sequence of real numbers is bounded.

Proof. Suppose that limðxnÞ ¼ x and let e :¼ 1. Then there exists a natural number

K ¼ K(1) such that jxn � xj < 1 for all n � K. If we apply the Triangle Inequality with

n � K we obtain

jxnj ¼ jxn � xþ xj � jxn � xj þ jxj < 1þ jxj:
If we set

M :¼ sup

jx1j; jx2j; . . . ; jxK�1j; 1þ jxj�;

then it follows that jxnj � M for all n 2 N . Q.E.D.

Remark We can also prove a convergent sequence (xn) is bounded using the language of

neighborhoods. If Ve(x) is a given neighborhood of the limit x, then all but a finite number

of terms of the sequence belong to Ve(x). Therefore, since Ve(x) is clearly bounded and

finite sets are bounded, it follows that the sequence is bounded.

We will now examine how the limit process interacts with the operations of addition,

subtraction, multiplication, and division of sequences. If X ¼ (xn) and Y ¼ (yn) are

sequences of real numbers, then we define their sum to be the sequence Xþ Y :¼ (xnþ yn),

their difference to be the sequence X � Y :¼ ðxn � ynÞ, and their product to be the

sequence X � Y :¼ (xnyn). If c 2 R , we define the multiple of X by c to be the sequence

cX :¼ (cxn). Finally, if Z ¼ (zn) is a sequence of real numbers with zn 6¼ 0 for all n 2 N ,

then we define the quotient of X and Z to be the sequence X=Z :¼ ðxn=znÞ.
For example, if X and Y are the sequences

X :¼ ð2; 4; 6; . . . ; 2n; . . .Þ; Y :¼ 1

1
;
1

2
;
1

3
; . . . ;

1

n
; . . .

� �
;

then we have

X þ Y ¼ 3

1
;
9

2
;
19

3
; . . . ;

2n2 þ 1

n
; � � �

� �
;

X � Y ¼ 1

1
;
7

2
;
17

3
; . . . ;

2n2 � 1

n
; � � �

� �
;

X � Y ¼ ð2; 2; 2; . . . ; 2; . . .Þ;
3X ¼ ð6; 12; 18; . . . ; 6n; . . .Þ;

X=Y ¼ ð2; 8; 18; . . . ; 2n2; . . .Þ:
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We note that if Z is the sequence

Z :¼
�
0; 2; 0; . . . ; 1þ ð�1Þn; . . .

�
;

then we can define Xþ Z, X – Z and X � Z, but X=Z is not defined since some of the terms of

Z are zero.

We now show that sequences obtained by applying these operations to convergent

sequences give rise to new sequences whose limits can be predicted.

3.2.3 Theorem (a) Let X ¼ (xn) and Y ¼ (yn) be sequences of real numbers that

converge to x and y, respectively, and let c 2 R . Then the sequences Xþ Y, X – Y, X � Y, and
cX converge to x þ y, x – y, xy, and cx, respectively.

(b) If X ¼ (xn) converges to x and Z ¼ (zn) is a sequence of nonzero real numbers that

converges to z and if z 6¼ 0, then the quotient sequence X=Z converges to x=z.

Proof. (a) To show that limðxn þ ynÞ ¼ xþ y, we need to estimate the magnitude of

jðxn þ ynÞ � ðxþ yÞj. To do this we use the Triangle Inequality 2.2.3 to obtain

jðxn þ ynÞ � ðxþ yÞj ¼ jðxn � xÞ þ ðyn � yÞj
� jxn � x j þ j yn � yj:

By hypothesis, if e> 0 there exists a natural number K1 such that if n � K1, then jxn � xj <
e=2; also there exists a natural number K2 such that if n � K2, then jyn � yj < e=2. Hence if
KðeÞ :¼ supfK1;K2g, it follows that if n � KðeÞ then

jðxn þ ynÞ � ðxþ yÞ j � jxn � xj þ jyn � yj
<

1

2
eþ 1

2
e ¼ e:

Since e > 0 is arbitrary, we infer that X þ Y ¼ ðxn þ ynÞ converges to x þ y.

Precisely the same argument can be used to show that X � Y ¼ ðxn � ynÞ converges to
x� y.

To show that X � Y ¼ ðxnynÞ converges to xy, we make the estimate

jxnyn � xyj ¼ jðxnyn � xnyÞ þ ðxny� xyÞj
� jxnðyn � yÞj þ jðxn � xÞyj
¼ jxnjjyn � yj þ jxn � xjjyj:

According to Theorem 3.2.2 there exists a real numberM1 > 0 such that jxnj � M1 for all

n 2 N and we set M :¼ supfM1; jyjg. Hence we have

jxnyn � xyj � Mjyn � yj þMjxn � xj:
From the convergence of X and Ywe conclude that if e > 0 is given, then there exist natural

numbers K1 and K2 such that if n � K1 then jxn � xj < e=2M, and if n � K2 then

jyn � yj < e=2M. Now let KðeÞ ¼ supfK1; K2g; then, if n � KðeÞ we infer that

jxnyn � xyj � Mjyn � yj þMjxn � xj
< Mðe=2MÞ þMðe=2MÞ ¼ e:

Since e > 0 is arbitrary, this proves that the sequence X � Y ¼ ðxnynÞ converges to xy.

The fact that cX¼ (cxn) converges to cx can be proved in the same way; it can also be

deduced by taking Y to be the constant sequence ðc; c; c; . . .Þ. We leave the details to the

reader.
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(b) We next show that if Z ¼ ðznÞ is a sequence of nonzero numbers that converges to a

nonzero limit z, then the sequence (l=zn) of reciprocals converges to 1=z. First let a :¼ 1
2
jzj

so that a > 0. Since limðznÞ ¼ z, there exists a natural number K1 such that if

n � K1 then jzn � zj < a. It follows from Corollary 2.2.4(a) of the Triangle Inequality

that �a � �jzn � zj � jznj � jzj for n � K1, whence it follows that
1
2
jzj ¼ jzj � a � jznj

for n � K1. Therefore 1=jznj � 2=jzj for n � K1 so we have the estimate

1

zn
� 1

z

����
���� ¼ z� zn

znz

����
���� ¼ 1

jznzj jz� znj

� 2

jzj2 jz� znj for all n � K1:

Now, if e > 0 is given, there exists a natural number K2 such that if n � K2 then

jzn � zj < 1
2
ejzj2. Therefore, it follows that if KðeÞ ¼ supfK1; K2g, then

1

zn
� 1

z

����
���� < e for all n > KðeÞ:

Since e > 0 is arbitrary, it follows that

lim
1

zn

� �
¼ 1

z
:

The proof of (b) is now completed by taking Y to be the sequence ð1=znÞ and using the fact
that X � Y ¼ ðxn=znÞ converges to xð1=zÞ ¼ x=z. Q.E.D.

Some of the results of Theorem 3.2.3 can be extended, byMathematical Induction, to a

finite number of convergent sequences. For example, if A ¼ ðanÞ; B ¼ ðbnÞ; . . . ; Z ¼ ðznÞ
are convergent sequences of real numbers, then their sum Aþ Bþ � � � þ Z ¼ ðan þ bn
þ � � � þ znÞ is a convergent sequence and

(1) limðan þ bn þ � � � þ znÞ ¼ limðanÞ þ limðbnÞ þ � � � þ limðznÞ:
Also their product A � B � � � Z :¼ ðanbn � � � znÞ is a convergent sequence and

(2) limðanbn � � � znÞ ¼ ðlimðanÞÞ ðlimðbnÞÞ � � � ðlimðznÞÞ:
Hence, if k 2 N and if A ¼ ðanÞ is a convergent sequence, then

(3) limðaknÞ ¼ ðlimðanÞÞk:
We leave the proofs of these assertions to the reader.

3.2.4 Theorem If X¼ (xn) is a convergent sequence of real numbers and if xn � 0 for all

n 2 N , then x ¼ limðxnÞ � 0.

Proof. Suppose the conclusion is not true and that x < 0; then e :¼�x is positive. Since X

converges to x, there is a natural number K such that

x� e < xn < xþ e for all n � K:

In particular, we have xK < xþ e ¼ xþ ð�xÞ ¼ 0. But this contradicts the hypothesis

that xn � 0 for all n 2 N . Therefore, this contradiction implies that x � 0. Q.E.D.

We now give a useful result that is formally stronger than Theorem 3.2.4.

3.2.5 Theorem If X ¼ ðxnÞ and Y ¼ ðynÞ are convergent sequences of real numbers and

if xn � yn for all n 2 N , then limðxnÞ � limðynÞ.
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Proof. Let zn :¼ yn � xn so that Z :¼ ðznÞ ¼ Y � X and zn � 0 for all n 2 N . It follows

from Theorems 3.2.3 and 3.2.4 that

0 � lim Z ¼ limðynÞ � limðxnÞ;
so that limðxnÞ � limðynÞ: Q.E.D.

The next result asserts that if all the terms of a convergent sequence satisfy an inequality

of the form a � xn � b, then the limit of the sequence satisfies the same inequality. Thus if the

sequence is convergent, one may ‘‘pass to the limit’’ in an inequality of this type.

3.2.6 Theorem If X ¼ ðxnÞ is a convergent sequence and if a � xn � b for all n 2 N ,

then a � limðxnÞ � b.

Proof. Let Y be the constant sequence ðb; b; b; . . .Þ. Theorem 3.2.5 implies that

limX � lim Y ¼ b. Similarly one shows that a � limX. Q.E.D.

The next result asserts that if a sequence Y is squeezed between two sequences that

converge to the same limit, then it must also converge to this limit.

3.2.7 Squeeze Theorem Suppose that X ¼ ðxnÞ; Y ¼ ðynÞ, and Z ¼ ðznÞ are sequences
of real numbers such that

xn � yn � zn for all n 2 N ;

and that limðxnÞ ¼ limðznÞ. Then Y ¼ ðynÞ is convergent and
limðxnÞ ¼ limðynÞ ¼ limðznÞ:

Proof. Let w :¼ limðxnÞ ¼ limðznÞ. If e > 0 is given, then it follows from the conver-

gence of X and Z to w that there exists a natural number K such that if n � K then

jxn � wj < e and jzn � wj < e:

Since the hypothesis implies that

xn � w � yn � w � zn � w for all n 2 N ;

it follows (why?) that

�e < yn � w < e

for all n � K. Since e > 0 is arbitrary, this implies that limðynÞ ¼ w. Q.E.D.

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of

Theorems 3.2.4, 3.2.5, 3.2.6, and 3.2.7 can be weakened to apply to the tail of a sequence.

For example, in Theorem 3.2.4, if X ¼ ðxnÞ is ‘‘ultimately positive’’ in the sense that there

existsm 2 N such that xn � 0 for all n � m, then the same conclusion that x � 0 will hold.

Similar modifications are valid for the other theorems, as the reader should verify.

3.2.8 Examples (a) The sequence ðnÞ is divergent.
It follows from Theorem 3.2.2 that if the sequence X :¼ ðnÞ is convergent, then there

exists a real number M > 0 such that n ¼ jnj < M for all n 2 N . But this violates the

Archimedean Property 2.4.3.
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(b) The sequence ðð�1ÞnÞ is divergent.
This sequence X ¼ ðð�1ÞnÞ is bounded (take M :¼ 1), so we cannot invoke

Theorem 3.2.2. However, assume that a :¼ lim X exists. Let e :¼ 1 so that there exists

a natural number K1 such that

jð�1Þn � aj < 1 for all n � K1:

If n is an odd natural number with n � K1 this gives j �1� aj < 1, so that�2 < a < 0. On

the other hand, if n is an even natural number with n � K1, this inequality gives

j1� aj < 1 so that 0 < a < 2. Since a cannot satisfy both of these inequalities, the

hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is

divergent.

(c) lim
2nþ 1

n

� �
¼ 2:

If we let X :¼ (2) and Y :¼ (1=n), then ðð2nþ 1Þ=nÞ ¼ X þ Y . Hence it follows

from Theorem 3.2.3(a) that limðXþ YÞ ¼ limX þ lim Y ¼ 2þ 0 ¼ 2:

(d) lim
2nþ 1

nþ 5

� �
¼ 2:

Since the sequences ð2nþ 1Þ and (nþ 5) are not convergent (why?), it is not possible

to use Theorem 3.2.3(b) directly. However, if we write

2nþ 1

nþ 5
¼ 2þ 1=n

1þ 5=n
;

we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we

take X :¼ ð2þ 1=nÞ and Z :¼ ð1þ 5=nÞ. (Check that all hypotheses are satisfied.) Since

lim X ¼ 2 and lim Z ¼ 1 6¼ 0, we deduce that limðð2nþ 1Þ=ðnþ 5ÞÞ ¼ 2=1 ¼ 2.

(e) lim
2n

n2 þ 1

� �
¼ 0:

Theorem 3.2.3(b) does not apply directly. (Why?) We note that

2n

n2 þ 1
¼ 2

nþ 1=n
;

but Theorem 3.2.3(b) does not apply here either, because ðnþ 1=nÞ is not a convergent

sequence. (Why not?) However, if we write

2n

n2 þ 1
¼ 2=n

1þ 1=n2
;

then we can apply Theorem 3.2.3(b), since limð2=nÞ ¼ 0 and limð1þ 1=n2Þ ¼ 1 6¼ 0.

Therefore limð2n=ðn2 þ 1ÞÞ ¼ 0=1 ¼ 0.

(f) lim
sin n

n

� �
¼ 0:

We cannot apply Theorem 3.2.3(b) directly, since the sequence (n) is not convergent

[neither is the sequence (sin n)]. It does not appear that a simple algebraic manipulation

will enable us to reduce the sequence into one towhich Theorem 3.2.3 will apply. However,

if we note that �1 � sin n � 1, then it follows that

� 1

n
� sin n

n
� 1

n
for all n 2 N :
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Hence we can apply the Squeeze Theorem 3.2.7 to infer that limðn�1sin nÞ ¼ 0. (We note

that Theorem 3.1.10 could also be applied to this sequence.)

(g) Let X ¼ ðxnÞ be a sequence of real numbers that converges to x 2 R . Let p be a

polynomial; for example, let

pðtÞ :¼ akt
k þ ak�1t

k�1 þ � � � þ a1tþ a0;

where k 2 N and aj 2 R for j ¼ 0; 1; . . . ; k. It follows from Theorem 3.2.3 that the

sequence ð pðxnÞÞ converges to pðxÞ. We leave the details to the reader as an exercise.

(h) Let X ¼ ðxnÞ be a sequence of real numbers that converges to x 2 R . Let r be a

rational function (that is, rðtÞ :¼ pðtÞ=qðtÞ, where p and q are polynomials). Suppose that

qðxnÞ 6¼ 0 for all n 2 N and that qðxÞ 6¼ 0. Then the sequence ðrðxnÞÞ converges to

rðxÞ ¼ pðxÞ=qðxÞ. We leave the details to the reader as an exercise. &

We conclude this section with several results that will be useful in the work that

follows.

3.2.9 Theorem Let the sequence X ¼ ðxnÞ converge to x. Then the sequence ðjxnjÞ of
absolute values converges to jxj. That is, if x ¼ limðxnÞ, then jxj ¼ limðjxnjÞ.

Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a)) that��jxnj � jxj�� � jxn � xj for all n 2 N :

The convergence of ðjxnjÞ to jxj is then an immediate consequence of the convergence of

ðxnÞ to x. Q.E.D.

3.2.10 Theorem Let X ¼ ðxnÞ be a sequence of real numbers that converges to x and

suppose that xn � 0. Then the sequence ð ffiffiffiffiffi
xn

p Þ of positive square roots converges and

limð ffiffiffiffiffi
xn

p Þ ¼ ffiffiffi
x

p
.

Proof. It follows from Theorem 3.2.4 that x ¼ limðxnÞ � 0 so the assertion makes sense.

We now consider the two cases: (i) x ¼ 0 and (ii) x > 0.

Case (i) If x ¼ 0, let e > 0 be given. Since xn ! 0 there exists a natural number K

such that if n � K then

0 � xn ¼ xn � 0 < e2:

Therefore [see Example 2.1.13(a)], 0 � ffiffiffiffiffi
xn

p
< e for n � K. Since e > 0 is arbitrary, this

implies that
ffiffiffiffiffi
xn

p ! 0.

Case (ii) If x > 0, then
ffiffiffi
x

p
> 0 and we note that

ffiffiffiffiffi
xn

p � ffiffiffi
x

p ¼ ð ffiffiffiffiffi
xn

p � ffiffiffi
x

p Þð ffiffiffiffiffi
xn

p þ ffiffiffi
x

p Þffiffiffiffiffi
xn

p þ ffiffiffi
x

p ¼ xn � xffiffiffiffiffi
xn

p þ ffiffiffi
x

p

Since
ffiffiffiffiffi
xn

p þ ffiffiffi
x

p � ffiffiffi
x

p
> 0, it follows that��� ffiffiffiffiffi

xn
p � ffiffiffi

x
p ��� � 1ffiffiffi

x
p

� �
jxn � xj:

The convergence of
ffiffiffiffiffi
xn

p ! ffiffiffi
x

p
follows from the fact that xn ! x. Q.E.D.

For certain types of sequences, the following result provides a quick and easy ‘‘ratio

test’’ for convergence. Related results can be found in the exercises.
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3.2.11 Theorem Let ðxnÞ be a sequence of positive real numbers such that L :¼
limðxnþ1=xnÞ exists. If L < 1, then ðxnÞ converges and limðxnÞ ¼ 0.

Proof. By 3.2.4 it follows that L � 0. Let r be a number such that L < r < 1, and let

e :¼ r� L > 0. There exists a number K 2 N such that if n � K then

xnþ1

xn
� L

����
���� < e:

It follows from this (why?) that if n � K, then

xnþ1

xn
< Lþ e ¼ Lþ ðr� LÞ ¼ r:

Therefore, if n � K, we obtain

0 < xnþ1 < xnr < xn�1r
2 < � � � < xKr

n�Kþ1:

If we set C :¼ xK=r
K , we see that 0 < xnþ1 < Crnþ1 for all n � K. Since 0 < r < 1, it

follows from 3.1.11(b) that limðrnÞ ¼ 0 and therefore from Theorem 3.1.10 that

limðxnÞ ¼ 0. Q.E.D.

As an illustration of the utility of the preceding theorem, consider the sequence ðxnÞ
given by xn :¼ n=2n. We have

xnþ1

xn
¼ nþ 1

2nþ1
� 2

n

n
¼ 1

2
1þ 1

n

� �
;

so that limðxnþ1=xnÞ ¼ 1
2
. Since 1

2
< 1, it follows from Theorem 3.2.11 that limðn=2nÞ ¼ 0.

Exercises for Section 3.2

1. For xn given by the following formulas, establish either the convergence or the divergence of the

sequence X ¼ ðxnÞ.
(a) xn :¼ n

nþ 1
; (b) xn :¼ ð�1Þnn

nþ 1
;

(c) xn :¼ n2

nþ 1
; (d) xn :¼ 2n2 þ 3

n2 þ 1
:

2. Give an example of two divergent sequences X and Y such that:

(a) their sum X þ Y converges, (b) their product XY converges.

3. Show that if X and Y are sequences such that X and X þ Y are convergent, then Y is convergent.

4. Show that if X and Y are sequences such that X converges to x 6¼ 0 and XY converges, then Y

converges.

5. Show that the following sequences are not convergent.

(a) ð2nÞ; (b)
�ð�1Þnn2	:

6. Find the limits of the following sequences:

(a) lim
�
ð2þ 1=nÞ2

�
; (b) lim

ð�1Þn
nþ 2

� �
;

(c) lim

ffiffiffi
n

p � 1ffiffiffi
n

p þ 1

� �
; (d) lim

nþ 1

n
ffiffiffi
n

p
� �

:
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7. If ðbnÞ is a bounded sequence and limðanÞ ¼ 0, show that limðanbnÞ ¼ 0. Explain why

Theorem 3.2.3 cannot be used.

8. Explain why the result in equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit

of the sequence ðð1þ 1=nÞnÞ.
9. Let yn :¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p
for n 2 N . Show that ð ffiffiffi

n
p

ynÞ converges. Find the limit.

10. Determine the limits of the following sequences.

(a) ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 n2 þ n

p � 2nÞ; (b) ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 5n

p � nÞ:
11. Determine the following limits.

(a) lim
�
ð3 ffiffiffi

n
p Þ1=2n

�
; (b) lim

�
ðnþ 1Þ1=lnðnþ1Þ

�
.

12. If 0 < a < b; determine lim
anþ1 þ bnþ1

an þ bn

� �
:

13. If a > 0; b > 0; show that lim
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ aÞðnþ bÞp � n

�
¼ ðaþ bÞ=2.

14. Use the Squeeze Theorem 3.2.7 to determine the limits of the following,

(a) ðn1=n2 Þ; (b)
�
ðn!Þ1=n2

�
:

15. Show that if zn :¼ ðan þ bnÞ1=n where 0 < a < b, then limðznÞ ¼ b.

16. Apply Theorem 3.2.11 to the following sequences, where a, b satisfy 0 < a < 1; b > 1.

(a) ðanÞ; (b) ðbn=2nÞ;
(c) ðn=bnÞ; (d) ð23n=32nÞ:

17. (a) Give an example of a convergent sequence ðxnÞ of positive numbers with limðxnþ1=xnÞ ¼ 1.

(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be

used as a test for convergence.)

18. Let X¼ (xn) be a sequence of positive real numbers such that limðxnþ1=xnÞ ¼ L > 1. Show that

X is not a bounded sequence and hence is not convergent.

19. Discuss the convergence of the following sequences, where a, b satisfy 0 < a < 1; b > 1.

(a) ðn2anÞ; (b) ðbn=n2Þ;
(c) ðbn=n!Þ; (d) ðn!=nnÞ:

20. Let ðxnÞ be a sequence of positive real numbers such that limðx1=nn Þ ¼ L < 1. Show that there

exists a number r with 0 < r < 1 such that 0 < xn < rn for all sufficiently large n 2 N . Use this

to show that limðxnÞ ¼ 0.

21. (a) Give an example of a convergent sequence (xn) of positive numbers with limðx1=nn Þ ¼ 1.

(b) Give an example of a divergent sequence (xn) of positive numbers with limðx1=nn Þ ¼ 1.

(Thus, this property cannot be used as a test for convergence.)

22. Suppose that ðxnÞ is a convergent sequence and ðynÞ is such that for any e> 0 there existsM such

that jxn � ynj < e for all n � M. Does it follow that (yn) is convergent?

23. Show that if (xn) and (yn) are convergent sequences, then the sequences (un) and (vn) defined by

un :¼ maxfxn; yng and vn :¼ minfxn; yng are also convergent. (See Exercise 2.2.18.)

24. Show that if ðxnÞ; ðynÞ; ðznÞ are convergent sequences, then the sequence (wn) defined by

wn :¼ midfxn; yn; zng is also convergent. (See Exercise 2.2.19.)

Section 3.3 Monotone Sequences

Until now, we have obtained several methods of showing that a sequence X ¼ (xn) of real

numbers is convergent:
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(i) We can use Definition 3.1.3 or Theorem 3.1.5 directly. This is often (but not

always) difficult to do.

(ii) We can dominate jxn � xj by a multiple of the terms in a sequence ðanÞ known to
converge to 0, and employ Theorem 3.1.10.

(iii) We can identify X as a sequence obtained from other sequences that are known to

be convergent by taking tails, algebraic combinations, absolute values, or square roots, and

employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10.

(iv) We can ‘‘squeeze’’ X between two sequences that converge to the same limit and

use Theorem 3.2.7.

(v) We can use the ‘‘ratio test’’ of Theorem 3.2.11.

Except for (iii), all of these methods require that we already know (or at least suspect) the

value of the limit, and we then verify that our suspicion is correct.

There are many instances, however, in which there is no obvious candidate for the limit

of a sequence, even though a preliminary analysis may suggest that convergence is likely.

In this and the next two sections, we shall establish results that can be used to show a

sequence is convergent even though the value of the limit is not known. The method we

introduce in this section is more restricted in scope than the methods we give in the next

two, but it is much easier to employ. It applies to sequences that are monotone in the

following sense.

3.3.1 Definition Let X¼ (xn) be a sequence of real numbers. We say that X is increasing

if it satisfies the inequalities

x1 � x2 � � � � � xn � xnþ1 � � � � :
We say that X is decreasing if it satisfies the inequalities

x1 � x2 � � � � � xn � xnþ1 � � � � :
We say that X is monotone if it is either increasing or decreasing.

The following sequences are increasing:

ð1; 2; 3; 4; . . . ; n; . . .Þ; ð1; 2; 2; 3; 3; 3; . . .Þ;
ða; a2; a3; . . . ; an; . . .Þ if a > 1:

The following sequences are decreasing:

ð1; 1=2; 1=3; . . . ; 1=n; . . .Þ; ð1; 1=2; 1=22; . . . ; 1=2n�1; . . .Þ;
ðb; b2; b3; . . . ; bn; . . .Þ if 0 < b < 1:

The following sequences are not monotone:�þ1;�1;þ1; . . . ; ð�1Þnþ1; . . .
	
;

��1;þ2;�3; . . . ; ð�1Þnn . . . 	
The following sequences are not monotone, but they are ‘‘ultimately’’ monotone:

ð7; 6; 2; 1; 2; 3; 4; . . .Þ; ð�2; 0; 1; 1=2; 1=3; 1=4; . . .Þ:

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is

convergent if and only if it is bounded. Further:
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(a) If X ¼ (xn) is a bounded increasing sequence, then

limðxnÞ ¼ supfxn : n 2 Ng:
(b) If Y ¼ (yn) is a bounded decreasing sequence, then

limðynÞ ¼ inffyn : n 2 Ng:

Proof. It was seen in Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X is either increasing or

decreasing.

(a) We first treat the case where X¼ (xn) is a bounded, increasing sequence. Since X is

bounded, there exists a real number M such that xn � M for all n 2 N . According to the

Completeness Property 2.3.6, the supremum x� ¼ supfxn : n 2 Ng exists in R ; we will

show that x� ¼ limðxnÞ.
If e > 0 is given, then x� � e is not an upper bound of the set fxn : n 2 Ng, and hence

there exists xK such that x� � e < xK . The fact that X is an increasing sequence implies that

xK � xn whenever n � K, so that

x� � e < xK � xn � x� < x� þ e for all n � K:

Therefore we have

jxn � x�j < e for all n � K:

Since e > 0 is arbitrary, we conclude that (xn) converges to x�.
(b) If Y ¼ (yn) is a bounded decreasing sequence, then it is clear that X :¼ �Y ¼

ð�ynÞ is a bounded increasing sequence. It was shown in part (a) that lim X ¼
supf�yn : n 2 Ng, Now lim X ¼ �lim Y and also, by Exercise 2.4.4(b), we have

supf�yn : n 2 Ng ¼ �inffyn : n 2 Ng:
Therefore lim Y ¼ �lim X ¼ inffyn : n 2 Ng: Q.E.D.

The Monotone Convergence Theorem establishes the existence of the limit of a

bounded monotone sequence. It also gives us a way of calculating the limit of the sequence

provided we can evaluate the supremum in case (a), or the infimum in case (b). Sometimes

it is difficult to evaluate this supremum (or infimum), but once we know that it exists, it is

often possible to evaluate the limit by other methods.

3.3.3 Examples (a) limð1= ffiffiffi
n

p Þ ¼ 0.

It is possible to handle this sequence by using Theorem 3.2.10; however, we shall use

the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set f1= ffiffiffiffiffiffi
n :

p
n 2 Ng, and it is not difficult to show that 0 is the infimum of the set f1= ffiffiffi

n
p

: n 2 Ng;
hence 0 ¼ limð1= ffiffiffi

n
p Þ.

On the other hand, once we know that X :¼ ð1= ffiffiffi
n

p Þ is bounded and decreasing, we

know that it converges to some real number x. Since X ¼ ð1= ffiffiffi
n

p Þ converges to x, it

follows from Theorem 3.2.3 that X � X ¼ ð1=nÞ converges to x2. Therefore x2 ¼ 0,

whence x ¼ 0.

(b) Let hn :¼ 1þ 1=2þ 1=3þ � � � þ 1=n for n 2 N.

Since hnþ1 ¼ hn þ 1=ðnþ 1Þ > hn, we see that ðhnÞ is an increasing sequence. By the
Monotone Convergence Theorem 3.3.2, the question of whether the sequence is convergent

or not is reduced to the question of whether the sequence is bounded or not. Attempts to use

direct numerical calculations to arrive at a conjecture concerning the possible boundedness

of the sequence ðhnÞ lead to inconclusive frustration. A computer run will reveal the

approximate values hn � 11:4 for n ¼ 50; 000, and hn � 12:1 for n ¼ 100;000. Such
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numerical facts may lead the casual observer to conclude that the sequence is bounded.

However, the sequence is in fact divergent, which is established by noting that

h2n ¼ 1þ 1

2
þ 1

3
þ 1

4

� �
þ � � � þ 1

2n�1 þ 1
þ � � � þ 1

2n

� �

> 1þ 1

2
þ 1

4
þ 1

4

� �
þ � � � þ 1

2n
þ � � � þ 1

2n

� �

¼ 1þ 1

2
þ 1

2
þ � � � þ 1

2

¼ 1þ n

2
:

Since ðhnÞ is unbounded, Theorem 3.2.2 implies that it is divergent. (This proves that

the infinite series known as the harmonic series diverges. See Example 3.7.6(b) in

Section 3.7.)

The terms hn increase extremely slowly. For example, it can be shown that to achieve

hn > 50 would entail approximately 5.2� 1021 additions, and a normal computer per-

forming 400 million additions a second would require more than 400,000 years to perform

the calculation (there are 31,536,000 seconds in a year). A supercomputer that can perform

more than a trillion additions a second would take more than 164 years to reach that modest

goal. And the IBM Roadrunner supercomputer at a speed of a quadrillion operations per

second would take over a year and a half. &

Sequences that are defined inductivelymust be treated differently. If such a sequence is

known to converge, then the value of the limit can sometimes be determined by using the

inductive relation.

For example, suppose that convergence has been established for the sequence ðxnÞ
defined by

x1 ¼ 2; xnþ1¼ 2þ 1

xn
; n 2 N :

If we let x ¼ limðxnÞ, then we also have x ¼ limðxnþ1Þ since the 1-tail ðxnþ1Þ converges to
the same limit. Further, we see that xn � 2, so that x 6¼ 0 and xn 6¼ 0 for all n 2 N .

Therefore, we may apply the limit theorems for sequences to obtain

x ¼ limðxnþ1Þ ¼ 2þ 1

limðxnÞ ¼ 2þ 1

x
:

Thus, the limit x is a solution of the quadratic equation x2 � 2x� 1 ¼ 0, and since xmust

be positive, we find that the limit of the sequence is x ¼ 1þ ffiffiffi
2

p
.

Of course, the issue of convergence must not be ignored or casually assumed. For

example, if we assumed the sequence ðynÞ defined by y1 :¼ 1; ynþ1 :¼ 2yn þ 1 is conver-

gent with limit y, then we would obtain y ¼ 2yþ 1, so that y ¼ �1. Of course, this is

absurd.

In the following examples, we employ this method of evaluating limits, but only after

carefully establishing convergence using the Monotone Convergence Theorem. Additional

examples of this type will be given in Section 3.5.

3.3.4 Examples (a) Let Y ¼ (yn) be defined inductively by y1 :¼ 1; ynþ1 :¼ 1
4
ð2ynþ3Þ

for n � 1.We shall show that lim Y ¼ 3=2.
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Direct calculation shows that y2 ¼ 5=4. Hence we have y1 < y2 < 2. We show, by

Induction, that yn < 2 for all n 2 N . Indeed, this is true for n ¼ 1; 2. If yk < 2 holds for

some k 2 N , then

ykþ1 ¼ 1
4
ð2yk þ 3Þ < 1

4
ð4þ 3Þ ¼ 7

4
< 2;

so that ykþ1 < 2. Therefore yn < 2 for all n 2 N .

We now show, by Induction, that yn < ynþ1 for all n 2 N . The truth of this assertion

has been verified for n ¼ 1. Now suppose that yk < ykþ1 for some k; then 2yk þ 3

< 2ykþ1 þ 3, whence it follows that

ykþ1 ¼ 1
4
ð2yk þ 3Þ < 1

4
ð2ykþ1 þ 3Þ ¼ ykþ2:

Thus yk < ykþ1 implies that ykþ1 < ykþ2. Therefore yn < ynþ1 for all n 2 N .

We have shown that the sequence Y ¼ ðynÞ is increasing and bounded above by 2. It

follows from the Monotone Convergence Theorem that Y converges to a limit that is at

most 2. In this case it is not so easy to evaluate limðynÞ by calculating supfyn : n 2 Ng.
However, there is another way to evaluate its limit. Since ynþ1 ¼ 1

4
ð2yn þ 3Þ for all n 2 N ,

the nth term in the 1-tail Y1 of Y has a simple algebraic relation to the nth term of Y. Since,

by Theorem 3.1.9, we have y :¼ lim Y1 ¼ lim Y , it therefore follows from Theorem 3.2.3

(why?) that

y ¼ 1
4
ð2yþ 3Þ;

from which it follows that y ¼ 3=2.

(b) Let Z ¼ (zn) be the sequence of real numbers defined by z1 :¼ 1; znþ1 :¼
ffiffiffiffiffiffiffi
2zn

p
for

n 2 N . We will show that limðznÞ ¼ 2.

Note that z1 ¼ 1 and z2 ¼
ffiffiffi
2

p
; hence 1 � z1 < z2 < 2. We claim that the sequence Z

is increasing and bounded above by 2. To show this we will show, by Induction, that

1 � zn < znþ1 < 2 for all n 2 N . This fact has been verified for n ¼ 1. Suppose that it is

true for n ¼ k; then 2 � 2zk < 2zkþ1 < 4, whence it follows (why?) that

1 <
ffiffiffi
2

p
� zkþ1 ¼

ffiffiffiffiffiffiffi
2zk

p
< zkþ2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2zkþ1

p
<

ffiffiffi
4

p
¼ 2:

[In this last step we have used Example 2.1.13(a).] Hence the validity of the inequality

1 � zk < zkþ1 < 2 implies the validity of 1 � zkþ1 < zkþ2 < 2. Therefore 1 � zn <
znþ1 < 2 for all n 2 N .

Since Z ¼ ðznÞ is a bounded increasing sequence, it follows from the Monotone

Convergence Theorem that it converges to a number z :¼ supfzng. It may be shown

directly that supfzng ¼ 2, so that z¼ 2. Alternatively we may use the method employed in

part (a). The relation znþ1 ¼
ffiffiffiffiffiffiffi
2zn

p
gives a relation between the nth term of the 1-tail Z1 of Z

and the nth term of Z. By Theorem 3.1.9, we have lim Z1 ¼ z ¼ lim Z. Moreover, by

Theorems 3.2.3 and 3.2.10, it follows that the limit z must satisfy the relation

z ¼
ffiffiffiffiffi
2z

p
:

Hence zmust satisfy the equation z2 ¼ 2z, which has the roots z ¼ 0; 2. Since the terms of

z ¼ ðznÞ all satisfy 1 � zn � 2, it follows from Theorem 3.2.6 that we must have

1 � z � 2. Therefore z ¼ 2. &
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The Calculation of Square Roots

We now give an application of the Monotone Convergence Theorem to the calculation of

square roots of positive numbers.

3.3.5 Example Let a > 0; we will construct a sequence (sn) of real numbers that

converges to
ffiffiffi
a

p
.

Let s1 > 0 be arbitrary and define snþ1 :¼ 1
2
ðsn þ a=snÞ for n 2 N. We now show that

the sequence (sn) converges to
ffiffiffi
a

p
. (This process for calculating square roots was known in

Mesopotamia before 1500 B.C.)

We first show that s2n � a for n � 2. Since sn satisfies the quadratic equation

s2n � 2snþ1sn þ a ¼ 0, this equation has a real root. Hence the discriminant 4s2nþ1 � 4a

must be nonnegative; that is, s2nþ1 � a for n � 1.

To see that (sn) is ultimately decreasing, we note that for n � 2 we have

sn � snþ1 ¼ sn � 1

2
sn þ a

sn

� �
¼ 1

2
� ðs

2
n � aÞ
sn

� 0:

Hence, snþ1 � sn for all n � 2. The Monotone Convergence Theorem implies that s :¼
limðsnÞ exists. Moreover, from Theorem 3.2.3, the limit s must satisfy the relation

s ¼ 1

2
sþ a

s

� �
;

whence it follows (why?) that s ¼ a=s or s2 ¼ a. Thus s ¼ ffiffiffi
a

p
.

For the purposes of calculation, it is often important to have an estimate of how rapidly

the sequence (sn) converges to
ffiffiffi
a

p
. As above, we have

ffiffiffi
a

p � sn for all n � 2, whence it

follows that a=sn �
ffiffiffi
a

p � sn. Thus we have

0 � sn �
ffiffiffi
a

p � sn � a=sn ¼ ðs2n � aÞ=sn for n � 2:

Using this inequality we can calculate
ffiffiffi
a

p
to any desired degree of accuracy. &

Euler’s Number

We conclude this section by introducing a sequence that converges to one of the

most important ‘‘transcendental’’ numbers in mathematics, second in importance only

to p.

3.3.6 Example Let en :¼ ð1þ 1=nÞn for n 2 N. Wewill now show that the sequence E¼
(en) is bounded and increasing; hence it is convergent. The limit of this sequence is the

famous Euler number e, whose approximate value is 2:718 281 828 459 045 . . . ; which is

taken as the base of the ‘‘natural’’ logarithm.

If we apply the Binomial Theorem, we have

en ¼ 1þ 1

n

� �n

¼ 1þ n

1
� 1
n
þ nðn� 1Þ

2!
� 1
n2

þ nðn� 1Þðn� 2Þ
3!

� 1
n3

þ � � � þ nðn� 1Þ � � � 2 � 1
n!

� 1
nn

:
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If we divide the powers of n into the terms in the numerators of the binomial coefficients,

we get

en ¼ 1þ 1 þ 1

2!
1� 1

n

� �
þ 1

3!
1� 1

n

� �
1� 2

n

� �

þ � � � þ 1

n!
1� 1

n

� �
1� 2

n

� �
� � � 1� n� 1

n

� �
:

Similarly we have

enþ1 ¼ 1þ 1 þ 1

2!
1� 1

nþ 1

� �
þ 1

3!
1� 1

nþ 1

� �
1� 2

nþ 1

� �

þ � � � þ 1

n!
1� 1

nþ 1

� �
1� 2

nþ 1

� �
� � � 1� n� 1

nþ 1

� �

þ 1

ðnþ 1Þ! 1� 1

nþ 1

� �
1� 2

nþ 1

� �
� � � 1� n

nþ 1

� �
:

Note that the expression for en contains n þ 1 terms, while that for enþ1 contains n þ 2

terms. Moreover, each term appearing in en is less than or equal to the corresponding term

in enþ1, and enþ1 has one more positive term. Therefore we have 2 � e1 < e2 < � � � <
en < enþ1 < � � � ; so that the terms of E are increasing.

To show that the terms of E are bounded above, we note that if p ¼ 1; 2; . . . ; n, then
ð1� p=nÞ < 1. Moreover 2p�1 � p! [see 1.2.4(e)] so that 1=p! � 1=2p�1. Therefore, if n>
1, then we have

2 < en < 1þ 1þ 1

2
þ 1

22
þ � � � þ 1

2n�1
:

Since it can be verified that [see 1.2.4(f)]

1

2
þ 1

22
þ � � � þ 1

2n�1
¼ 1� 1

2n�1
< 1;

we deduce that 2 < en < 3 for all n 2 N . The Monotone Convergence Theorem implies

that the sequence E converges to a real number that is between 2 and 3. We define the

number e to be the limit of this sequence.

By refining our estimates we can find closer rational approximations to e, but we

cannot evaluate it exactly, since e is an irrational number. However, it is possible to

calculate e to as many decimal places as desired. The reader should use a calculator (or a

computer) to evaluate en for ‘‘large’’ values of n. &

Leonhard Euler
Leonhard Euler (1707–1783) was born near Basel, Switzerland. His

clergyman father hoped his son would follow him into the ministry,

but when Euler entered the University of Basel at age 14, he studied

medicine, physics, astronomy, and mathematics as well as theology. His

mathematical talent was noticed by Johann Bernoulli, who became his

mentor. In 1727, Euler traveled to Russia to join Bernoulli’s son, Daniel,

at the new St. Petersburg Academy. There he met and married Katharina

Gsell, the daughter of a Swiss artist. During their 40-year marriage, they

had 13 children, but only five survived childhood.
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In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where

he stayed for 25 years. During this period he wrote landmark books on a relatively new subject

called calculus and a steady stream of papers on mathematics and science. In response to a request

for instruction in science from the Princess of Anhalt-Dessau, he wrote her nearly 200 letters on

science that later became famous in a book titled Letters to a German Princess. When Euler lost

vision in one eye, Frederick thereafter referred to him as his mathematical ‘‘cyclops.’’

In 1766, he happily returned to Russia at the invitation of Catherine the Great. His eyesight

continued to deteriorate and in 1771 he became totally blind following an eye operation.

Incredibly, his blindness made little impact on his mathematics output, for he wrote several

books and over 400 papers while blind. He remained active until the day of his death.

Euler’s productivity was remarkable. He wrote textbooks on physics, algebra, calculus, real

and complex analysis, and differential geometry. He alsowrote hundreds of papers, manywinning

prizes. A current edition of his collected works consists of 74 volumes.

Exercises for Section 3.3

1. Let x1 :¼ 8 and xnþ1 :¼ 1
2
xn þ 2 for n 2 N. Show that ðxnÞ is bounded and monotone. Find the

limit.

2. Let x1 > 1 and xnþ1 :¼ 2� 1=xn for n 2 N. show that ðxnÞ is bounded and monotone. Find the

limit.

3. Let x1 � 2 and xnþ1 :¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � 1

p
for n 2 N. Show that ðxnÞ is decreasing and bounded

below by 2. Find the limit.

4. Let x1 :¼ 1 and xnþ1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xn

p
for n 2 N. Show that ðxnÞ converges and find the limit.

5. Let y1 :¼ ffiffiffi
p

p
, where p > 0, and ynþ1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ yn

p
for n 2 N. Show that ðynÞ converges and find

the limit. [Hint: One upper bound is 1þ 2
ffiffiffi
p

p
.]

6. Let a > 0 and let z1 > 0:Define znþ1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ zn

p
for n 2 N . Show that ðznÞ converges and find

the limit.

7. Let x1 :¼ a > 0 and xnþ1 :¼ xn þ 1=xn for n 2 N . Determinewhether ðxnÞ converges or diverges.
8. Let ðanÞ be an increasing sequence, ðbnÞ be a decreasing sequence, and assume that an � bn for

all n 2 N . Show that limðanÞ � limðbnÞ, and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

9. Let A be an infinite subset of R that is bounded above and let u :¼ sup A. Show there exists an

increasing sequence ðxnÞ with xn 2 A for all n 2 N such that u ¼ limðxnÞ.
10. Establish the convergence or the divergence of the sequence ðynÞ, where

yn :¼
1

nþ 1
þ 1

nþ 2
þ � � � þ 1

2n
for n 2 N :

11. Let xn :¼ 1=12 þ 1=22 þ � � � þ 1=n2 for each n 2 N . Prove that ðxnÞ is increasing and bounded,
and hence converges. [Hint: Note that if k � 2, then 1=k2 � 1=kðk � 1Þ ¼ 1=ðk � 1Þ � 1=k.]

12. Establish the convergence and find the limits of the following sequences.

(a)
�ð1þ 1=nÞnþ1

	
; (b)

�ð1þ 1=nÞ2n	;
(c) 1þ 1

nþ 1

� �n� �
; (d)

�ð1� 1=nÞn	:
13. Use the method in Example 3.3.5 to calculate

ffiffiffi
2

p
, correct to within 4 decimals.

14. Use the method in Example 3.3.5 to calculate
ffiffiffi
5

p
, correct to within 5 decimals.

15. Calculate the number en in Example 3.3.6 for n ¼ 2, 4, 8, 16.

16. Use a calculator to compute en for n ¼ 50; n ¼ 100, and n ¼ 1000.
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Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem

In this section wewill introduce the notion of a subsequence of a sequence of real numbers.

Informally, a subsequence of a sequence is a selection of terms from the given sequence

such that the selected terms form a new sequence. Usually the selection is made for a

definite purpose. For example, subsequences are often useful in establishing the conver-

gence or the divergence of the sequence. We will also prove the important existence

theorem known as the Bolzano-Weierstrass Theorem, which will be used to establish a

number of significant results.

3.4.1 Definition Let X ¼ ðxnÞ be a sequence of real numbers and let n1 < n2 < � � � <
nk < � � � be a strictly increasing sequence of natural numbers. Then the sequence X0 ¼
ðxnkÞ given by �

xn1 ; xn2 ; . . . ; xnk ; . . .
	

is called a subsequence of X.

For example, if X :¼ 1
1
; 1
2
; 1
3
; . . .

� 	
, then the selection of even indexed terms produces

the subsequence

X 0 ¼ 1

2
;
1

4
;
1

6
; . . . ;

1

2k
; . . .

� �
;

where n1 ¼ 2; n2 ¼ 4; . . . ; nk ¼ 2k; : . . . Other subsequences of X ¼ ð1=nÞ are the

following:

1

1
;
1

3
;
1

5
; . . . ;

1

2k � 1
; . . .

� �
;

1

2!
;
1

4!
;
1

6!
; . . . ;

1

ð2kÞ! ; . . .
� �

:

The following sequences are not subsequences of X ¼ ð1=nÞ:
1

2
;
1

1
;
1

4
;
1

3
;
1

6
;
1

5
; . . .

� �
;

1

1
; 0;

1

3
; 0;

1

5
; 0; . . .

� �
:

A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-tail

corresponds to the sequence of indices

n1 ¼ mþ 1; n2 ¼ mþ 2; . . . ; nk ¼ mþ k; . . . :

But, clearly, not every subsequence of a given sequence need be a tail of the sequence.

Subsequences of convergent sequences also converge to the same limit, aswe now show.

3.4.2 Theorem If a sequence X ¼ ðxnÞ of real numbers converges to a real number x,

then any subsequence X 0 ¼ ðxnkÞ of X also converges to x.

Proof. Let e > 0 be given and let KðeÞ be such that if n � KðeÞ, then jxn � xj < e. Since
n1 < n2 < � � � < nk < � � � is an increasing sequence of natural numbers, it is easily proved

(by Induction) that nk � k. Hence, if k � KðeÞ, we also have nk � k � KðeÞ so that

jxnk � xj < e. Therefore the subsequence ðxnkÞ also converges to x. Q.E.D.

3.4.3 Examples (a) limðbnÞ ¼ 0 if 0 < b < 1.

We have already seen, in Example 3.1.11(b), that if 0 < b < 1 and if xn :¼ bn, then it

follows from Bernoulli’s Inequality that limðxnÞ ¼ 0. Alternatively, we see that since
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0 < b < 1, then xnþ1 ¼ bnþ1 < bn ¼ xn so that the sequence ðxnÞ is decreasing. It is also
clear that 0 � xn � 1, so it follows from the Monotone Convergence Theorem 3.3.2 that

the sequence is convergent. Let x :¼ lim xn. Since ðx2nÞ is a subsequence of ðxnÞ it follows
from Theorem 3.4.2 that x ¼ limðx2nÞ. Moreover, it follows from the relation x2n ¼ b2n ¼
ðbnÞ2 ¼ x2n and Theorem 3.2.3 that

x ¼ limðx2nÞ ¼
�
limðxnÞ

	2 ¼ x2:

Therefore we must have either x ¼ 0 or x ¼ 1. Since the sequence ðxnÞ is decreasing and

bounded above by b < 1, we deduce that x ¼ 0.

(b) limðc1=nÞ ¼ 1 for c > 1.

This limit has been obtained in Example 3.1.11(c) for c > 0, using a rather ingenious

argument. We give here an alternative approach for the case c > 1. Note that if zn :¼ c1=n;
then zn > 1 and znþ1 < zn for all n 2 N . (Why?) Thus by the Monotone Convergence

Theorem, the limit z :¼ limðznÞ exists. By Theorem 3.4.2, it follows that z ¼ limðz2nÞ. In
addition, it follows from the relation

z2n ¼ c1=2n ¼ ðc1=nÞ1=2 ¼ z1=2n

and Theorem 3.2.10 that

z ¼ limðz2nÞ ¼
�
limðznÞ

	1=2 ¼ z1=2:

Therefore we have z2 ¼ zwhence it follows that either z ¼ 0 or z ¼ 1. Since zn > 1 for all

n 2 N , we deduce that z ¼ 1.

We leave it as an exercise to the reader to consider the case 0 < c < 1. &

The following result is based on a careful negation of the definition of limðxnÞ ¼ x. It

leads to a convenient way to establish the divergence of a sequence.

3.4.4 Theorem Let X ¼ ðxnÞ be a sequence of real numbers, Then the following are

equivalent:

(i) The sequence X ¼ ðxnÞ does not converge to x 2 R .

(ii) There exists an e0 > 0 such that for any k 2 N , there exists nk 2 N such that

nk � k and jxnk � xj � e0.
(iii) There exists an e0 > 0 and a subsequence X 0 ¼ ðxnkÞ of X such that jxnk � xj � e0 for
all k 2 N .

Proof. ðiÞ ) ðiiÞ If ðxnÞ does not converge to x, then for some e0 > 0 it is impossible to

find a natural number k such that for all n � k the terms xn satisfy jxn � xj < e0. That is, for
each k 2 N it is not true that for all n � k the inequality jxn � xj < e0 holds. In other

words, for each k 2 N there exists a natural number nk � k such that jxnk � xj � e0.
ðiiÞ ) ðiiiÞ Let e0 be as in (ii) and let n1 2 N be such that n1 � 1 and jxn1 � xj � e0.

Now let n2 2 N be such that n2 > n1 and jxn2 � xj � e0; let n3 2 N be such that

n3 > n2 and jxn3 � xj � e0. Continue in this way to obtain a subsequence X 0 ¼ ðxnkÞ of
X such that jxnk � xj � e0 for all k 2 N .

ðiiiÞ ) ðiÞ Suppose X ¼ ðxnÞ has a subsequence X 0 ¼ ðxnkÞ satisfying the condition
in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence

X0 would also converge to x. But this is impossible, since none of the terms of X0 belongs to
the e0-neighborhood of x. Q.E.D.
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Since all subsequences of a convergent sequence must converge to the same limit, we

have part (i) in the following result. Part (ii) follows from the fact that a convergent

sequence is bounded.

3.4.5 Divergence Criteria If a sequence X ¼ ðxnÞ of real numbers has either of the

following properties, then X is divergent.

(i) X has two convergent subsequences X0 ¼ ðxnkÞ and X 00 ¼ ðxrkÞ whose limits are not

equal.

(ii) X is unbounded.

3.4.6 Examples (a) The sequence X :¼ ðð�1ÞnÞ is divergent.
The subsequence X0 :¼ ðð�1Þ2nÞ ¼ ð1; 1; . . .Þ converges to 1, and the subsequence

X 00 :¼ ðð�1Þ2n�1Þ ¼ ð�1;�1; . . .Þ converges to �1. Therefore, we conclude from Theo-

rem 3.4.5(i) that X is divergent.

(b) The sequence 1; 1
2
; 3; 1

4
; . . .

� 	
is divergent.

This is the sequence Y ¼ ðynÞ, where yn ¼ n if n is odd, and yn ¼ 1=n if n is even. It

can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is

divergent.

(c) The sequence S :¼ (sin n) is divergent.

This sequence is not so easy to handle. In discussing it we must, of course, make use of

elementary properties of the sine function. We recall that sinðp=6Þ ¼ 1
2
¼ sinð5p=6Þ and

that sin x > 1
2
for x in the interval I1 :¼ ðp=6; 5p=6Þ. Since the length of I1 is

5p=6� p=6 ¼ 2p=3 > 2, there are at least two natural numbers lying inside I1; we let

n1 be the first such number. Similarly, for each k 2 N , sin x > 1
2
for x in the interval

Ik :¼
�
p=6þ 2pðk � 1Þ; 5p=6þ 2pðk � 1Þ	:

Since the length of Ik is greater than 2, there are at least two natural numbers lying inside Ik;

we let nk be the first one. The subsequence S
0 :¼ ðsin nkÞ of S obtained in this way has the

property that all of its values lie in the interval 1
2
; 1

� 

.

Similarly, if k 2 N and Jk is the interval

Jk :¼
�
7p=6þ 2pðk � 1Þ; 11p=6þ 2pðk � 1Þ	;

then it is seen that sin x < � 1
2
for all x 2 Jk and the length of Jk is greater than 2. Letmk be

the first natural number lying in Jk. Then the subsequence S 00 :¼ ðsinmkÞ of S has the

property that all of its values lie in the interval �1;� 1
2

� 

.

Given any real number c, it is readily seen that at least one of the subsequences S0 and
S 00 lies entirely outside of the 1

2
-neighborhood of c. Therefore c cannot be a limit of S. Since

c 2 R is arbitrary, we deduce that S is divergent. &

The Existence of Monotone Subsequences

While not every sequence is a monotone sequence, we will now show that every sequence

has a monotone subsequence.

3.4.7 Monotone Subsequence Theorem If X ¼ ðxnÞ is a sequence of real numbers,

then there is a subsequence of X that is monotone.

Proof. For the purpose of this proof, we will say that the mth term xm is a ‘‘peak’’ if

xm � xn for all n such that n � m. (That is, xm is never exceeded by any term that follows it
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in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an

increasing sequence, no term is a peak.

We will consider two cases, depending on whether X has infinitely many, or finitely

many, peaks.

Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing

subscripts: xm1
; xm2

; . . . ; xmk
; : . . . Since each term is a peak, we have

xm1
� xm2

� � � � � xmk
� � � � :

Therefore, the subsequence ðxmk
Þ of peaks is a decreasing subsequence of X.

Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by

increasing subscripts: xm1
; xm2

; . . . ; xmr
. Let s1 :¼ mr þ 1 be the first index beyond the last

peak. Since xs1 is not a peak, there exists s2 > s1 such that xs1 < xs2 . Since xs2 is not a peak,

there exists s3 > s2 such that xs2 < xs3 . Continuing in this way, we obtain an increasing

subsequence ðxsk Þ of X. Q.E.D.

It is not difficult to see that a given sequence may have one subsequence that is

increasing, and another subsequence that is decreasing.

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass

Theorem, which states that every bounded sequence has a convergent subsequence.

Because of the importance of this theorem we will also give a second proof of it based

on the Nested Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a

convergent subsequence.

First Proof. It follows from the Monotone Subsequence Theorem that if X ¼ ðxnÞ is a
bounded sequence, then it has a subsequence X0 ¼ ðxnkÞ that is monotone. Since this

subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2

that the subsequence is convergent. Q.E.D.

Second Proof. Since the set of values fxn : n 2 Ng is bounded, this set is contained in an
interval I1 :¼ ½a; b	. We take n1 :¼ 1.

We now bisect I1 into two equal subintervals I 01 and I 001, and divide the set of indices

fn 2 N : n > 1g into two parts:

A1 :¼ fn 2 N : n > n1; xn 2 I 01g; B1 ¼ fn 2 N : n > n1; xn 2 I 001g:
If A1 is infinite, we take I2 :¼ I 01 and let n2 be the smallest natural number in A1. If A1 is a

finite set, then Bl must be infinite, and we take I2 :¼ I 001 and let n2 be the smallest natural

number in B1.

We now bisect I2 into two equal subintervals I 02 and I 002, and divide the set

fn 2 N : n > n2g into two parts:

A2 ¼ fn 2 N : n > n2; xn;2 I 02g; B2 :¼ fn 2 N : n > n2;xn 2 I 002g
If A2 is infinite, we take I3 :¼ I 02 and let n3 be the smallest natural number in A2. If A2 is a

finite set, then B2 must be infinite, and we take I3 :¼ I 002 and let n3 be the smallest natural

number in B2.
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We continue in this way to obtain a sequence of nested intervals I1 
 I2 
 � � � 

Ik 
 � � � and a subsequence ðxnkÞ of X such that xnk 2 Ik for k 2 N. Since the length of Ik is

equal to ðb� aÞ=2k�1, it follows from Theorem 2.5.3 that there is a (unique) common point

j 2 Ik for all k 2 N . Moreover, since xnk and j both belong to Ik, we have

jxnk � jj � ðb� aÞ=2k�1;

whence it follows that the subsequence ðxnkÞ of X converges to j. Q.E.D.

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences,

because there is another version of it that deals with bounded sets inR (see Exercise 11.2.6).

It is readily seen that a bounded sequence can have various subsequences that converge

to different limits or even diverge. For example, the sequence ðð�1ÞnÞ has subsequences
that converge to �1, other subsequences that converge to þ1, and it has subsequences that

diverge.

Let X be a sequence of real numbers and let X0 be a subsequence of X. Then X0 is a
sequence in its own right, and so it has subsequences.We note that if X 00 is a subsequence of
X0, then it is also a subsequence of X.

3.4.9 Theorem Let X ¼ ðxnÞ be a bounded sequence of real numbers and let x 2 R have

the property that every convergent subsequence of X converges to x. Then the sequence X

converges to x.

Proof. Suppose M > 0 is a bound for the sequence X so that jxnj � M for all n 2 N . If X

does not converge to x, then Theorem 3.4.4 implies that there exist e0 > 0 and a

subsequence X 0 ¼ ðxnkÞ of X such that

ð1Þ jxnk � xj � e0 for all k 2 N :

Since X0 is a subsequence of X, the number M is also a bound for X0. Hence the Bolzano-
Weierstrass Theorem implies that X0 has a convergent subsequence X 00. Since X 00 is also a

subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the

e0-neighborhood of x, contradicting (1). Q.E.D.

Limit Superior and Limit Inferior

A bounded sequence of real numbers ðxnÞ may or may not converge, but we know from the

Bolzano-Weierstrass Theorem 3.4.8 that there will be a convergent subsequence and possibly

many convergent subsequences. A real number that is the limit of a subsequence of ðxnÞ
is called a subsequential limit of ðxnÞ. We let S denote the set of all subsequential limits of

the bounded sequence ðxnÞ. The set S is bounded, because the sequence is bounded.

For example, if ðxnÞ is defined by xn :¼ ð�1Þn þ 2=n, then the subsequence ðx2nÞ
converges to 1, and the subsequence ðx2n�1Þ converges to�1. It is easily seen that the set of

subsequential limits is S ¼ f�1; 1g. Observe that the largest member of the sequence itself

is x2 ¼ 2, which provides no information concerning the limiting behavior of the sequence.

An extreme example is given by the set of all rational numbers in the interval [0, 1].

The set is denumerable (see Section 1.3) and therefore it can be written as a sequence ðrnÞ.
Then it follows from the Density Theorem 2.4.8 that every number in [0, 1] is a

subsequential limit of ðrnÞ. Thus we have S ¼ ½0; 1	.
A bounded sequence ðxnÞ that diverges will display some form of oscillation. The

activity is contained in decreasing intervals as follows. The interval ½t1; u1	, where t1 :¼
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inf fxn : n 2 Ng and u1 :¼ supfxn : n 2 Ng, contains the entire sequence. If for each

m ¼ 1; 2; . . ., we define tm :¼ inffxn : n � mg and um :¼ supfxn : n � mg, the sequences
ðtmÞ and ðumÞ are monotone and we obtain a nested sequence of intervals ½tm; um	where the
mth interval contains the m-tail of the sequence.

The preceding discussion suggests different ways of describing limiting behavior of a

bounded sequence. Another is to observe that if a real number v has the property that xn > v

for at most a finite number of values of n, then no subsequence of ðxnÞ can converge to a

limit larger than v because that would require infinitely many terms of the sequence be

larger than v. In other words, if v has the property that there existsNv such that xn � v for all

n � Nv, then no number larger than v can be a subsequential limit of ðxnÞ.
This observation leads to the following definition of limit superior. The accompanying

definition of limit inferior is similar.

3.4.10 Definition Let X ¼ ðxnÞ be a bounded sequence of real numbers.

(a) The limit superior of ðxnÞ is the infimum of the set V of v 2 R such that v < xn for at

most a finite number of n 2 N . It is denoted by

lim supðxnÞ or lim sup X or limðxnÞ:
(b) The limit inferior of ðxnÞ is the supremum of the set of w 2 R such that xm < w for at

most a finite number of m 2 N . It is denoted by

lim infðxnÞ or lim inf X or limðxnÞ:
For the concept of limit superior, we now show that the different approaches are equivalent.

3.4.11 Theorem If ðxnÞ is a bounded sequence of real numbers, then the following

statements for a real number x� are equivalent.

(a) x� ¼ lim supðxnÞ:
(b) If e > 0, there are at most a finite number of n 2 N such that x� þ e < xn, but an

infinite number of n 2 N such that x� � e < xn.

(c) If um ¼ supfxn : n � mg; then x� ¼ inffum : m 2 Ng ¼ limðumÞ.
(d) If S is the set of subsequential limits of ðxnÞ, then x� ¼ sup S.

Proof. (a) implies (b). If e > 0, then the fact that x� is an infimum implies that there

exists a v in V such that x� � v < x� þ e. Therefore x� also belongs to V, so there can be at
most a finite number of n 2 N such that x� þ e < xn. On the other hand, x� � e is not in V
so there are an infinite number of n 2 N such that x� � e < xn.

(b) implies (c). If (b) holds, given e > 0, then for all sufficiently large m we have

um < xþ e. Therefore, inffum : m 2 Ng � x� þ e. Also, since there are an infinite number

of n 2 N such that x� � e < xn, then x� � e < um for all m 2 N and hence x� � e �
inffum : m 2 Ng. Since e > 0 is arbitrary, we conclude that x� ¼ inffum : m 2 Ng.
Moreover, since the sequence ðumÞ is monotone decreasing, we have infðumÞ ¼ limðumÞ.

(c) implies (d). Suppose that X 0 ¼ ðxnkÞ is a convergent subsequence of X ¼ ðxnÞ:
Since nk � k, we have xnk � uk and hence lim X 0 � limðukÞ ¼ x�:Conversely, there exists
n1 such that u1 � 1 � xn1 � u1. Inductively choose nkþ1 > nk such that

uk � 1

k þ 1
< xnkþ1

� uk:

Since lim ðukÞ ¼ x�, it follows that x� ¼ limðxnkÞ, and hence x� 2 S.
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(d) implies (a). Let w ¼ sup S. If e > 0 is given, then there are at most finitely many n

with wþ e < xn. Therefore wþ e belongs to V and lim sup ðxnÞ � wþ e. On the other

hand, there exists a subsequence of ðxnÞ converging to some number larger than w� e, so
that w� e is not in V, and hence w� e � lim sup ðxnÞ. Since e > 0 is arbitrary, we

conclude that w ¼ lim sup ðxnÞ. Q.E.D.

As an instructive exercise, the reader should formulate the corresponding theorem for

the limit inferior of a bounded sequence of real numbers.

3.4.12 Theorem A bounded sequence ðxnÞ is convergent if and only if lim sup ðxnÞ ¼
lim inf ðxnÞ.

We leave the proof as an exercise. Other basic properties can also be found in the

exercises.

Exercises for Section 3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.

2. Use the method of Example 3.4.3(b) to show that if 0 < c < 1, then limðc1=nÞ ¼ 1.

3. Let ð f nÞ be the Fibonacci sequence of Example 3.1.2(d), and let xn :¼ f nþ1=f n. Given that

limðxnÞ ¼ L exists, determine the value of L.

4. Show that the following sequences are divergent.

(a)
�
1� ð�1Þn þ 1=n

	
; (b) ðsin np=4Þ:

5. Let X ¼ ðxnÞ and Y ¼ ðynÞ be given sequences, and let the ‘‘shuffled’’ sequence Z ¼ ðznÞ be
defined by z1 :¼ x1; z2 :¼ y1; . . . ; z2n�1 :¼ xn; z2n :¼ yn; : . . . Show that Z is convergent if and

only if both X and Y are convergent and lim X ¼ lim Y .

6. Let xn :¼ n1=n for n 2 N .

(a) Show that xnþ1 < xn if and only if ð1þ 1=nÞn < n, and infer that the inequality is valid for

n � 3. (See Example 3.3.6.) Conclude that ðxnÞ is ultimately decreasing and that x :¼
limðxnÞ exists.

(b) Use the fact that the subsequence ðx2nÞ also converges to x to conclude that x ¼ 1.

7. Establish the convergence and find the limits of the following sequences:

(a)
�
ð1þ 1=n2Þn2

�
; (b)

�ð1þ 1=2nÞn	;
(c)

�
ð1þ 1=n2Þ2n2

�
; (d)

�ð1þ 2=nÞn	:
8. Determine the limits of the following.

(a)
�ð3nÞ1=2n	; (b)

�ð1þ 1=2nÞ3n	:
9. Suppose that every subsequence of X ¼ ðxnÞ has a subsequence that converges to 0. Show that

lim X ¼ 0.

10. Let ðxnÞ be a bounded sequence and for each n 2 N let sn :¼ supfxk : k � ng and S :¼ inffsng.
Show that there exists a subsequence of ðxnÞ that converges to S.

11. Suppose that xn � 0 for all n 2 N and that lim
�ð�1Þnxn

	
exists. Show that ðxnÞ converges.

12. Show that if ðxnÞ is unbounded, then there exists a subsequence ðxnk Þ such that

limð1=xnk Þ ¼ 0.

13. If xn :¼ ð�1Þn=n, find the subsequence of ðxnÞ that is constructed in the second proof of the

Bolzano-Weierstrass Theorem 3.4.8, when we take I1 :¼ ½�1; 1	.
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14. Let ðxnÞ be a bounded sequence and let s :¼ supfxn : n 2 Ng. Show that if s =2 fxn : n 2 Ng,
then there is a subsequence of ðxnÞ that converges to s.

15. Let ðInÞ be a nested sequence of closed bounded intervals. For each n 2 N , let xn 2 In. Use the

Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence

is dropped.

17. Alternate the terms of the sequences (1þ 1=n) and (�1=n) to obtain the sequence ðxnÞ given by
ð2;�1; 3=2;�1=2; 4=3;�1=3; 5=4;�1=4; . . .Þ:

Determine the values of lim supðxnÞ and lim infðxnÞ. Also find supfxng and inffxng.
18. Show that if ðxnÞ is a bounded sequence, then ðxnÞ converges if and only if lim supðxnÞ ¼

lim infðxnÞ.
19. Show that if ðxnÞ and ðynÞ are bounded sequences, then

lim supðxn þ ynÞ � lim supðxnÞ þ lim supðynÞ:
Give an example in which the two sides are not equal.

Section 3.5 The Cauchy Criterion

TheMonotone Convergence Theorem is extraordinarily useful and important, but it has the

significant drawback that it applies only to sequences that are monotone. It is important for

us to have a condition implying the convergence of a sequence that does not require us to

know the value of the limit in advance, and is not restricted to monotone sequences. The

Cauchy Criterion, which will be established in this section, is such a condition.

3.5.1 Definition A sequence X ¼ ðxnÞ of real numbers is said to be a Cauchy sequence

if for every e > 0 there exists a natural number HðeÞ such that for all natural numbers

n;m � HðeÞ, the terms xn; xm satisfy jxn � xmj < e.

The significance of the concept of Cauchy sequence lies in the main theorem of this

section, which asserts that a sequence of real numbers is convergent if and only if it is a

Cauchy sequence. This will give us a method of proving a sequence converges without

knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following

examples.

3.5.2 Examples (a) The sequence (1=n) is a Cauchy sequence.

If e > 0 is given, we choose a natural number H ¼ H(e) such that H > 2=e. Then if

m; n � H, we have 1=n � 1=H < e=2 and similarly 1=m < e=2. Therefore, it follows that
if m; n � H, then

1

n
� 1

m

����
���� � 1

n
þ 1

m
<

e
2
þ e
2
¼ e:

Since e > 0 is arbitrary, we conclude that (1=n) is a Cauchy sequence.

(b) The sequence (1 þ (�1)n) is not a Cauchy sequence.

The negation of the definition of Cauchy sequence is: There exists e0 > 0 such that for

everyH there exist at least one n > H and at least onem > H such that jxn � xmj � e0. For
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the terms xn :¼ 1þ ð�1Þn, we observe that if n is even, then xn ¼ 2 and xnþ1 ¼ 0. If we

take e0 ¼ 2, then for anyHwe can choose an even number n > H and letm :¼ nþ 1 to get

jxn � xnþ1j ¼ 2 ¼ e0:

We conclude that (xn) is not a Cauchy sequence. &

Remark We emphasize that to prove a sequence ðxnÞ is a Cauchy sequence, we may not

assume a relationship between m and n, since the required inequality jxn � xmj < e must

hold for all n;m � HðeÞ. But to prove a sequence is not a Cauchy sequence, wemay specify

a relation between n and m as long as arbitrarily large values of n and m can be chosen so

that jxn � xmj � e0.

Our goal is to show that the Cauchy sequences are precisely the convergent sequences.

We first prove that a convergent sequence is a Cauchy sequence.

3.5.3 Lemma If X ¼ ðxnÞ is a convergent sequence of real numbers, then X is a Cauchy

sequence.

Proof. If x :¼ lim X, then given e > 0 there is a natural number Kðe=2Þ such that if

n � Kðe=2Þ then jxn � xj < e=2. Thus, if HðeÞ :¼ Kðe=2Þ and if n;m � HðeÞ, then we

have

jxn � xmj ¼ jðxn � xÞ þ ðx� xmÞj
� jxn � xj þ jxm � xj < e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, it follows that (xn) is a Cauchy sequence. Q.E.D.

In order to establish that a Cauchy sequence is convergent, we will need the following

result. (See Theorem 3.2.2.)

3.5.4 Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X :¼ ðxnÞ be a Cauchy sequence and let e :¼ 1. If H :¼ Hð1Þ and n � H,

then jxn � xH j < 1. Hence, by the Triangle Inequality, we have jxnj � jxH j þ 1 for all

n � H. If we set
M :¼ supfjx1j; jx2j; . . . ; jxH�1j; jxH j þ 1g;

then it follows that jxnj � M for all n 2 N . Q.E.D.

We now present the important Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and

only if it is a Cauchy sequence.

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy

sequence.

Conversely, let X ¼ ðxnÞ be a Cauchy sequence; we will show that X is convergent to

some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded.

Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X 0 ¼ ðxnkÞ
of X that converges to some real number x�. We shall complete the proof by showing that X

converges to x�.
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Since X ¼ ðxnÞ is a Cauchy sequence, given e > 0 there is a natural number Hðe=2Þ
such that if n; m � Hðe=2Þ then
(1) jxn � xmj < e=2:

Since the subsequence X 0 ¼ ðxnkÞ converges to x�, there is a natural number K � Hðe=2Þ
belonging to the set fn1; n2; . . .g such that

jxK � x�j < e=2:

Since K � Hðe=2Þ, it follows from (1) with m ¼ K that

jxn � xK j < e=2 for n � Hðe=2Þ:
Therefore, if n � Hðe=2Þ, we have

jxn � x�j ¼ jðxn � xKÞ þ ðxK � x�Þj
� jxn � xK j þ jxK � x�j
< e=2þ e=2 ¼ e:

Sincee e > 0 is arbitrary, we infer that limðxnÞ ¼ x�. Therefore the sequence X is

convergent. Q.E.D.

We will now give some examples of applications of the Cauchy Criterion.

3.5.6 Examples (a) Let X ¼ (xn) be defined by

x1 :¼ 1; x2 :¼ 2; and xn :¼ 1

2
ðxn�2 þ xn�1Þ for n > 2:

It can be shown by Induction that 1 � xn � 2 for all n 2 N . (Do so.) Some calculation

shows that the sequence X is not monotone. However, since the terms are formed by

averaging, it is readily seen that

jxn � xnþ1j ¼ 1

2n�1
for n 2 N :

(Prove this by Induction.) Thus, ifm > n, we may employ the Triangle Inequality to obtain

jxn � xmj � jxn � xnþ1j þ jxnþ1 � xnþ2j þ � � � þ jxm�1 � xmj

¼ 1

2n�1
þ 1

2n
þ � � � þ 1

2m�2

¼ 1

2n�1
1þ 1

2
þ � � � þ 1

2m�n�1

� �
<

1

2n�2
:

Therefore, given e > 0, if n is chosen so large that 1=2n < e=4 and ifm � n, then it follows

that jxn � xmj < e. Therefore, X is a Cauchy sequence in R . By the Cauchy Criterion 3.5.5

we infer that the sequence X converges to a number x.

To evaluate the limit x, we might first ‘‘pass to the limit’’ in the rule of definition

xn ¼ 1
2
ðxn�1 þ xn�2Þ to conclude that x must satisfy the relation x ¼ 1

2
ðxþ xÞ, which is

true, but not informative. Hence we must try something else.
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Since X converges to x, so does the subsequence X0 with odd indices. By Induction, the
reader can establish that [see 1.2.4(f)]

x2nþ1 ¼ 1þ 1

2
þ 1

23
þ � � � þ 1

22n�1

¼ 1þ 2

3
1� 1

4n

� �
:

It follows from this (how?) that x ¼ lim X ¼ lim X0 ¼ 1þ 2
3
¼ 5

3
.

(b) Let Y ¼ ðynÞ be the sequence of real numbers given by

y1 :¼
1

1!
; y2 :¼

1

1!
� 1

2!
; . . . ; yn :¼

1

1!
� 1

2!
þ � � � þ ð�1Þnþ1

n!
; � � �

Clearly, Y is not a monotone sequence. However, if m > n, then

ym � yn ¼
ð�1Þnþ2

ðnþ 1Þ!þ
ð�1Þnþ3

ðnþ 2Þ!þ � � � þ ð�1Þmþ1

m!
:

Since 2r�1 � r! [see 1.2.4(e)], it follows that if m > n, then (why?)

jym � ynj �
1

ðnþ 1Þ!þ
1

ðnþ 2Þ!þ � � � þ 1

m!

� 1

2n
þ 1

2nþ1
þ � � � þ 1

2m�1
<

1

2n�1
:

Therefore, it follows that (yn) is a Cauchy sequence. Hence it converges to a limit y. At the

present moment we cannot evaluate y directly; however, passing to the limit (with respect

to m) in the above inequality, we obtain

jyn � yj � 1=2n�1:

Hence we can calculate y to any desired accuracy by calculating the terms yn for

sufficiently large n. The reader should do this and show that y is approximately equal

to 0.632 120 559. (The exact value of y is 1� 1=e.)

(c) The sequence
1

1
þ 1

2
þ � � � þ 1

n

� �
diverges.

Let H :¼ ðhnÞ be the sequence defined by

hn :¼ 1

1
þ 1

2
þ � � � þ 1

n
for n 2 N ;

which was considered in 3.3.3(b). If m > n, then

hm � hn ¼ 1

nþ 1
þ � � � þ 1

m
:

Since each of these m� n terms exceeds 1=m, then hm � hn > ðm� nÞ=m ¼ 1� n=m.

In particular, if m ¼ 2n we have h2n � hn >
1
2
. This shows that H is not a Cauchy sequence

(why?); thereforeH isnot a convergent sequence. (In terms thatwill be introduced inSection 3.7,

we have just proved that the ‘‘harmonic series’’
X1
n¼1

1=n is divergent.) &

3.5.7 Definition We say that a sequence X ¼ ðxnÞ of real numbers is contractive if there

exists a constant C; 0 < C < 1, such that

jxnþ2 � xnþ1j � Cjxnþ1 � xnj
for all n 2 N . The number C is called the constant of the contractive sequence.
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3.5.8 Theorem Every contractive sequence is a Cauchy sequence, and therefore is

convergent.

Proof. If we successively apply the defining condition for a contractive sequence, we can

work our way back to the beginning of the sequence as follows:

jxnþ2 � xnþ1j � Cjxnþ1 � xnj � C2jxn � xn�1j
� C3jxn�1 � xn�2j � � � � � Cnjx2 � x1j:

For m > n, we estimate jxm � xnj by first applying the Triangle Inequality and then using

the formula for the sum of a geometric progression (see 1.2.4(f)). This gives

jxm � xnj � jxm � xm�1j þ jxm�1 � xm�2j þ � � � þ jxnþ1 � xnj
� �

Cm�2 þ Cm�3 þ � � � þ Cn�1
	jx2 � x1j

¼ Cn�1 1� Cm�n

1� C

� �
jx2 � x1j

� Cn�1 1

1� C

� �
jx2 � x1j:

Since 0 < C < 1, we know limðCnÞ ¼ 0 [see 3.1.11(b)]. Therefore, we infer that (xn) is a

Cauchy sequence. It now follows from the Cauchy Convergence Criterion 3.5.5 that (xn) is

a convergent sequence. Q.E.D.

3.5.9 Example We consider the sequence of Fibonacci fractions xn :¼ f n=f nþ1 where

f 1 ¼ f 2 ¼ 1 and f nþ1 ¼ f n þ f n�1. (See Example 3.1.2(d).) The first few terms are

x1 ¼ 1; x2 ¼ 1=2; x3 ¼ 2=3; x4 ¼ 3=5; x5 ¼ 5=8, and so on. It is shown that the se-

quence ðxnÞ is given inductively by the equation xnþ1 ¼ 1=ð1þ xnÞ as follows:

xnþ1 ¼ f nþ1

f nþ2

¼ f nþ1

f nþ1 þ f n
¼ 1

1þ f n
f nþ1

¼ 1

1þ xn
:

An induction argument establishes 1=2 � xn � 1 for all n, so that adding 1 and taking

reciprocals gives us the inequality 1=2 � 1=ð1þ xnÞ � 2=3 for all n. It then follows that

jxnþ1 � xnj ¼ jxn � xn�1j
ð1þ xnÞð1þ xn�1Þ �

2

3
� 2
3
jxn � xn�1j ¼ 4

9
jxn � xn�1j:

Hence, the sequence (xn) is contractive and therefore converges by Theorem 3.5.8. Passing

to the limit x ¼ limðxnÞ, we obtain the equation x ¼ 1=ð1þ xÞ, so that x satisfies the

equation x2 þ x� 1 ¼ 0. The quadratic formula gives us the positive solution

x ¼ ð�1þ ffiffiffi
5

p Þ=2 ¼ 0:618034: . . .
The reciprocal 1=x ¼ ð1þ ffiffiffi

5
p Þ=2 ¼ 1:618034 . . . is often denoted by the Greek letter w

and referred to as theGolden Ratio in the history of geometry. In the artistic theory of the ancient

Greek philosophers, a rectangle having w as the ratio of the longer side to the shorter side is the

rectangle most pleasing to the eye. The number also has many interesting mathematical

properties. (A historical discussion of the Golden Ratio can be found on Wikipedia.) &

In the process of calculating the limit of a contractive sequence, it is often very

important to have an estimate of the error at the nth stage. In the next result we give two
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such estimates: the first one involves the first two terms in the sequence and n; the second

one involves the difference xn � xn�1.

3.5.10 Corollary If X :¼ ðxnÞ is a contractive sequence with constant C; 0 < C < 1,

and if x� :¼ lim X, then

(i) jx� � xnj � Cn�1

1� C
jx2 � x1j;

(ii) jx� � xnj � C
1� C

jxn � xn�1j:

Proof. From the preceding proof, if m > n, then jxm � xnj �
�
Cn�1=ð1� CÞ	jx2 � x1j.

If we let m ! 1 in this inequality, we obtain (i).

To prove (ii), recall that if m > n, then

jxm � xnj � jxm � xm�1j þ � � � þ jxnþ1 � xnj:
Since it is readily established, using Induction, that

jxnþk � xnþk�1j � Ckjxn � xn�1j;
we infer that

jxm � xnj � ðCm�n þ � � � þ C2 þ CÞjxn � xn�1j

� C

1� C
jxn � xn�1j

We now let m ! 1 in this inequality to obtain assertion (ii). Q.E.D.

3.5.11 Example We are told that the cubic equation x3 � 7xþ 2 ¼ 0 has a solution

between 0 and 1 and we wish to approximate this solution. This can be accomplished by

means of an iteration procedure as follows. We first rewrite the equation as x ¼ ðx3 þ 2Þ=7
and use this to define a sequence.We assign to x1 an arbitrary value between 0 and 1, and then

define

xnþ1 :¼ 1
7
ðx3n þ 2Þ for n 2 N :

Because 0 < x1 < 1, it follows that 0 < xn < 1 for all n 2 N . (Why?) Moreover, we

have

���xnþ2 � xnþ1

��� ¼ ���1
7
ðx3nþ1 þ 2Þ � 1

7
ðx3n þ 2Þ

��� ¼ 1

7

���x3nþ1 � x3n

���
¼ 1

7

���x2nþ1 þ xnþ1xn þ x2n

������xnþ1 � xn

��� � 3

7

���xnþ1 � xn

���:
Therefore, (xn) is a contractive sequence and hence there exists r such that limðxnÞ ¼ r. If

we pass to the limit on both sides of the equality xnþ1 ¼ ðx3n þ 2Þ=7, we obtain r ¼
ðr3 þ 2Þ=7 and hence r3 � 7rþ 2 ¼ 0. Thus r is a solution of the equation.

We can approximate r by choosing x1, and calculating x2; x3; . . . successively. For
example, if we take x1 ¼ 0:5, we obtain (to nine decimal places):

x2 ¼ 0:303 571 429; x3 ¼ 0:289 710 830;

x4 ¼ 0:289 188 016; x5 ¼ 0:289 169 244;

x6 ¼ 0:289 168 571; etc:
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To estimate the accuracy, we note that jx2 � x1j < 0:2. Thus, after n steps it follows from

Corollary 3.5.10(i) that we are sure that jx� � xnj � 3n�1ð7n�2 � 20Þ. Thus, when n¼ 6, we

are sure that

jx� � x6j � 35=ð74 � 20Þ ¼ 243=48 020 < 0:0051:

Actually the approximation is substantially better than this. In fact, since jx6 � x5j <
0:000 0005, it follows from 3.5.10(ii) that jx� � x6j � 3

4
jx6 � x5j < 0:000 0004. Hence the

first five decimal places of x6 are correct. &

Exercises for Section 3.5

1. Give an example of a bounded sequence that is not a Cauchy sequence.

2. Show directly from the definition that the following are Cauchy sequences.

(a)
nþ 1

n

� �
; (b) 1þ 1

2!
þ � � � þ 1

n!

� �
.

3. Show directly from the definition that the following are not Cauchy sequences.

(a)
�ð�1Þn	; (b) nþ ð�1Þn

n

� �
; (c) (ln n)

4. Show directly from the definition that if (xn) and (yn) are Cauchy sequences, then (xn þ yn) and

ðxnynÞ are Cauchy sequences.

5. If xn :¼
ffiffiffi
n

p
, show that (xn) satisfies limjxnþ1 � xnj ¼ 0, but that it is not a Cauchy sequence.

6. Let p be a given natural number. Give an example of a sequence (xn) that is not a Cauchy

sequence, but that satisfies limjxnþp � xnj ¼ 0.

7. Let (xn) be a Cauchy sequence such that xn is an integer for every n 2 N. Show that (xn) is

ultimately constant.

8. Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.

9. If 0 < r < 1 and jxnþ1 � xnj < rn for all n 2 N , show that (xn) is a Cauchy sequence.

10. If x1 < x2 are arbitrary real numbers and xn :¼ 1
2
ðxn�2 þ xn�1Þ for n > 2, show that (xn) is

convergent. What is its limit?

11. If y1 < y2 are arbitrary real numbers and yn :¼ 1
3
yn�1 þ 2

3
yn�2 for n > 2, show that (yn) is

convergent. What is its limit?

12. If x1 > 0 and xnþ1 :¼ ð2þ xnÞ�1
for n � 1, show that (xn) is a contractive sequence. Find the

limit.

13. If x1 :¼ 2 and xnþ1 :¼ 2þ 1=xn for n � 1, show that (xn) is a contractive sequence. What is its

limit?

14. The polynomial equation x3 � 5xþ 1 ¼ 0 has a root r with 0 < r < 1. Use an appropriate

contractive sequence to calculate r within 10�4.

Section 3.6 Properly Divergent Sequences

For certain purposes it is convenient to define what is meant for a sequence ðxnÞ of real
numbers to ‘‘tend to �1.’’
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3.6.1 Definition Let ðxnÞ be a sequence of real numbers.

(i) We say that ðxnÞ tends to �1, and write limðxnÞ ¼ þ1, if for every a 2 R there

exists a natural number KðaÞ such that if n � KðaÞ, then xn > a.

(ii) We say that (xn) tends to �1, and write limðxnÞ ¼ �1, if for every b 2 R there

exists a natural number K(b) such that if n � KðbÞ, then xn < b.

We say that ðxnÞ is properly divergent in case we have either limðxnÞ ¼ þ1 or

limðxnÞ ¼ �1.

The reader should realize that we are using the symbols þ1 and �1 purely as a

convenient notation in the above expressions. Results that have been proved in earlier

sections for conventional limits limðxnÞ ¼ L ðfor L 2 RÞ may not remain true when

limðxnÞ ¼ �1.

3.6.2 Examples (a) limðnÞ ¼ þ1.

In fact, if a 2 R is given, let K(a) be any natural number such that K(a) > a.

(b) limðn2Þ ¼ þ1.

If K(a) is a natural number such that K(a) > a, and if n � KðaÞ then we have

n2 � n > a.

(c) If c > 1, then limðcnÞ ¼ þ1.

Let c ¼ 1þ b, where b > 0. If a 2 R is given, let K(a) be a natural number such that

KðaÞ > a=b. If n � KðaÞ it follows from Bernoulli’s Inequality that

cn ¼ ð1þ bÞn � 1þ nb > 1þ a > a:

Therefore limðcnÞ ¼ þ1. &

Monotone sequences are particularly simple in regard to their convergence. We have

seen in the Monotone Convergence Theorem 3.3.2 that a monotone sequence is convergent

if and only if it is bounded. The next result is a reformulation of that result.

3.6.3 Theorem Amonotone sequence of real numbers is properly divergent if and only if

it is unbounded.

(a) If ðxnÞ is an unbounded increasing sequence, then limðxnÞ ¼ þ1.

(b) If ðxnÞ is an unbounded decreasing sequence, then limðxnÞ ¼ �1.

Proof. (a) Suppose that (xn) is an increasing sequence. We know that if (xn) is bounded,

then it is convergent. If (xn) is unbounded, then for any a 2 R there exists nðaÞ 2 N such

that a < xnðaÞ. But since (xn) is increasing, we have a < xn for all n � nðaÞ. Since a is

arbitrary, it follows that limðxnÞ ¼ þ1.

Part (b) is proved in a similar fashion. Q.E.D.

The following ‘‘comparison theorem’’ is frequently used in showing that a sequence is

properly divergent. [In fact, we implicitly used it in Example 3.6.2(c).]

3.6.4 Theorem Let (xn) and (yn) be two sequences of real numbers and suppose that

(1) xn � yn for all n 2 N :

(a) If limðxnÞ ¼ þ1, then limðynÞ ¼ þ1.

(b) If limðynÞ ¼ �1, then limðxnÞ ¼ �1.
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Proof. (a) If limðxnÞ ¼ þ1, and if a 2 R is given, then there exists a natural number

K(a) such that if n � KðaÞ, then a < xn. In view of (1), it follows that a < yn for all

n � KðaÞ. Since a is arbitrary, it follows that limðynÞ ¼ þ1.

The proof of (b) is similar. Q.E.D.

Remarks (a) Theorem 3.6.4 remains true if condition (1) is ultimately true; that is, if

there exists m 2 N such that xn � yn for all n � m.

(b) If condition (1) of Theorem 3.6.4 holds and if limðynÞ ¼ þ1, it does not follow that

limðxnÞ ¼ þ1. Similarly, if (1) holds and if limðxnÞ ¼ �1, it does not follow that

limðynÞ ¼ �1. In using Theorem 3.6.4 to show that a sequence tends toþ1 [respectively,

�1] we need to show that the terms of the sequence are ultimately greater [respectively,

less] than or equal to the corresponding terms of a sequence that is known to tend to þ1
[respectively, �1].

Since it is sometimes difficult to establish an inequality such as (1), the following

‘‘limit comparison theorem’’ is often more convenient to use than Theorem 3.6.4.

3.6.5 Theorem Let (xn) and (yn) be two sequences of positive real numbers and suppose

that for some L 2 R ;L > 0, we have

(2) limðxn=ynÞ ¼ L:

Then limðxnÞ ¼ þ1 if and only if limðynÞ ¼ þ1.

Proof. If (2) holds, there exists K 2 N such that

1
2
L < xn=yn <

3
2
L for all n � K:

Hence we have 1
2
L

� 	
yn < xn <

3
2
L

� 	
yn for all n � K. The conclusion now follows from a

slight modification of Theorem 3.6.4. We leave the details to the reader. Q.E.D.

The reader can show that the conclusion need not hold if either L ¼ 0 or L ¼ þ1.

However, there are some partial results that can be established in these cases, as will be

seen in the exercises.

Exercises for Section 3.6

1. Show that if (xn) is an unbounded sequence, then there exists a properly divergent subsequence.

2. Give examples of properly divergent sequences (xn) and (yn) with yn 6¼ 0 for all n 2 N such that:

(a) ðxn=ynÞ is convergent, (b) ðxn=ynÞ is properly divergent.

3. Show that if xn > 0 for all n 2 N , then limðxnÞ ¼ 0 if and only if limð1=xnÞ ¼ þ1.

4. Establish the proper divergence of the following sequences.

(a) ð ffiffiffi
n

p Þ; (b) ð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þ;
(c) ð ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p Þ; (d) ðn= ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p Þ:

5. Is the sequence (n sin n) properly divergent?

6. Let (xn) be properly divergent and let (yn) be such that limðxnynÞ belongs to R . Show that (yn)

converges to 0.

7. Let (xn) and (yn) be sequences of positive numbers such that limðxn=ynÞ ¼ 0.

(a) Show that if limðxnÞ ¼ þ1, then limðynÞ ¼ þ1.

(b) Show that if (yn) is bounded, then limðxnÞ ¼ 0.
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8. Investigate the convergence or the divergence of the following sequences:

(a) ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2

p Þ; (b) ð ffiffiffi
n

p
=ðn2 þ 1ÞÞ;

(c) ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
=

ffiffiffi
n

p Þ; (d) ðsin ffiffiffi
n

p Þ:
9. Let ðxnÞ and ðynÞ be sequences of positive numbers such that limðxn=ynÞ ¼ þ1,

(a) Show that if limðynÞ ¼ þ1, then limðxnÞ ¼ þ1.

(b) Show that if (xn) is bounded, then limðynÞ ¼ 0.

10. Show that if limðan=nÞ ¼ L, where L > 0, then limðanÞ ¼ þ1.

Section 3.7 Introduction to Infinite Series

We will now give a brief introduction to infinite series of real numbers. This is a topic that

will be discussed in more detail in Chapter 9, but because of its importance, we will

establish a few results here. These results will be seen to be immediate consequences of

theorems we have met in this chapter.

In elementary texts, an infinite series is sometimes ‘‘defined’’ to be ‘‘an expression of

the form’’

(1) x1 þ x2 þ � � � þ xn þ � � � :
However, this ‘‘definition’’ lacks clarity, since there is a priori no particular value that we

can attach to this array of symbols, which calls for an infinite number of additions to be

performed.

3.7.1 Definition If X :¼ (xn) is a sequence in R , then the infinite series (or simply the

series) generated by X is the sequence S :¼ (sk) defined by

s1 :¼ x1
s2 :¼ s1 þ x2 ð¼ x1 þ x2Þ

� � �
sk :¼ sk�1 þ xk ð¼ x1 þ x2 þ � � � þ xkÞ

� � �

The numbers xn are called the terms of the series and the numbers sk are called the partial

sums of this series. If lim S exists, we say that this series is convergent and call this limit

the sum or the value of this series. If this limit does not exist, we say that the series S is

divergent.

It is convenient to use symbols such as

(2)
X

ðxnÞ or
X

xn or
X1
n¼1

xn

to denote both the infinite series S generated by the sequence X ¼ (xn) and also to denote

the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely

as a way of exhibiting an infinite series whose convergence or divergence is to be

investigated. In practice, this double use of these notations does not lead to any confusion,

provided it is understood that the convergence (or divergence) of the series must be

established.
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Just as a sequence may be indexed such that its first element is not x1, but is x0, or x5 or

x99, we will denote the series having these numbers as their first element by the symbols

X1
n¼0

xn or
X1
n¼5

xn or
X1
n¼99

xn:

It should be noted that when the first term in the series is xN, then the first partial sum is

denoted by sN.

Warning The reader should guard against confusing the words ‘‘sequence’’ and ‘‘series.’’

In nonmathematical language, these words are interchangeable; however, in mathematics,

these words are not synonyms. Indeed, a series is a sequence S¼ (sk) obtained from a given

sequence X ¼ (xn) according to the special procedure given in Definition 3.7.1.

3.7.2 Examples (a) Consider the sequence X :¼ ðrnÞ1n¼0 where r 2 R , which generates

the geometric series:

(3)
X1
n¼0

rn ¼ 1þ rþ r2 þ � � � þ rn þ � � � :

We will show that if jrj < 1, then this series converges to 1=ð1� rÞ. (See also

Example 1.2.4(f).) Indeed, if sn :¼ 1þ rþ r2 þ � � � þ rn for n � 0, and if we multiply sn
by r and subtract the result from sn, we obtain (after some simplification):

snð1� rÞ ¼ 1� rnþ1:

Therefore, we have

sn � 1

1� r
¼ rnþ1

1� r
;

from which it follows that

sn � 1

1� r

����
���� � jrjnþ1

j1� rj :

Since jrjnþ1 ! 0 when jrj < 1, it follows that the geometric series converges to 1=ð1� rÞ
when jrj < 1.

(b) Consider the series generated by
�ð�1Þn	1

n¼0
; that is, the series:

(4)
X1
n¼0

ð�1Þn ¼ ðþ1Þ þ ð�1Þ þ ðþ1Þ þ ð�1Þ þ � � � :

It is easily seen (by Mathematical Induction) that sn ¼ 1 if n � 0 is even and sn ¼ 0 if

n is odd; therefore, the sequence of partial sums is ð1; 0; 1; 0; . . .Þ. Since this sequence is
not convergent, the series (4) is divergent.

(c) Consider the series

(5)
X1
n¼1

1

nðnþ 1Þ ¼
1

1 � 2þ
1

2 � 3þ
1

3 � 4þ � � � :
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By a stroke of insight, we note that

1

kðk þ 1Þ ¼
1

k
� 1

k þ 1
:

Hence, on adding these terms from k ¼ 1 to k ¼ n and noting the telescoping that takes

place, we obtain

sn ¼ 1

1
� 1

nþ 1
;

whence it follows that sn ! 1. Therefore the series (5) converges to 1. &

We now present a very useful and simple necessary condition for the convergence of a

series. It is far from being sufficient, however.

3.7.3 The nth Term Test If the series
P

xn converges, then limðxnÞ ¼ 0.

Proof. By Definition 3.7.1, the convergence of
P

xn requires that limðskÞ exists. Since
xn ¼ sn � sn�1, then limðxnÞ ¼ limðsnÞ � limðsn�1Þ ¼ 0. Q.E.D.

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5.5,

we will omit its proof.

3.7.4 Cauchy Criterion for Series The series
P

xn converges if and only if for every

e > 0 there exists MðeÞ 2 N such that if m > n � MðeÞ, then

(6) jsm � snj ¼ jxnþ1 þ xnþ2 þ � � � þ xmj < e:

The next result, although limited in scope, is of great importance and utility.

3.7.5 Theorem Let (xn) be a sequence of nonnegative real numbers. Then the series
P

xn
converges if and only if the sequence S ¼ ðskÞ of partial sums is bounded. In this case,

X1
n¼1

xn ¼ limðskÞ ¼ supfsk : k 2 Ng:

Proof. Since xn � 0, the sequence S of partial sums is monotone increasing:

s1 � s2 � � � � � sk � � � � :
By the Monotone Convergence Theorem 3.3.2, the sequence S ¼ ðskÞ converges if and
only if it is bounded, in which case its limit equals supfskg. Q.E.D.

3.7.6 Examples (a) The geometric series (3) diverges if jrj � 1.

This follows from the fact that the terms rn do not approach 0 when jrj � 1.

(b) The harmonic series
X1
n¼1

1

n
diverges.

Since the terms 1=n ! 0, we cannot use the nth Term Test 3.7.3 to establish this

divergence. However, it was seen in Examples 3.3.3(b) and 3.5.6(c) that the sequence (sn)

of partial sums is not bounded. Therefore, it follows from Theorem 3.7.5 that the harmonic

series is divergent. This series is famous for the very slow growth of its partial sums (see the
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discussion in Example 3.3.3(b)) and also for the variety of proofs of its divergence. Here is

a proof by contradiction. If we assume the series converges to the number S, then we have

S ¼ 1þ 1

2

� �
þ 1

3
þ 1

4

� �
þ 1

5
þ 1

6

� �
þ � � � þ 1

2n� 1
þ 1

2n

� �
þ � � �

>
1

2
þ 1

2

� �
þ 1

4
þ 1

4

� �
þ 1

6
þ 1

6

� �
þ � � � þ 1

2n
þ 1

2n

� �
þ � � �

¼ 1þ 1

2
þ 1

3
þ � � � þ 1

n
þ � � �

¼ S:

The contradiction S > S shows the assumption of convergence must be false and the

harmonic series must diverge.

Note The harmonic series receives its musical name from the fact that the wavelengths of

the overtones of a vibrating string are 1=2, 1=3, 1=4, . . . , of the string’s fundamental

wavelength.

(c) The 2-series
X1
n¼1

1

n2
is convergent.

Since the partial sums are monotone, it suffices (why?) to show that some subsequence

of (sk) is bounded. If k1 :¼ 21 � 1 ¼ 1, then sk1 ¼ 1. If k2 :¼ 22 � 1 ¼ 3, then

sk2 ¼
1

1
þ 1

22
þ 1

32

� �
< 1þ 2

22
¼ 1þ 1

2
;

and if k3 :¼ 23 � 1 ¼ 7, then we have

sk3 ¼ sk2 þ
1

42
þ 1

52
þ 1

62
þ 1

72

� �
< sk2 þ

4

42
< 1þ 1

2
þ 1

22
:

By Mathematical Induction, we find that if kj :¼ 2j � 1, then

0 < skj < 1þ 1
2
þ 1

2

� 	2 þ � � � þ 1
2

� 	j�1
:

Since the term on the right is a partial sum of a geometric series with r ¼ 1
2
, it is dominated

by 1= 1� 1
2

� 	 ¼ 2, and Theorem 3.7.5 implies that the 2-series converges.

(d) The p-series
X1
n¼1

1

np
converges when p > 1.

Since the argument is very similar to the special case considered in part (c), we will

leave some of the details to the reader. As before, if k1 :¼ 21 � 1 ¼ 1, then sk1 ¼ 1. If

k2 :¼ 22 � 1 ¼ 3, then since 2p < 3p, we have

sk2 ¼
1

1p
þ 1

2p
þ 1

3p

� �
< 1þ 2

2p
¼ 1þ 1

2p�1
:

Further, if k3 :¼ 23 � 1, then (how?) it is seen that

sk3 < sk2 þ
4

4p
< 1þ 1

2p�1
þ 1

4p�1
:

Finally, we let r :¼ 1=2p�1; since p > 1, we have 0 < r < 1. Using Mathematical

Induction, we show that if kj :¼ 2j � 1, then

0 < skj < 1þ rþ r2 þ � � � þ r j�1 <
1

1� r
:

Therefore, Theorem 3.7.5 implies that the p-series converges when p > 1.
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(e) The p-series
X1
n¼1

1

np
diverges when 0 < p � 1.

Wewill use the elementary inequality np � n when n 2 N and 0 < p � 1. It follows that

1

n
� 1

np
for n 2 N :

Since the partial sums of the harmonic series are not bounded, this inequality shows that the

partial sums of the p-series are not bounded when 0 < p � 1. Hence the p-series diverges

for these values of p.

(f) The alternating harmonic series, given by

(7)
X1
n¼1

ð�1Þnþ1

n
¼ 1

1
� 1

2
þ 1

3
� � � � þ ð�1Þnþ1

n
þ � � �

is convergent.

The reader should compare this series with the harmonic series in (b), which is

divergent. Thus, the subtraction of some of the terms in (7) is essential if this series is to

converge. Since we have

s2n ¼ 1

1
� 1

2

� �
þ 1

3
� 1

4

� �
þ � � � þ 1

2n� 1
� 1

2n

� �
;

it is clear that the ‘‘even’’ subsequence ðs2nÞ is increasing. Similarly, the ‘‘odd’’ subse-

quence ðs2nþ1Þ is decreasing since

s2nþ1 ¼ 1

1
� 1

2
� 1

3

� �
� 1

4
� 1

5

� �
� � � � � 1

2n
� 1

2nþ 1

� �
:

Since 0 < s2n < s2n þ 1=ð2nþ 1Þ ¼ s2nþ1 � 1, both of these subsequences are bounded

below by 0 and above by 1. Therefore they are both convergent and to the same value. Thus

the sequence (sn) of partial sums converges, proving that the alternating harmonic series (7)

converges. (It is far from obvious that the limit of this series is equal to ln 2.) &

Comparison Tests

Our first test shows that if the terms of a nonnegative series are dominated by the

corresponding terms of a convergent series, then the first series is convergent.

3.7.7 Comparison Test Let X :¼ (xn) and Y :¼ (yn) be real sequences and suppose that

for some K 2 N we have

(8) 0 � xn � yn for n � K:

(a) Then the convergence of
P

yn implies the convergence of
P

xn.

(b) The divergence of
P

xn implies the divergence of
P

yn.

Proof. (a) Suppose that
P

yn converges and, given e > 0, let MðeÞ 2 N be such that if

m > n � MðeÞ, then
ynþ1 þ � � � þ ym < e:
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If m > supfK; MðeÞg, then it follows that

0 � xnþ1 þ � � � þ xm � ynþ1 þ � � � þ ym < e;

from which the convergence of
P

xn follows.

(b) This statement is the contrapositive of (a). Q.E.D.

Since it is sometimes difficult to establish the inequalities (8), the next result is

frequently very useful.

3.7.8 Limit Comparison Test Suppose that X :¼ ðxnÞ and Y :¼ ðynÞ are strictly

positive sequences and suppose that the following limit exists in R :

(9) r :¼ lim
xn

yn

� �
:

(a) If r 6¼ 0 then
P

xn is convergent if and only if
P

yn is convergent.

(b) If r ¼ 0 and if
P

yn is convergent, then
P

xn is convergent.

Proof. (a) It follows from (9) and Exercise 3.1.18 that there exists K 2 N such that 1
2
r �

xn=yn � 2r for n � K, whence

1
2
r

� 	
yn � xn � ð2rÞyn for n � K:

If we apply the Comparison Test 3.7.7 twice, we obtain the assertion in (a).

(b) If r ¼ 0, then there exists K 2 N such that

0 < xn � yn for n � K;

so that Theorem 3.7.7(a) applies. Q.E.D.

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that

one knows to be convergent (or divergent). The reader will find that the p-series is often

useful for this purpose.

3.7.9 Examples (a) The series
X1
n¼1

1

n2 þ n
converges.

It is clear that the inequality

0 <
1

n2 þ n
<

1

n2
for n 2 N

is valid. Since the series
P

1=n2 is convergent (by Example 3.7.6(c)), we can apply the

Comparison Test 3.7.7 to obtain the convergence of the given series.

(b) The series
X1
n¼1

1

n2 � nþ 1
is convergent.

If the inequality

(10)
1

n2 � nþ 1
� 1

n2
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were true, we could argue as in (a). However, (10) is false for all n 2 N . The reader can

probably show that the inequality

0 <
1

n2 � nþ 1
� 2

n2

is valid for all n 2 N , and this inequality will work just as well. However, it might take

some experimentation to think of such an inequality and then establish it.

Instead, if we take xn :¼ 1= n2 � nþ 1ð Þ and yn :¼ 1=n2; thenwe have

xn

yn
¼ n2

n2 � nþ 1
¼ 1

1� 1=nð Þ þ 1=n2ð Þ ! 1:

Therefore, the convergence of the given series follows from the Limit Comparison Test

3.7.8(a).

(c) The series
X1
n¼1

1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p is divergent.

This series closely resembles the series
P

1=
ffiffiffi
n

p
, which is a p-series with p ¼ 1

2
; by

Example 3.7.6(e), it is divergent. If we let xn :¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
and yn :¼ 1=

ffiffiffi
n

p
, then we have

xn

yn
¼

ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p ! 1:

Therefore the Limit Comparison Test 3.7.8(a) applies.

(d) The series
X1
n¼1

1

n!
is convergent.

It would be possible to establish this convergence by showing (by Induction) that

n2 < n! for n � 4, whence it follows that

0 <
1

n!
<

1

n2
for n � 4:

Alternatively, if we let x :¼ 1=n! and yn :¼ 1=n2, then (when n � 4) we have

0 � xn

yn
¼ n2

n!
¼ n

1 � 2 � � � n� 1ð Þ <
1

n� 2
! 0:

Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit

troublesome to apply since we do not presently know the convergence of any series for

which the limit of xn=yn is really easy to determine.) &

Exercises for Section 3.7

1. Let
P

an be a given series and let
P

bn be the series in which the terms are the same and in the

same order as in
P

an except that the terms for which an ¼ 0 have been omitted. Show thatP
an converges to A if and only if

P
bn converges to A.

2. Show that the convergence of a series is not affected by changing a finite number of its terms. (Of

course, the value of the sum may be changed.)

3. By using partial fractions, show that

(a)
X1
n¼0

1

nþ 1ð Þ nþ 2ð Þ ¼ 1; (b)
X1
n¼0

1

aþ nð Þ aþ nþ 1ð Þ ¼
1

a
> 0; if a > 0:

(c)
X1
n¼1

1

n nþ 1ð Þ nþ 2ð Þ ¼
1

4
:

4. If
P

xn and
P

yn are convergent, show that
P

xn þ ynð Þ is convergent.
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5. Can you give an example of a convergent series
P

xn and a divergent series
P

yn such thatP
xn þ ynð Þ is convergent? Explain.

6. (a) Calculate the value of
P1
n¼2

2=7ð Þn. (Note the series starts at n ¼ 2.)

(b) Calculate the value of
P1
n¼1

1=3ð Þ2n. (Note the series starts at n ¼ 1.)

7. Find a formula for the series
P1
n¼1

r2n when rj j < 1.

8. Let r1; r2; . . . ; rn; . . . be an enumeration of the rational numbers in the interval [0,1].

(See Section 1.3.) For a given e > 0, put an interval of length en about the nth rational number

rn for n ¼ 1; 2; 3; . . . ; and find the total sum of the lengths of all the intervals. Evaluate this

number for e ¼ 0:1 and e ¼ 0:01.

9. (a) Show that the series
P1
n¼1

cos n is divergent.

(b) Show that the series
P1
n¼1

cos nð Þ=n2 is convergent.

10. Use an argument similar to that in Example 3.7.6(f) to show that the series
P1
n¼1

�1ð Þnffiffi
n

p is

convergent.

11. If
P

an with an > 0 is convergent, then is
P

a2n always convergent? Either prove it or give a

counterexample.

12. If
P

an with an > 0 is convergent, then is
P ffiffiffiffiffi

an
p

always convergent? Either prove it or give a

counterexample.

13. If
P

an with an > 0 is convergent, then is
P ffiffiffiffiffiffiffiffiffiffiffiffiffi

ananþ1
p

always convergent? Either prove it or give

a counterexample.

14. If
P

an with an > 0 is convergent, and if bn :¼ a1 þ � � � þ anð Þ=n for n 2 N ; then show thatP
bn is always divergent.

15. Let
P1
n¼1

a nð Þ be such that a nð Þð Þ is a decreasing sequence of strictly positive numbers. If s nð Þ
denotes the nth partial sum, show (by grouping the terms in s 2nð Þ in two different ways) that

1
2
a 1ð Þ þ 2a 2ð Þ þ � � � þ 2na 2nð Þð Þ � s 2nð Þ � a 1ð Þ þ 2a 2ð Þ þ � � � þ 2n�1a 2n�1

� 	� 	þ a 2nð Þ.
Use these inequalities to show that

P1
n¼1

a nð Þ converges if and only if P1
n¼1

2na 2nð Þ converges. This
result is often called the Cauchy Condensation Test; it is very powerful.

16. Use the Cauchy Condensation Test to discuss the p-series
P1
n¼1

1=npð Þ for p > 0.

17. Use the Cauchy Condensation Test to establish the divergence of the series:

(a)
X 1

n ln n
, (b)

X 1

n ln nð Þ ln ln nð Þ ,

(c)
X 1

n ln nð Þ ln ln nð Þ ln ln ln nð Þ .

18. Show that if c > 1, then the following series are convergent:

(a)
X 1

n ln nð Þc , (b)
X 1

n ln nð Þ ln ln nð Þc .
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CHAPTER 4

LIMITS

‘‘Mathematical analysis’’ is generally understood to refer to that area of mathematics in

which systematic use is made of various limiting concepts. In the preceding chapter we

studied one of these basic limiting concepts: the limit of a sequence of real numbers. In this

chapter we will encounter the notion of the limit of a function.

The rudimentary notion of a limiting process emerged in the 1680s as Isaac Newton

(1642–1727) and Gottfried Leibniz (1646–1716) struggled with the creation of the

Calculus. Though each person’s work was initially unknown to the other and their creative

insights were quite different, both realized the need to formulate a notion of function and

the idea of quantities being ‘‘close to’’ one another. Newton used the word ‘‘fluent’’ to

denote a relationship between variables, and in his major work Principia in 1687 he

discussed limits ‘‘to which they approach nearer than by any given difference, but never go

beyond, nor in effect attain to, till the quantities are diminished in infinitum.’’ Leibniz

introduced the term ‘‘function’’ to indicate a quantity that depended on a variable, and he

invented ‘‘infinitesimally small’’ numbers as a way of handling the concept of a limit. The

term ‘‘function’’ soon became standard terminology, and Leibniz also introduced the term

‘‘calculus’’ for this new method of calculation.

In 1748, Leonhard Euler (1707–1783) published his two-volume treatise Introduc-

tio in Analysin Infinitorum, in which he discussed power series, the exponential and

logarithmic functions, the trigonometric functions, and many related topics. This was

followed by Institutiones Calculi Differentialis in 1755 and the three-volume Institu-

tiones Calculi Integralis in 1768–1770. These works remained the standard textbooks on

calculus for many years. But the concept of limit was very intuitive and its looseness

led to a number of problems. Verbal descriptions of the limit concept were proposed

by other mathematicians of the era, but none was adequate to provide the basis for

rigorous proofs.

In 1821, Augustin-Louis Cauchy (1789–1857) published his lectures on analysis in his

Cours d’Analyse, which set the standard for mathematical exposition for many years. He

was concerned with rigor and in many ways raised the level of precision in mathematical

discourse. He formulated definitions and presented arguments with greater care than his

predecessors, but the concept of limit still remained elusive. In an early chapter he gave the

following definition:

If the successive values attributed to the same variable approach indefinitely a

fixed value, such that they finally differ from it by as little as one wishes, this latter

is called the limit of all the others.

The final steps in formulating a precise definition of limit were taken by Karl

Weierstrass (1815–1897). He insisted on precise language and rigorous proofs, and his

definition of limit is the one we use today.
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Gottfried Leibniz
Gottfried Wilhelm Leibniz (1646–1716) was born in Leipzig, Germany.

He was six years old when his father, a professor of philosophy, died and

left his son the key to his library and a life of books and learning. Leibniz

entered the University of Leipzig at age 15, graduated at age 17, and

received a Doctor of Law degree from the University of Altdorf four years

later. Hewrote on legal matters, but was more interested in philosophy. He

also developed original theories about language and the nature of the

universe. In 1672, he went to Paris as a diplomat for four years. While

there he began to study mathematics with the Dutch mathematician Christiaan Huygens. His

travels to London to visit the Royal Academy further stimulated his interest in mathematics. His

background in philosophy led him to very original, though not always rigorous, results.

Unaware of Newtons’s unpublished work, Leibniz published papers in the 1680s that

presented a method of finding areas that is known today as the Fundamental Theorem of Calculus.

He coined the term ‘‘calculus’’ and invented the dy=dx and elongated S notations that are used

today. Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a

dispute that lasted until Leibniz’s death. Their approaches to calculus were quite different and it is

now evident that their discoveries were made independently. Leibniz is now renowned for his

work in philosophy, but his mathematical fame rests on his creation of the calculus.

Section 4.1 Limits of Functions

In this section we will introduce the important notion of the limit of a function. The

intuitive idea of the function f having a limit L at the point c is that the values f (x) are close

to Lwhen x is close to (but different from) c. But it is necessary to have a technical way of

working with the idea of ‘‘close to’’ and this is accomplished in the e-d definition given

below.

In order for the idea of the limit of a function f at a point c to be meaningful, it is

necessary that f be defined at points near c. It need not be defined at the point c, but it should

be defined at enough points close to c to make the study interesting. This is the reason for

the following definition.

4.1.1 Definition Let A � R . A point c 2 R is a cluster point of A if for every d > 0 there

exists at least one point x 2 A; x 6¼ c such that x� cj j < d.

This definition is rephrased in the language of neighborhoods as follows: A point c is a

cluster point of the set A if every d-neighborhood Vd cð Þ ¼ c� d; cþ dð Þ of c contains at
least one point of A distinct from c.

Note The point c may or may not be a member of A, but even if it is in A, it is ignored

when deciding whether it is a cluster point of A or not, since we explicitly require that there

be points in Vd cð Þ \ A distinct from c in order for c to be a cluster point of A.

For example, if A :¼ {1, 2}, then the point 1 is not a cluster point of A, since choosing

d :¼ 1
2
gives a neighborhood of 1 that contains no points of A distinct from 1. The same is

true for the point 2, so we see that A has no cluster points.
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4.1.2 Theorem A number c 2 R is a cluster point of a subset A of R if and only if there

exists a sequence (an) in A such that lim anð Þ ¼ c and an 6¼ c for all n 2 N .

Proof. If c is a cluster point of A, then for any n 2 N the (l=n)-neighborhood V1=n cð Þ
contains at least one point an in A distinct from c. Then an 2 A; an 6¼ c, and an � cj j < 1=n
implies lim anð Þ ¼ c.

Conversely, if there exists a sequence (an) in An cf g with lim anð Þ ¼ c, then

for any d > 0 there exists K such that if n � K, then an 2 Vd cð Þ. Therefore the

d-neighborhood Vd cð Þ of c contains the points an, for n � K, which belong to A and

are distinct from c. Q.E.D.

The next examples emphasize that a cluster point of a set may or may not belong to

the set.

4.1.3 Examples (a) For the open interval A1 :¼ 0; 1ð Þ, every point of the closed

interval [0,1] is a cluster point of A1. Note that the points 0, 1 are cluster points of A1,

but do not belong to A1. All the points of A1 are cluster points of A1.

(b) A finite set has no cluster points.

(c) The infinite set N has no cluster points.

(d) The set A4 :¼ 1=n : n 2 Nf g has only the point 0 as a cluster point. None of the points
in A4 is a cluster point of A4.

(e) If I :¼ 0; 1½ �, then the setA5 :¼ I \ Q consists of all the rational numbers in I. It follows

from the Density Theorem 2.4.8 that every point in I is a cluster point of A5. &

Havingmade this brief detour, we now return to the concept of the limit of a function at

a cluster point of its domain.

The Definition of the Limit

We now state the precise definition of the limit of a function f at a point c. It is important to

note that in this definition, it is immaterial whether f is defined at c or not. In any case, we

exclude c from consideration in the determination of the limit.

4.1.4 Definition Let A � R , and let c be a cluster point of A. For a function f : A ! R , a

real number L is said to be a limit of f at c if, given any e > 0, there exists a d > 0 such that

if x 2 A and 0 < x� cj j < d, then f xð Þ � Lj j < e.

Remarks (a) Since the value of d usually depends on e, we will sometimes write d eð Þ
instead of d to emphasize this dependence.

(b) The inequality 0 < x� cj j is equivalent to saying x 6¼ c.

If L is a limit of f at c, then we also say that f converges to L at c. We often write

L ¼ lim
x!c

f xð Þ or L ¼ lim
x!c

f :

We also say that ‘‘f (x) approaches L as x approaches c.’’ (But it should be noted that the

points do not actually move anywhere.) The symbolism

f xð Þ ! L as x ! c

is also used sometimes to express the fact that f has limit L at c.
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If the limit of f at c does not exist, we say that f diverges at c.

Our first result is that the value L of the limit is uniquely determined. This uniqueness

is not part of the definition of limit, but must be deduced.

4.1.5 Theorem If f : A ! R and if c is a cluster point of A, then f can have only one

limit at c.

Proof. Suppose that numbers L and L0 satisfy Definition 4.1.4. For any e > 0, there exists

d e=2ð Þ > 0 such that if x 2 A and 0 < x� cj j < d e=2ð Þ, then f xð Þ � Lj j < e=2. Also there
exists d0 e=2ð Þ such that if x 2 A and 0 < x� cj j < d0 e=2ð Þ, then f xð Þ � L0j j < e=2. Now
let d :¼ inf d e=2ð Þ; d0 e=2ð Þf g. Then if x 2 A and 0 < x� cj j < d, the Triangle Inequality

implies that

L� L0j j � ��L� f xð Þ��þ f xð Þ � L0j j < e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, we conclude that L� L0 ¼ 0, so that L ¼ L0. Q.E.D.

The definition of limit can be very nicely described in terms of neighborhoods. (See

Figure 4.1.1.) We observe that because

Vd cð Þ ¼ c� d; cþ dð Þ ¼ x : x� cj j < df g;
the inequality 0 < x� cj j < d is equivalent to saying that x 6¼ c and x belongs to the

d-neighborhood Vd cð Þ of c. Similarly, the inequality f xð Þ � Lj j < e is equivalent to saying
that f (x) belongs to the e-neighborhood Ve Lð Þ of L. In this way, we obtain the following

result. The reader should write out a detailed argument to establish the theorem.

4.1.6 Theorem Let f : A ! R and let c be a cluster point of A. Then the following

statements are equivalent.

(i) lim
x!c

f xð Þ ¼ L.

(ii) Given any e-neighborhood V e Lð Þ of L, there exists a d-neighborhood Vd cð Þ of c such
that if x 6¼ c is any point in Vd cð Þ \ A, then f (x) belongs to V e Lð Þ.

We now give some examples that illustrate how the definition of limit is applied.

4.1.7 Examples (a) lim
x!c

b ¼ b.

To be more explicit, let f xð Þ :¼ b for all x 2 R . We want to show that lim
x!c

f xð Þ ¼ b. If

e > 0 is given, we let d :¼ 1. (In fact, any strictly positive dwill serve the purpose.) Then if

Figure 4.1.1 The limit of f at c is L
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0 < x� cj j < 1, we have f xð Þ � bj j ¼ b� bj j ¼ 0 < e. Since e > 0 is arbitrary, we

conclude from Definition 4.1.4 that lim
x!c

f xð Þ ¼ b.

(b) lim
x!c

x ¼ c.

Let g xð Þ :¼ x for all x 2 R . If e > 0, we choose d eð Þ :¼ e. Then if 0 < x� cj j < d eð Þ,
we have g xð Þ � cj j ¼ x� cj j < e. Since e > 0 is arbitrary, we deduce that lim

x!c
g ¼ c.

(c) lim
x!c

x2 ¼ c2:

Let h xð Þ :¼ x2 for all x 2 R . We want to make the difference

h xð Þ � c2
�� �� ¼ x2 � c2

�� ��
less than a preassigned e > 0 by taking x sufficiently close to c. To do so, we note that

x2 � c2 ¼ xþ cð Þ x� cð Þ. Moreover, if x� cj j < 1, then

xj j < cj j þ 1 so that xþ cj j � xj j þ cj j < 2 cj j þ 1:

Therefore, if x� cj j < 1, we have

ð1Þ x2 � c2
�� �� ¼ xþ cj j x� cj j < 2 cj j þ 1ð Þ x� cj j:

Moreover this last term will be less than e provided we take x� cj j < e= 2 cj j þ 1ð Þ.
Consequently, if we choose

d eð Þ :¼ inf 1;
e

2 cj j þ 1

� �
;

then if 0 < x� cj j < d eð Þ, it will follow first that x� cj j < 1 so that (1) is valid, and

therefore, since x� cj j < e= 2 cj j þ 1ð Þ that

x2 � c2
�� �� < 2 cj j þ 1ð Þ x� cj j < e:

Since we have a way of choosing d eð Þ > 0 for an arbitrary choice of e > 0, we infer that

lim
x!c

h xð Þ ¼ lim
x!c

x2 ¼ c2.

(d) lim
x!c

1

x
¼ 1

c
if c > 0.

Let w xð Þ :¼ 1=x for x > 0 and let c > 0. To show that lim
x!c

w ¼ 1=c we wish to make

the difference

w xð Þ � 1

c

����
���� ¼ 1

x
� 1

c

����
����

less than a preassigned e > 0 by taking x sufficiently close to c > 0. We first note that

1

x
� 1

c

����
���� ¼ 1

cx
c� xð Þ

����
���� ¼ 1

cx
x� cj j

for x > 0. It is useful to get an upper bound for the term 1=(cx) that holds in some

neighborhood of c. In particular, if x� cj j < 1
2
c, then 1

2
c < x < 3

2
c (why?), so that

0 <
1

cx
<
2

c2
for x� cj j < 1

2
c:

Therefore, for these values of x we have

ð2Þ w xð Þ � 1

c

����
���� � 2

c2
x� cj j:
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In order to make this last term less than e it suffices to take x� cj j < 1
2
c2e. Consequently, if

we choose

d eð Þ :¼ inf
1

2
c;

1

2
c2e

� �
;

then if 0 < x� cj j < d eð Þ, it will follow first that x� cj j < 1
2
c so that (2) is valid, and

therefore, since x� cj j < 1
2
c2

� �
e, that

w xð Þ � 1

c

����
���� ¼ 1

x
� 1

c

����
���� < e:

Since we have a way of choosing d eð Þ > 0 for an arbitrary choice of e > 0, we infer that

lim
x!c

w ¼ 1=c.

(e) lim
x!2

x3 � 4

x2 þ 1
¼ 4

5
:

Let c xð Þ :¼ x3 � 4ð Þ= x2 þ 1ð Þ for x 2 R. Then a little algebraic manipulation

gives us

���c xð Þ � 4

5

��� ¼ 5x3 � 4x2 � 24
�� ��

5 x2 þ 1ð Þ

¼ 5x3 þ 6xþ 12
�� ��

5 x2 þ 1ð Þ � x� 2j j:

To get a bound on the coefficient of x� 2j j, we restrict x by the condition 1 < x < 3.

For x in this interval, we have 5x2 þ 6xþ 12 � 5 � 32 þ 6 � 3þ 12 ¼ 75 and

5 x2 þ 1ð Þ � 5 1þ 1ð Þ ¼ 10, so that

c xð Þ � 4

5

����
���� � 75

10
x� 2j j ¼ 15

2
x� 2j j:

Now for given e > 0, we choose

d eð Þ :¼ inf 1;
2

15
e

� �
:

Then if 0 < x� 2j j < d eð Þ, we have c xð Þ � 4=5ð Þj j � 15=2ð Þ x� 2j j < e. Since e > 0 is

arbitrary, the assertion is proved. &

Sequential Criterion for Limits

The following important formulation of limit of a function is in terms of limits of

sequences. This characterization permits the theory of Chapter 3 to be applied to the

study of limits of functions.

4.1.8 Theorem (Sequential Criterion) Let f : A ! R and let c be a cluster point of A.

Then the following are equivalent.

(i) lim
x!c

f ¼ L:

(ii) For every sequence (xn) in A that converges to c such that xn 6¼ c for all n 2 N , the

sequence ( f(xn)) converges to L.

Proof. (i) ) (ii). Assume f has limit L at c, and suppose (xn) is a sequence in A with

lim xnð Þ ¼ c and xn 6¼ c for all n. We must prove that the sequence f xnð Þð Þ converges to L.
Let e > 0 be given. Then by Definition 4.1.4, there exists d > 0 such that if x 2 A satisfies
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0 < x� cj j < d, then f (x) satisfies f xð Þ � Lj j < e. We now apply the definition of

convergent sequence for the given d to obtain a natural number K(d) such that if n >
K dð Þ then xn � cj j < d. But for each such xn we have f xnð Þ � Lj j < e. Thus if n > K dð Þ,
then f xnð Þ � Lj j < e. Therefore, the sequence f xnð Þð Þ converges to L.

(ii) ) (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists

an e0-neighborhood Ve0 Lð Þ such that no matter what d-neighborhood of c we pick, there

will be at least one number xd in A \ Vd cð Þwith xd 6¼ c such that f xdð Þ =2 Ve0 Lð Þ. Hence for
every n 2 N, the (1=n)-neighborhood of c contains a number xn such that

0 < xn � cj j < 1=n and xn 2 A ;

but such that

f xnð Þ � Lj j � e0 for all n 2 N :

We conclude that the sequence (xn) in An{c} converges to c, but the sequence f xnð Þð Þ does
not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We

conclude that (ii) implies (i). Q.E.D.

We shall see in the next section that many of the basic limit properties of functions can

be established by using corresponding properties for convergent sequences. For example,

we know from our work with sequences that if (xn) is any sequence that converges to a

number c, then x2n
� �

converges to c2. Therefore, by the sequential criterion, we can

conclude that the function h xð Þ :¼ x2 has limit lim
x!c

h xð Þ ¼ c2.

Divergence Criteria

It is often important to be able to show (i) that a certain number is not the limit of a function

at a point, or (ii) that the function does not have a limit at a point. The following result is a

consequence of (the proof of) Theorem 4.1.8. We leave the details of its proof as an

important exercise.

4.1.9 Divergence Criteria Let A � R , let f : A ! R and let c 2 R be a cluster

point of A.

(a) If L 2 R , then f does not have limit L at c if and only if there exists a sequence (xn) in A

with xn 6¼ c for all n 2 N such that the sequence (xn) converges to c but the sequence

f xnð Þð Þ does not converge to L.

(b) The function f does not have a limit at c if and only if there exists a sequence (xn) in A

with xn 6¼ c for all n 2 N such that the sequence (xn) converges to c but the sequence

f xnð Þð Þ does not converge in R .

We now give some applications of this result to show how it can be used.

4.1.10 Examples (a) lim
x!0

1=xð Þ does not exist in R .

As in Example 4.1.7(d), let w xð Þ :¼ 1=x for x > 0. However, here we consider c ¼ 0.

The argument given in Example 4.1.7(d) breaks down if c ¼ 0 since we cannot obtain

a bound such as that in (2) of that example. Indeed, if we take the sequence (xn) with

xn :¼ 1=n for n 2 N, then lim xnð Þ ¼ 0, but w xnð Þ ¼ 1= 1=nð Þ ¼ n. As we know, the

sequence w xnð Þð Þ ¼ nð Þ is not convergent in R , since it is not bounded. Hence, by

Theorem 4.1.9(b), lim
x!0

1=xð Þ does not exist in R .

(b) lim
x!0

sgn xð Þ does not exist.
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Let the signum function sgn be defined by

sgn xð Þ :¼
þ1 for x > 0;
0 for x ¼ 0;

�1 for x < 0:

8<
:

Note that sgn xð Þ ¼ x= xj j for x 6¼ 0. (See Figure 4.1.2.) We shall show that sgn does not

have a limit at x ¼ 0. We shall do this by showing that there is a sequence (xn) such that

lim xnð Þ ¼ 0, but such that sgn xnð Þð Þ does not converge.

Indeed, let xn :¼ �1ð Þn=n for n 2 N so that lim xnð Þ ¼ 0. However, since

sgn xnð Þ ¼ �1ð Þn for n 2 N ;

it follows from Example 3.4.6(a) that sgn xnð Þð Þ does not converge. Therefore lim
x!0

sgn xð Þ
does not exist.

(c)y lim
x!0

sin 1=xð Þ does not exist in R .

Let g xð Þ :¼ sin 1=xð Þ for x 6¼ 0. (See Figure 4.1.3.) We shall show that g does not have

a limit at c ¼ 0, by exhibiting two sequences (xn) and (yn) with xn 6¼ 0 and yn 6¼ 0 for all

n 2 N and such that lim xnð Þ ¼ 0 and lim ynð Þ ¼ 0, but such that lim g xnð Þð Þ 6¼ lim g ynð Þð Þ.
In view of Theorem 4.1.9 this implies that lim

x!0
g cannot exist. (Explain why.)

Indeed, we recall from calculus that sin t ¼ 0 if t ¼ np for n 2 Z, and that sin t ¼ þ1

if t ¼ 1
2
pþ 2p n for n 2 Z. Now let xn :¼ 1=np for n 2 N ; then lim xnð Þ ¼ 0 and g xnð Þ ¼

sin np ¼ 0 for all n 2 N , so that lim g xnð Þð Þ ¼ 0. On the other hand, let yn :¼
1
2
pþ 2pn

� ��1
for n 2 N; then lim ynð Þ ¼ 0 and g ynð Þ ¼ sin 1

2
pþ 2p n

� � ¼ 1 for all

n 2 N , so that lim g ynð Þð Þ ¼ 1. We conclude that lim
x!0

sin 1=xð Þ does not exist. &

y In order to have some interesting applications in this and later examples, we shall make use of well-known

properties of trigonometric and exponential functions that will be established in Chapter 8.

Figure 4.1.3 The function g xð Þ ¼ sin 1=xð Þ x 6¼ 0ð Þ

Figure 4.1.2 The signum function
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Exercises for Section 4.1

1. Determine a condition on x� 1j j that will assure that:

(a) x2 � 1
�� �� < 1

2
, (b) x2 � 1

�� �� < 1=10�3,

(c) x2 � 1
�� �� < 1=n for a given n 2 N , (d) x3 � 1

�� �� < 1=n for a given n 2 N .

2. Determine a condition on x� 4j j that will assure that:

(a)
ffiffiffi
x

p � 2j j < 1
2
, (b)

ffiffiffi
x

p � 2j j < 10�2.

3. Let c be a cluster point of A � R and let f : A ! R . Prove that lim
x!c

f xð Þ ¼ L if and only if

lim
x!c

f xð Þ � Lj j ¼ 0.

4. Let f :¼ R ! R and let c 2 R . Show that lim
x!c

f xð Þ ¼ L if and only if lim
x!0

f xþ cð Þ ¼ L.

5. Let I :¼ 0; að Þ where a > 0, and let g xð Þ :¼ x2 for x 2 I. For any points x, c 2 I, show that

g xð Þ � c2
�� �� � 2a x� cj j. Use this inequality to prove that lim

x!c
x2 ¼ c2 for any c 2 I.

6. Let I be an interval in R , let f : I ! R , and let c 2 I. Suppose there exist constants K and L such

that f xð Þ � Lj j � K x� cj j for x 2 I. Show that lim
x!c

f xð Þ ¼ L.

7. Show that lim
x!c

x3 ¼ c3 for any c 2 R.

8. Show that lim
x!c

ffiffiffi
x

p ¼ ffiffiffi
c

p
for any c > 0.

9. Use either the e-d definition of limit or the Sequential Criterion for limits, to establish the

following limits.

(a) lim
x!2

1

1� x
¼ �1, (b) lim

x!1

x

1þ x
¼ 1

2
,

(c) lim
x!0

x2

xj j ¼ 0, (d) lim
x!1

x2 � xþ 1

xþ 1
¼ 1

2
.

10. Use the definition of limit to show that

(a) lim
x!2

x2 þ 4x
� � ¼ 12, (b) lim

x!�1

xþ 5

2xþ 3
¼ 4.

11. Use the definition of limit to prove the following.

(a) lim
x!3

2xþ 3

4x� 9
¼ 3, (b) lim

x!6

x2 � 3x

xþ 3
¼ 2:

12. Show that the following limits do not exist.

(a) lim
x!0

1

x2
x > 0ð Þ , (b) lim

x!0

1ffiffiffi
x

p x > 0ð Þ ,
(c) lim

x!0
xþ sgn xð Þð Þ, (d) lim

x!0
sin 1=x2

� �
.

13. Suppose the function f : R ! R has limit L at 0, and let a > 0. If g : R ! R is defined by

g xð Þ :¼ f axð Þ for x 2 R, show that lim
x!0

g xð Þ ¼ L.

14. Let c 2 R and let f : R ! R be such that lim
x!c

f xð Þð Þ2 ¼ L.

(a) Show that if L ¼ 0, then lim
x!c

f xð Þ ¼ 0.

(b) Show by example that if L 6¼ 0, then f may not have a limit at c.

15. Let f : R ! R be defined by setting f xð Þ :¼ x if x is rational, and f xð Þ ¼ 0 if x is irrational.

(a) Show that f has a limit at x ¼ 0.

(b) Use a sequential argument to show that if c 6¼ 0, then f does not have a limit at c.

16. Let f : R ! R , let I be an open interval in R , and let c 2 I. If f1 is the restriction of f to I, show

that f1 has a limit at c if and only if f has a limit at c, and that the limits are equal.

17. Let f : R ! R , let J be a closed interval in R , and let c 2 J. If f2 is the restriction of f to J,

show that if f has a limit at c then f2 has a limit at c. Show by example that it does not follow that

if f2 has a limit at c, then f has a limit at c.
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Section 4.2 Limit Theorems

We shall now obtain results that are useful in calculating limits of functions. These results

are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most

cases these results can be proved by using Theorem 4.1.8 and results from Section 3.2.

Alternatively, the results in this section can be proved by using e-d arguments that are very

similar to the ones employed in Section 3.2.

4.2.1 Definition Let A � R , let f : A ! R , and let c 2 R be a cluster point of A. We say

that f is bounded on a neighborhood of c if there exists a d-neighborhood Vd cð Þ of c and a
constant M > 0 such that we have f xð Þj j � M for all x 2 A \ Vd cð Þ.

4.2.2 Theorem If A � R and f : A ! R has a limit at c 2 R , then f is bounded on some

neighborhood of c.

Proof. If L :¼ lim
x!c

f , then for e ¼ 1, there exists d > 0 such that if 0 < x� cj j < d, then

f xð Þ � Lj j < 1; hence (by Corollary 2.2.4(a)),

f xð Þj j � Lj j � f xð Þ � Lj j < 1:

Therefore, if x 2 A \ Vd cð Þ; x 6¼ c, then f xð Þj j � Lj j þ 1. If c =2 A, we take M ¼ Lj j þ 1,

while if c 2 A we take M :¼ sup f cð Þj j; Lj j þ 1f g. It follows that if x 2 A \ Vd cð Þ, then
f xð Þj j � M. This shows that f is bounded on the neighborhood Vd cð Þ of c. Q.E.D.

The next definition is similar to the definition for sums, differences, products, and

quotients of sequences given in Section 3.2.

4.2.3 Definition Let A � R and let f and g be functions defined on A to R . We define the

sum f þ g, the difference f � g, and the product fg on A to R to be the functions given by

f þ gð Þ xð Þ :¼ f xð Þ þ g xð Þ; f � gð Þ xð Þ :¼ f xð Þ � g xð Þ;
f gð Þ xð Þ :¼ f xð Þg xð Þ

for all x 2 A. Further, if b 2 R , we define the multiple bf to be the function given by

bfð Þ xð Þ :¼ bf xð Þ for all x 2 A :

Finally, if h xð Þ 6¼ 0 for x 2 A, we define the quotient f=h to be the function given by

f

h

� 	
xð Þ :¼ f xð Þ

h xð Þ for all x 2 A :

4.2.4 Theorem Let A � R , let f and g be functions on A to R , and let c 2 R be a cluster

point of A. Further, let b 2 R .

(a) If lim
x!c

f ¼ L and lim
x!c

g ¼ M, then:

lim
x!c

f þ gð Þ ¼ LþM; lim
x!c

f � gð Þ ¼ L�M;

lim
x!c

f gð Þ ¼ LM; lim
x!c

bfð Þ ¼ bL:

(b) If h : A ! R , if h xð Þ 6¼ 0 for all x 2 A, and if lim
x!c

h ¼ H 6¼ 0, then

lim
x!c

f

h

� 	
¼ L

H
:
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Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alterna-

tively, it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (xn) be

any sequence in A such that xn 6¼ c for n 2 N, and c ¼ lim xnð Þ. It follows from Theorem

4.1.8 that

lim f xnð Þð Þ ¼ L; lim g xnð Þð Þ ¼ M:

On the other hand, Definition 4.2.3 implies that

f gð Þ xnð Þ ¼ f xnð Þg xnð Þ for n 2 N :

Therefore an application of Theorem 3.2.3 yields

lim f gð Þ xnð Þð Þ ¼ lim f xnð Þg xnð Þð Þ
¼ lim f xnð Þð Þ½ � lim g xnð Þð Þ½ � ¼ LM:

Consequently, it follows from Theorem 4.1.8 that

lim
x!c

f gð Þ ¼ lim f gð Þ xnð Þð Þ ¼ LM:

The other parts of this theorem are proved in a similar manner. We leave the details to

the reader. Q.E.D.

Remark Let A � R , and let f 1; f 2; . . . ; f n be functions on A to R , and let c be a cluster

point of A. If Lk :¼ lim
x!c

f k for k ¼ 1; . . . ; n; then it follows from Theorem 4.2.4 by an

Induction argument that

L1 þ L2 þ � � � þ Ln ¼ lim
x!c

f 1 þ f 2 þ � � � þ f nð Þ;

and

L1 � L2 � � � Ln ¼ lim f 1 � f 2 � � � f nð Þ:
In particular, we deduce that if L ¼ lim

x!c
f and n 2 N , then

Ln ¼ lim
x!c

f xð Þð Þn:

4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be

proved by using Theorem 4.2.4. For example, it follows from this result that since

lim
x!c

x ¼ c, then lim
x!c

x2 ¼ c2, and that if c > 0, then

lim
x!c

1

x
¼ 1

lim
x!c

x
¼ 1

c
:

(b) lim
x!2

x2 þ 1
� �

x3 � 4
� � ¼ 20.

It follows from Theorem 4.2.4 that

lim
x!2

x2 þ 1
� �

x3 � 4
� � ¼ lim

x!2
x2 þ 1
� �� 	

lim
x!2

x3 � 4
� �� 	

¼ 5 � 4 ¼ 20:

(c) lim
x!2

x3 � 4

x2 þ 1

� 	
¼ 4

5
.
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If we apply Theorem 4.2.4(b), we have

lim
x!2

x3 � 4

x2 þ 1
¼

lim
x!2

x3 � 4
� �

lim
x!2

x2 þ 1
� � ¼ 4

5
:

Note that since the limit in the denominator [i.e., lim
x!2

x2 þ 1
� � ¼ 5] is not equal to 0, then

Theorem 4.2.4(b) is applicable.

(d) lim
x!2

¼ x2 � 4

3x� 6
¼ 4

3
.

If we let f xð Þ :¼ x2 � 4 and h xð Þ :¼ 3x� 6 for x 2 R, then we cannot use Theorem

4.2.4(b) to evaluate lim
x!2

f xð Þ=h xð Þð Þ because
H ¼ lim

x!2
h xð Þ ¼ lim

x!2
3x� 6ð Þ ¼ 3 � 2� 6 ¼ 0:

However, if x 6¼ 2, then it follows that

x2 � 4

3x� 6
¼ xþ 2ð Þ x� 2ð Þ

3 x� 2ð Þ ¼ 1

3
xþ 2ð Þ:

Therefore we have

lim
x!2

x2 � 4

3x� 6
¼ lim

x!2

1

3
xþ 2ð Þ ¼ 1

3
lim
x!2

xþ 2

� 	
¼ 4

3
:

Note that the function g xð Þ ¼ x2 � 4ð Þ= 3x� 6ð Þ has a limit at x¼ 2 even though it is not

defined there.

(e) lim
x!0

1

x
does not exist in R .

Of course lim
x!0

1 ¼ 1 and H :¼ lim
x!0

x ¼ 0. However, since H ¼ 0, we cannot use

Theorem 4.2.4(b) to evaluate lim
x!0

1=xð Þ. In fact, as was seen in Example 4.1.10(a), the

function w xð Þ ¼ 1=x does not have a limit at x ¼ 0. This conclusion also follows from

Theorem 4.2.2 since the function w xð Þ ¼ 1=x is not bounded on a neighborhood of x ¼ 0.

(f) If p is a polynomial function, then lim
x!c

p xð Þ ¼ p cð Þ.
Let p be a polynomial function on R so that p xð Þ ¼ anx

n þ an�1x
n�1 þ � � � þ a1xþ

a0 for all x 2 R . It follows from Theorem 4.2.4 and the fact that lim
x!c

xk ¼ ck that

lim
x!c

p xð Þ ¼ lim
x!c

anx
n þ an�1x

n�1 þ � � � þ a1xþ a0

 �

¼ lim
x!c

anx
nð Þ þ lim

x!c
an�1x

n�1
� �þ � � � þ lim

x!c
a1xð Þ þ lim

x!c
a0

¼ anc
n þ an�1c

n�1 þ � � � þ a1cþ a0

¼ p cð Þ:
Hence lim

x!c
p xð Þ ¼ p cð Þ for any polynomial function p.

(g) If p and q are polynomial functions on R and if q cð Þ 6¼ 0, then

lim
x!c

p xð Þ
q xð Þ ¼

p cð Þ
q cð Þ :

Since q(x) is a polynomial function, it follows froma theorem in algebra that there are atmost

a finite number of real numbers a1; . . . ;am [the real zeroes of q(x)] such that q aj

� � ¼ 0 and

such that if x =2 a1; . . . ;amf g, then q xð Þ 6¼ 0. Hence, if x =2 a1; . . . ;amf g, we can define

r xð Þ :¼ p xð Þ
q xð Þ :
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If c is not a zero of q(x), then q cð Þ 6¼ 0, and it follows from part (f) that lim
x!c

q xð Þ ¼ q cð Þ 6¼ 0.

Therefore we can apply Theorem 4.2.4(b) to conclude that

lim
x!c

p xð Þ
q xð Þ ¼

lim
x!c

p xð Þ
lim
x!c

q xð Þ ¼
p cð Þ
q cð Þ : &

The next result is a direct analogue of Theorem 3.2.6.

4.2.6 Theorem Let A � R , let f : A ! R , and let c 2 R be a cluster point of A. If

a � f xð Þ � b f or all x 2 A; x 6¼ c;

and if lim
x!c

f exists, then a � lim
x!c

f � b.

Proof. Indeed, if L ¼ lim
x!c

f , then it follows from Theorem 4.1.8 that if (xn) is any

sequence of real numbers such that c 6¼ xn 2 A for all n 2 N and if the sequence (xn)

converges to c, then the sequence f xnð Þð Þ converges to L. Since a � f xnð Þ � b for all

n 2 N , it follows from Theorem 3.2.6 that a � L � b. Q.E.D.

We now state an analogue of the SqueezeTheorem3.2.7.We leave its proof to the reader.

4.2.7 Squeeze Theorem Let A � R , let f, g, h: A ! R , and let c 2 R be a cluster point

of A. If

f xð Þ � g xð Þ � h xð Þ f or all x 2 A; x 6¼ c;

and if lim
x!c

f ¼ L ¼ lim
x!c

h, then lim
x!c

g ¼ L.

4.2.8 Examples (a) lim
x!0

x3=2 ¼ 0 x > 0ð Þ.
Let f xð Þ :¼ x3=2 for x > 0. Since the inequality x < x1=2 � 1 holds for 0 < x � 1

(why?), it follows that x2 � f xð Þ ¼ x3=2 � x for 0 < x � 1. Since

lim
x!0

x2 ¼ 0 and lim
x!0

x ¼ 0;

it follows from the Squeeze Theorem 4.2.7 that lim
x!0

x3=2 ¼ 0.

(b) lim
x!0

sin x ¼ 0.

It will be proved later (see Theorem 8.4.8), that

�x � sinx � x for all x � 0 :

Since lim
x!0

�xð Þ ¼ 0, it follows from the Squeeze Theorem that lim
x!0

sinx ¼ 0.

(c) lim
x!0

cos x ¼ 1.

It will be proved later (see Theorem 8.4.8) that

ð1Þ 1� 1
2
x2 � cos x � 1 for all x 2 R :

Since lim
x!0

1� 1
2
x2

� � ¼ 1, it follows from the Squeeze Theorem that lim
x!0

cos x ¼ 1.

(d) lim
x!0

cos x� 1

x

� 	
¼ 0.
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We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows

from the inequality (1) in part (c) that

� 1
2
x � cos x� 1ð Þ=x � 0 for x > 0

and that

0 � cos x� 1ð Þ=x � � 1
2
x for x < 0:

Now let f xð Þ :¼ �x=2 for x � 0 and f xð Þ :¼ 0 for x < 0, and let h xð Þ :¼ 0 for x � 0 and

h xð Þ :¼ �x=2 for x < 0. Then we have

f xð Þ � cos x� 1ð Þ=x � h xð Þ for x 6¼ 0:

Since it is readily seen that lim
x!0

f ¼ 0 ¼ lim
x!0

h, it follows from the Squeeze Theorem that

lim
x!0

cos x� 1ð Þ=x ¼ 0.

(e) lim
x!0

sin x

x

� 	
¼ 1.

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be

proved later (see Theorem 8.4.8) that

x� 1
6
x3 � sinx � x for x � 0

and that

x � sin x � x� 1
6
x3 for x � 0:

Therefore it follows (why?) that

1� 1
6
x2 � sin xð Þ=x � 1 for all x 6¼ 0:

But since lim
x!0

1� 1
6
x2

� � ¼ 1� 1
6
� lim
x!0

x2 ¼ 1, we infer from the Squeeze Theorem that

lim
x!0

sin xð Þ=x ¼ 1.

(f) lim
x!0

x sin 1=xð Þð Þ ¼ 0.

Let f xð Þ ¼ x sin 1=xð Þ for x 6¼ 0. Since �1 � sin z � 1 for all z 2 R , we have the

inequality

� xj j � f xð Þ ¼ x sin 1=xð Þ � xj j
for allx 2 R ,x 6¼ 0. Since lim

x!0
xj j ¼ 0, it follows from the Squeeze Theorem that lim

x!0
f ¼ 0.

For a graph, see Figure 5.1.3 or the cover of this book. &

There are results that are parallel to Theorems 3.2.9 and 3.2.10; however, wewill leave

them as exercises. We conclude this section with a result that is, in some sense, a partial

converse to Theorem 4.2.6.

4.2.9 Theorem Let A � R , let f : A ! R and let c 2 R be a cluster point of A. If

lim
x!c

f > 0 respectively; lim
x!c

f < 0
h i

;

then there exists a neighborhood Vd(c) of c such that f (x) > 0 [respectively, f (x) < 0] for

all x 2 A \ Vd cð Þ, x 6¼ c.

Proof. Let L :¼ lim
x!c

f and suppose that L> 0.We take e ¼ 1
2
L > 0 in Definition 4.1.4, and

obtain a number d > 0 such that if 0 < x� cj j < d and x 2 A, then f xð Þ � Lj j < 1
2
L.

Therefore (why?) it follows that if x 2 A \ Vd cð Þ, x 6¼ c, then f xð Þ > 1
2
L > 0.

If L < 0, a similar argument applies. Q.E.D.
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Exercises for Section 4.2

1. Apply Theorem 4.2.4 to determine the following limits:

(a) lim
x!1

xþ 1ð Þ 2xþ 3ð Þ x 2 Rð Þ; (b) lim
x!1

x2 þ 2

x2 � 2
x > 0ð Þ;

(c) lim
x!2

1

xþ 1
� 1

2x

� 	
x > 0ð Þ ; (d) lim

x!0

xþ 1

x2 þ 2
x 2 Rð Þ:

2. Determine the following limits and state which theorems are used in each case. (You may wish

to use Exercise 15 below.)

(a) lim
x!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ 1

xþ 3

r
x > 0ð Þ; (b) lim

x!2

x2 � 4

x� 2
x > 0ð Þ;

(c) lim
x!0

xþ 1ð Þ2 � 1

x
x > 0ð Þ; (d) lim

x!1

ffiffiffi
x

p � 1

x� 1
x > 0ð Þ:

3. Find lim
x!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x

p

xþ 2x2
where x > 0.

4. Prove that lim
x!0

cos 1=xð Þ does not exist but that lim
x!0

x cos 1=xð Þ ¼ 0.

5. Let f, g be defined on A � R to R , and let c be a cluster point of A. Suppose that f is bounded on a

neighborhood of c and that lim
x!c

g ¼ 0. Prove that lim
x!c

f g ¼ 0.

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).

7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b).

8. Let n 2 N be such that n � 3. Derive the inequality �x2 � xn � x2 for �1 < x < 1. Then use

the fact that lim
x!0

x2 ¼ 0 to show that lim
x!0

xn ¼ 0.

9. Let f, g be defined on A to R and let c be a cluster point of A.

(a) Show that if both lim
x!c

f and lim
x!c

f þ gð Þ exist, then lim
x!c

g exists.

(b) If lim
x!c

f and lim
x!c

f g exist, does it follow that lim
x!c

g exists?

10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that

both f þ g and fg have limits at c.

11. Determine whether the following limits exist in R .

(a) lim
x!0

sin 1=x2
� �

x 6¼ 0ð Þ, (b) lim
x!0

x sin 1=x2
� �

x 6¼ 0ð Þ,
(c) lim

x!0
sgn sin 1=xð Þ x 6¼ 0ð Þ, (d) lim

x!0

ffiffiffi
x

p
sin 1=x2

� �
x > 0ð Þ.

12. Let f : R ! R be such that f xþ yð Þ ¼ f xð Þ þ f yð Þ for all x, y in R . Assume that lim
x!0

f ¼ L

exists. Prove that L¼ 0, and then prove that f has a limit at every point c 2 R . [Hint: First note that

f 2xð Þ ¼ f xð Þ þ f xð Þ ¼ 2f xð Þ for x 2 R. Also note that f xð Þ ¼ f x� cð Þ þ f cð Þ for x, c in R .]

13. Functions f and g are defined on R by f (x) :¼ x þ 1 and g (x) :¼ 2 if x 6¼ 1 and g(1) :¼ 0.

(a) Find lim
x!1

g (f (x)) and compare with the value of g (lim
x!1

f (x)).

(b) Find lim
x!1

f (g (x)) and compare with the value of f (lim
x!1

g (x)).

14. Let A � R , let f : A ! R and let c 2 R be a cluster point of A. If lim
x!c

f exists, and if fj j denotes
the function defined for x 2 A by fj j xð Þ :¼ f xð Þj j, prove that lim

x!c
fj j ¼ lim

x!c
f

��� ���.
15. Let A � R , let f : A ! R , and let c 2 R be a cluster point of A. In addition, suppose that

f xð Þ � 0 for all x 2 A, and let
ffiffiffi
f

p
be the function defined for x 2 A by

ffiffiffi
f

pð Þ (x) :¼ ffiffiffiffiffiffiffiffiffi
f xð Þp

. If

lim
x!c

f exists, prove that lim
x!c

ffiffiffi
f

p
¼

ffiffiffiffiffiffiffiffiffiffi
lim
x!c

f
q

.

Section 4.3 Some Extensions of the Limit Concepty

In this section, we shall present three types of extensions of the notion of a limit of a

function that often occur. Since all the ideas here are closely parallel to ones we have

already encountered, this section can be read easily.

yThis section can be largely omitted on a first reading of this chapter.
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One-Sided Limits

There are times when a function f may not possess a limit at a point c, yet a limit

does exist when the function is restricted to an interval on one side of the cluster

point c.

For example, the signum function considered in Example 4.1.10(b), and illustra-

ted in Figure 4.1.2, has no limit at c ¼ 0. However, if we restrict the signum function

to the interval (0, 1), the resulting function has a limit of 1 at c ¼ 0. Similarly, if

we restrict the signum function to the interval (�1, 0), the resulting function has a limit

of �1 at c ¼ 0. These are elementary examples of right-hand and left-hand limits at

c ¼ 0.

4.3.1 Definition Let A 2 R and let f : A ! R .

(i) If c 2 R is a cluster point of the set A \ c; 1ð Þ ¼ x 2 A: x > cf g, then we say that

L 2 R is a right-hand limit of f at c and we write

lim
x!cþ f ¼ L or lim

x!cþ f xð Þ ¼ L

if given any e > 0 there exists a d ¼ d eð Þ > 0 such that for all x 2 A with

0 < x� c < d, then f xð Þ � Lj j < e.
(ii) If c 2 R is a cluster point of the set A \ �1; cð Þ ¼ x 2 A: x < cf g, then we say that

L 2 R is a left-hand limit of f at c and we write

lim
x!c� f ¼ L or lim

x!c� f xð Þ ¼ L

if given any e > 0 there exists a d > 0 such that for all x 2 A with 0 < c� x < d,

then f xð Þ � Lj j < e.

Notes (1) The limits lim
x!cþ f and lim

x!c� f are called one-sided limits of f at c. It is possible

that neither one-sided limit may exist. Also, one of them may exist without the other

existing. Similarly, as is the case for f xð Þ :¼ sgn xð Þ at c ¼ 0, they may both exist and be

different.

(2) If A is an interval with left endpoint c, then it is readily seen that f : A ! R has a limit

at c if and only if it has a right-hand limit at c. Moreover, in this case the limit lim
x!c

f and the

right-hand limit lim
x!cþ f are equal. (A similar situation occurs for the left-hand limit when A

is an interval with right endpoint c.)

The reader can show that f can have only one right-hand (respectively, left-hand) limit

at a point. There are results analogous to those established in Sections 4.1 and 4.2 for two-

sided limits. In particular, the existence of one-sided limits can be reduced to sequential

considerations.

4.3.2 Theorem Let A � R , let f : A ! R , and let c 2 R be a cluster point of A \ c;1ð Þ.
Then the following statements are equivalent:

(i) lim
x!cþ f ¼ L.

(ii) For every sequence (xn) that converges to c such that xn 2 A and xn > c for all

n 2 N , the sequence f xnð Þð Þ converges to L.
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We leave the proof of this result (and the formulation and proof of the analogous

result for left-hand limits) to the reader. We will not take the space to write out the

formulations of the one-sided version of the other results in Sections 4.1 and 4.2.

The following result relates the notion of the limit of a function to one-sided limits. We

leave its proof as an exercise.

4.3.3 Theorem Let A � R , let f : A ! R , and let c 2 R be a cluster point of both

of the sets A \ c;1ð Þ and A \ �1; cð Þ. Then lim
x!c

f ¼ L if and only if

lim
x!cþ f ¼ L ¼ lim

x!c� f .

4.3.4 Examples (a) Let f xð Þ :¼ sgn xð Þ.
We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that

lim
x!0þ

sgn xð Þ ¼ þ1 and that lim
x!0�

sgn xð Þ ¼ �1. Since these one-sided limits are different, it

also follows from Theorem 4.3.3 that sgn(x) does not have a limit at 0.

(b) Let g xð Þ :¼ e1=x for x 6¼ 0. (See Figure 4.3.1.)

We first show that g does not have a finite right-hand limit at c ¼ 0 since it is

not bounded on any right-hand neighborhood 0; dð Þ of 0. We shall make use of the

inequality

ð1Þ 0 < t < et for t > 0;

which will be proved later (see Corollary 8.3.3). It follows from (1) that if x > 0, then

0 < 1=x < e1=x. Hence, if we take xn ¼ 1=n, then g xnð Þ > n for all n 2 N . Therefore

lim
x!0þ

e1=x does not exist in R .

However, lim
x!0�

e1=x ¼ 0. Indeed, if x < 0 and we take t ¼ �1=x in (1) we obtain

0 < �1=x < e�1=x. Since x < 0, this implies that 0 < e1=x < �x for all x < 0. It follows

from this inequality that lim
x!0�

e1=x ¼ 0.

(c) Let h xð Þ :¼ 1= e1=x þ 1
� �

for x 6¼ 0. (See Figure 4.3.2.)

We have seen in part (b) that 0 < 1=x < e1=x for x > 0, whence

0 <
1

e1=x þ 1
<

1

e1=x
< x;

which implies that lim
x!0þ

h ¼ 0.

Figure 4.3.1 Graph of

g xð Þ ¼ e1=x x 6¼ 0ð Þ

Figure 4.3.2 Graph of

h xð Þ ¼ 1= e1=x þ 1
� �

x 6¼ 0ð Þ
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Since we have seen in part (b) that lim
x!0�

e1=x ¼ 0, it follows from the analogue of

Theorem 4.2.4(b) for left-hand limits that

lim
x!0�

1

e1=x þ 1

� 	
¼ 1

lim
x!0�

e1=x þ 1
¼ 1

0þ 1
¼ 1:

Note that for this function, both one-sided limits exist in R , but they are unequal. &

Infinite Limits

The function f xð Þ :¼ 1=x2 for x 6¼ 0 (see Figure 4.3.3) is not bounded on a neighborhood

of 0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols

1 ¼ þ1ð Þ and �1 do not represent real numbers, it is sometimes useful to be able to

say that ‘‘f xð Þ ¼ 1=x2 tends to 1 as x ! 0.’’ This use of �1 will not cause any

difficulties, provided we exercise caution and never interpret 1 or �1 as being real

numbers.

4.3.5 Definition Let A � R , let f : A ! R , and let c 2 R be a cluster point of A.

(i) We say that f tends to 1 as x ! c, and write

lim
x!c

f ¼ 1;

if for every a 2 R there exists d ¼ d að Þ > 0 such that for all x 2 A with

0 < x� cj j < d, then f xð Þ > a.

(ii) We say that f tends to �1 as x ! c, and write

lim
x!c

f ¼ �1;

if for every b 2 R there exists d ¼ d bð Þ > 0 such that for all x 2 A with

0 < x� cj j < d, then f xð Þ < b.

4.3.6 Examples (a) lim
x!0

1=x2
� � ¼ 1.

For, if a > 0 is given, let d :¼ 1=
ffiffiffi
a

p
. It follows that if 0 < xj j < d, then x2 < 1=a so

that 1=x2 > a.

(b) Let g xð Þ :¼ 1=x for x 6¼ 0. (See Figure 4.3.4.)

Figure 4.3.3 Graph of

f xð Þ ¼ 1=x2 x 6¼ 0ð Þ Figure 4.3.4 Graph of

g xð Þ ¼ 1=x x 6¼ 0ð Þ
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The function g does not tend to either1 or�1 as x ! 0. For, if a > 0 then gðxÞ < a

for all x< 0, so that g does not tend to1 as x ! 0. Similarly, if b < 0 then gðxÞ > b for all

x > 0, so that g does not tend to �1 as x ! 0. &

While many of the results in Sections 4.1 and 4.2 have extensions to this limiting

notion, not all of them do since �1 are not real numbers. The following result is an

analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.)

4.3.7 Theorem Let A � R , let f ; g : A ! R , and let c 2 R be a cluster point of A.

Suppose that f ðxÞ � gðxÞ for all x 2 A; x 6¼ c.

(a) If lim
x!c

f ¼ 1, then lim
x!c

g ¼ 1.

(b) If lim
x!c

g ¼ �1, then lim
x!c

f ¼ �1.

Proof. (a) If lim
x!c

f ¼ 1 and a 2 R is given, then there exists dðaÞ > 0 such that if

0 < jx� cj < dðaÞ and x 2 A, then f ðxÞ > a. But since f ðxÞ � gðxÞ for all x 2 A; x 6¼ c,

it follows that if 0 < jx� cj < dðaÞ and x 2 A, then gðxÞ > a. Therefore lim
x!c

g ¼ 1.

The proof of (b) is similar. Q.E.D.

The function gðxÞ ¼ 1=x considered in Example 4.3.6(b) suggests that it might be

useful to consider one-sided infinite limits. We will define only right-hand infinite

limits.

4.3.8 Definition Let A � R and let f : A ! R . If c 2 R is a cluster point of the set

A \ ðc;1Þ ¼ fx 2 A : x > cg, then we say that f tends to 1 [respectively, �1] as

x ! cþ, and we write

lim
x!cþ f ¼ 1

h
respectively; lim

x!cþ f ¼ �1
i
;

if for every a 2 R there is d ¼ dðaÞ > 0 such that for all x 2 A with 0 < x� c < d, then

f ðxÞ > a [respectively, f ðxÞ < a].

4.3.9 Examples (a) Let gðxÞ :¼ 1=x for x 6¼ 0.We have noted in Example 4.3.6(b) that

lim
x!0

g does not exist. However, it is an easy exercise to show that

lim
x!0þ

1=xð Þ ¼ 1 and lim
x!0�

1=xð Þ ¼ �1:

(b) It was seen in Example 4.3.4(b) that the function gðxÞ :¼ e1=x for x 6¼ 0 is not

bounded on any interval 0; dð Þ; d > 0. Hence the right-hand limit of e1=x as x ! 0þ does

not exist in the sense of Definition 4.3.1(i). However, since

1=x < e1=x for x > 0 ;

it is readily seen that lim
x!0þ

e1=x ¼ 1 in the sense of Definition 4.3.8. &

Limits at Infinity

It is also desirable to define the notion of the limit of a function as x ! 1. The definition as

x ! �1 is similar.
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4.3.10 Definition Let A � R and let f : A ! R . Suppose that ða;1Þ � A for some

a 2 R . We say that L 2 R is a limit of f as x ! 1, and write

lim
x!1 f ¼ L or lim

x!1 f ðxÞ ¼ L ;

if given any e > 0 there exists K ¼ KðeÞ > a such that for any x> K, then j f ðxÞ � Lj < e.

The reader should note the close resemblance between 4.3.10 and the definition of a

limit of a sequence.

We leave it to the reader to show that the limits of f as x ! �1 are unique whenever

they exist. We also have sequential criteria for these limits; we shall only state the criterion

as x ! 1. This uses the notion of the limit of a properly divergent sequence (see

Definition 3.6.1).

4.3.11 Theorem Let A � R , let f : A ! R , and suppose that ða;1Þ � A for some

a 2 R . Then the following statements are equivalent:

(i) L ¼ lim
x!1 f .

(ii) For every sequence (xn) in A \ ða;1Þ such that limðxnÞ ¼ 1, the sequence ð f ðxnÞÞ
converges to L.

We leave it to the reader to prove this theorem and to formulate and prove the

companion result concerning the limit as x ! �1.

4.3.12 Examples (a) Let gðxÞ :¼ 1=x for x 6¼ 0.

It is an elementary exercise to show that lim
x!1ð1=xÞ ¼ 0 ¼ lim

x!�1ð1=xÞ. (See Figure

4.3.4.)

(b) Let f ðxÞ :¼ 1=x2 for x 6¼ 0.

The reader may show that lim
x!1ð1=x

2Þ ¼ 0 ¼ lim
x!�1ð1=x

2Þ. (See Figure 4.3.3.) One

way to do this is to show that if x � 1 then 0 � 1=x2 � 1=x. In view of part (a), this implies

that lim
x!1ð1=x

2Þ ¼ 0. &

Just as it is convenient to be able to say that f ðxÞ ! �1 as x ! c for c 2 R, it is

convenient to have the corresponding notion as x ! �1. We will treat the case where

x ! 1.

4.3.13 Definition Let A � R and let f : A ! R . Suppose that ða;1Þ � A for some

a 2 A. We say that f tends to 1 [respectively, �1] as x ! 1, and write

lim
x!1 f ¼ 1 respectively; lim

x!1 f ¼ �1
h i

if given any a 2 R there exists K ¼ KðaÞ > a such that for any x > K, then f ðxÞ > a
[respectively, f ðxÞ < a].

As before there is a sequential criterion for this limit.

4.3.14 Theorem Let A 2 R , let f : A ! R , and suppose that ða;1Þ � A for some

a 2 R . Then the following statements are equivalent:
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(i) lim
x!1 f ¼ 1½respectively; lim

x!1 f ¼ �1�.
(ii) For every sequence (xn) in ða;1Þsuch that limðxnÞ ¼ 1, then lim f xnð Þð Þ ¼ 1
respectively; lim f xnð Þð Þ ¼ �1½ �.

The next result is an analogue of Theorem 3.6.5.

4.3.15 Theorem Let A � R , let f ; g : A ! R , and suppose that ða;1Þ � A for some

a 2 R . Suppose further that gðxÞ > 0 for all x> a and that for some L 2 R ; L 6¼ 0, we have

lim
x!1

f ðxÞ
gðxÞ ¼ L:

(i) If L > 0, then lim
x!1 f ¼ 1 if and only if lim

x!1 g ¼ 1.

(ii) If L < 0, then lim
x!1 f ¼ �1 if and only if lim

x!1 g ¼ 1.

Proof. (i) Since L > 0, the hypothesis implies that there exists a1 > a such that

0 <
1

2
L � f ðxÞ

gðxÞ <
3

2
L for x > a1:

Therefore we have
�
1

2
L
�
gðxÞ < f ðxÞ < �

3

2
L
�
gðxÞ for all x> a1, from which the conclusion

follows readily.

The proof of (ii) is similar. Q.E.D.

We leave it to the reader to formulate the analogous result as x ! �1.

4.3.16 Examples (a) lim
x!1 xn ¼ 1 for n 2 N.

Let gðxÞ :¼ xn for x 2 ð0;1Þ. Given a 2 R , let K :¼ supf1;ag. Then for all x > K,

we have gðxÞ ¼ xn � x > a. Since a 2 R is arbitrary, it follows that lim
x!1 g ¼ 1.

(b) lim
x!�1xn ¼ 1 for n 2 N, n even, and lim

x!�1 xn ¼ �1 for n 2 N, n odd.

We will treat the case n odd, say n ¼ 2k þ 1 with k ¼ 0, 1, . . . . Given a 2 R , let

K :¼ inffa;�1g. For any x < K, then since ðx2Þk � 1, we have xn ¼ ðx2Þkx � x < a.

Since a 2 R is arbitrary, it follows that lim
x!�1 xn ¼ �1.

(c) Let p : R ! R be the polynomial function

pðxÞ :¼ anx
n þ an�1x

n�1 þ � � � þ a1xþ a0:

Then lim
x!1 p ¼ 1 if an > 0, and lim

x!1 p ¼ �1 if an < 0.

Indeed, let gðxÞ :¼ xn and apply Theorem 4.3.15. Since

pðxÞ
gðxÞ ¼ an þ an�1

1

x

� 	
þ � � � þ a1

1

xn�1

� 	
þ a0

1

xn

� 	
;

it follows that lim
x!1ðpðxÞ=gðxÞÞ ¼ an. Since lim

x!1 g ¼ 1, the assertion follows from

Theorem 4.3.15.

(d) Let p be the polynomial function in part (c). Then lim
x!�1 p ¼ 1 [respectively,�1] if

n is even [respectively, odd] and an > 0.

We leave the details to the reader. &
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Exercises for Section 4.3

1. Prove Theorem 4.3.2.

2. Give an example of a function that has a right-hand limit but not a left-hand limit at a point.

3. Let f ðxÞ :¼ jxj�1=2
for x 6¼ 0. Show that lim

x!0þ
f ðxÞ ¼ lim

x!0�
f ðxÞ ¼ þ1.

4. Let c 2 R and let f be defined for x 2 ðc;1Þ and f ðxÞ > 0 for all x 2 ðc;1Þ. Show that

lim
x!c

f ¼ 1 if and only if lim
x!c

1=f ¼ 0.

5. Evaluate the following limits, or show that they do not exist.

(a) lim
x!1þ

x

x� 1
x 6¼ 1ð Þ, (b) lim

x!1

x

x� 1
x 6¼ 1ð Þ,

(c) lim
x!0þ

xþ 2ð Þ= ffiffiffi
x

p
x > 0ð Þ, (d) lim

x!1 xþ 2ð Þ= ffiffiffi
x

p
x > 0ð Þ,

(e) lim
x!0

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p� �
=x x > �1ð Þ, (f) lim

x!1
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p� �
=x x > 0ð Þ,

(g) lim
x!1

ffiffiffi
x

p � 5ffiffiffi
x

p þ 3
x > 0ð Þ, (h) lim

x!1

ffiffiffi
x

p � xffiffiffi
x

p þ x
x > 0ð Þ.

6. Prove Theorem 4.3.11.

7. Suppose that f and g have limits in R as x ! 1 and that f ðxÞ � gðxÞ for all x 2 ða;1Þ. Prove
that lim

x!1 f � lim
x!1 g.

8. Let f be defined on (0, 1) to R . Prove that lim
x!1 f ðxÞ ¼ L if and only if lim

x!0þ
f ð1=xÞ ¼ L.

9. Show that if f : ða;1Þ ! R is such that lim
x!1xf ðxÞ ¼ L where L 2 R , then lim

x!1 f ðxÞ ¼ 0.

10. Prove Theorem 4.3.14.

11. Suppose that lim
x!c

f ðxÞ ¼ L where L > 0, and that lim
x!c

gðxÞ ¼ 1. Show that lim
x!c

f ðxÞgðxÞ ¼ 1.

If L ¼ 0, show by example that this conclusion may fail.

12. Find functions f and g defined on (0, 1) such that lim
x!1 f ¼ 1 and lim

x!1 g ¼ 1, and

lim
x!1 f � gð Þ ¼ 0. Can you find such functions, with g(x) > 0 for all x 2 ð0;1Þ, such that

lim
x!1 f=g ¼ 0?

13. Let f and g be defined on (a, 1) and suppose lim
x!1 f ¼ L and lim

x!1 g ¼ 1. Prove that

lim
x!1 f 	 g ¼ L.
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CHAPTER 5

CONTINUOUS FUNCTIONS

We now begin the study of the most important class of functions that arises in real analysis:

the class of continuous functions. The term ‘‘continuous’’ has been used since the time of

Newton to refer to themotion of bodies or to describe an unbroken curve, but it was notmade

precise until the nineteenth century. Work of Bernhard Bolzano in 1817 and Augustin-Louis

Cauchy in 1821 identified continuity as a very significant property of functions and proposed

definitions, but since the concept is tied to that of limit, it was the careful work of Karl

Weierstrass in the 1870s that brought proper understanding to the idea of continuity.

We will first define the notions of continuity at a point and continuity on a set, and then

show that various combinations of continuous functions give rise to continuous functions.

Then in Section 5.3 we establish the fundamental properties that make continuous functions

so important. For instance, we will prove that a continuous function on a closed bounded

interval must attain a maximum and a minimum value. We also prove that a continuous

function must take on every value intermediate to any two values it attains. These properties

and others are not possessed by general functions, as various examples illustrate, and thus

they distinguish continuous functions as a very special class of functions.

In Section 5.4 we introduce the very important notion of uniform continuity. The

distinction between continuity and uniform continuity is somewhat subtle and was not fully

appreciated until the work ofWeierstrass and the mathematicians of his era, but it proved to

be very significant in applications. We present one application to the idea of approximating

continuous functions by more elementary functions (such as polynomials).

Karl Weierstrass
Karl Weierstrass (¼Weierstrab) (1815–1897) was born in Westphalia,

Germany. His father, a customs officer in a salt works, insisted that he study

law and public finance at the University of Bonn, but he had more interest in

drinking and fencing, and left Bonn without receiving a diploma. He then

enrolled in the Academy of M€unster where he studied mathematics with

Christoph Gudermann. From 1841 to 1854 he taught at various gymnasia in

Prussia. Despite the fact that he had no contact with the mathematical world

during this time, he worked hard on mathematical research and was able to

publish a few papers, one of which attracted considerable attention. Indeed,

the University of K€onigsberg gave him an honorary doctoral degree for this work in 1855. The next

year, he secured positions at the Industrial Institute of Berlin and the University of Berlin. He

remained at Berlin until his death.

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put

everything on a firm and logical foundation. He did fundamental work on the foundations of

arithmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry.

Due to his meticulous preparation, he was an extremely popular lecturer; it was not unusual for

him to speak about advanced mathematical topics to audiences of more than 250. Among his

auditors are counted Georg Cantor, Sonya Kovalevsky, G€osta Mittag-Leffler, Max Planck, Otto

H€older, David Hilbert, and Oskar Bolza (who hadmanyAmerican doctoral students). Through his

writings and his lectures, Weierstrass had a profound influence on contemporary mathematics.
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The notion of a ‘‘gauge’’ is introduced in Section 5.5 and is used to provide an alternative

method of proving the fundamental properties of continuous functions. The main signifi-

cance of this concept, however, is in the area of integration theory where gauges are essential

in defining the generalized Riemann integral. This will be discussed in Chapter 10.

Monotone functions are an important class of functions with strong continuity

properties and they are discussed in Section 5.6.

Section 5.1 Continuous Functions

In this section, which is very similar to Section 4.1, we will define what it means to say that

a function is continuous at a point, or on a set. This notion of continuity is one of the central

concepts of mathematical analysis, and it will be used in almost all of the following

material in this book. Consequently, it is essential that the reader master it.

5.1.1 Definition Let A � R , let f : A ! R , and let c 2 A. We say that f is continuous at

c if, given any number e > 0, there exists d > 0 such that if x is any point of A satisfying

jx� cj < d, then j f ðxÞ � f ðcÞj < e.
If f fails to be continuous at c, then we say that f is discontinuous at c.

As with the definition of limit, the definition of continuity at a point can be formulated

very nicely in terms of neighborhoods. This is done in the next result. We leave the

verification as an important exercise for the reader. See Figure 5.1.1.

5.1.2 Theorem A function f : A ! R is continuous at a point c 2 A if and only if given

any e-neighborhood V eð f ðcÞÞ of f (c) there exists a d-neighborhood VdðcÞ of c such that if
x is any point of A \ VdðcÞ, then f (x) belongs to Veð f ðcÞÞ, that is,

f ðA \ VdðcÞÞ � Veð f ðcÞÞ:

Remarks (1) If c 2 A is a cluster point of A, then a comparison of Definitions 4.1.4

and 5.1.1 show that f is continuous at c if and only if

ð1Þ f ðcÞ ¼ lim
x!c

f ðxÞ:

Figure 5.1.1 Given V eð f ðcÞÞ, a neighborhood VdðcÞ is to be determined
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Thus, if c is a cluster point of A, then three conditions must hold for f to be continuous at c:

(i) f must be defined at c (so that f (c) makes sense),

(ii) the limit of f at c must exist in R (so that lim
x!c

f ðxÞ makes sense), and

(iii) these two values must be equal.

(2) If c 2 A is not a cluster point of A, then there exists a neighborhood VdðcÞ of c such
that A \ VdðcÞ ¼ fcg. Thus we conclude that a function f is automatically continuous at a

point c 2 A that is not a cluster point of A. Such points are often called ‘‘isolated points’’ of

A. They are of little practical interest to us, since they have no relation to a limiting process.

Since continuity is automatic for such points, we generally test for continuity only at cluster

points. Thus we regard condition (1) as being characteristic for continuity at c.

A slight modification of the proof of Theorem 4.1.8 for limits yields the following

sequential version of continuity at a point.

5.1.3 Sequential Criterion for Continuity A function f : A ! R is continuous at the

point c 2 A if and only if for every sequence (xn) in A that converges to c, the sequence

ð f ðxnÞÞ converges to f (c).

The following Discontinuity Criterion is a consequence of the last theorem. It should

be compared with the Divergence Criterion 4.1.9(a) with L ¼ f (c). Its proof should be

written out in detail by the reader.

5.1.4 Discontinuity Criterion Let A � R , let f : A ! R , and let c 2 A. Then f is

discontinuous at c if and only if there exists a sequence (xn) in A such that (xn) converges

to c, but the sequence ð f ðxnÞÞ does not converge to f (c).

So far we have discussed continuity at a point. To talk about the continuity of a

function on a set, we will simply require that the function be continuous at each point of the

set. We state this formally in the next definition.

5.1.5 Definition Let A � R and let f : A ! R . If B is a subset of A, we say that f is

continuous on the set B if f is continuous at every point of B.

5.1.6 Examples (a) The constant function f ðxÞ :¼ b is continuous on R .

It was seen in Example 4.1.7(a) that if c 2 R , then lim
x!c

f ðxÞ ¼ b. Since f ðcÞ ¼ b, we

have lim
x!c

f ðxÞ ¼ f ðcÞ, and thus f is continuous at every point c 2 R . Therefore f is

continuous on R .

(b) gðxÞ :¼ x is continuous on R .

It was seen in Example 4.1.7(b) that if c 2 R , then we have lim
x!c

g ¼ c. Since gðcÞ ¼ c,

then g is continuous at every point c 2 R . Thus g is continuous on R .

(c) hðxÞ :¼ x2 is continuous on R .

It was seen in Example 4.1.7(c) that if c 2 R , then we have lim
x!c

h ¼ c2. Since

hðcÞ ¼ c2, then h is continuous at every point c 2 R . Thus h is continuous on R .

(d) wðxÞ :¼ 1=x is continuous on A :¼ fx 2 R : x > 0g.
It was seen in Example 4.1.7(d) that if c 2 A, then we have lim

x!c
w ¼ 1=c. Since

wðcÞ ¼ 1=c, this shows that w is continuous at every point c 2 A. Thus w is continuous on A.

126 CHAPTER 5 CONTINUOUS FUNCTIONS



C05 12/08/2010 14:19:39 Page 127

(e) wðxÞ :¼ 1=x is not continuous at x ¼ 0.

Indeed, if wðxÞ ¼ 1=x for x > 0, then w is not defined for x ¼ 0, so it cannot be

continuous there. Alternatively, it was seen in Example 4.1.10(a) that lim
x!0

w does not exist

in R , so w cannot be continuous at x ¼ 0.

(f) The signum function sgn is not continuous at 0.

The signum function was defined in Example 4.1.10(b), where it was also shown that

lim
x!0

sgnðxÞ does not exist in R . Therefore sgn is not continuous at x ¼ 0 (even though sgn 0

is defined). It is an exercise to show that sgn is continuous at every point c 6¼ 0.

Note In the next two examples, we introduce functions that played a significant role in

the development of real analysis. Discontinuities are emphasized and it is not possible to

graph either of them satisfactorily. The intuitive idea of drawing a curve in the plane to

represent a function simply does not apply, and plotting a handful of points gives only a hint

of their character. In the nineteenth century, these functions clearly demonstrated the need

for a precise and rigorous treatment of the basic concepts of analysis. They will reappear in

later sections.

(g) Let A :¼ R and let f be Dirichlet’s ‘‘discontinuous function’’ defined by

f ðxÞ :¼ 1 if x is rational;
0 if x is irrational:

�

We claim that f is not continuous at any point of R . (This function was introduced in 1829

by P. G. L. Dirichlet.)

Indeed, if c is a rational number, let (xn) be a sequence of irrational numbers that

converges to c. (Corollary 2.4.9 to the Density Theorem 2.4.8 assures us that such a

sequence does exist.) Since f ðxnÞ ¼ 0 for all n 2 N , we have limð f ðxnÞÞ ¼ 0, while

f ðcÞ ¼ 1. Therefore f is not continuous at the rational number c.

On the other hand, if b is an irrational number, let ( yn) be a sequence of rational

numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence

does exist.) Since f ðynÞ ¼ 1 for all n 2 N , we have limð f ð ynÞÞ ¼ 1, while f ðbÞ ¼ 0.

Therefore f is not continuous at the irrational number b.

Since every real number is either rational or irrational, we deduce that f is not

continuous at any point in R .

Figure 5.1.2 Thomae’s function
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(h) Let A :¼ fx 2 R : x > 0g. For any irrational number x > 0 we define hðxÞ :¼ 0.

For a rational number in A of the form m=n, with natural numbers m, n having no

common factors except 1, we define hðm=nÞ :¼ 1=n. (We also define hð0Þ :¼ 1.)

We claim that h is continuous at every irrational number in A, and is discontinuous at

every rational number in A. (This function was introduced in 1875 by K. J. Thomae.)

Indeed, if a > 0 is rational, let (xn) be a sequence of irrational numbers in

A that converges to a. Then limðhðxnÞÞ ¼ 0, while h(a) > 0. Hence h is discontinuous

at a.

On the other hand, if b is an irrational number and e > 0, then (by the Archimedean

Property) there is a natural number n0 such that 1=n0 < e. There are only a finite number

of rationals with denominator less than n0 in the interval ðb� 1; bþ 1Þ. (Why?) Hence

d > 0 can be chosen so small that the neighborhood ðb� d; bþ dÞ contains no rational

numbers with denominator less than n0. It then follows that for jx� bj < d; x 2 A,

we have jhðxÞ � hðbÞj ¼ jhðxÞj � 1=n0 < e. Thus h is continuous at the irrational

number b.

Consequently, we deduce that Thomae’s function h is continuous precisely at the

irrational points in A. (See Figure 5.1.2.) &

5.1.7 Remarks (a) Sometimes a function f : A ! R is not continuous at a point c

because it is not defined at this point. However, if the function f has a limit L at the point c

and if we define F on A [ fcg ! R by

FðxÞ :¼ L for x ¼ c;
f ðxÞ for x 2 A;

�

then F is continuous at c. To see this, one needs to check that lim
x!c

F ¼ L, but this follows

(why?), since lim
x!c

f ¼ L.

(b) If a function g : A ! R does not have a limit at c, then there is no way that we can

obtain a function G : A [ fcg ! R that is continuous at c by defining

GðxÞ :¼ C for x ¼ c;
gðxÞ for x 2 A:

�

To see this, observe that if lim
x!c

G exists and equals C, then lim
x!c

g must also exist and

equal C.

5.1.8 Examples (a) The function gðxÞ :¼ sinð1=xÞ for x 6¼ 0 (see Figure 4.1.3) does

not have a limit at x¼ 0 (see Example 4.1.10(c)). Thus there is no value that we can assign

at x ¼ 0 to obtain a continuous extension of g at x ¼ 0.

(b) Let f ðxÞ :¼ x sin ð1=xÞ for x 6¼ 0. (See Figure 5.1.3.) It was seen in Example 4.2.8(f)

that lim
x!0

ðx sinð1=xÞÞ ¼ 0. Therefore it follows from Remark 5.1.7(a) that if we define

F : R ! R by

FðxÞ :¼ 0 for x ¼ 0;
x sinð1=xÞ for x 6¼ 0;

�

then F is continuous at x ¼ 0. &
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Exercises for Section 5.1

1. Prove the Sequential Criterion 5.1.3.

2. Establish the Discontinuity Criterion 5.1.4.

3. Let a < b < c. Suppose that f is continuous on [a, b], that g is continuous on [b, c], and that

f ðbÞ ¼ gðbÞ. Define h on [a, c] by hðxÞ :¼ f ðxÞ for x 2 ½a; b� and hðxÞ :¼ gðxÞ for x 2 ½b; c�.
Prove that h is continuous on [a, c].

4. If x 2 R , we define vxb to be the greatest integer n 2 Z such that n � x. (Thus, for example,

v8:3b ¼ 8; vpb ¼ 3; v� pb ¼ �4.) The function x 7! vxb is called the greatest integer function.
Determine the points of continuity of the following functions:

(a) f ðxÞ :¼ vxb; (b) gðxÞ :¼ x vxb;
(c) hðxÞ :¼ vsin xb; (d) kðxÞ :¼ v1=xb ðx 6¼ 0Þ:

5. Let f be defined for all x 2 R ; x 6¼ 2, by f ðxÞ ¼ ðx2 þ x� 6Þ=ðx� 2Þ. Can f be defined at

x ¼ 2 in such a way that f is continuous at this point?

6. Let A � R and let f : A ! R be continuous at a point c 2 A. Show that for any e > 0, there exists

a neighborhood VdðcÞ of c such that if x; y 2 A \ VdðcÞ, then j f ðxÞ � f ðyÞj< e.

7. Let f : R ! R be continuous at c and let f ðcÞ > 0. Show that there exists a neighborhood VdðcÞ
of c such that if x 2 VdðcÞ, then f ðxÞ > 0.

8. Let f : R ! R be continuous on R and let S :¼ fx 2 R : f ðxÞ ¼ 0g be the ‘‘zero set’’ of f. If

ðxnÞ is in S and x ¼ limðxnÞ, show that x 2 S.

9. Let A � B � R , let f : B ! R and let g be the restriction of f to A (that is, gðxÞ ¼ f ðxÞ for
x 2 A).

(a) If f is continuous at c 2 A, show that g is continuous at c.

(b) Show by example that if g is continuous at c, it need not follow that f is continuous

at c.

10. Show that the absolute value function f ðxÞ :¼ jxj is continuous at every point c 2 R .

11. Let K > 0 and let f : R ! R satisfy the condition j f ðxÞ � f ðyÞj � Kjx� yj for all x; y 2 R .

Show that f is continuous at every point c 2 R .

12. Suppose that f : R ! R is continuous on R and that f ðrÞ ¼ 0 for every rational number r. Prove

that f ðxÞ ¼ 0 for all x 2 R .

13. Define g : R ! R by gðxÞ :¼ 2x for x rational, and gðxÞ :¼ xþ 3 for x irrational. Find all

points at which g is continuous.

Figure 5.1.3 Graph of f ðxÞ ¼ x sinð1=xÞ ðx 6¼ 0Þ
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14. Let A :¼ ð0;1Þ and let k : A ! R be defined as follows. For x 2 A; x irrational, we define

kðxÞ ¼ 0; for x 2 A rational and of the form x ¼ m=n with natural numbers m, n having no

common factors except 1, we define kðxÞ :¼ n. Prove that k is unbounded on every open interval

in A. Conclude that k is not continuous at any point of A. (See Example 5.1.6(h).)

15. Let f : ð0; 1Þ ! R be bounded but such that lim
x!0

f does not exist. Show that there are two

sequences ðxnÞ and ðynÞ in (0, 1) with limðxnÞ ¼ 0 ¼ limðynÞ, but such that ð f ðxnÞÞ and ð f ðynÞÞ
exist but are not equal.

Section 5.2 Combinations of Continuous Functions

Let A � R and let f and g be functions that are defined onA toR and let b 2 R . In Definition

4.2.3 we defined the sum, difference, product, and multiple functions denoted by

f þ g; f � g; f g; bf . In addition, if h : A ! R is such that hðxÞ 6¼ 0 for all x 2 A, then

we defined the quotient function denoted by f=h.
The next result is similar to Theorem 4.2.4, from which it follows.

5.2.1 Theorem Let A � R , let f and g be functions on A to R , and let b 2 R . Suppose

that c 2 A and that f and g are continuous at c.

(a) Then f þ g; f � g; f g, and bf are continuous at c.

(b) If h : A ! R is continuous at c 2 A and if hðxÞ 6¼ 0 for all x 2 A, then the quotient

f=h is continuous at c.

Proof. If c 2 A is not a cluster point of A, then the conclusion is automatic. Hence we

assume that c is a cluster point of A.

(a) Since f and g are continuous at c, then

f ðcÞ ¼ lim
x!c

f and gðcÞ ¼ lim
x!c

g:

Hence it follows from Theorem 4.2.4(a) that

f þ gð Þ cð Þ ¼ f cð Þ þ g cð Þ ¼ lim
x!c

f þ gð Þ:
Therefore f þ g is continuous at c. The remaining assertions in part (a) are proved in a

similar fashion.

(b) Since c 2 A, then hðcÞ 6¼ 0. But since hðcÞ ¼ lim
x!c

h, it follows from Theorem 4.2.4(b)

that

f

h
ðcÞ ¼ f ðcÞ

hðcÞ ¼
lim
x!c

f

lim
x!c

h
¼ lim

x!c

f

h

� �
:

Therefore f=h is continuous at c. Q.E.D.

The next result is an immediate consequence of Theorem 5.2.1, applied to every point

of A. However, since it is an extremely important result, we shall state it formally.

5.2.2 Theorem Let A � R , let f and g be continuous on A to R , and let b 2 R .

(a) The functions f þ g; f � g; f g, and bf are continuous on A.

(b) If h : A ! R is continuous on A and hðxÞ 6¼ 0 for x 2 A, then the quotient f=h is

continuous on A.
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Remark To define quotients, it is sometimes more convenient to proceed as follows. If

w : A ! R , let A1 :¼ fx 2 A : wðxÞ 6¼ 0g. We can define the quotient f=w on the set A1 by

ð1Þ f

w

� �
ðxÞ :¼ f ðxÞ

w ðxÞ for x 2 A1:

If w is continuous at a point c 2 A1, it is clear that the restriction w1 of w to A1 is also

continuous at c. Therefore it follows from Theorem 5.2.1(b) applied to w1 that f=w1

is continuous at c 2 A. Since ð f=wÞðxÞ ¼ ð f=w1ÞðxÞ for x 2 A1 it follows that f=w is

continuous at c 2 A1. Similarly, if f and w are continuous on A, then the function f=w,
defined on A1 by (1), is continuous on A1.

5.2.3 Examples (a) Polynomial functions.

If p is a polynomial function, so that pðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a1xþ a0 for all

x 2 R , then it follows from Example 4.2.5(f) that pðcÞ ¼ lim
x!c

p for any c 2 R. Thus a

polynomial function is continuous on R .

(b) Rational functions.

If p and q are polynomial functions on R , then there are at most a finite number

a1; . . . ;am of real roots of q. If x =2 fa1; . . . ;amg then qðxÞ 6¼ 0 so that we can define the

rational function r by

rðxÞ :¼ pðxÞ
qðxÞ for x =2 fa1; . . . ;amg :

It was seen in Example 4.2.5(g) that if qðcÞ 6¼ 0, then

rðcÞ ¼ pðcÞ
qðcÞ ¼ lim

x!c

pðxÞ
qðxÞ ¼ lim

x!c
rðxÞ:

In other words, r is continuous at c. Since c is any real number that is not a root of q, we

infer that a rational function is continuous at every real number for which it is defined.

(c) We shall show that the sine function sin is continuous on R .

To do so we make use of the following properties of the sine and cosine functions.

(See Section 8.4.) For all x, y, z 2 R we have:

jsin zj � jzj; jcos zj � 1;

sin x� sin y ¼ 2 sin 1
2
ðx� yÞ� �

cos 1
2
ðxþ yÞ� �

:

Hence if c 2 R , then we have

jsin x� sin cj � 2 � 1
2
jx� cj � 1 ¼ jx� cj:

Therefore sin is continuous at c. Since c 2 R is arbitrary, it follows that sin is continuous

on R .

(d) The cosine function is continuous on R .

We make use of the following properties of the sine and cosine functions. For all

x; y; z 2 R we have:

jsin zj � jzj; jsin zj � 1;

cos x� cos y ¼ �2 sin 1
2
ðxþ yÞ� �

sin 1
2
ðx� yÞ� �

:

Hence if c 2 R , then we have

jcos x� cos cj � 2 � 1 � 1
2
jc� xj ¼ jx� cj:
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Therefore cos is continuous at c. Since c 2 R is arbitrary, it follows that cos is continuous

on R . (Alternatively, we could use the relation cos x ¼ sin xþ p=2ð Þ.)
(e) The functions tan, cot, sec, csc are continuous where they are defined.

For example, the cotangent function is defined by

cot x :¼ cos x

sinx

provided sin x 6¼ 0 (that is, provided x 6¼ np; n 2 Z). Since sin and cos are continuous on

R , it follows (see the Remark before Example 5.2.3) that the function cot is continuous

on its domain. The other trigonometric functions are treated similarly. &

5.2.4 Theorem Let A � R , let f : A ! R , and let j f j be defined by j f jðxÞ :¼ j f ðxÞj for
x 2 A.

(a) If f is continuous at a point c 2 A, then j f j is continuous at c.
(b) If f is continuous on A, then j f j is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.14. Q.E.D.

5.2.5 Theorem Let A � R , let f : A ! R , and let f ðxÞ � 0 for all x 2 A. We let
ffiffiffi
f

p
be

defined for x 2 A by
ffiffiffi
f

pð ÞðxÞ :¼ ffiffiffiffiffiffiffiffiffi
f ðxÞp

.

(a) If f is continuous at a point c 2 A, then
ffiffiffi
f

p
is continuous at c.

(b) If f is continuous on A, then
ffiffiffi
f

p
is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.15. Q.E.D.

Composition of Continuous Functions

We now show that if the function f : A ! R is continuous at a point c and if g : B ! R is

continuous at b¼ f (c), then the composition g � f is continuous at c. In order to assure that
g � f is defined on all of A, we also need to assume that f ðAÞ � B.

5.2.6 Theorem Let A, B � R and let f : A ! R and g : B ! R be functions such that

f ðAÞ � B. If f is continuous at a point c 2 A and g is continuous at b ¼ f ðcÞ 2 B, then the

composition g � f : A ! R is continuous at c.

Proof. Let W be an e-neighborhood of g(b). Since g is continuous at b, there is a

d-neighborhood V of b ¼ f ðcÞ such that if y 2 B \ V then gðyÞ 2 W . Since f is continuous

at c, there is a g-neighborhood U of c such that if x 2 A \ U, then f ðxÞ 2 V . (See

Figure 5.2.1.) Since f ðAÞ � B, it follows that if x 2 A \ U, then f ðxÞ 2 B \ V so that

g � f ðxÞ ¼ gð f ðxÞÞ 2 W . But since W is an arbitrary e-neighborhood of g(b), this implies

that g � f is continuous at c. Q.E.D.

5.2.7 Theorem Let A;B � R , let f : A ! R be continuous on A, and let g : B ! R be

continuous on B. If f ðAÞ � B, then the composite function g � f : A ! R is continuous on A.

Proof. The theorem follows immediately from the preceding result, if f and g are

continuous at every point of A and B, respectively. Q.E.D.
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Theorems 5.2.6 and 5.2.7 are very useful in establishing that certain functions are

continuous. They can be used in many situations where it would be difficult to apply the

definition of continuity directly.

5.2.8 Examples (a) Let g1ðxÞ :¼ jxj for x 2 R. It follows from the Triangle Inequality

that

g1ðxÞ � g1ðcÞj j � jx� cj
for all x; c 2 R . Hence g1 is continuous at c 2 R . If f : A ! R is any function that is

continuous on A, then Theorem 5.2.7 implies that g1 � f ¼ j f j is continuous on A. This

gives another proof of Theorem 5.2.4.

(b) Let g2ðxÞ :¼
ffiffiffi
x

p
for x � 0. It follows from Theorems 3.2.10 and 5.1.3 that g2 is

continuous at any number c � 0. If f : A ! R is continuous on A and if f ðxÞ � 0 for all

x 2 A, then it follows from Theorem 5.2.7 that g2 � f ¼
ffiffiffi
f

p
is continuous on A. This gives

another proof of Theorem 5.2.5.

(c) Let g3ðxÞ :¼ sinx for x 2 R. We have seen in Example 5.2.3(c) that g3 is continuous

on R . If f : A ! R is continuous on A, then it follows from Theorem 5.2.7 that g3 � f is
continuous on A.

In particular, if f ðxÞ :¼ 1=x for x 6¼ 0, then the function gðxÞ :¼ sinð1=xÞ is continu-
ous at every point c 6¼ 0. [We have seen, in Example 5.1.8(a), that g cannot be defined at

0 in order to become continuous at that point.] &

Exercises for Section 5.2

1. Determine the points of continuity of the following functions and state which theorems are used

in each case.

(a) f ðxÞ :¼ x2 þ 2xþ 1

x2 þ 1
x 2 Rð Þ; (b) gðxÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ffiffiffi

x
pp

x � 0ð Þ;

(c) hðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j sin xjp

x
x 6¼ 0ð Þ; (d) kðxÞ :¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
x 2 Rð Þ:

2. Show that if f : A ! R is continuous on A � R and if n 2 N , then the function f n defined by

f nðxÞ ¼ ð f ðxÞÞn, for x 2 A, is continuous on A.

3. Give an example of functions f and g that are both discontinuous at a point c inR such that (a) the

sum f þ g is continuous at c, (b) the product fg is continuous at c.

Figure 5.2.1 The composition of f and g
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4. Let x 7! vxb denote the greatest integer function (see Exercise 5.1.4). Determine the points of

continuity of the function f ðxÞ :¼ x� vxb; x 2 R .

5. Let g be defined on R by gð1Þ :¼ 0, and gðxÞ :¼ 2 if x 6¼ 1, and let f ðxÞ :¼ xþ 1 for all x 2 R .

Show that lim
x!0

g � f 6¼ ðg � f Þð0Þ. Why doesn’t this contradict Theorem 5.2.6?

6. Let f, g be defined on R and let c 2 R . Suppose that lim
x!c

f ¼ b and that g is continuous at b.

Show that lim
x!c

g � f ¼ gðbÞ. (Compare this result with Theorem 5.2.7 and the preceding

exercise.)

7. Give an example of a function f : ½0; 1� ! R that is discontinuous at every point of [0, 1] but

such that j f j is continuous on [0, 1].

8. Let f, g be continuous from R to R , and suppose that f ðrÞ ¼ gðrÞ for all rational numbers r. Is it

true that f ðxÞ ¼ gðxÞ for all x 2 R?

9. Let h : R ! R be continuous on R satisfying hðm=2nÞ ¼ 0 for all m 2 Z; n 2 N . Show that

hðxÞ ¼ 0 for all x 2 R .

10. Let f : R ! R be continuous on R , and let P :¼ fx 2 R : f ðxÞ > 0g. If c 2 P, show that there

exists a neighborhood VdðcÞ � P.

11. If f and g are continuous on R , let S :¼ fx 2 R : f ðxÞ � gðxÞg. If ðsnÞ � S and limðsnÞ ¼ s,

show that s 2 S.

12. A function f : R ! R is said to be additive if f ðxþ yÞ ¼ f ðxÞ þ f ðyÞ for all x, y in R . Prove

that if f is continuous at some point x0, then it is continuous at every point of R . (See

Exercise 4.2.12.)

13. Suppose that f is a continuous additive function on R . If c :¼ f ð1Þ, show that we have f ðxÞ ¼ cx

for all x 2 R . [Hint: First show that if r is a rational number, then f ðrÞ ¼ cr.]

14. Let g : R ! R satisfy the relation gðxþ yÞ ¼ gðxÞ gðyÞ for all x, y in R . Show that if g is

continuous at x¼ 0, then g is continuous at every point of R . Also if we have gðaÞ ¼ 0 for some

a 2 R , then gðxÞ ¼ 0 for all x 2 R .

15. Let f ; g : R ! R be continuous at a point c, and let hðxÞ :¼ supf f ðxÞ; gðxÞg for x 2 R. Show

that hðxÞ ¼ 1
2

f ðxÞ þ gðxÞð Þ þ 1
2
j f ðxÞ � gðxÞj for all x 2 R . Use this to show that h is

continuous at c.

Section 5.3 Continuous Functions on Intervals

Functions that are continuous on intervals have a number of very important properties that

are not possessed by general continuous functions. In this section, we will establish some

deep results that are of considerable importance and that will be applied later. Alternative

proofs of these results will be given in Section 5.5.

5.3.1 Definition A function f : A ! R is said to be bounded on A if there exists a

constant M > 0 such that j f ðxÞj � M for all x 2 A.

In other words, a function is bounded on a set if its range is a bounded set in R . To say

that a function is not bounded on a given set is to say that no particular number can serve

as a bound for its range. In exact language, a function f is not bounded on the set A if given

any M > 0, there exists a point xM 2 A such that j f ðxMÞj > M. We often say that f is

unbounded on A in this case.

For example, the function f defined on the interval A :¼ ð0;1Þ by f ðxÞ :¼ 1=x is not

bounded on A because for any M > 0 we can take the point xM :¼ 1=ðM þ 1Þ in A to get

f ðxMÞ ¼ 1=xM ¼ M þ 1 > M. This example shows that continuous functions need not be
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bounded. In the next theorem, however, we show that continuous functions on a certain

type of interval are necessarily bounded.

5.3.2 Boundedness Theoremy Let I :¼ ½a; b� be a closed bounded interval and let

f : I ! R be continuous on I. Then f is bounded on I.

Proof. Suppose that f is not bounded on I. Then, for any n 2 N there is a number xn 2 I

such that j f ðxnÞj > n. Since I is bounded, the sequence X :¼ ðxnÞ is bounded. Therefore,
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X0 ¼ xnrð Þ of X
that converges to a number x. Since I is closed and the elements of X0 belong to I, it follows
from Theorem 3.2.6 that x 2 I. Then f is continuous at x, so that ð f ðxnrÞÞ converges to f ðxÞ.
We then conclude from Theorem 3.2.2 that the convergent sequence f xnrð Þð Þ must be

bounded. But this is a contradiction since

f xnrð Þj j > nr � r for r 2 N :

Therefore the supposition that the continuous function f is not bounded on the closed

bounded interval I leads to a contradiction. Q.E.D.

To show that each hypothesis of the Boundedness Theorem is needed, we can

construct examples that show the conclusion fails if any one of the hypotheses is relaxed.

(i) The interval must be bounded. The function f ðxÞ :¼ x for x in the unbounded,

closed interval A :¼ ½0;1Þ is continuous but not bounded on A.

(ii) The interval must be closed. The function gðxÞ :¼ 1=x for x in the half-open

interval B :¼ ð0; 1� is continuous but not bounded on B.

(iii) The function must be continuous. The function h defined on the closed interval

C :¼ ½0; 1� by hðxÞ :¼ 1=x for x 2 ð0; 1� and hð0Þ :¼ 1 is discontinuous and unbounded

on C.

The Maximum-Minimum Theorem

5.3.3 Definition Let A � R and let f : A ! R . We say that f has an absolute maximum

on A if there is a point x	 2 A such that

f ðx	Þ � f ðxÞ for all x 2 A:

We say that f has an absolute minimum on A if there is a point x	 2 A such that

f ðx	Þ � f ðxÞ for all x 2 A:

We say that x	 is an absolute maximum point for f on A, and that x	 is an absolute

minimum point for f on A, if they exist.

We note that a continuous function on a set A does not necessarily have an absolute

maximum or an absolute minimum on the set. For example, f ðxÞ :¼ 1=x has neither an

absolute maximum nor an absolute minimum on the set A :¼ ð0;1Þ. (See Figure 5.3.1.)
There can be no absolute maximum for f on A since f is not bounded above on A, and there

is no point at which f attains the value 0 ¼ inff f ðxÞ : x 2 Ag. The same function has

yThis theorem, as well as 5.3.4, is true for an arbitrary closed bounded set. For these developments, see Sections

11.2 and 11.3.
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neither an absolute maximum nor an absolute minimum when it is restricted to the set

(0, 1), while it has both an absolute maximum and an absolute minimum when it is

restricted to the set [1, 2]. In addition, f ðxÞ ¼ 1=x has an absolute maximum but no

absolute minimum when restricted to the set [1, 1), but no absolute maximum and no

absolute minimum when restricted to the set (1, 1).

It is readily seen that if a function has an absolute maximum point, then this point is

not necessarily uniquely determined. For example, the function gðxÞ :¼ x2 defined for

x 2 A :¼ ½�1;þ1� has the two points x ¼ 
1 giving the absolute maximum on A, and the

single point x ¼ 0 yielding its absolute minimum on A. (See Figure 5.3.2.) To pick an

extreme example, the constant function hðxÞ :¼ 1 for x 2 R is such that every point of R is

both an absolute maximum and an absolute minimum point for h.

5.3.4 Maximum-Minimum Theorem Let I :¼ ½a; b� be a closed bounded interval and

let f : I ! R be continuous on I. Then f has an absolute maximum and an absolute

minimum on I.

Proof. Consider thenonempty set f ðIÞ :¼ ff ðxÞ : x 2 Igofvaluesof fon I. InTheorem5.3.2

it was established that f (I ) is a bounded subset of R . Let s	 :¼ sup f ðIÞ and s	 :¼ inf f ðI Þ.
We claim that there exist points x	 and x	 in I such that s	 ¼ f ðx	Þ and s	 ¼ f ðx	Þ. We will

establish the existence of the point x	, leaving the proof of the existence of x	 to the reader.

Since s	 ¼ sup f ðIÞ, if n 2 N , then the number s	 � 1=n is not an upper bound of the

set f (I). Consequently there exists a number xn 2 I such that

ð1Þ s	 � 1

n
< f ðxnÞ � s	 for all n 2 N :

Since I is bounded, the sequence X :¼ ðxnÞ is bounded. Therefore, by the Bolzano-

Weierstrass Theorem 3.4.8, there is a subsequence X0 ¼ ðxnrÞ of X that converges to some

number x	. Since the elements of X0 belong to I ¼ ½a; b�, it follows from Theorem 3.2.6 that

x	 2 I. Therefore f is continuous at x	 so that lim f xnrð Þð Þ ¼ f ðx	Þ. Since it follows from
(1) that

s	 � 1

nr
< f xnrð Þ � s	 for all r 2 N ;

we conclude from the Squeeze Theorem 3.2.7 that lim f xnrð Þð Þ ¼ s	. Therefore we have

f ðx	Þ ¼ limð f ðxnrÞÞ ¼ s	 ¼ sup f ðIÞ:
We conclude that x	 is an absolute maximum point of f on I. Q.E.D.

Figure 5.3.1 The function

f ðxÞ ¼ 1=x ðx > 0Þ
Figure 5.3.2 The function

gðxÞ ¼ x2 ðjxj � 1Þ

136 CHAPTER 5 CONTINUOUS FUNCTIONS



C05 12/08/2010 14:19:48 Page 137

The next result is the theoretical basis for locating roots of a continuous function by

means of sign changes of the function. The proof also provides an algorithm, known as the

BisectionMethod, for the calculation of roots to a specified degree of accuracy and can be

readily programmed for a computer. It is a standard tool for finding solutions of equations

of the form f (x) ¼ 0, where f is a continuous function. An alternative proof of the theorem

is indicated in Exercise 5.3.11.

5.3.5 Location of Roots Theorem Let I ¼ ½a; b� and let f : I ! R be continuous on I. If

f ðaÞ < 0 < f ðbÞ, or if f ðaÞ > 0 > f ðbÞ, then there exists a number c 2 ða; bÞ such that

f ðcÞ ¼ 0.

Proof. We assume that f ðaÞ < 0 < f ðbÞ. We will generate a sequence of intervals by

successive bisections. Let I1 :¼ ½a1; b1�, where a1 :¼ a; b1 :¼ b, and let p1 be the midpoint

p1 :¼ 1
2
ða1 þ b1Þ. If f ðp1Þ ¼ 0, we take c :¼ p1 and we are done. If f ðp1Þ 6¼ 0, then either

f ðp1Þ > 0 or f ðp1Þ < 0. If f ðp1Þ > 0, then we set a2 :¼ a1; b2 :¼ p1, while if f ðp1Þ < 0,

then we set a2 :¼ p1; b2 :¼ b1. In either case, we let I2 :¼ ½a2; b2�; then we have I2 � I1 and

f ða2Þ < 0; f ðb2Þ > 0.

We continue the bisection process. Suppose that the intervals I1; I2; . . . ; Ik have

been obtained by successive bisection in the same manner. Then we have f ðakÞ < 0 and

f ðbkÞ > 0, and we set pk :¼ 1
2
ðak þ bkÞ. If f ðpkÞ ¼ 0, we take c :¼ pk and we are done.

If f ðpkÞ > 0, we set akþ1 :¼ ak; bkþ1 :¼ pk, while if f ðpkÞ < 0, we set akþ1 :¼
pk; bkþ1 :¼ bk. In either case, we let Ikþ1 :¼ ½akþ1; bkþ1�; then Ikþ1 � Ik and

f ðakþ1Þ < 0; f ðbkþ1Þ > 0.

If the process terminates by locating a point pn such that f ðpnÞ ¼ 0, then we are done.

If the process does not terminate, then we obtain a nested sequence of closed bounded

intervals In :¼ ½an; bn� such that for every n 2 N we have

f ðanÞ < 0 and f ðbnÞ > 0:

Furthermore, since the intervals are obtained by repeated bisection, the length of In is

equal to bn � an ¼ ðb� aÞ=2n�1. It follows from the Nested Intervals Property 2.5.2

that there exists a point c that belongs to In for all n 2 N . Since an � c � bn for all

n 2 N and limðbn � anÞ ¼ 0, it follows that limðanÞ ¼ c ¼ limðbnÞ. Since f is continuous
at c, we have

lim ð f ðanÞÞ ¼ f ðcÞ ¼ lim ð f ðbnÞÞ:
The fact that f ðanÞ < 0 for all n 2 N implies that f ðcÞ ¼ lim ð f ðanÞÞ � 0. Also, the fact

that f ðbnÞ > 0 for all n 2 N implies that f ðcÞ ¼ lim ð f ðbnÞÞ � 0. Thus, we conclude that

f ðcÞ ¼ 0. Consequently, c is a root of f. Q.E.D.

The following example illustrates how the Bisection Method for finding roots is

applied in a systematic fashion.

5.3.6 Example The equation f ðxÞ ¼ xex � 2 ¼ 0 has a root c in the interval [0, 1],

because f is continuous on this interval and f ð0Þ ¼ �2 < 0 and f ð1Þ ¼ e� 2 > 0. Using a

calculator we construct the following table, where the sign of f ( pn) determines the interval

at the next step. The far right column is an upper bound on the error when pn is used to

approximate the root c, because we have

jpn � cj � 1
2
bn � anð Þ ¼ 1=2n:
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We will find an approximation pn with error less than 10�2.

n an bn pn f ( pn)
1
2
ðbn � anÞ

1 0 1 .5 �1.176 .5

2 .5 1 .75 �.412 .25

3 .75 1 .875 þ.099 .125

4 .75 .875 .8125 �.169 .0625

5 .8125 .875 .84375 �.0382 .03125

6 .84375 .875 .859375 þ.0296 .015625

7 .84375 .859375 .8515625 — .0078125

We have stopped at n ¼ 7, obtaining c � p7 ¼ :8515625 with error less than .0078125.

This is the first step in which the error is less than 10�2. The decimal place values of

p7 past the second place cannot be taken seriously, but we can conclude that

:843 < c < :860. &

Bolzano’s Theorem

The next result is a generalization of the Location of Roots Theorem. It assures us that a

continuous function on an interval takes on (at least once) any number that lies between

two of its values.

5.3.7 Bolzano’s Intermediate Value Theorem Let I be an interval and let f : I ! R be

continuous on I. If a; b 2 I and if k 2 R satisfies f ðaÞ < k < f ðbÞ, then there exists a point
c 2 I between a and b such that f ðcÞ ¼ k.

Proof. Suppose that a< b and let gðxÞ :¼ f ðxÞ � k; then gðaÞ < 0 < gðbÞ. By the Location
of Roots Theorem 5.3.5 there exists a point c with a< c< b such that 0 ¼ gðcÞ ¼ f ðcÞ � k.

Therefore f ðcÞ ¼ k.

If b< a, let hðxÞ :¼ k � f ðxÞ so that hðbÞ < 0 < hðaÞ. Therefore there exists a point c
with b < c < a such that 0 ¼ hðcÞ ¼ k � f ðcÞ, whence f ðcÞ ¼ k. Q.E.D.

5.3.8 Corollary Let I ¼ ½a; b� be a closed, bounded interval and let f : I ! R be

continuous on I. If k 2 R is any number satisfying

inf f ðIÞ � k � sup f ðIÞ;
then there exists a number c 2 I such that f ðcÞ ¼ k.

Proof. It follows from the Maximum-Minimum Theorem 5.3.4 that there are points c	
and c	 in I such that

inf f ðIÞ ¼ f ðc	Þ � k � f ðc	Þ ¼ sup f ðIÞ:
The conclusion now follows from Bolzano’s Theorem 5.3.7. Q.E.D.

The next theorem summarizes the main results of this section. It states that the image

of a closed bounded interval under a continuous function is also a closed bounded interval.

The endpoints of the image interval are the absolute minimum and absolute maximum

values of the function, and the statement that all values between the absolute minimum

and the absolute maximum values belong to the image is a way of describing Bolzano’s

Intermediate Value Theorem.
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5.3.9 Theorem Let I be a closed bounded interval and let f : I ! R be continuous on I.

Then the set f ðIÞ :¼ f f ðxÞ : x 2 Ig is a closed bounded interval.

Proof. If we let m :¼ inf f ðIÞ and M :¼ sup f ðIÞ, then we know from the Maximum-

Minimum Theorem 5.3.4 thatm andM belong to f (I). Moreover, we have f ðIÞ � ½m;M�. If
k is any element of [m,M], then it follows from the preceding corollary that there exists a

point c 2 I such that k ¼ f ðcÞ. Hence, k 2 f ðIÞ and we conclude that ½m;M� � f ðIÞ.
Therefore, f (I) is the interval [m, M]. Q.E.D.

Warning If I :¼ ½a; b� is an interval and f : I ! R is continuous on I, we have proved

that f (I) is the interval [m,M]. We have not proved (and it is not always true) that f (I) is the

interval ½ f ðaÞ; f ðbÞ�. (See Figure 5.3.3.) &

The preceding theorem is a ‘‘preservation’’ theorem in the sense that it states that the

continuous image of a closed bounded interval is a set of the same type. The next theorem

extends this result to general intervals. However, it should be noted that although the

continuous image of an interval is shown to be an interval, it is not true that the image

interval necessarily has the same form as the domain interval. For example, the continuous

image of an open interval need not be an open interval, and the continuous image of an

unbounded closed interval need not be a closed interval. Indeed, if f ðxÞ :¼ 1=ðx2 þ 1Þ for
x 2 R , then f is continuous on R [see Example 5.2.3(b)]. It is easy to see that if

I1 :¼ ð�1; 1Þ, then f ðI1Þ ¼ 1
2
; 1

� �
, which is not an open interval. Also, if I2 :¼ ½0;1Þ,

then f ðI2Þ ¼ ð0; 1�, which is not a closed interval. (See Figure 5.3.4.)

Figure 5.3.3 f ðIÞ ¼ ½m;M�

Figure 5.3.4 Graph of f ðxÞ ¼ 1=ðx2 þ 1Þ ðx 2 RÞ
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To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1

characterizing intervals.

5.3.10 Preservation of Intervals Theorem Let I be an interval and let f : I ! R be

continuous on I. Then the set f (I) is an interval.

Proof. Let a;b 2 f ðIÞ with a < b; then there exist points a; b 2 I such that a ¼ f ðaÞ
and b ¼ f ðbÞ. Further, it follows from Bolzano’s Intermediate Value Theorem 5.3.7

that if k 2 ða;bÞ then there exists a number c 2 I with k ¼ f ðcÞ 2 f ðIÞ. Therefore

½a;b� � f ðIÞ, showing that f (I ) possesses property (1) of Theorem 2.5.1. Therefore

f (I ) is an interval. Q.E.D.

Exercises for Section 5.3

1. Let I :¼ ½a; b� and let f : I ! R be a continuous function such that f ðxÞ > 0 for each x in I.

Prove that there exists a number a > 0 such that f ðxÞ � a for all x 2 I.

2. Let I :¼ ½a; b� and let f : I ! R and g : I ! R be continuous functions on I. Show that the set

E :¼ fx 2 I : f ðxÞ ¼ gðxÞg has the property that if ðxnÞ � E and xn ! x0, then x0 2 E.

3. Let I :¼ ½a; b� and let f : I ! R be a continuous function on I such that for each x in I there

exists y in I such that j f ðyÞj � 1
2
j f ðxÞj. Prove there exists a point c in I such that f ðcÞ ¼ 0.

4. Show that every polynomial of odd degree with real coefficients has at least one real root.

5. Show that the polynomial pðxÞ :¼ x4 þ 7x3 � 9 has at least two real roots. Use a calculator to

locate these roots to within two decimal places.

6. Let f be continuous on the interval [0, 1] to R and such that f ð0Þ ¼ f ð1Þ. Prove that there exists
a point c in [0, 1

2
] such that f ðcÞ ¼ f cþ 1

2

� 	
. [Hint: Consider gðxÞ ¼ f ðxÞ � f xþ 1

2

� 	
.] Conclude

that there are, at any time, antipodal points on the earth’s equator that have the same

temperature.

7. Show that the equation x ¼ cos x has a solution in the interval ½0;p=2�. Use the Bisection

Method and a calculator to find an approximate solution of this equation, with error less than

10�3.

8. Show that the function f ðxÞ :¼ 2 ln xþ ffiffiffi
x

p � 2 has root in the interval [1, 2], Use the Bisection

Method and a calculator to find the root with error less than 10�2.

9. (a) The function f ðxÞ :¼ ðx� 1Þðx� 2Þðx� 3Þðx� 4Þðx� 5Þ has five roots in the interval

[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located?

(b) Same question for gðxÞ :¼ ðx� 2Þðx� 3Þðx� 4Þðx� 5Þðx� 6Þ on the interval [0, 7].

10. If the Bisection Method is used on an interval of length 1 to find pn with error j pn � cj < 10�5,

determine the least value of n that will assure this accuracy.

11. Let I :¼ ½a; b�, let f : I ! R be continuous on I, and assume that f ðaÞ < 0; f ðbÞ > 0. Let

W :¼ fx 2 I : f ðxÞ < 0g, and let w :¼ supW . Prove that f ðwÞ ¼ 0. (This provides an alter-

native proof of Theorem 5.3.5.)

12. Let I :¼ ½0;p=2� and let f : I ! R be defined by f ðxÞ :¼ supfx2; cos xg for x 2 I. Show there

exists an absolute minimum point x0 2 I for f on I. Show that x0 is a solution to the equation

cos x ¼ x2.

13. Suppose that f : R ! R is continuous on R and that lim
x!�1 f ¼ 0 and lim

x!1 f ¼ 0. Prove that f is

bounded on R and attains either a maximum or minimum on R . Give an example to show that

both a maximum and a minimum need not be attained.

14. Let f : R ! R be continuous on R and let b 2 R . Show that if x0 2 R is such that f ðx0Þ < b,

then there exists a d-neighborhood U of x0 such that f ðxÞ < b for all x 2 U.
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15. Examine which open [respectively, closed] intervals are mapped by f ðxÞ :¼ x2 for x 2 R onto

open [respectively, closed] intervals.

16. Examine the mapping of open [respectively, closed] intervals under the functions gðxÞ :¼
1=ðx2 þ 1Þ and hðxÞ :¼ x3 for x 2 R.

17. If f : ½0; 1� ! R is continuous and has only rational [respectively, irrational] values, must f be

constant? Prove your assertion.

18. Let I :¼ ½a; b� and let f : I ! R be a (not necessarily continuous) function with the property that

for every x 2 I, the function f is bounded on a neighborhood Vdx xð Þ of x (in the sense of

Definition 4.2.1). Prove that f is bounded on I.

19. Let J :¼ ða; bÞ and let g : J ! R be a continuous function with the property that for every x 2 J,

the function g is bounded on a neighborhood VdxðxÞ of x. Show by example that g is not

necessarily bounded on J.

Section 5.4 Uniform Continuity

Let A � R and let f : A ! R . Definition 5.1.1 states that the following statements are

equivalent:

(i) f is continuous at every point u 2 A;

(ii) given e > 0 and u 2 A, there is a dðe; uÞ > 0 such that for all x such that x 2 A

and jx� uj < dðe; uÞ, then j f ðxÞ � f ðuÞj < e.

The point we wish to emphasize here is that d depends, in general, on both e > 0 and

u 2 A. The fact that d depends on u is a reflection of the fact that the function fmay change

its values rapidly near certain points and slowly near other points. [For example, consider

f ðxÞ :¼ sinð1=xÞ for x > 0; see Figure 4.1.3.]

Now it often happens that the function f is such that the number d can be chosen to be

independent of the point u 2 A and to depend only on e. For example, if f ðxÞ :¼ 2x for all

x 2 R , then

j f ðxÞ � f ðuÞj ¼ 2jx� uj;
and so we can choose dðe; uÞ :¼ e=2 for all e > 0 and all u 2 R . (Why?)

On the other hand if gðxÞ :¼ 1=x for x 2 A :¼ fx 2 R : x > 0g, then

ð1Þ gðxÞ � gðuÞ ¼ u� x

ux
:

If u 2 A is given and if we take

ð2Þ dðe; uÞ :¼ inf 1
2
u; 1

2
u2e


 �
;

then if jx� uj < dðe; uÞ, we have jx� uj < 1
2
u so that 1

2
u < x < 3

2
u, whence it follows that

1=x < 2=u. Thus, if jx� uj < 1
2
u, the equality (1) yields the inequality

ð3Þ jgðxÞ � gðuÞj � ð2=u2Þjx� uj:
Consequently, if jx� uj < dðe; uÞ, then (2) and (3) imply that

jgðxÞ � gðuÞj < ð2=u2Þ 1
2
u2e

� 	 ¼ e:

We have seen that the selection of dðe; uÞ by the formula (2) ‘‘works’’ in the sense that it

enables us to give a value of d that will ensure that jgðxÞ � gðuÞj < e when jx� uj < d and
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x; u 2 A. We note that the value of dðe; uÞ given in (2) certainly depends on the point u 2 A.

If we wish to consider all u 2 A, formula (2) does not lead to one value dðeÞ > 0 that will

‘‘work’’ simultaneously for all u > 0, since inffdðe; uÞ : u > 0g ¼ 0.

In fact, there is no way of choosing one value of d that will ‘‘work’’ for all u > 0 for the

function gðxÞ ¼ 1=x. The situation is exhibited graphically in Figures 5.4.1 and 5.4.2

where, for a given e-neighborhood V e
1
2

� 	
about 1

2
¼ f ð2Þ and Veð2Þ about 2 ¼ f 1

2

� 	
, the

corresponding maximum values of d are seen to be considerably different. As u tends to 0,

the permissible values of d tend to 0.

5.4.1 Definition Let A � R and let f : A ! R . We say that f is uniformly continuous

on A if for each e > 0 there is a dðeÞ > 0 such that if x; u 2 A are any numbers satisfying

jx� uj < dðeÞ, then j f ðxÞ � f ðuÞj < e.

It is clear that if f is uniformly continuous on A, then it is continuous at every point of A.

In general, however, the converse does not hold, as is shown by the function gðxÞ ¼ 1=x on

the set A :¼ fx 2 R : x > 0g.
It is useful to formulate a condition equivalent to saying that f is not uniformly

continuous on A. We give such criteria in the next result, leaving the proof to the reader as

an exercise.

5.4.2 Nonuniform Continuity Criteria Let A � R and let f : A ! R . Then the follow-

ing statements are equivalent:

(i) f is not uniformly continuous on A.

(ii) There exists an e0 > 0 such that for every d > 0 there are points xd; ud in A such that

jxd � udj < d and j f ðxdÞ � f ðudÞj � e0.
(iii) There exists an e0 > 0 and two sequences (xn) and (un) in A such that limðxn �

unÞ ¼ 0 and j f ðxnÞ � f ðunÞj � e0 for all n 2 N .

We can apply this result to show that gðxÞ :¼ 1=x is not uniformly continuous

on A :¼ fx 2 R : x > 0g. For, if xn :¼ 1=n and un :¼ 1=ðnþ 1Þ, then we have

limðxn � unÞ ¼ 0, but jgðxnÞ � gðunÞj ¼ 1 for all n 2 N .

We now present an important result that assures that a continuous function on a closed

bounded interval I is uniformly continuous on I. Other proofs of this theorem are given in

Sections 5.5 and 11.3.

Figure 5.4.1 gðxÞ ¼ 1=x ðx > 0Þ Figure 5.4.2 gðxÞ ¼ 1=x ðx > 0Þ
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5.4.3 Uniform Continuity Theorem Let I be a closed bounded interval and let

f : I ! R be continuous on I. Then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on I then, by the preceding result, there exists

e0 > 0 and two sequences (xn) and (un) in I such that jxn � unj< 1=n and j f ðxnÞ � f ðunÞj�
e0 for all n 2 N . Since I is bounded, the sequence (xn) is bounded; by the Bolzano-

Weierstrass Theorem 3.4.8 there is a subsequence xnkð Þ of (xn) that converges to an element

z. Since I is closed, the limit z belongs to I, by Theorem 3.2.6. It is clear that the

corresponding subsequence unkð Þ also converges to z, since

unk � zj j � unk � xnkj j þ xnk � zj j:
Now if f is continuous at the point z, then both of the sequences f xnkð Þð Þ and f unkð Þð Þ

must converge to f ðzÞ. But this is not possible since

j f ðxnÞ � f ðunÞj � e0

for all n 2 N . Thus the hypothesis that f is not uniformly continuous on the closed bounded

interval I implies that f is not continuous at some point z 2 I. Consequently, if f is

continuous at every point of I, then f is uniformly continuous on I. Q.E.D.

Lipschitz Functions

If a uniformly continuous function is given on a set that is not a closed bounded interval,

then it is sometimes difficult to establish its uniform continuity. However, there is a

condition that frequently occurs that is sufficient to guarantee uniform continuity. It is

named after Rudolf Lipschitz (1832–1903) whowas a student of Dirichlet and whoworked

extensively in differential equations and Riemannian geometry.

5.4.4 Definition Let A � R and let f : A ! R . If there exists a constant K > 0 such that

ð4Þ j f ðxÞ � f ðuÞj � Kjx� uj
for all x; u 2 A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz

condition) on A.

The condition (4) that a function f : I ! R on an interval I is a Lipschitz function can

be interpreted geometrically as follows. If we write the condition as

f ðxÞ � f ðuÞ
x� u

����
���� � K; x; u 2 I; x 6¼ u ;

then the quantity inside the absolute values is the slope of a line segment joining the points

ðx; f ðxÞÞ and ðu; f ðuÞÞ. Thus a function f satisfies a Lipschitz condition if and only if the

slopes of all line segments joining two points on the graph of y ¼ f ðxÞ over I are bounded
by some number K.

5.4.5 Theorem If f : A ! R is a Lipschitz function, then f is uniformly continuous on A.

Proof. If condition (4) is satisfied, then given e > 0, we can take d :¼ e=K. If x; u 2 A

satisfy jx� uj < d, then

j f ðxÞ � f ðuÞj < K � e
K

¼ e:

Therefore f is uniformly continuous on A. Q.E.D.
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5.4.6 Examples (a) If f ðxÞ :¼ x2 on A :¼ ½0; b�, where b > 0, then

j f ðxÞ � f ðuÞj ¼ jxþ ujjx� uj � 2bjx� uj
for all x, u in [0, b]. Thus f satisfies (4) with K :¼ 2b on A, and therefore f is uniformly

continuous on A. Of course, since f is continuous and A is a closed bounded interval, this

can also be deduced from the Uniform Continuity Theorem. (Note that f does not satisfy a

Lipschitz condition on the interval ½0;1Þ.)
(b) Not every uniformly continuous function is a Lipschitz function.

Let gðxÞ :¼ ffiffiffi
x

p
for x in the closed bounded interval I :¼ ½0; 2�. Since g is continuous

on I, it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous

on I. However, there is no number K > 0 such that jgðxÞj � Kjxj for all x 2 I. (Why not?)

Therefore, g is not a Lipschitz function on I.

(c) The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined to

establish the uniform continuity of a function on a set.

We consider gðxÞ :¼ ffiffiffi
x

p
on the set A :¼ ½0;1Þ. The uniform continuity of g on the

interval I :¼ ½0; 2� follows from the Uniform Continuity Theorem as noted in (b). If

J :¼ ½1;1Þ, then if both x, u are in J, we have

gðxÞ � gðuÞj j ¼ ffiffiffi
x

p � ffiffiffi
u

p�� �� ¼ jx� ujffiffiffi
x

p þ ffiffiffi
u

p � 1
2
jx� uj:

Thus g is a Lipschitz function on J with constant K ¼ 1
2
, and hence by Theorem 5.4.5, g is

uniformly continuous on [1, 1). Since A ¼ I [ J, it follows [by taking dðeÞ :¼
inf 1; dIðeÞ; dJðeÞf g] that g is uniformly continuous on A. We leave the details to the

reader. &

The Continuous Extension Theorem

We have seen examples of functions that are continuous but not uniformly continuous on

open intervals; for example, the function f ðxÞ ¼ 1=x on the interval (0, 1). On the other

hand, by the Uniform Continuity Theorem, a function that is continuous on a closed

bounded interval is always uniformly continuous. So the question arises: Under what

conditions is a function uniformly continuous on a bounded open interval? The answer

reveals the strength of uniform continuity, for it will be shown that a function on (a, b) is

uniformly continuous if and only if it can be defined at the endpoints to produce a function

that is continuous on the closed interval. We first establish a result that is of interest in itself.

5.4.7 Theorem If f : A ! R is uniformly continuous on a subset A of R and if xnð Þ is a
Cauchy sequence in A, then ð f ðxnÞÞ is a Cauchy sequence in R .

Proof. Let (xn) be a Cauchy sequence in A, and let e > 0 be given. First choose d > 0 such

that if x, u in A satisfy jx� uj < d, then j f ðxÞ � f ðuÞj < e. Since (xn) is a Cauchy

sequence, there existsHðdÞ such that jxn � xmj < d for all n;m > HðdÞ. By the choice of d,
this implies that for n;m > HðdÞ, we have j f ðxnÞ � f ðxmÞj < e. Therefore the sequence

ð f ðxnÞÞ is a Cauchy sequence. Q.E.D.

The preceding result gives us an alternative way of seeing that f ðxÞ :¼ 1=x is not

uniformly continuous on (0, 1). We note that the sequence given by xn :¼ 1=n in (0, 1) is a
Cauchy sequence, but the image sequence, where f ðxnÞ ¼ n, is not a Cauchy sequence.
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5.4.8 Continuous Extension Theorem A function f is uniformly continuous on the

interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex-

tended function is continuous on [a, b].

Proof. ð(Þ This direction is trivial.

ð)Þ Suppose f is uniformly continuous on (a, b). We shall show how to extend f to a;

the argument for b is similar. This is done by showing that lim
x!c

f ðxÞ ¼ L exists, and this is

accomplished by using the sequential criterion for limits. If (xn) is a sequence in (a, b) with

limðxnÞ ¼ a, then it is a Cauchy sequence, and by the preceding theorem, the sequence

ð f ðxnÞÞ is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus the limit

limð f ðxnÞÞ ¼ L exists. If (un) is any other sequence in (a, b) that converges to a, then

limðun � xnÞ ¼ a� a ¼ 0, so by the uniform continuity of f we have

limð f ðunÞÞ ¼ limð f ðunÞ � f ðxnÞÞ þ limð f ðxnÞÞ
¼ 0þ L ¼ L:

Since we get the same value L for every sequence converging to a, we infer from the

sequential criterion for limits that f has limit L at a. If we define f ðaÞ :¼ L, then f is

continuous at a. The same argument applies to b, so we conclude that f has a continuous

extension to the interval [a, b]. Q.E.D.

Since the limit of f ðxÞ :¼ sinð1=xÞ at 0 does not exist, we infer from the Continuous

Extension Theorem that the function is not uniformly continuous on ð0; b� for any b > 0.

On the other hand, since lim
x!0

x sinð1=xÞ ¼ 0 exists, the function gðxÞ :¼ x sinð1=xÞ is

uniformly continuous on ð0; b� for all b > 0.

Approximationy

In many applications it is important to be able to approximate continuous functions by

functions of an elementary nature. Although there are a variety of definitions that can be used

to make theword ‘‘approximate’’ more precise, one of the most natural (as well as one of the

most important) is to require that, at every point of the given domain, the approximating

function shall not differ from the given function by more than the preassigned error.

5.4.9 Definition A function s : ½a; b� ! R is called a step function if [a, b] is the union

of a finite number of nonoverlapping intervals I1; I2; . . . ; In such that s is constant on each
interval, that is, s xð Þ ¼ ck for all x2 Ik; k ¼ 1; 2; . . . ; n.

Thus a step function has only a finite number of distinct values.

For example, the function s : ½�2; 4� ! R defined by

s xð Þ :¼

0; �2 � x < �1;
1; �1 � x � 0;
1
2
; 0 < x < 1

2
;

3; 1
2
� x < 1;

�2; 1 � x � 3;
2; 3 < x � 4;

8>>>>>><
>>>>>>:

is a step function. (See Figure 5.4.3.)

yThe rest of this section can be omitted on a first reading of this chapter.
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We will now show that a continuous function on a closed bounded interval I can be

approximated arbitrarily closely by step functions.

5.4.10 Theorem Let I be a closed bounded interval and let f : I ! R be continuous on I.

If e > 0, then there exists a step function se : I ! R such that f xð Þ � se xð Þj j < e for all
x 2 I.

Proof. Since (by the Uniform Continuity Theorem 5.4.3) the function f is uniformly

continuous, it follows that given e > 0 there is a number d eð Þ > 0 such that if x; y 2 I and

x� yj j < d eð Þ, then f xð Þ � f yð Þj j < e. Let I :¼ a; b½ � and letm 2 N be sufficiently large so

that h :¼ b� að Þ=m < d eð Þ. We now divide I ¼ [a, b] into m disjoint intervals of length h;

namely, I1 :¼ a; aþ h½ �, and Ik :¼ aþ k � 1ð Þh; aþ khð Þ for k ¼ 2, . . . , m. Since the

length of each subinterval Ik is h < d eð Þ, the difference between any two values of f in Ik is
less than e. We now define

ð5Þ se xð Þ :¼ f aþ khð Þ for x 2 Ik; k ¼ 1; . . . ;m;

so that se is constant on each interval Ik. (In fact the value of se on Ik is the value of f at the

right endpoint of Ik. See Figure 5.4.4.) Consequently if x 2 Ik, then

f xð Þ � se xð Þj j ¼ f xð Þ � f aþ khð Þj j < e:

Therefore we have f xð Þ � se xð Þj j < e for all x 2 I. Q.E.D.

Figure 5.4.3 Graph of y ¼ s(x)

Figure 5.4.4 Approximation by step functions
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Note that the proof of the preceding theorem establishes somewhat more than was

announced in the statement of the theorem. In fact, we have proved the following, more

precise, assertion.

5.4.11 Corollary Let I :¼ ½a; b� be a closed bounded interval and let f : I ! R be

continuous on I. If e > 0, there exists a natural number m such that if we divide I into m

disjoint intervals Ik having length h :¼ b� að Þ=m, then the step function se defined in

equation (5) satisfies f xð Þ � se xð Þj j < e for all x 2 I.

Step functions are extremely elementary in character, but they are not continuous

(except in trivial cases). Since it is often desirable to approximate continuous functions by

elementary continuous functions, we now shall show that we can approximate continuous

functions by continuous piecewise linear functions.

5.4.12 Definition Let I :¼ ½a; b� be an interval. Then a function g : I ! R is said to be

piecewise linear on I if I is the union of a finite number of disjoint intervals I1; . . . ; Im,
such that the restriction of g to each interval Ik is a linear function.

Remark It is evident that in order for a piecewise linear function g to be continuous on

I, the line segments that form the graph of g must meet at the endpoints of adjacent

subintervals Ik; Ikþ1 k ¼ 1; . . . ; m� 1ð Þ.

5.4.13 Theorem Let I be a closed bounded interval and let f : I ! R be continuous on I.

If e > 0, then there exists a continuous piecewise linear function ge : I ! R such that

f xð Þ � ge xð Þj j < e for all x 2 I.

Proof. Since f is uniformly continuous on I :¼ ½a; b�, there is a number d eð Þ > 0 such that

if x, y 2 I and x� yj j < d eð Þ, then f xð Þ � f yð Þj j < e. Let m 2 N be sufficiently large so

that h :¼ b� að Þ=m < d eð Þ. Divide I ¼ ½a; b� intom disjoint intervals of length h; namely,

let I1 ¼ a; aþ h½ �, and let Ik ¼ aþ k � 1ð Þh; aþ kh�ð for k ¼ 2; . . . ; m. On each interval
Ik we define ge to be the linear function joining the points

aþ k � 1ð Þh; f aþ k � 1ð Þhð Þð Þ and aþ kh; f aþ khð Þð Þ :
Then ge is a continuous piecewise linear function on I. Since, for x 2 Ik the value f(x) is

within e of f aþ k � 1ð Þhð Þ and f aþ khð Þ, it is an exercise to show that f xð Þ � ge xð Þj j < e
for all x 2 Ik; therefore this inequality holds for all x 2 I. (See Figure 5.4.5.) Q.E.D.

Figure 5.4.5 Approximation by piecewise linear function
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We shall close this section by stating the important theorem of Weierstrass con-

cerning the approximation of continuous functions by polynomial functions. As would be

expected, in order to obtain an approximation within an arbitrarily preassigned e > 0,

we must be prepared to use polynomials of arbitrarily high degree.

5.4.14 Weierstrass Approximation Theorem Let I ¼ ½a; b� and let f : I ! R be a

continuous function. If e > 0 is given, then there exists a polynomial function pe such that

f xð Þ � pe xð Þj j < e for all x 2 I.

There are a number of proofs of this result. Unfortunately, all of them are rather

intricate, or employ results that are not yet at our disposal. (A proof can be found in Bartle,

ERA, pp. 169–172, which is listed in the References.)

Exercises for Section 5.4

1. Show that the function f xð Þ :¼ 1=x is uniformly continuous on the set A :¼ a; 1Þ½ , where a is a

positive constant.

2. Show that the function f xð Þ :¼ 1=x2 is uniformly continuous on A :¼ 1; 1Þ½ , but that it is not

uniformly continuous on B :¼ 0; 1ð Þ.
3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not

uniformly continuous on the given sets.

(a) f xð Þ :¼ x2; A :¼ 0; 1Þ½ .

(b) g xð Þ :¼ sin 1=xð Þ; B :¼ 0;1ð Þ .
4. Show that the function f xð Þ :¼ 1= 1þ x2ð Þ for x 2 R is uniformly continuous on R .

5. Show that if f and g are uniformly continuous on a subset A of R , then f þ g is uniformly

continuous on A.

6. Show that if f and g are uniformly continuous on A � R and if they are both bounded on A, then

their product fg is uniformly continuous on A.

7. If f xð Þ :¼ x and g xð Þ :¼ sin x, show that both f and g are uniformly continuous on R , but that

their product fg is not uniformly continuous on R .

8. Prove that if f and g are each uniformly continuous on R , then the composite function f � g is

uniformly continuous on R .

9. If f is uniformly continuous on A � R , and f xð Þj j � k > 0 for all x 2 A, show that 1=f is
uniformly continuous on A.

10. Prove that if f is uniformly continuous on a bounded subset A of R , then f is bounded on A.

11. If g xð Þ :¼ ffiffiffi
x

p
for x 2 0; 1½ �, show that there does not exist a constant K such that g xð Þj j �

K xj j for all x 2 0; 1½ �. Conclude that the uniformly continuous g is not a Lipschitz function

on [0, 1].

12. Show that if f is continuous on [0, 1) and uniformly continuous on [a, 1) for some positive

constant a, then f is uniformly continuous on [0, 1).

13. Let A � R and suppose that f : A ! R has the following property: for each e > 0 there exists a

function ge : A ! R such that ge is uniformly continuous on A and f xð Þ � ge xð Þj j < e for all
x 2 A. Prove that f is uniformly continuous on A.

14. A function f : R ! R is said to be periodic on R if there exists a number p > 0 such that

f xþ pð Þ ¼ f xð Þ for all x 2 R . Prove that a continuous periodic function on R is bounded and

uniformly continuous on R .

148 CHAPTER 5 CONTINUOUS FUNCTIONS



C05 12/08/2010 14:20:5 Page 149

15. Let f and g be Lipschitz functions on A.

(a) Show that the sum f þ g is also a Lipschitz function on A.

(b) Show that if f and g are bounded on A, then the product fg is a Lipschitz function on A.

(c) Give an example of a Lipschitz function f on [0,1) such that its square f 2 is not a Lipschitz

function.

16. A function is called absolutely continuous on an interval I if for any e > 0 there exists a d > 0

such that for any pair-wise disjoint subintervals xk; yk½ �; k ¼ 1; 2; . . . ; n, of I such thatP
xk � ykj j < d we have

P
f xkð Þ � f ykð Þj j < e. Show that if f satisfies a Lipschitz condition

on I, then f is absolutely continuous on I.

Section 5.5 Continuity and Gaugesy

Wewill now introduce some concepts that will be used later—especially in Chapters 7 and

10 on integration theory. However, we wish to introduce the notion of a ‘‘gauge’’ now

because of its connection with the study of continuous functions. We first define the notion

of a tagged partition of an interval.

5.5.1 Definition A partition of an interval I :¼ ½a; b� is a collection P ¼ fI1; . . . ; Ing of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals

by Ii :¼ ½xi�1; xi�, where
a ¼ x0 < � � � < xi�1 < xi < � � � < xn ¼ b:

The points xi ði ¼ 0; . . . ; nÞ are called the partition points of P. If a point ti has been

chosen from each interval Ii, for i¼ 1, . . . , n, then the points ti are called the tags and the

set of ordered pairs

P� ¼ ðI1; t1Þ; . . . ; ðIn; tnÞf g
is called a tagged partition of I. (The dot signifies that the partition is tagged.)

The ‘‘fineness’’ of a partitionP refers to the lengths of the subintervals inP. Instead of
requiring that all subintervals have length less than some specific quantity, it is often useful

to allow varying degrees of fineness for different subintervals Ii in P. This is accomplished

by the use of a ‘‘gauge,’’ which we now define.

5.5.2 Definition A gauge on I is a strictly positive function defined on I. If d is a gauge on

I, then a (tagged) partition _P is said to be d-fine if

ð1Þ ti 2 Ii � ti � dðtiÞ; ti þ dðtiÞ½ � for i ¼ 1; . . . ; n :

We note that the notion of d-fineness requires that the partition be tagged, so we do not

need to say ‘‘tagged partition’’ in this case.

A gauge d on an interval I assigns an interval t� dðtÞ; tþ dðtÞ½ � to each point t 2 I. The

d-fineness of a partition _P requires that each subinterval Ii of _P is contained in the interval

determined by the gauge d and the tag ti for that subinterval. This is indicated by the

inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also controlled

by the gauge and the tags; the next lemma reflects that control.

yThis section can be omitted on a first reading of this chapter.
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5.5.3 Lemma If a partition _P of I :¼ ½a; b� is d-fine and x 2 I, then there exists a tag ti
in _P such that jx� tij � dðtiÞ.

Proof. If x 2 I, there exists a subinterval ½xi�1; xi� from _P that contains x. Since _P is

d-fine, then

ð2Þ ti � dðtiÞ � xi�1 � x � xi � ti þ dðtiÞ;
whence it follows that jx� tij � dðtiÞ. Q.E.D.

In the theory of Riemann integration, we will use gauges d that are constant

functions to control the fineness of the partition; in the theory of the generalized

Riemann integral, the use of nonconstant gauges is essential. But nonconstant gauge

functions arise quite naturally in connection with continuous functions. For, let f : I !
R be continuous on I and let e > 0 be given. Then, for each point t 2 I there

exists deðtÞ > 0 such that if jx� tj < deðtÞ and x 2 I, then j f ðxÞ � f ðtÞj < e. Since de
is defined and is strictly positive on I, the function de is a gauge on I. Later in this

section, we will use the relations between gauges and continuity to give alternative

proofs of the fundamental properties of continuous functions discussed in Sections 5.3

and 5.4.

5.5.4 Examples (a) If d and g are gauges on I :¼ ½a; b� and if 0 < dðxÞ � g ðxÞ for all
x 2 I, then every partition _P that is d-fine is also g-fine. This follows immediately from the

inequalities

ti � gðtiÞ � ti � dðtiÞ and ti þ dðtiÞ � ti þ gðtiÞ

which imply that

ti 2 ti � dðtiÞ; ti þ dðtiÞ½ � � ti � gðtiÞ; ti þ gðtiÞ½ � for i ¼ 1; . . . ; n :

(b) If d1 and d2 are gauges on I :¼ ½a; b� and if

dðxÞ :¼ min d1ðxÞ; d2ðxÞf g for all x 2 I ;

then d is also a gauge on I. Moreover, since dðxÞ � d1ðxÞ, then every d-fine partition is d1-

fine. Similarly, every d-fine partition is also d2-fine.

(c) Suppose that d is defined on I :¼ ½0; 1� by

dðxÞ :¼
1
10

if x ¼ 0;

1
2
x if 0 < x � 1:

(

Then d is a gauge on [0, 1]. If 0 < t � 1, then t� dðtÞ; tþ dðtÞ½ � ¼ 1
2
t; 3

2
t

� �
, which does not

contain the point 0. Thus, if _P is a d-fine partition of I, then the only subinterval in _P that

contains 0 must have the point 0 as its tag.

Figure 5.5.1 Inclusion (1)
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(d) Let g be defined on I :¼ ½0; 1� by

gðxÞ :¼

1
10

if x ¼ 0 or x ¼ 1;

1
2
x if 0 < x � 1

2
;

1
2
ð1� xÞ if 1

2
< x < 1:

8>><
>>:

Then g is a gauge on I, and it is an exercise to show that the subintervals in any g-fine

partition that contain the points 0 or 1 must have these points as tags. &

Existence of d-Fine Partitions

In view of the above examples, it is not obvious that an arbitrary gauge d admits a d-fine

partition. We now use the Supremum Property of R to establish the existence of d-fine
partitions. In the exercises, we will sketch a proof based on the Nested Intervals

Theorem 2.5.2.

5.5.5 Theorem If d is a gauge defined on the interval [a, b], then there exists a d-fine

partition of [a, b].

Proof. Let E denote the set of all points x 2 ½a; b� such that there exists a d-fine partition
of the subinterval [a, x]. The set E is not empty, since the pair ([a, x], a) is a d-fine

partition of the interval [a, x] when x 2 a; aþ dðaÞ½ � and x � b. Since E � ½a; b�, the set
E is also bounded. Let u :¼ supE so that a < u � b. We will show that u 2 E and that

u ¼ b.

We claim that u 2 E. Since u� dðuÞ < u ¼ supE, there exists v 2 E such that

u� dðuÞ < v < u. Let _P1 be a d-fine partition of [a, v] and let _P2 :¼ _P1 [ ½v; u�; uð Þ.
Then _P2 is a d-fine partition of [a, u], so that u 2 E.

If u < b, let w 2 ½a; b� be such that u < w < uþ dðuÞ. If _Q1 is a d-fine partition of

[a, u], we let _Q2 :¼ _Q1 [ ½u; w�; uð Þ. Then _Q2 is a d-fine partition of [a, w], whence

w 2 E. But this contradicts the supposition that u is an upper bound of E. Therefore

u ¼ b. Q.E.D.

Some Applications

Following R. A. Gordon (see hisMonthly article in the References), we will now show that

some of the major theorems in the two preceding sections can be proved by using gauges.

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since f is continuous on I,

then for each t 2 I there exists dðtÞ > 0 such that if x 2 I and jx� tj � dðtÞ, then
j f ðxÞ � f ðtÞj � 1. Thus d is a gauge on I. Let ðIi; tiÞf gni¼1 be a d-fine partition of I and

let K :¼ max j f ðtiÞj : i ¼ 1; . . . ; nf g. By Lemma 5.5.3, given any x 2 I there exists i with

jx� tij � dðtiÞ, whence

j f ðxÞj � j f ðxÞ � f ðtiÞj þ j f ðtiÞj � 1þ K:

Since x 2 I is arbitrary, then f is bounded by 1 þ K on I. Q.E.D.
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Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the

existence of x	. LetM :¼ sup f ðxÞ : x 2 If g and suppose that f(x)<M for all x 2 I. Since f

is continuous on I, for each t 2 I there exists dðtÞ > 0 such that if x 2 I and jx� tj � dðtÞ,
then f ðxÞ < 1

2
M þ f ðtÞð Þ. Thus d is a gauge on I, and if ðIi; tiÞf gni¼1 is a d-fine partition of I,

we let

M
~
:¼ 1

2
max M þ f ðt1Þ; . . . ;M þ f ðtnÞf g:

By Lemma 5.5.3, given any x 2 I, there exists i with jx� tij � dðtiÞ, whence
f ðxÞ < 1

2
M þ f ðtiÞð Þ � M

~
:

Since x 2 I is arbitrary, thenM
~ð< MÞ is an upper bound for f on I, contrary to the definition

of M as the supremum of f. Q.E.D.

Alternate Proof of Theorem 5.3.5: Location of Roots Theorem. We assume that f ðtÞ 6¼ 0

for all t 2 I. Since f is continuous at t, Exercise 5.1.7 implies that there exists dðtÞ > 0 such

that if x 2 I and jx� tj � dðtÞ, then f (x)< 0 if f (t)< 0, and f (x)> 0 if f (t)> 0. Then d is

a gauge on I and we let ðIi; tiÞf gni¼1 be a d-fine partition. Note that for each i, either f (x)< 0

for all x 2 ½xi�1; xi� or f (x) > 0 for all such x. Since f ðx0Þ ¼ f ðaÞ < 0, this implies that

f (x1) < 0, which in turn implies that f (x2) < 0. Continuing in this way, we have

f ðbÞ ¼ f ðxnÞ < 0, contrary to the hypothesis that f (b) > 0. Q.E.D.

Alternate Proof of Theorem 5.4.3: Uniform Continuity Theorem. Let e > 0 be given.

Since f is continuous at t 2 I, there exists dðtÞ > 0 such that if x 2 I and jx� tj � 2dðtÞ,
then j f ðxÞ � f ðtÞj � 1

2
e. Thus d is a gauge on I. If ðIi; tiÞf gni¼1 is a d-fine partition of I,

let de :¼ min dðt1Þ; . . . ; dðtnÞf g. Now suppose that x; u 2 I and jx� uj � de, and choose i

with jx� tij � dðtiÞ. Since
ju� tij � ju� xj þ jx� tij � de þ dðtiÞ � 2dðtiÞ;

then it follows that

j f ðxÞ � f ðuÞj � j f ðxÞ � f ðtiÞj þ j f ðtiÞ � f ðuÞj � 1
2
eþ 1

2
e ¼ e:

Therefore, f is uniformly continuous on I. Q.E.D.

Exercises for Section 5.5

1. Let d be the gauge on [0, 1] defined by dð0Þ:¼ 1
4
and dðtÞ :¼ 1

2
t for t 2 ð0; 1�.

(a) Show that _P1 ¼ 0; 1
4

� �
; 0

� 	
; 1

4
; 1

2

� �
; 1

2

� 	
; 1

2
; 1

� �
; 3

4

� 	
 �
is d-fine.

(b) Show that _P2 ¼ 0; 1
4

� �
; 0

� 	
; 1

4
; 1

2

� �
; 1

2

� 	
; 1

2
; 1

� �
; 3

5

� 	
 �
is not d-fine.

2. Suppose that d1 is the gauge defined by d1ð0Þ :¼ 1
4
; d1ðtÞ :¼ 3

4
t for t 2 ð0; 1�. Are the partitions

given in Exercise 1 d1-fine? Note that dðtÞ � d1ðtÞ for all t 2 ½0; 1�.
3. Suppose that d2 is the gauge defined by d2ð0Þ :¼ 1

10
and d2ðtÞ :¼ 9

10
t for t 2 ð0; 1�. Are the

partitions given in Exercise 1 d2-fine?

4. Let g be the gauge in Example 5.5.4(d).

(a) If t 2 ð0; 1
2
� show that t� gðtÞ; tþ gðtÞ½ � ¼ 1

2
t; 3

2
t

� � � ð0; 3
4
�.

(b) If t 2 ð1
2
; 1Þ show that t� gðtÞ; tþ gðtÞ½ � � ð1

4
; 1Þ.

5. Let a< c< b and let d be a gauge on [a, b]. If _P0 is a d-fine partition of [a, c] and if _P00 is a d-fine
partition of [c, b], show that _P0 [ _P00 is a d-fine partition of [a, b] having c as a partition point.
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6. Let a < c < b and let d0 and d00 be gauges on [a, c] and [c, b], respectively. If d is defined on

[a, b] by

dðtÞ :¼
d0ðtÞ if t 2 ½a; cÞ;
min d0ðcÞ; d00ðcÞf g if t ¼ c;

d00 ðtÞ if t 2 ðc; b�;

8>><
>>:

then d is a gauge on [a, b]. Moreover, if _P0 is a d0-fine partition of [a, c] and _P00 is a d
00
-fine

partition of [c, b], then _P0 [ _P00 is a tagged partition of [a, b] having c as a partition point.

Explain why _P0 [ _P00 may not be d-fine. Give an example.

7. Let d0 and d
00
be as in the preceding exercise and let d	 be defined by

d	ðtÞ :¼
min d0ðtÞ; 1

2
ðc� tÞ
 �

if t 2 ½a; cÞ;
minfd0ðcÞ; d00 ðcÞg if t ¼ c;

min d00 ðtÞ; 1
2
ðt� cÞ
 �

if t 2 ðc; b�:

8>><
>>:

Show that d	 is a gauge on [a, b] and that every d	-fine partition _P of [a, b] having c as a partition

point gives rise to a d0-fine partition _P0 of [a, c] and a d00-fine partition _P00 of [c, b] such that
_P ¼ _P0 [ _P00.

8. Let d be a gauge on I :¼ ½a; b� and suppose that I does not have a d-fine partition.

(a) Let c :¼ 1
2
ðaþ bÞ. Show that at least one of the intervals [a, c] and [c, b] does not have a

d-fine partition.

(b) Construct a nested sequence (In) of subintervals with the length of In equal to ðb� aÞ=2n
such that In does not have a d-fine partition.

(c) Let j 2 \1
n¼1In and let p 2 N be such that ðb� aÞ=2p < dðjÞ. Show that Ip � j� dðjÞ;½

jþ dðjÞ�, so the pair Ip; j
� 	

is a d-fine partition of Ip.

9. Let I :¼ ½a; b� and let f : I ! R be a (not necessarily continuous) function. We say that f is

‘‘locally bounded’’ at c 2 I if there exists dðcÞ > 0 such that f is bounded on I \ c� dðcÞ;½
cþ dðcÞ�. Prove that if f is locally bounded at every point of I, then f is bounded on I.

10. Let I :¼ ½a; b� and f : I ! R . We say that f is ‘‘locally increasing’’ at c 2 I if there exists dðcÞ >
0 such that f is increasing on I \ c� dðcÞ; cþ dðcÞ½ �. Prove that if f is locally increasing at every
point of I, then f is increasing on I.

Section 5.6 Monotone and Inverse Functions

Recall that if A � R , then a function f : A ! R is said to be increasing on A if whenever

x1; x2 2 A and x1 � x2, then f ðx1Þ � f ðx2Þ. The function f is said to be strictly increasing
on A if whenever x1;x2 2 A and x1 < x2, then f ðx1Þ < f ðx2Þ. Similarly, g : A ! R is said

to be decreasing on A if whenever x1; x2 2 A and x1 � x2 then gðx1Þ � gðx2Þ. The
function g is said to be strictly decreasing on A if whenever x1; x2 2 A and x1 < x2 then

gðx1Þ > gðx2Þ.
If a function is either increasing or decreasing on A, we say that it is monotone on A.

If f is either strictly increasing or strictly decreasing on A, we say that f is strictly

monotone on A.

We note that if f : A ! R is increasing on A then g :¼ �f is decreasing on A; similarly

if w : A ! R is decreasing on A then c :¼ �w is increasing on A.
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In this section, we will be concerned with monotone functions that are defined on

an interval I � R . We will discuss increasing functions explicitly, but it is clear that

there are corresponding results for decreasing functions. These results can either be

obtained directly from the results for increasing functions or proved by similar

arguments.

Monotone functions are not necessarily continuous. For example, if f ðxÞ :¼ 0 for

x 2 ½0; 1� and f ðxÞ :¼ 1 for x 2 ð1; 2�, then f is increasing on [0, 2], but fails to be

continuous at x ¼ 1. However, the next result shows that a monotone function always has

both one-sided limits (see Definition 4.3.1) in R at every point that is not an endpoint of its

domain.

5.6.1 Theorem Let I � R be an interval and let f : I ! R be increasing on I. Suppose

that c 2 I is not an endpoint of I. Then

(i) lim
x!c� f ¼ sup f ðxÞ : x 2 I; x < cf g,

(ii) lim
x!cþ f ¼ inf f ðxÞ : x 2 I; x > cf g.

Proof. (i) First note that if x 2 I and x < c, then f ðxÞ � f ðcÞ. Hence the set

f ðxÞ : x 2 I; x < cf g, which is nonvoid since c is not an endpoint of I, is bounded above

by f (c). Thus the indicated supremum exists; we denote it by L. If e > 0 is given, then L� e
is not an upper bound of this set. Hence there exists ye 2 I; ye < c such that

L� e < f ðyeÞ � L.

Since f is increasing, we deduce that if de :¼ c� ye and if 0 < c� y < de, then ye <
y < c so that

L� e < f ðyeÞ � f ðyÞ � L:

Therefore j f ðyÞ � Lj < e when 0 < c� y < de. Since e > 0 is arbitrary we infer that (i)

holds.

The proof of (ii) is similar. Q.E.D.

The next result gives criteria for the continuity of an increasing function f at a point c

that is not an endpoint of the interval on which f is defined.

5.6.2 Corollary Let I � R be an interval and let f : I ! R be increasing on I. Suppose

that c 2 I is not an endpoint of I. Then the following statements are equivalent.

(a) f is continuous at c.

(b) lim
x!c� f ¼ f ðcÞ ¼ lim

x!cþ f .

(c) sup f ðxÞ : x 2 I; x < cf g ¼ f ðcÞ ¼ inf f ðxÞ : x 2 I; x > cf g.

This follows easily from Theorems 4.3.3 and 5.6.1. We leave the details to the

reader.

Let I be an interval and let f : I ! R be an increasing function. If a is the left endpoint

of I, it is an exercise to show that f is continuous at a if and only if

f ðaÞ ¼ inf f ðxÞ : x 2 I; a < xf g
or if and only if f ðaÞ ¼ lim

x!aþ f . Similar conditions apply at a right endpoint, and for

decreasing functions.
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If f : I ! R is increasing on I and if c is not an endpoint of I, we define the jump of f

at c to be jf ðcÞ :¼ lim
x!cþ f � lim

x!c� f . (See Figure 5.6.1.) It follows from Theorem 5.6.1

that

jf ðcÞ ¼ inf f ðxÞ : x 2 I; x > cf g � sup f ðxÞ : x 2 I; x < cf g
for an increasing function. If the left endpoint a of I belongs to I, we define the jump of f at

a to be jf ðaÞ :¼ lim
x!aþ f � f ðaÞ. If the right endpoint b of I belongs to I, we define the jump

of f at b to be jf ðbÞ :¼ f ðbÞ � lim
x!b� f .

5.6.3 Theorem Let I � R be an interval and let f : I ! R be increasing on I. If c 2 I,

then f is continuous at c if and only if jf ðcÞ ¼ 0.

Proof. If c is not an endpoint, this follows immediately from Corollary 5.6.2. If c 2 I is

the left endpoint of I, then f is continuous at c if and only if f ðcÞ ¼ lim
x!cþ f , which is

equivalent to jf ðcÞ ¼ 0. Similar remarks apply to the case of a right endpoint. Q.E.D.

We now show that there can be at most a countable set of points at which a monotone

function is discontinuous.

5.6.4 Theorem Let I � R be an interval and let f : I ! R be monotone on I. Then the

set of points D � I at which f is discontinuous is a countable set.

Proof. We shall suppose that f is increasing on I. It follows from Theorem 5.6.3 that

D ¼ x 2 I : jf ð xÞ 6¼ 0

 �

. We shall consider the case that I :¼ ½a; b� is a closed bounded

interval, leaving the case of an arbitrary interval to the reader.

We first note that since f is increasing, then jf ðcÞ � 0 for all c 2 I. Moreover, if

a � x1 < � � � xn � b, then (why?) we have

ð1Þ f ðaÞ � f ðaÞ þ jf ðx1Þ þ � � � þ jf ðxnÞ � f ðbÞ;
whence it follows that

jf ðx1Þ þ � � � þ jf ðxnÞ � f ðbÞ � f ðaÞ:
(See Figure 5.6.2.) Consequently there can be at most k points in I ¼ ½a; b� where

jf ðxÞ � ð f ðbÞ � f ðaÞÞ=k. We conclude that there is at most one point x 2 I where

jf ðxÞ ¼ f ðbÞ � f ðaÞ; there are at most two points in I where jf ðxÞ � ð f ðbÞ � f ðaÞÞ=2;
at most three points in I where jf ðxÞ � ð f ðbÞ � f ðaÞÞ=3, and so on. Therefore there is at

Figure 5.6.1 The jump of f at c
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most a countable set of points x where jf ðxÞ > 0. But since every point in D must be

included in this set, we deduce that D is a countable set. Q.E.D.

Theorem 5.6.4 has some useful applications. For example, it was seen in Exercise

5.2.12 that if h : R ! R satisfies the identity

ð2Þ hðxþ yÞ ¼ hðxÞ þ hðyÞ for all x; y 2 R ;

and if h is continuous at a single point x0, then h is continuous at every point of R . Thus, if h

is a monotone function satisfying (2), then hmust be continuous on R . [It follows from this

that h(x) ¼ Cx for all x 2 R , where C :¼ hð1Þ.]

Inverse Functions

We shall now consider the existence of inverses for functions that are continuous on an

interval I � R . We recall (see Section 1.1) that a function f : I ! R has an inverse function

if and only if f is injective (¼ one-one); that is, x; y 2 I and x 6¼ y imply that f ðxÞ 6¼ f ðyÞ.
We note that a strictly monotone function is injective and so has an inverse. In the next

theorem, we show that if f : I ! R is a strictly monotone continuous function, then f

has an inverse function g on J :¼ f ðIÞ that is strictly monotone and continuous on J. In

particular, if f is strictly increasing then so is g, and if f is strictly decreasing then so is g.

5.6.5 Continuous Inverse Theorem Let I � R be an interval and let f : I ! R be

strictly monotone and continuous on I. Then the function g inverse to f is strictly monotone

and continuous on J :¼ f ðIÞ.
Proof. We consider the case that f is strictly increasing, leaving the case that f is strictly

decreasing to the reader.

Since f is continuous and I is an interval, it follows from the Preservation of Intervals

Theorem 5.3.10 that J :¼ f ðIÞ is an interval. Moreover, since f is strictly increasing on I, it

is injective on I; therefore the function g : J ! R inverse to f exists. We claim that g is

Figure 5.6.2 jf ðx1Þ þ � � � þ jf ðxnÞ � f ðbÞ � f ðaÞ
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strictly increasing. Indeed, if y1; y2 2 J with y1 < y2, then y1 ¼ f ðx1Þ and y2 ¼ f ðx2Þ for
some x1; x2 2 I. We must have x1 < x2; otherwise x1 � x2, which implies that

y1 ¼ f ðx1Þ � f ðx2Þ ¼ y2, contrary to the hypothesis that y1 < y2. Therefore we have

gðy1Þ ¼ x1 < x2 ¼ gðy2Þ. Since y1 and y2 are arbitrary elements of J with y1 < y2, we

conclude that g is strictly increasing on J.

It remains to show that g is continuous on J. However, this is a consequence of the fact

that gðJÞ ¼ I is an interval. Indeed, if g is discontinuous at a point c 2 J, then the jump of g

at c is nonzero so that lim
y!c� g < lim

y!cþ g. If we choose any number x 6¼ gðcÞ satisfying

lim
x!c� g < x < lim

x!cþ g, then x has the property that x 6¼ gðyÞ for any y 2 J. (See

Figure 5.6.3.) Hence x =2 I, which contradicts the fact that I is an interval. Therefore
we conclude that g is continuous on J. Q.E.D.

The nth Root Function

Wewill apply the Continuous Inverse Theorem 5.6.5 to the nth power function. We need to

distinguish two cases: (i) n even, and (ii) n odd.

(i) n even. In order to obtain a function that is strictly monotone, we restrict our

attention to the interval I :¼ ½0;1Þ. Thus, let f ðxÞ :¼ xn for x 2 I. (See Figure 5.6.4.) We

have seen (in Exercise 2.1.23) that if 0 � x < y, then f ðxÞ ¼ xn < yn ¼ f ðyÞ; therefore f is
strictly increasing on I. Moreover, it follows from Example 5.2.3(a) that f is continuous on

I. Therefore, by the Preservation of Intervals Theorem 5.3.10, J :¼ f ðIÞ is an interval.

We will show that J ¼ ½0;1Þ. Let y � 0 be arbitrary; by the Archimedean Property, there

exists k 2 N such that 0 � y < k. Since

f ð0Þ ¼ 0 � y < k � kn ¼ f ðkÞ;
it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that y 2 J. Since y � 0 is

arbitrary, we deduce that J ¼ ½0;1Þ.
We conclude from the Continuous Inverse Theorem 5.6.5 that the function g that is

inverse to f ðxÞ ¼ xn on I ¼ ½0;1Þ is strictly increasing and continuous on J ¼ ½0;1Þ. We

usually write

gðxÞ ¼ x1=n or gðxÞ ¼ ffiffiffi
xn

p

Figure 5.6.3 gðyÞ 6¼ x for y 2 J
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for x � 0 (n even), and call x1=n ¼ ffiffiffi
xn

p
the nth root of x � 0 (n even). The function g is

called the nth root function (n even). (See Figure 5.6.5.)

Since g is inverse to f we have

g f ðxÞð Þ ¼ x and f gðxÞð Þ ¼ x for all x 2 ½0;1Þ:
We can write these equations in the following form:

ðxnÞ1=n ¼ x and ðx1=nÞn ¼ x

for all x 2 ½0;1Þ and n even.

(ii) n odd. In this case we let FðxÞ :¼ xn for all x 2 R ; by 5.2.3(a), F is continuous

on R . We leave it to the reader to show that F is strictly increasing on R and that FðRÞ ¼ R .

(See Figure 5.6.6.)

It follows from the Continuous Inverse Theorem 5.6.5 that the function G that is

inverse to FðxÞ ¼ xn for x 2 R, is strictly increasing and continuous on R . We usually

write

GðxÞ ¼ x1=n or GðxÞ ¼ ffiffiffi
xn

p
for x 2 R ; n odd;

and call x1=n the nth root of x 2 R . The functionG is called the nth root function (n odd).

(See Figure 5.6.7.) Here we have

xnð Þ1=n ¼ x and x1=n
� 	n ¼ x

for all x 2 R and n odd.

Figure 5.6.4 Graph of

f ðxÞ ¼ xn ðx � 0; n evenÞ
Figure 5.6.5 Graph of

gðxÞ ¼ x1=n ðx � 0; n evenÞ

Figure 5.6.6 Graph of

F(x) ¼ xn (x 2 R , n odd)

Figure 5.6.7 Graph of

G(x) ¼ x1=n (x 2 R , n odd)
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Rational Powers

Now that the nth root functions have been defined for n 2 N, it is easy to define rational

powers.

5.6.6 Definition (i) If m, n 2 N and x � 0, we define xm=n :¼ x1=n
� 	m

.

(ii) If m, n 2 N and x > 0, we define x�m=n :¼ x1=n
� 	�m

.

Hencewe have defined xrwhen r is a rational number and x> 0. The graphs of x 7! xr

depend on whether r > 1, r ¼ 1, 0 < r < 1, r ¼ 0, or r < 0. (See Figure 5.6.8.) Since a

rational number r 2 Q can be written in the form r ¼ m=n with m 2 Z, n 2 N , in many

ways, it should be shown that Definition 5.6.6 is not ambiguous. That is, if r¼ m=n¼ p=q
withm, p 2 Z and n, q 2 N and if x> 0, then x1=n

� 	m ¼ x1=q
� 	p

. We leave it as an exercise

to the reader to establish this relation.

5.6.7 Theorem If m 2 Z, n 2 N , and x > 0, then xm=n ¼ xmð Þ1=n.

Proof. If x> 0 andm, n 2 Z, then (xm)n¼ xmn¼ (xn)m. Now let y :¼ xm=n ¼ x1=n
� 	m

> 0

so that yn ¼ x1=n
� 	m� 	n¼ x1=n

� 	n� 	m¼ xm. Therefore it follows that y ¼ xmð Þ1=n.
Q.E.D.

The reader should also show, as an exercise, that if x > 0 and r, s 2 Q , then

xrxs ¼ xrþs ¼ xsxr and xrð Þs ¼ xrs ¼ xsð Þr:

Figure 5.6.8 Graphs of x ! xr x � 0ð Þ
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Exercises for Section 5.6

1. If I :¼ [a, b] is an interval and f : I ! R is an increasing function, then the point a [respectively,

b] is an absolute minimum [respectively, maximum] point for f on I. If f is strictly increasing,

then a is the only absolute minimum point for f on I.

2. If f and g are increasing functions on an interval I � R , show that fþ g is an increasing function

on I. If f is also strictly increasing on I, then f þ g is strictly increasing on I.

3. Show that both f (x) :¼ x and g(x) :¼ x � 1 are strictly increasing on I :¼ [0, 1], but that their

product f g is not increasing on I.

4. Show that if f and g are positive increasing functions on an interval I, then their product fg is

increasing on I.

5. Show that if I :¼ [a, b] and f : I ! R is increasing on I, then f is continuous at a if and only if

f (a) ¼ inf{ f (x) : x 2 (a, b]}.

6. Let I � R be an interval and let f : I ! R be increasing on I. Suppose that c 2 I is not an

endpoint of I. Show that f is continuous at c if and only if there exists a sequence (xn) in I such

that xn < c for n ¼ 1, 3, 5, . . . ; xn > c for n ¼ 2, 4, 6, . . . ; and such that c ¼ lim(xn) and

f (c) ¼ lim ( f (xn)).

7. Let I � R be an interval and let f : I ! R be increasing on I. If c is not an endpoint of I,

show that the jump jf (c) of f at c is given by inf{ f (y) � f (x) : x < c < y, x, y 2 I}.

8. Let f, g be strictly increasing on an interval I � R and let f (x) > g(x) for all x 2 I. If

y 2 f Ið Þ \ g Ið Þ, show that f�1 yð Þ < g�1 yð Þ. [Hint: First interpret this statement geometrically.]

9. Let I :¼ [0, 1] and let f : I ! R be defined by f (x) :¼ x for x rational, and f (x) :¼ 1 � x for x

irrational. Show that f is injective on I and that f ( f (x)) ¼ x for all x 2 I. (Hence f is its own

inverse function!) Show that f is continuous only at the point x ¼ 1
2
.

10. Let I :¼ [a, b] and let f : I ! R be continuous on I. If f has an absolute maximum [respectively,

minimum] at an interior point c of I, show that f is not injective on I.

11. Let f (x) :¼ x for x 2 [0, 1], and f (x) :¼ 1 þ x for x 2 (1, 2]. Show that f and f�1 are strictly

increasing. Are f and f�1 continuous at every point?

12. Let f : 0; 1½ � ! R be a continuous function that does not take on any of its values twice and with

f (0) < f (1). Show that f is strictly increasing on [0, 1].

13. Let h : 0; 1½ � ! R be a function that takes on each of its values exactly twice. Show that h

cannot be continuous at every point. [Hint: If c1 < c2 are the points where h attains its

supremum, show that c1 ¼ 0, c2 ¼ 1. Now examine the points where h attains its infimum.]

14. Let x 2 R , x > 0. Show that if m, p 2 Z, n, q 2 N , and mq ¼ np, then x1=n
� 	m ¼ x1=q

� 	p
.

15. If x 2 R , x > 0, and if r, s 2 Q , show that xrxs ¼ xrþs ¼ xsxr and xrð Þs ¼ xrs ¼ xsð Þr.
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CHAPTER 6

DIFFERENTIATION

Prior to the seventeenth century, a curve was generally described as a locus of points

satisfying some geometric condition, and tangent lines were obtained through geometric

construction. This viewpoint changed dramatically with the creation of analytic geometry in

the 1630s by Ren�e Descartes (1596–1650) and Pierre de Fermat (1601–1665). In this new

setting geometric problems were recast in terms of algebraic expressions, and new classes of

curves were defined by algebraic rather than geometric conditions. The concept of derivative

evolved in this newcontext. The problemof finding tangent lines and the seemingly unrelated

problem of finding maximum or minimum values were first seen to have a connection by

Fermat in the 1630s. And the relation between tangent lines to curves and the velocity of a

moving particle was discovered in the late 1660s by Isaac Newton. Newton’s theory of

‘‘fluxions,’’ which was based on an intuitive idea of limit, would be familiar to any modern

student of differential calculus once some changes in terminology and notation were made.

But the vital observation, made by Newton and, independently, by Gottfried Leibniz in the

1680s, was that areas under curves could be calculated by reversing the differentiation

process.This exciting technique, one that solved previously difficult area problemswith ease,

sparked enormous interest among the mathematicians of the era and led to a coherent theory

that became known as the differential and integral calculus.

Isaac Newton
Isaac Newton (1642–1727) was born in Woolsthorpe, in Lincolnshire,

England, on Christmas Day; his father, a farmer, had died three months

earlier. His mother remarried when he was three years old and he was sent

to live with his grandmother. He returned to his mother at age eleven, only

to be sent to boarding school in Grantham the next year. Fortunately, a

perceptive teacher noticed his mathematical talent and, in 1661, Newton

entered Trinity College at Cambridge University, where he studied with

Isaac Barrow.

When the bubonic plague struck in 1665–1666, leaving dead nearly

70,000 persons in London, the university closed and Newton spent two

years back inWoolsthorpe. It was during this period that he formulated his

basic ideas concerning optics, gravitation, and his method of ‘‘fluxions,’’ later called ‘‘calculus.’’

He returned to Cambridge in 1667 and was appointed Lucasian Professor in 1669. His theories of

universal gravitation and planetary motion were published toworld acclaim in 1687 under the title

Philosophies Naturalis Principia Mathematica. However, he neglected to publish his method of

inverse tangents for finding areas and other work in calculus, and this led to a controversy over

priority with Leibniz.

Following an illness, he retired from Cambridge University and in 1696 was appointed

Warden of the British mint. However, he maintained contact with advances in science and

mathematics and served as President of the Royal Society from 1703 until his death in 1727. At

his funeral, Newton was eulogized as ‘‘the greatest genius that ever existed.’’ His place of burial in

Westminster Abbey is a popular tourist site.
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In this chapter we will develop the theory of differentiation. Integration theory,

including the fundamental theorem that relates differentiation and integration, will be the

subject of the next chapter. We will assume that the reader is already familiar with the

geometrical and physical interpretations of the derivative of a function as described in

introductory calculus courses. Consequently, we will concentrate on the mathematical

aspects of the derivative and not go into its applications in geometry, physics, economics,

and so on.

The first section is devoted to a presentation of the basic results concerning the

differentiation of functions. In Section 6.2 we discuss the fundamental Mean Value

Theorem and some of its applications. In Section 6.3 the important L’Hospital Rules

are presented for the calculation of certain types of ‘‘indeterminate’’ limits.

In Section 6.4 we give a brief discussion of Taylor’s Theorem and a few of its

applications—for example, to convex functions and to Newton’s Method for the location

of roots.

Section 6.1 The Derivative

In this section we will present some of the elementary properties of the derivative. We

begin with the definition of the derivative of a function.

6.1.1 Definition Let I � R be an interval, let f : I ! R , and let c 2 I. We say that a real

number L is the derivative of f at c if given any e > 0 there exists d eð Þ > 0 such that if x 2 I

satisfies 0 < x� cj j < d eð Þ, then

ð1Þ f xð Þ � f cð Þ
x� c

� L

����
���� < e:

In this case we say that f is differentiable at c, and we write f 0 cð Þ for L.
In other words, the derivative of f at c is given by the limit

ð2Þ f 0 cð Þ ¼ lim
x!c

f xð Þ � f cð Þ
x� c

provided this limit exists. (We allow the possibility that c may be the endpoint of the

interval.)

Note It is possible to define the derivative of a function having a domain more general

than an interval (since the point c need only be an element of the domain and also a cluster

point of the domain) but the significance of the concept is most naturally apparent for

functions defined on intervals. Consequently we shall limit our attention to such functions.

Whenever the derivative of f : I ! R exists at a point c 2 I, its value is denoted by

f 0 cð Þ. In this way we obtain a function f 0 whose domain is a subset of the domain of f. In

working with the function f 0, it is convenient to regard it also as a function of x. For

example, if f xð Þ :¼ x2 for x 2 R, then at any c in R we have

f 0 cð Þ ¼ lim
x!c

f xð Þ � f cð Þ
x� c

¼ lim
x!c

x2 � c2

x� c
¼ lim

x!c
xþ cð Þ ¼ 2c:

Thus, in this case, the function f 0 is defined on all of R and f 0 xð Þ ¼ 2x for x 2 R .
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We now show that continuity of f at a point c is a necessary (but not sufficient)

condition for the existence of the derivative at c.

6.1.2 Theorem If f : I ! R has a derivative at c 2 I, then f is continuous at c.

Proof. For all x 2 I; x 6¼ c, we have

f xð Þ � f cð Þ ¼ f xð Þ � f cð Þ
x� c

� �
x� cð Þ:

Since f 0 cð Þ exists, we may apply Theorem 4.2.4 concerning the limit of a product to

conclude that

lim
x!c

f xð Þ � f cð Þð Þ ¼ lim
x!c

f xð Þ � f cð Þ
x� c

� �
lim
x!c

x� cð Þ
� �

¼ f 0 cð Þ � 0 ¼ 0:

Therefore, lim
x!c

f xð Þ ¼ f cð Þ so that f is continuous at c. Q.E.D.

The continuity of f : I ! R at a point does not assure the existence of the derivative at

that point. For example, if f xð Þ :¼ xj j for x 2 R, then for x 6¼ 0 we have

f xð Þ � f 0ð Þð Þ= x� 0ð Þ ¼ xj j=x, which is equal to 1 if x > 0, and equal to �1 if x < 0.

Thus the limit at 0 does not exist [see Example 4.1.10(b)], and therefore the function is not

differentiable at 0. Hence, continuity at a point c is not a sufficient condition for the

derivative to exist at c.

Remark By taking simple algebraic combinations of functions of the form x 7! x� cj j,
it is not difficult to construct continuous functions that do not have a derivative at a finite (or

even a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical

world by giving an example of a function that is continuous at every point but whose

derivative does not exist anywhere. Such a function defied geometric intuition about

curves and tangent lines, and consequently spurred much deeper investigations into the

concepts of real analysis. It can be shown that the function f defined by the series

f xð Þ :¼
X1
n¼0

1

2n
cos 3nxð Þ

has the stated property. A very interesting historical discussion of this and other examples

of continuous, nondifferentiable functions is given in Kline, pp. 955–966, and also in

Hawkins, pp. 44–46. A detailed proof for a slightly different example can be found in

Appendix E.

There are a number of basic properties of the derivative that are very useful in the

calculation of the derivatives of various combinations of functions. We now provide the

justification of some of these properties, which will be familiar to the reader from earlier

courses.

6.1.3 Theorem Let I � R be an interval, let c 2 I, and let f : I ! R and g : I ! R be

functions that are differentiable at c. Then:

(a) If a 2 R , then the function a f is differentiable at c, and

ð3Þ a fð Þ0 cð Þ ¼ a f 0 cð Þ:
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(b) The function f þ g is differentiable at c, and

ð4Þ f þ gð Þ0 cð Þ ¼ f 0 cð Þ þ g0 cð Þ:
(c) (Product Rule) The function fg is differentiable at c, and

ð5Þ f gð Þ0 cð Þ ¼ f 0 cð Þg cð Þ þ f cð Þg0 cð Þ:
(d) (Quotient Rule) If g cð Þ 6¼ 0, then the function f=g is differentiable at c, and

ð6Þ f

g

� �0
ðcÞ ¼ f 0 cð Þg cð Þ � f cð Þg0 cð Þ

g cð Þð Þ2 :

Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader.

(c) Let p :¼ f g; then for x 2 I; x 6¼ c, we have

p xð Þ � p cð Þ
x� c

¼ f xð Þg xð Þ � f cð Þg cð Þ
x� c

¼ f xð Þg xð Þ � f cð Þg xð Þ þ f cð Þg xð Þ � f cð Þg cð Þ
x� c

¼ f xð Þ � f cð Þ
x� c

� g xð Þ þ f cð Þ � g xð Þ � g cð Þ
x� c

:

Since g is continuous at c, by Theorem 6.1.2, then lim
x!c

g xð Þ ¼ g cð Þ. Since f and g are

differentiable at c, we deduce from Theorem 4.2.4 on properties of limits that

lim
x!c

p xð Þ � p cð Þ
x� c

¼ f 0 cð Þg cð Þ þ f cð Þg0 cð Þ:
Hence p :¼ f g is differentiable at c and (5) holds.

(d) Let q :¼ f=g. Since g is differentiable at c, it is continuous at that point (by

Theorem 6.1.2). Therefore, since g cð Þ 6¼ 0, we know fromTheorem 4.2.9 that there exists an

interval J � I with c 2 J such that g xð Þ 6¼ 0 for all x 2 J. For x 2 J; x 6¼ c, we have

q xð Þ � q cð Þ
x� c

¼ f xð Þ=g xð Þ � f cð Þ=g cð Þ
x� c

¼ f xð Þg cð Þ � f cð Þg xð Þ
g xð Þg cð Þ x� cð Þ

¼ f xð Þg cð Þ � f cð Þg cð Þ þ f cð Þg cð Þ � f cð Þg xð Þ
g xð Þg cð Þ x� cð Þ

¼ 1

g xð Þg cð Þ
f xð Þ � f cð Þ

x� c
� g cð Þ � f cð Þ � g xð Þ � g cð Þ

x� c

� �
:

Using the continuity of g at c and the differentiability of f and g at c, we get

q0 cð Þ ¼ lim
x!c

q xð Þ � q cð Þ
x� c

¼ f 0 cð Þg cð Þ � f cð Þg0 cð Þ
g cð Þð Þ2 :

Thus, q ¼ f=g is differentiable at c and equation (6) holds. Q.E.D.

Mathematical Induction may be used to obtain the following extensions of the

differentiation rules.

6.1.4 Corollary If f 1; f 2; . . . ; f n are functions on an interval I to R that are differen-

tiable at c 2 I, then:

(a) The function f 1 þ f 2 þ � � � þ f n is differentiable at c and

ð7Þ f 1 þ f 2 þ � � � þ f nð Þ0 cð Þ ¼ f 01 cð Þ þ f 02 cð Þ þ � � � þ f 0n cð Þ:
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(b) The function f 1 f 2 � � � f n is differentiable at c, and

ð8Þ f 1 f 2 � � � f nð Þ0 cð Þ ¼ f 01 cð Þ f 2 cð Þ � � � f n cð Þ þ f 1 cð Þ f 02 cð Þ � � � f n cð Þ
þ � � � þ f 1 cð Þ f 2 cð Þ � � � f 0n cð Þ:

An important special case of the extended product rule (8) occurs if the functions are

equal, that is, f 1 ¼ f 2 ¼ � � � ¼ f n ¼ f . Then (8) becomes

ð9Þ f nð Þ0 cð Þ ¼ n f cð Þð Þn�1
f 0 cð Þ:

In particular, if we take f xð Þ :¼ x, then we find the derivative of g xð Þ :¼ xn to be

g0 xð Þ ¼ nxn�1; n 2 N . The formula is extended to include negative integers by applying

the Quotient Rule 6.1.3(d).

Notation If I � R is an interval and f : I ! R , we have introduced the notation f 0 to
denote the functionwhose domain is a subset of I andwhosevalue at a point c is the derivative

f 0 cð Þ of f at c. There are other notations that are sometimes used for f 0; for example, one

sometimes writes Df for f 0. Thus one can write formulas (4) and (5) in the form:

D f þ gð Þ ¼ Df þ Dg; D fgð Þ ¼ Dfð Þ � gþ f � Dgð Þ:
When x is the ‘‘independent variable,’’ it is common practice in elementary courses towrite

df=dx for f 0. Thus formula (5) is sometimes written in the form

d

dx
f xð Þg xð Þð Þ ¼ df

dx
xð Þ

� �
g xð Þ þ f xð Þ dg

dx
xð Þ

� �
:

This last notation, due to Leibniz, has certain advantages. However, it also has certain

disadvantages and must be used with some care.

The Chain Rule

We now turn to the theorem on the differentiation of composite functions known as the

‘‘Chain Rule.’’ It provides a formula for finding the derivative of a composite function

g � f in terms of the derivatives of g and f.

We first establish the following theorem concerning the derivative of a function at a

point that gives us a very nice method for proving the Chain Rule. It will also be used to

derive the formula for differentiating inverse functions.

6.1.5 Carath�eodory’s Theorem Let f be defined on an interval I containing the point c.

Then f is differentiable at c if and only if there exists a function w on I that is continuous at

c and satisfies

ð10Þ f xð Þ � f cð Þ ¼ w xð Þ x� cð Þ f or x 2 I:

In this case, we have w cð Þ ¼ f 0 cð Þ.

Proof. )ð Þ If f 0 cð Þ exists, we can define w by

w xð Þ :¼
f xð Þ � f cð Þ

x� c
for x 6¼ c; x 2 I;

f 0 cð Þ for x ¼ c:

8<
:

The continuity of w follows from the fact that lim
x!c

w xð Þ ¼ f 0 cð Þ. If x ¼ c, then both sides of

(10) equal 0,while ifx 6¼ c, thenmultiplication ofw xð Þ byx� c gives (10) for all otherx 2 I.
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(ð Þ Now assume that a function w that is continuous at c and satisfying (10) exists. If

we divide (10) by x� c 6¼ 0, then the continuity of w implies that

w cð Þ ¼ lim
x!c

w xð Þ ¼ lim
x!c

f xð Þ � f cð Þ
x� c

exists. Therefore f is differentiable at c and f 0 cð Þ ¼ w cð Þ. Q.E.D.

To illustrate Carath�eodory’s Theorem, we consider the function f defined by f xð Þ :¼ x3

for x 2 R. For c 2 R, we see from the factorization

x3 � c3 ¼ x2 þ cxþ c2
	 


x� cð Þ
that w xð Þ :¼ x2 þ cxþ c2 satisfies the conditions of the theorem. Therefore, we conclude

that f is differentiable at c 2 R and that f 0 cð Þ ¼ w cð Þ ¼ 3c2.

Wewill now establish the Chain Rule. If f is differentiable at c and g is differentiable at

f (c), then the Chain Rule states that the derivative of the composite function g � f at c is the

product g � fð Þ0 cð Þ ¼ g0 f cð Þð Þ � f 0 cð Þ. Note that this can be written as

g � fð Þ0 ¼ g0 � fð Þ � f 0:
One approach to the Chain Rule is the observation that the difference quotient can be

written, when f xð Þ 6¼ f cð Þ, as the product

g f xð Þð Þ � g f cð Þð Þ
x� c

¼ g f xð Þð Þ � g f cð Þð Þ
f xð Þ � f cð Þ � f xð Þ � f cð Þ

x� c
:

This suggests the correct limiting value. Unfortunately, the first factor in the product on the

right is undefined if the denominator f xð Þ � f cð Þ equals 0 for values of x near c, and this

presents a problem. However, the use of Carath�eodory’s Theorem neatly avoids this

difficulty.

6.1.6 Chain Rule Let I, J be intervals in R , let g : I ! R and f : J ! R be functions

such that f Jð Þ � I, and let c 2 J. If f is differentiable at c and if g is differentiable at f (c),

then the composite function g � f is differentiable at c and

ð11Þ g � fð Þ0 cð Þ ¼ g0 f cð Þð Þ � f 0 cð Þ:

Proof. Since f 0 cð Þ exists, Carath�eodory’s Theorem 6.1.5 implies that there exists a

function w on J such that w is continuous at c and f xð Þ � f cð Þ ¼ w xð Þ x� cð Þ for

x 2 J, and where w cð Þ ¼ f 0 cð Þ. Also, since g0 f cð Þð Þ exists, there is a function c defined

on I such thatc is continuous at d :¼ f cð Þ and g yð Þ � g dð Þ ¼ c yð Þ y� dð Þ for y 2 I, where

c dð Þ ¼ g0 dð Þ. Substitution of y ¼ f xð Þ and d ¼ f cð Þ then produces

g f xð Þð Þ � g f cð Þð Þ ¼ c f xð Þð Þ f xð Þ � f cð Þð Þ ¼ c � f xð Þð Þ � w xð Þ½ � x� cð Þ
for all x 2 J such that f xð Þ 2 I. Since the function c � fð Þ � w is continuous at c and its

value at c is g0 f cð Þð Þ � f 0 cð Þ, Carath�eodory’s Theorem gives (11). Q.E.D.

If g is differentiable on I, if f is differentiable on J, and if f Jð Þ � I, then it follows from

the Chain Rule that g � fð Þ0 ¼ g0 � fð Þ � f 0, which can also be written in the form

D g � fð Þ ¼ Dg � fð Þ � Df .
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6.1.7 Examples (a) If f : I ! R is differentiable on I and g yð Þ :¼ yn for y 2 R and

n 2 N , then since g0 yð Þ ¼ nyn�1, it follows from the Chain Rule 6.1.6 that

g � fð Þ0 xð Þ ¼ g0 f xð Þð Þ � f 0 xð Þ for x 2 I:

Therefore we have f nð Þ0 xð Þ ¼ n f xð Þð Þn�1
f 0 xð Þ for all x 2 I as was seen in (9).

(b) Suppose that f : I ! R is differentiable on I and that f xð Þ 6¼ 0 and f 0 xð Þ 6¼ 0 for x 2 I.

If h yð Þ :¼ 1=y for y 6¼ 0, then it is an exercise to show that h0 yð Þ ¼ �1=y2 for y 2 R ; y 6¼ 0.

Therefore we have

1

f

� �0
xð Þ ¼ h � fð Þ0 xð Þ ¼ h0 f xð Þð Þ f 0 xð Þ ¼ � f 0 xð Þ

f xð Þð Þ2 for x 2 I:

(c) The absolute value function g xð Þ :¼ xj j is differentiable at all x 6¼ 0 and has derivative

g0 xð Þ ¼ sgn xð Þ for x 6¼ 0. (The signum function is defined in Example 4.1.10(b).) Though

sgn is defined everywhere, it is not equal to g0 at x ¼ 0 since g0 0ð Þ does not exist.
Now if f is a differentiable function, then the Chain Rule implies that the function

g � f ¼ j f j is also differentiable at all points x where f xð Þ 6¼ 0, and its derivative is

given by

j f j0 xð Þ ¼ sgn f xð Þð Þ � f 0 xð Þ ¼ f 0 xð Þ if f xð Þ > 0;

�f 0 xð Þ if f xð Þ < 0:

�

If f is differentiable at a point c with f cð Þ ¼ 0, then it is an exercise to show that fj j is
differentiable at c if and only if f 0 cð Þ ¼ 0. (See Exercise 7.)

For example, if f xð Þ :¼ x2 � 1 for x 2 R, then the derivative of its absolute value

fj j xð Þ ¼ x2 � 1
�� �� is equal to fj j0 xð Þ ¼ sgn x2 � 1ð Þ � 2xð Þ for x 6¼ 1; �1. See Figure 6.1.1

for a graph of fj j.

(d) It will be proved later that if S xð Þ :¼ sin x and C xð Þ :¼ cos x for all x 2 R , then

S0 xð Þ ¼ cos x ¼ C xð Þ and C0 xð Þ ¼ �sin x ¼ �S xð Þ
for all x 2 R . If we use these facts together with the definitions

tan x :¼ sin x

cos x
; sec x :¼ 1

cos x
;

Figure 6.1.1 The function fj j xð Þ ¼ x2 � 1
�� ��.
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for x 6¼ 2k þ 1ð Þp=2; k 2 Z , and apply the Quotient Rule 6.1.3(d), we obtain

D tan x ¼ cos xð Þ cos xð Þ � sinxð Þ �sin xð Þ
cos xð Þ2 ¼ sec xð Þ2;

D sec x ¼ 0� 1 �sin xð Þ
cos xð Þ2 ¼ sin x

cos xð Þ2 ¼ sec xð Þ tan xð Þ

for x 6¼ 2k þ 1ð Þp=2; k 2 Z .

Similarly, since

cot x :¼ cos x

sin x
; csc x :¼ 1

sin x

for x 6¼ kp; k 2 Z , then we obtain

D cot x ¼ � csc xð Þ2 and D csc x ¼ � csc xð Þ cot xð Þ
for x 6¼ kp; k 2 Z .

(e) Suppose that f is defined by

f xð Þ :¼ x2sin 1=xð Þ for x 6¼ 0;
0 for x ¼ 0:

�

If we use the fact thatD sin x ¼ cos x for all x 2 R and apply the Product Rule 6.1.3(c) and

the Chain Rule 6.1.6, we obtain (why?)

f 0 xð Þ ¼ 2x sin 1=xð Þ � cos 1=xð Þ for x 6¼ 0:

If x ¼ 0, none of the calculational rules may be applied. (Why?) Consequently, the

derivative of f at x ¼ 0 must be found by applying the definition of derivative. We find that

f 0 0ð Þ ¼ lim
x!0

f xð Þ � f 0ð Þ
x� 0

¼ lim
x!0

x2sin 1=xð Þ
x

¼ lim
x!0

x sin 1=xð Þ ¼ 0:

Hence, the derivative f 0 of f exists at all x 2 R . However, the function f 0 does not have a
limit at x ¼ 0 (why?), and consequently f 0 is discontinuous at x ¼ 0. Thus, a function f that

is differentiable at every point of R need not have a continuous derivative f 0. &

Inverse Functions

Wewill now relate the derivative of a function to the derivative of its inverse function, when

this inverse function exists. We will limit our attention to a continuous strictly monotone

function and use the Continuous Inverse Theorem 5.6.5 to ensure the existence of a

continuous inverse function.

If f is a continuous strictly monotone function on an interval I, then its inverse function

g ¼ f�1 is defined on the interval J :¼ f Ið Þ and satisfies the relation

g
	
f xð Þ
 ¼ x for x 2 I:

If c 2 I and d :¼ f cð Þ, and if we knew that both f 0 cð Þ and g0 dð Þ exist, then we could

differentiate both sides of the equation and apply the Chain Rule to the left side to get

g0
	
f cð Þ
 � f 0 cð Þ ¼ 1. Thus, if f 0 cð Þ 6¼ 0, we would obtain

g0 dð Þ ¼ 1

f 0 cð Þ :

168 CHAPTER 6 DIFFERENTIATION



C06 12/09/2010 14:53:58 Page 169

However, it is necessary to deduce the differentiability of the inverse function g from the

assumed differentiability of f before such a calculation can be performed. This is nicely

accomplished by using Carath�eodory’s Theorem.

6.1.8 Theorem Let I be an interval in R and let f : I ! R be strictly monotone and

continuous on I. Let J :¼ f Ið Þ and let g : J ! R be the strictly monotone and continuous

function inverse to f. If f is differentiable at c 2 I and f 0 cð Þ 6¼ 0, then g is differentiable at

d :¼ f cð Þ and

ð12Þ g0 dð Þ ¼ 1

f 0 cð Þ ¼
1

f 0 g dð Þð Þ :

Proof. Given c 2 R , we obtain from Carath�eodory’s Theorem 6.1.5 a function w on Iwith

properties that w is continuous at c; f xð Þ � f cð Þ ¼ w xð Þ x� cð Þ for x 2 I, and w cð Þ ¼ f 0 cð Þ.
Since w cð Þ 6¼ 0 by hypothesis, there exists a neighborhood V :¼ c� d; cþ dð Þ such that

w xð Þ 6¼ 0 for all x 2 V \ I. (See Theorem 4.2.9.) If U :¼ f V \ Ið Þ, then the inverse

function g satisfies f g yð Þð Þ ¼ y for all y 2 U, so that

y� d ¼ f g yð Þð Þ � f cð Þ ¼ w g yð Þð Þ � g yð Þ � g dð Þð Þ:
Since w g yð Þð Þ 6¼ 0 for y 2 U, we can divide to get

g yð Þ � g dð Þ ¼ 1

w g yð Þð Þ � y� dð Þ:

Since the function 1= w � gð Þ is continuous at d, we apply Theorem 6.1.5 to conclude that

g0 dð Þ exists and g0 dð Þ ¼ 1=w g dð Þð Þ ¼ 1=w cð Þ ¼ 1=f 0 cð Þ: Q.E.D.

Note The hypothesis, made in Theorem 6.1.8, that f 0 cð Þ 6¼ 0 is essential. In fact, if

f 0 cð Þ ¼ 0, then the inverse function g is never differentiable at d ¼ f cð Þ, since the assumed

existence of g0 dð Þ would lead to 1 ¼ f 0 cð Þg0 dð Þ ¼ 0, which is impossible. The function

f xð Þ :¼ x3 with c ¼ 0 is such an example.

6.1.9 Theorem Let I be an interval and let f : I ! R be strictly monotone on I. Let

J :¼ f Ið Þ and let g : J ! R be the function inverse to f. If f is differentiable on I and

f 0 xð Þ 6¼ 0 for x 2 I, then g is differentiable on J and

ð13Þ g0 ¼ 1

f 0 � g
:

Proof. If f is differentiable on I, then Theorem 6.1.2 implies that f is continuous on I, and

by the Continuous Inverse Theorem 5.6.5, the inverse function g is continuous on J.

Equation (13) now follows from Theorem 6.1.8. Q.E.D.

Remark If f and g are the functions of Theorem 6.1.9, and if x 2 I and y 2 J are related

by y ¼ f xð Þ and x ¼ g yð Þ, then equation (13) can be written in the form

g0 yð Þ ¼ 1

f 0 � gð Þ yð Þ ; y 2 J; or g0 � fð Þ xð Þ ¼ 1

f 0 xð Þ ; x 2 I:

It can also be written in the form g0 yð Þ ¼ 1=f 0 xð Þ, provided that it is kept in mind that x and

y are related by y ¼ f xð Þ and x ¼ g yð Þ.
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6.1.10 Examples (a) The function f : R ! R defined by f xð Þ :¼ x5 þ 4xþ 3 is con-

tinuous and strictly monotone increasing (since it is the sum of two strictly increasing

functions). Moreover, f 0 xð Þ ¼ 5x4 þ 4 is never zero. Therefore, by Theorem 6.1.8, the

inverse function g ¼ f�1 is differentiable at every point. If we take c ¼ 1, then since

f 1ð Þ ¼ 8, we obtain g0 8ð Þ ¼ g0 f 1ð Þð Þ ¼ 1=f 0 1ð Þ ¼ 1=9.

(b) Let n 2 N be even, let I :¼ ½0;1Þ, and let f xð Þ :¼ xn for x 2 I. It was seen at the end

of Section 5.6 that f is strictly increasing and continuous on I, so that its inverse function

g yð Þ :¼ y1=n for y 2 J :¼ ½0;1Þ is also strictly increasing and continuous on J. Moreover,

we have f 0 xð Þ ¼ nxn�1 for all x 2 I. Hence it follows that if y > 0, then g0 yð Þ exists and

g0 yð Þ ¼ 1

f 0 g yð Þð Þ ¼
1

n g yð Þð Þn�1
¼ 1

ny n�1ð Þ=n :

Hence we deduce that

g0 yð Þ ¼ 1

n
y 1=nð Þ�1 for y > 0:

However, g is not differentiable at 0. (For a graph of f and g, see Figures 5.6.4 and 5.6.5.)

(c) Let n 2 N , n 6¼ 1, be odd, let F xð Þ :¼ xn for x 2 R , and let G yð Þ :¼ y1=n be its inverse

function defined for all y 2 R . As in part (b) we find that G is differentiable for y 6¼ 0 and

thatG0 yð Þ ¼ 1=nð Þy 1=nð Þ�1 for y 6¼ 0. However,G is not differentiable at 0, even thoughG is

differentiable for all y 6¼ 0. (For a graph of F and G, see Figures 5.6.6 and 5.6.7.)

(d) Let r :¼ m=n be a positive rational number, let I :¼ ½0;1Þ, and let R xð Þ :¼ xr for

x 2 I. (Recall Definition 5.6.6.) Then R is the composition of the functions f xð Þ :¼ xm and

g xð Þ :¼ x1=n; x 2 I. That is, R xð Þ ¼ f g xð Þð Þ for x 2 I. If we apply the Chain Rule 6.1.6

and the results of (b) [or (c), depending on whether n is even or odd], then we obtain

R0 xð Þ ¼ f 0 g xð Þð Þg0 xð Þ ¼ m x1=n
	 
m�1 � 1

n
x 1=nð Þ�1

¼ m

n
x m=nð Þ�1 ¼ rxr�1

for all x > 0. If r > 1, then it is an exercise to show that the derivative also exists at x ¼ 0

and R0 0ð Þ ¼ 0. (For a graph of R see Figure 5.6.8.)

(e) The sine function is strictly increasing on the interval I :¼ �p=2; p=2½ �; therefore its
inverse function, which we will denote by Arcsin, exists on J :¼ �1; 1½ �. That is, if x 2
�p=2; p=2½ � and y 2 �1; 1½ � then y ¼ sinx if and only if Arcsin y ¼ x. It was asserted

(without proof) in Example 6.1.7(d) that sin is differentiable on I and that D sinx ¼ cos x

for x 2 I. Since cos x 6¼ 0 for x in �p=2; p=2ð Þ it follows from Theorem 6.1.8 that

DArcsin y ¼ 1

D sin x
¼ 1

cos x

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin xð Þ2

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p

for all y 2 �1; 1ð Þ. The derivative of Arcsin does not exist at the points �1 and 1. &

Exercises for Section 6.1

1. Use the definition to find the derivative of each of the following functions:

(a) f xð Þ :¼ x3 for x 2 R ; (b) g xð Þ :¼ 1=x for x 2 R ; x 6¼ 0;
(c) h xð Þ :¼ ffiffiffi

x
p

for x > 0; (d) k xð Þ :¼ 1=
ffiffiffi
x

p
for x > 0:
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2. Show that f xð Þ :¼ x1=3; x 2 R , is not differentiable at x ¼ 0.

3. Prove Theorem 6.1.3(a), (b).

4. Let f : R ! R be defined by f xð Þ :¼ x2 for x rational, f xð Þ :¼ 0 for x irrational. Show that f is

differentiable at x ¼ 0, and find f 0 0ð Þ.
5. Differentiate and simplify:

(a) f xð Þ :¼ x

1þ x2
; (b) g xð Þ :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5� 2xþ x2
p

;

(c) h xð Þ :¼ sin xk
	 
m

form; k 2 N ; (d) k xð Þ :¼ tan x2ð Þ for xj j < ffiffiffiffiffiffiffiffi
p=2

p
:

6. Let n 2 N and let f : R ! R be defined by f xð Þ :¼ xn for x � 0 and f xð Þ :¼ 0 for x < 0. For

which values of n is f 0 continuous at 0? For which values of n is f 0 differentiable at 0?

7. Suppose that f : R ! R is differentiable at c and that f cð Þ ¼ 0. Show that g xð Þ :¼ f xð Þj j is
differentiable at c if and only if f 0 cð Þ ¼ 0.

8. Determine where each of the following functions from R to R is differentiable and find the

derivative:

(a) f xð Þ :¼ xj j þ xþ 1j j; (b) g xð Þ :¼ 2xþ xj j;
(c) h xð Þ :¼ x xj j; (d) k xð Þ :¼ sin xj j:

9. Prove that if f : R ! R is an even function [that is, f �xð Þ ¼ f xð Þ for all x 2 R] and has a

derivative at every point, then the derivative f 0 is an odd function [that is, f 0 �xð Þ ¼ �f 0 xð Þ for
all x 2 R]. Also prove that if g : R ! R is a differentiable odd function, then g0 is an even

function.

10. Let g : R ! R be defined by g xð Þ :¼ x2sin 1=x2ð Þ for x 6¼ 0, and g 0ð Þ :¼ 0. Show that g is

differentiable for all x 2 R . Also show that the derivative g0 is not bounded on the interval

�1; 1½ �.
11. Assume that there exists a function L : 0;1ð Þ ! R such that L0 xð Þ ¼ 1=x for x > 0. Calculate

the derivatives of the following functions:

(a) f xð Þ :¼ L 2xþ 3ð Þ for x > 0; (b) g xð Þ :¼ L x2ð Þð Þ3 for x > 0;

(c) h xð Þ :¼ L axð Þ for a > 0; x > 0; (d) k xð Þ :¼ L L xð Þð Þwhen L xð Þ > 0; x > 0:

12. If r > 0 is a rational number, let f : R ! R be defined by f xð Þ :¼ xrsin 1=xð Þ for x 6¼ 0, and

f 0ð Þ :¼ 0. Determine those values of r for which f 0 0ð Þ exists.
13. If f : R ! R is differentiable at c 2 R , show that

f 0 cð Þ ¼ lim n f cþ 1=nð Þ � f cð Þf gð Þ:
However, show by example that the existence of the limit of this sequence does not imply the

existence of f 0 cð Þ.
14. Given that the function h xð Þ :¼ x3 þ 2xþ 1 for x 2 R has an inverse h�1 onR , find the value of

h�1
	 
0

yð Þ at the points corresponding to x ¼ 0; 1; �1.
15. Given that the restriction of the cosine function cos to I :¼ 0;p½ � is strictly decreasing and that

cos 0 ¼ 1; cosp ¼ �1, let J :¼ �1; 1½ �, and let Arccos: J ! R be the function inverse to the

restriction of cos to I. Show that Arccos is differentiable on �1; 1ð Þ and DAcrccos y ¼
�1ð Þ= 1� y2ð Þ1=2 for y 2 �1; 1ð Þ. Show that Arccos is not differentiable at �1 and 1.

16. Given that the restriction of the tangent function tan to I :¼ �p=2; p=2ð Þ is strictly increasing

and that tan Ið Þ ¼ R , let Arctan: R ! R be the function inverse to the restriction of tan to I.

Show that Arctan is differentiable on R and that DArctan yð Þ ¼ ð1þ y2Þ�1
for y 2 R.

17. Let f : I ! R be differentiable at c 2 I. Establish the Straddle Lemma: Given e > 0 there

exists d eð Þ > 0 such that if u, v 2 I satisfy c� d eð Þ < u � c � v < cþ d eð Þ, then we have

f vð Þ � f uð Þ � v� uð Þ f 0 cð Þj j � e v� uð Þ. [Hint: The d eð Þ is given by Definition 6.1.1. Subtract

and add the term f cð Þ � cf 0 cð Þ on the left side and use the Triangle Inequality.]
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Section 6.2 The Mean Value Theorem

The Mean Value Theorem, which relates the values of a function to values of its derivative,

is one of the most useful results in real analysis. In this section we will establish this

important theorem and sample some of its many consequences.

We begin by looking at the relationship between the relative extrema of a function and

the values of its derivative. Recall that the function f : I ! R is said to have a relative

maximum [respectively, relative minimum] at c 2 I if there exists a neighborhood

V :¼ Vd cð Þ of c such that f xð Þ � f cð Þ [respectively, f cð Þ � f xð Þ] for all x in V \ I. We

say that f has a relative extremum at c 2 I if it has either a relative maximum or a relative

minimum at c.

The next result provides the theoretical justification for the familiar process of finding

points at which f has relative extrema by examining the zeros of the derivative. However, it

must be realized that this procedure applies only to interior points of the interval. For

example, if f xð Þ :¼ x on the interval I :¼ 0; 1½ �, then the endpoint x ¼ 0 yields the unique

relative minimum and the endpoint x ¼ 1 yields the unique maximum of f on I, but neither

point is a zero of the derivative of f.

6.2.1 Interior Extremum Theorem Let c be an interior point of the interval I at which

f : I ! R has a relative extremum. If the derivative of f at c exists, then f 0 cð Þ ¼ 0.

Proof. We will prove the result only for the case that f has a relative maximum at c; the

proof for the case of a relative minimum is similar.

If f 0 cð Þ > 0, then by Theorem 4.2.9 there exists a neighborhood V � I of c such that

f xð Þ � f cð Þ
x� c

> 0 for x 2 V ; x 6¼ c:

If x 2 V and x > c, then we have

f xð Þ � f cð Þ ¼ x� cð Þ � f xð Þ � f cð Þ
x� c

> 0:

But this contradicts the hypothesis that f has a relative maximum at c. Thus we cannot

have f 0 cð Þ > 0. Similarly (how?), we cannot have f 0 cð Þ < 0. Therefore we must have

f 0 cð Þ ¼ 0. Q.E.D.

6.2.2 Corollary Let f : I ! R be continuous on an interval I and suppose that f has a

relative extremum at an interior point c of I. Then either the derivative of f at c does not

exist, or it is equal to zero.

We note that if f xð Þ :¼ xj j on I :¼ �1; 1½ �, then f has an interior minimum at x ¼ 0;

however, the derivative of f fails to exist at x ¼ 0.

6.2.3 Rolle’s Theorem Suppose that f is continuous on a closed interval I :¼ a; b½ �, that
the derivative f 0 exists at every point of the open interval (a, b), and that f að Þ ¼ f bð Þ ¼ 0.

Then there exists at least one point c in (a, b) such that f 0 cð Þ ¼ 0.

Proof. If f vanishes identically on I, then any c in (a, b) will satisfy the conclusion of the

theorem. Hence we suppose that f does not vanish identically; replacing f by �f if

necessary, we may suppose that f assumes some positive values. By the Maximum-

Minimum Theorem 5.3.4, the function f attains the value sup f xð Þ : x 2 If g > 0 at some

point c in I. Since f að Þ ¼ f bð Þ ¼ 0, the point c must lie in (a, b); therefore f 0 cð Þ exists.
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Since f has a relative maximum at c, we conclude from the Interior Extremum

Theorem 6.2.1 that f 0 cð Þ ¼ 0. (See Figure 6.2.1.) Q.E.D.

As a consequence of Rolle’s Theorem, we obtain the fundamental Mean Value

Theorem.

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval

I :¼ a; b½ �, and that f has a derivative in the open interval (a, b). Then there exists at

least one point c in (a, b) such that

f bð Þ � f að Þ ¼ f 0 cð Þ b� að Þ:

Proof. Consider the function w defined on I by

w xð Þ :¼ f xð Þ � f að Þ � f bð Þ � f að Þ
b� a

x� að Þ:

[The function w is simply the difference of f and the function whose graph is the line

segment joining the points (a, f (a)) and (b, f (b)); see Figure 6.2.2.] The hypotheses of

Figure 6.2.2 The Mean Value Theorem

Figure 6.2.1 Rolle’s Theorem
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Rolle’s Theorem are satisfied by w since w is continuous on [a, b], differentiable on (a, b),

and w að Þ ¼ w bð Þ ¼ 0. Therefore, there exists a point c in (a, b) such that

0 ¼ w0 cð Þ ¼ f 0 cð Þ � f bð Þ � f að Þ
b� a

:

Hence, f bð Þ � f að Þ ¼ f 0 cð Þ b� að Þ. Q.E.D.

Remark The geometric view of the Mean Value Theorem is that there is some point on

the curve y ¼ f xð Þ at which the tangent line is parallel to the line segment through the

points (a, f (a)) and (b, f (b)). Thus it is easy to remember the statement of the Mean Value

Theorem by drawing appropriate diagrams. While this should not be discouraged, it tends

to suggest that its importance is geometrical in nature, which is quite misleading. In fact the

Mean Value Theorem is a wolf in sheep’s clothing and is the Fundamental Theorem of

Differential Calculus. In the remainder of this section, we will present some of the

consequences of this result. Other applications will be given later.

The Mean Value Theorem permits one to draw conclusions about the nature of a

function f from information about its derivative f 0. The following results are obtained in

this manner.

6.2.5 Theorem Suppose that f is continuous on the closed interval I :¼ a; b½ �, that f is
differentiable on the open interval (a, b), and that f 0 xð Þ ¼ 0 for x 2 a; bð Þ. Then f is

constant on I.

Proof. We will show that f xð Þ ¼ f að Þ for all x 2 I. Indeed, if x 2 I, x > a, is given,

we apply the Mean Value Theorem to f on the closed interval ½a, x�. We obtain a

point c (depending on x) between a and x such that f xð Þ � f að Þ ¼ f 0 cð Þ x� að Þ. Since
f 0 cð Þ ¼ 0 (by hypothesis), we deduce that f xð Þ � f að Þ ¼ 0. Hence, f xð Þ ¼ f að Þ for

any x 2 I. Q.E.D.

6.2.6 Corollary Suppose that f and g are continuous on I :¼ a; b½ �, that they are

differentiable on (a, b), and that f 0 xð Þ ¼ g0 xð Þ for all x 2 a; bð Þ. Then there exists a

constant C such that f ¼ gþ C on I.

Recall that a function f : I ! R is said to be increasing on the interval I if whenever

x1; x2 in I satisfy x1 < x2, then f x1ð Þ � f x2ð Þ. Also recall that f is decreasing on I if the

function � f is increasing on I.

6.2.7 Theorem Let f : I ! R be differentiable on the interval I. Then:

(a) f is increasing on I if and only if f 0 xð Þ � 0 for all x 2 I.

(b) f is decreasing on I if and only if f 0 xð Þ � 0 for all x 2 I.

Proof. (a) Suppose that f 0 xð Þ � 0 for all x 2 I. If x1; x2 in I satisfy x1 < x2, then we

apply theMean Value Theorem to f on the closed interval J :¼ x1; x2½ � to obtain a point c in
x1; x2ð Þ such that

f x2ð Þ � f x1ð Þ ¼ f 0 cð Þ x2 � x1ð Þ:
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Since f 0 cð Þ � 0 and x2 � x1 > 0, it follows that f x2ð Þ � f x1ð Þ � 0. (Why?) Hence,

f x1ð Þ � f x2ð Þ and, since x1 < x2 are arbitrary points in I, we conclude that f is

increasing on I.

For the converse assertion, we suppose that f is differentiable and increasing on I.

Thus, for any point x 6¼ c in I, we have f xð Þ � f cð Þð Þ= x� cð Þ � 0. (Why?) Hence, by

Theorem 4.2.6 we conclude that

f 0 cð Þ ¼ lim
x!c

f xð Þ � f cð Þ
x� c

� 0:

(b) The proof of part (b) is similar and will be omitted. Q.E.D.

A function f is said to be strictly increasing on an interval I if for any points x1; x2 in I
such that x1 < x2, we have f x1ð Þ < f x2ð Þ. An argument along the same lines of the proof

of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative

on an interval is strictly increasing there. (See Exercise 13.) However, the converse

assertion is not true, since a strictly increasing differentiable function may have a derivative

that vanishes at certain points. For example, the function f : R ! R defined by f xð Þ :¼ x3

is strictly increasing on R , but f 0 0ð Þ ¼ 0. The situation for strictly decreasing functions is

similar.

Remark It is reasonable to define a function to be increasing at a point if there is a

neighborhood of the point on which the function is increasing. One might suppose that, if

the derivative is strictly positive at a point, then the function is increasing at this point.

However, this supposition is false; indeed, the differentiable function defined by

g xð Þ :¼ xþ 2x2sin 1=xð Þ if x 6¼ 0;
0 if x ¼ 0;

�

is such that g0 0ð Þ ¼ 1, yet it can be shown that g is not increasing in any neighborhood of

x ¼ 0. (See Exercise 10.)

We next obtain a sufficient condition for a function to have a relative extremum at an

interior point of an interval.

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval I :¼ a; b½ �
and let c be an interior point of I. Assume that f is differentiable on (a, c) and (c, b) . Then:

(a) If there is a neighborhood c� d; cþ dð Þ � I such that f 0 xð Þ � 0 for c� d < x < c

and f 0 xð Þ � 0 for c < x < cþ d, then f has a relative maximum at c.

(b) If there is a neighborhood c� d; cþ dð Þ � I such that f 0 xð Þ � 0 for c� d < x < c

and f 0 xð Þ � 0 for c < x < cþ d, then f has a relative minimum at c.

Proof. (a) If x 2 c� d; cð Þ, then it follows from the Mean Value Theorem that there

exists a point cx 2 x; cð Þ such that f cð Þ � f xð Þ ¼ c� xð Þ f 0 cxð Þ. Since f 0 cxð Þ � 0 we infer

that f xð Þ � f cð Þ for x 2 c� d; cð Þ. Similarly, it follows (how?) that f xð Þ � f cð Þ
for x 2 c; cþ dð Þ. Therefore f xð Þ � f cð Þ for all x 2 c� d; cþ dð Þ so that f has a relative

maximum at c.

(b) The proof is similar. Q.E.D.

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there

exists a differentiable function f : R ! R with absolute minimum at x ¼ 0 but such that
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f 0 takes on both positive and negative values on both sides of (and arbitrarily close to)

x ¼ 0. (See Exercise 9.)

Further Applications of the Mean Value Theorem

We will continue giving other types of applications of the Mean Value Theorem; in doing

so we will draw more freely than before on the past experience of the reader and his or her

knowledge concerning the derivatives of certain well-known functions.

6.2.9 Examples (a) Rolle’s Theorem can be used for the location of roots of a function.

For, if a function g can be identified as the derivative of a function f, then between any two

roots of f there is at least one root of g. For example, let g xð Þ :¼ cos x, then g is known to be

the derivative of f xð Þ :¼ sin x. Hence, between any two roots of sin x there is at least one

root of cos x.On the other hand, g0 xð Þ ¼ �sin x ¼ �f xð Þ, so another application of Rolle’s
Theorem tells us that between any two roots of cos there is at least one root of sin.

Therefore, we conclude that the roots of sin and cos interlace each other.This conclusion is

probably not news to the reader; however, the same type of argument can be applied to the

Bessel functions Jn of order n ¼ 0; 1; 2; . . . by using the relations

xnJn xð Þ½ �0 ¼ xnJn�1 xð Þ; xn�1Jn xð Þ½ �0 ¼ �x�nJnþ1 xð Þ for x > 0:

The details of this argument should be supplied by the reader.

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain

error estimates. For example, suppose it is desired to evaluate
ffiffiffiffiffiffiffiffi
105

p
. We employ the Mean

Value Theorem with f xð Þ :¼ ffiffiffi
x

p
; a ¼ 100; b ¼ 105, to obtain

ffiffiffiffiffiffiffiffi
105

p
�

ffiffiffiffiffiffiffiffi
100

p
¼ 5

2
ffiffiffi
c

p

for some number c with 100 < c < 105. Since 10 <
ffiffiffi
c

p
<

ffiffiffiffiffiffiffiffi
105

p
<

ffiffiffiffiffiffiffiffi
121

p ¼ 11, we can

assert that

5

2 11ð Þ <
ffiffiffiffiffiffiffiffi
105

p
� 10 <

5

2 10ð Þ ;

whence it follows that 10:2272 <
ffiffiffiffiffiffiffiffi
105

p
< 10:2500. This estimate may not be as sharp as

desired. It is clear that the estimate
ffiffiffi
c

p
<

ffiffiffiffiffiffiffiffi
105

p
<

ffiffiffiffiffiffiffiffi
121

p
was wasteful and can be

improved by making use of our conclusion that
ffiffiffiffiffiffiffiffi
105

p
< 10:2500. Thus,

ffiffiffi
c

p
< 10:2500

and we easily determine that

0:2439 <
5

2 10:2500ð Þ <
ffiffiffiffiffiffiffiffi
105

p
� 10:

Our improved estimate is 10:2439 <
ffiffiffiffiffiffiffiffi
105

p
< 10:2500. &

Inequalities

One very important use of the Mean Value Theorem is to obtain certain inequalities.

Whenever information concerning the range of the derivative of a function is available, this

information can be used to deduce certain properties of the function itself. The following

examples illustrate the valuable role that the Mean Value Theorem plays in this respect.
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6.2.10 Examples (a) The exponential function f xð Þ :¼ ex has the derivative f 0 xð Þ ¼ ex

for all x 2 R . Thus f 0 xð Þ > 1 for x > 0, and f 0 xð Þ < 1 for x < 0. From these relationships,

we will derive the inequality

ð1Þ ex � 1þ x for x 2 R ;

with equality occurring if and only if x ¼ 0.

If x ¼ 0, we have equality with both sides equal to 1. If x > 0, we apply the Mean

Value Theorem to the function f on the interval [0, x]. Then for some c with 0 < c < x

we have

ex � e0 ¼ ec x� 0ð Þ:
Since e0 ¼ 1 and ec > 1, this becomes ex � 1 > x so that we have ex > 1þ x for x > 0. A

similar argument establishes the same strict inequality for x < 0. Thus the inequality (1)

holds for all x, and equality occurs only if x ¼ 0.

(b) The function g xð Þ :¼ sin x has the derivative g0 xð Þ ¼ cos x for all x 2 R . On the basis

of the fact that �1 � cos x � 1 for all x 2 R , we will show that

ð2Þ �x � sin x � x for all x � 0:

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we

obtain

sin x� sin 0 ¼ cos cð Þ x� 0ð Þ
for some c between 0 and x. Since sin 0 ¼ 0 and�1 � cos c � 1, we have�x � sin x � x.

Since equality holds at x ¼ 0, the inequality (2) is established.

(c) (Bernoulli’s inequality) If a > 1, then

ð3Þ 1þ xð Þa � 1þ ax for all x > �1;

with equality if and only if x ¼ 0.

This inequality was established earlier, in Example 2.1.13(c), for positive integer

values of a by using Mathematical Induction. We now derive the more general version by

employing the Mean Value Theorem.

If h xð Þ :¼ 1þ xð Þa then h0 xð Þ ¼ a 1þ xð Þa�1
for all x > �1. [For rational a this

derivative was established in Example 6.1.10(c). The extension to irrational will be

discussed in Section 8.3.] If x > 0, we infer from the Mean Value Theorem applied to

hon the interval [0,x] that there existscwith0 < c < x such thath xð Þ � h 0ð Þ ¼ h0 cð Þ x� 0ð Þ.
Thus, we have

1þ xð Þa � 1 ¼ a 1þ cð Þa�1
x:

Since c > 0 and a� 1 > 0, it follows that 1þ cð Þa�1 > 1 and hence that 1þ xð Þa >
1þ ax. If�1 < x < 0, a similar use of theMean Value Theorem on the interval [x, 0] leads

to the same strict inequality. Since the case x ¼ 0 results in equality, we conclude that (3) is

valid for all x > �1 with equality if and only if x ¼ 0.

(d) Let a be a real number satisfying 0 < a < 1 and let g xð Þ ¼ ax� xa for x � 0. Then

g0 xð Þ ¼ a 1� xa�1ð Þ, so that g0 xð Þ < 0 for 0 < x < 1 and g0 xð Þ > 0 for x > 1. Conse-

quently, if x � 0, then g xð Þ � g 1ð Þ and g xð Þ ¼ g 1ð Þ if and only if x ¼ 1. Therefore, if

x � 0 and 0 < a < 1, then we have

xa � a xþ 1� að Þ:
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If a > 0 and b > 0 and if we let x ¼ a=b and multiply by b, we obtain the inequality

aab1�a � aaþ 1� að Þb;
where equality holds if and only if a ¼ b. &

The Intermediate Value Property of Derivatives

Weconclude this sectionwith an interesting result, often referred to asDarboux’sTheorem. It

states that if a function f is differentiable at every point of an interval I, then the function f 0 has
the Intermediate Value Property. This means that if f 0 takes on values A and B, then it also

takes on all values between A and B. The reader will recognize this property as one of the

important consequences of continuity as established in Theorem 5.3.7. It is remarkable that

derivatives, which need not be continuous functions, also possess this property.

6.2.11 Lemma Let I � R be an interval, let f : I ! R , let c 2 I, and assume that f has a

derivative at c. Then:

(a) If f 0 cð Þ > 0, then there is a number d > 0 such that f xð Þ > f cð Þ for x 2 I such that

c < x < cþ d.

(b) If f 0 cð Þ < 0, then there is a number d > 0 such that f xð Þ > f cð Þ for x 2 I such that

c� d < x < c.

Proof. (a) Since

lim
x!c

f xð Þ � f cð Þ
x� c

¼ f 0 cð Þ > 0;

it follows from Theorem 4.2.9 that there is a number d > 0 such that if x 2 I and

0 < x� cj j < d, then

f xð Þ � f cð Þ
x� c

> 0:

If x 2 I also satisfies x > c, then we have

f xð Þ � f cð Þ ¼ x� cð Þ � f xð Þ � f cð Þ
x� c

> 0:

Hence, if x 2 I and c < x < cþ d, then f xð Þ > f cð Þ.
The proof of (b) is similar. Q.E.D.

6.2.12 Darboux’s Theorem If f is differentiable on I ¼ a; b½ � and if k is a number

between f 0 að Þ and f 0 bð Þ, then there is at least one point c in (a, b) such that f 0 cð Þ ¼ k.

Proof. Suppose that f 0 að Þ < k < f 0 bð Þ. We define g on I by g xð Þ :¼ kx� f xð Þ for x 2 I.

Since g is continuous, it attains a maximum value on I. Since g0 að Þ ¼ k � f 0 að Þ > 0, it

follows from Lemma 6.2.11(a) that the maximum of g does not occur at x ¼ a. Similarly,

since g0 bð Þ ¼ k � f 0 bð Þ < 0, it follows from Lemma 6.2.11(b) that the maximum does not

occur at x ¼ b. Therefore, g attains its maximum at some c in (a, b). Then from Theorem

6.2.1 we have 0 ¼ g0 cð Þ ¼ k � f 0 cð Þ. Hence, f 0 cð Þ ¼ k. Q.E.D.

6.2.13 Example The function g: �1; 1½ � ! R defined by

g xð Þ :¼
1 for 0 < x � 1;
0 for x ¼ 0;

�1 for �1 � x < 0;

8<
:
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(which is a restriction of the signum function) clearly fails to satisfy the intermediate value

property on the interval �1; 1½ �. Therefore, by Darboux’s Theorem, there does not exist a

function f such that f 0 xð Þ ¼ g xð Þ for all x 2 �1; 1½ �. In other words, g is not the derivative
on �1; 1½ � of any function. &

Exercises for Section 6.2

1. For each of the following functions on R to R , find points of relative extrema, the intervals on

which the function is increasing, and those on which it is decreasing:

(a) f xð Þ :¼ x2 � 3xþ 5; (b) g xð Þ :¼ 3x� 4x2;

(c) h xð Þ :¼ x3 � 3x� 4; (d) k xð Þ :¼ x4 þ 2x2 � 4:

2. Find the points of relative extrema, the intervals on which the following functions are

increasing, and those on which they are decreasing:

(a) f xð Þ :¼ xþ 1=x for x 6¼ 0; (b) g xð Þ :¼ x= x2 þ 1ð Þ for x 2 R ;

(c) h xð Þ :¼ ffiffiffi
x

p � 2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 2

p
for x > 0; (d) k xð Þ :¼ 2xþ 1=x2 for x 6¼ 0:

3. Find the points of relative extrema of the following functions on the specified domain:

(a) f xð Þ :¼ x2 � 1
�� �� for � 4 � x � 4; (b) g xð Þ :¼ 1� x� 1ð Þ2=3 for 0 � x � 2;

(c) h xð Þ :¼ x x2 � 12
�� �� for � 2 � x � 3; (d) k xð Þ :¼ x x� 8ð Þ1=3 for 0 � x � 9:

4. Let a1; a2; . . . ; an be real numbers and let f be defined on R by

f xð Þ :¼
Xn
i¼1

ai � xð Þ2 for x 2 R :

Find the unique point of relative minimum for f.

5. Let a > b > 0 and let n 2 N satisfy n � 2. Prove that a1=n � b1=n < a� bð Þ1=n. [Hint: Show that

f xð Þ :¼ x1=n � x� 1ð Þ1=n is decreasing for x � 1, and evaluate f at 1 and a=b.]

6. Use the Mean Value Theorem to prove that sin x� sin yj j � x� yj j for all x, y in R .

7. Use the Mean Value Theorem to prove that x� 1ð Þ=x < ln x < x� 1 for x > 1. [Hint: Use the

fact that D ln x ¼ 1=x for x > 0.]

8. Let f : a; b½ � ! R be continuous on [a, b] and differentiable in (a, b). Show that if lim
x!a

f 0 xð Þ ¼ A,

then f 0 að Þ exists and equals A. [Hint: Use the definition of f 0 að Þ and the Mean Value Theorem.]

9. Let f : R ! R be defined by f xð Þ :¼ 2x4 þ x4 sin 1=xð Þ for x 6¼ 0 and f 0ð Þ :¼ 0. Show that f

has an absolute minimum at x ¼ 0, but that its derivative has both positive and negative values in

every neighborhood of 0.

10. Let g : R ! R be defined by g xð Þ :¼ xþ 2x2 sin 1=xð Þ for x 6¼ 0 and g 0ð Þ :¼ 0. Show that

g0 0ð Þ ¼ 1, but in every neighborhood of 0 the derivative g0 xð Þ takes on both positive and

negative values. Thus g is not monotonic in any neighborhood of 0.

11. Give an example of a uniformly continuous function on [0,1] that is differentiable on (0, 1) but

whose derivative is not bounded on (0, 1).

12. If h xð Þ :¼ 0 for x < 0 and h xð Þ :¼ 1 for x � 0, prove there does not exist a function f : R ! R

such that f 0 xð Þ ¼ h xð Þ for all x 2 R . Give examples of two functions, not differing by a

constant, whose derivatives equal h(x) for all x 6¼ 0.

13. Let I be an interval and let f : I ! R be differentiable on I. Show that if f 0 is positive on I, then f
is strictly increasing on I.

14. Let I be an interval and let f : I ! R be differentiable on I. Show that if the derivative f 0 is never
0 on I, then either f 0 xð Þ > 0 for all x 2 I or f 0 xð Þ < 0 for all x 2 I.

15. Let I be an interval. Prove that if f is differentiable on I and if the derivative f 0 is bounded on I,

then f satisfies a Lipschitz condition on I. (See Definition 5.4.4.)
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16. Let f : ½0; 1Þ ! R be differentiable on (0, 1) and assume that f 0 xð Þ ! b as x ! 1.

(a) Show that for any h > 0, we have lim
x!1 f xþ hð Þ � f xð Þð Þ=h ¼ b.

(b) Show that if f xð Þ ! a as x ! 1, then b ¼ 0.

(c) Show that lim
x!1 f xð Þ=xð Þ ¼ b.

17. Let f, g be differentiable on R and suppose that f 0ð Þ ¼ g 0ð Þ and f 0 xð Þ � g0 xð Þ for all x � 0.

Show that f xð Þ � g xð Þ for all x � 0.

18. Let I :¼ a; b½ � and let f : I ! R be differentiable at c 2 I. Show that for every e > 0 there exists

d > 0 such that if 0 < x� yj j < d and a � x � c � y � b, then

f xð Þ � f yð Þ
x� y

� f 0 cð Þ
����

���� < e:

19. A differentiable function f : I ! R is said to be uniformly differentiable on I :¼ a; b½ � if for
every e > 0 there exists d > 0 such that if 0 < x� yj j < d and x; y 2 I, then

f xð Þ � f yð Þ
x� y

� f 0 xð Þ
����

���� < e:

Show that if f is uniformly differentiable on I, then f 0 is continuous on I.

20. Suppose that f : 0; 2½ � ! R is continuous on [0, 2] and differentiable on (0, 2), and that

f 0ð Þ ¼ 0; f 1ð Þ ¼ 1; f 2ð Þ ¼ 1.

(a) Show that there exists c1 2 0; 1ð Þ such that f 0 c1ð Þ ¼ 1.

(b) Show that there exists c2 2 1; 2ð Þ such that f 0 c2ð Þ ¼ 0.

(c) Show that there exists c 2 0; 2ð Þ such that f 0 cð Þ ¼ 1=3.

Section 6.3 L’Hospital’s Rules

In this section we will discuss limit theorems that involve cases that cannot be determined

by previous limit theorems. For example, if f (x) and g(x) both approach 0 as x approaches

a, then the quotient f xð Þ=g xð Þ may or may not have a limit at a and it is said to have the

indeterminate form 0/0. The limit theorem for this case is due to Johann Bernoulli and first

appeared in the 1696 book published by L’Hospital.

Johann Bernoulli
Johann Bernoulli (1667–1748) was born in Basel, Switzerland. Johann

worked for a year in his father’s spice business, but he was not a success.

He enrolled in Basel University to study medicine, but his brother Jacob,

twelve years older and a Professor ofMathematics, led him intomathematics.

Together, they studied the papers of Leibniz on the new subject of calculus.

Johann received his doctorate at Basel University and joined the faculty at

Groningen in Holland, but upon Jacob’s death in 1705, he returned to Basel

andwasawarded Jacob’s chair inmathematics.Becauseofhismanyadvances

in the subject, Johann is regarded as one of the founders of calculus.

While in Paris in 1692, Johann met the Marquis Guillame Francois de L’Hospital and agreed

to a financial arrangement under which he would teach the new calculus to L’Hospital, giving

L’Hospital the right to use Bernoulli’s lessons as he pleased. This was subsequently continued

through a series of letters. In 1696, the first book on differential calculus, L’Analyse des Infiniment

Petits, was published by L’Hospital. Though L’Hospital’s name was not on the title page, his

portrait was on the frontispiece and the preface states ‘‘I am indebted to the clarifications of the

brothers Bernoulli, especially the younger.’’ The book contains a theorem on limits later known as

L’Hospital’s Rule although it was in fact discovered by Johann Bernoulli. In 1922, manuscripts

were discovered that confirmed the book consisted mainly of Bernoulli’s lessons. And in 1955,

the L’Hospital–Bernoulli correspondence was published in Germany.
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The initial theorem was refined and extended, and the various results are collectively

referred to as L’Hospital’s (or L’Hôpital’s) Rules. In this section we establish the most basic

of these results and indicate how others can be derived.

Indeterminate Forms

In the preceding chapters we have often been concernedwithmethods of evaluating limits. It

was shown in Theorem 4.2.4(b) that if A :¼ lim
x!c

f xð Þ and B :¼ lim
x!c

g xð Þ, and if B 6¼ 0, then

lim
x!c

f xð Þ
g xð Þ ¼

A

B
:

However, if B ¼ 0, then no conclusion was deduced. It will be seen in Exercise 2 that if

B ¼ 0 and A 6¼ 0, then the limit is infinite (when it exists).

The case A ¼ 0, B ¼ 0 has not been covered previously. In this case, the limit of the

quotient f=g is said to be ‘‘indeterminate.’’ We will see that in this case the limit may not

exist or may be any real value, depending on the particular functions f and g. The

symbolism 0=0 is used to refer to this situation. For example, if a is any real number, and if

we define f xð Þ :¼ ax and g xð Þ :¼ x, then

lim
x!0

f xð Þ
g xð Þ ¼ lim

x!0

ax

x
¼ lim

x!0
a ¼ a:

Thus the indeterminate form 0=0 can lead to any real number a as a limit.

Other indeterminate forms are represented by the symbols 1=1; 0 � 1;
00; 11; 10; and1�1. These notations correspond to the indicated limiting behavior

and juxtaposition of the functions f and g. Our attention will be focused on the indeterminate

forms 0=0 and1=1. The other indeterminate cases are usually reduced to the form 0=0 or
1=1 by taking logarithms, exponentials, or algebraic manipulations.

A Preliminary Result

To show that the use of differentiation in this context is a natural and not surprising

development, we first establish an elementary result that is based simply on the definition

of the derivative.

6.3.1 Theorem Let f and g be defined on [a, b], let f að Þ ¼ g að Þ ¼ 0, and let g xð Þ 6¼ 0 for

a < x < b. If f and g are differentiable at a and if g0 að Þ 6¼ 0, then the limit of f=g at a

exists and is equal to f 0 að Þ=g0 að Þ. Thus
lim
x!aþ

f xð Þ
g xð Þ ¼

f 0 að Þ
g0 að Þ :

Proof. Since f að Þ ¼ g að Þ ¼ 0, we can write the quotient f xð Þ=g xð Þ for a < x < b

as follows:

f xð Þ
g xð Þ ¼

f xð Þ � f að Þ
g xð Þ � g að Þ ¼

f xð Þ � f að Þ
x� a

g xð Þ � g að Þ
x� a

:

Applying Theorem 4.2.4(b), we obtain

lim
x!aþ

f xð Þ
g xð Þ ¼

lim
x!aþ

f xð Þ � f að Þ
x� a

lim
x!aþ

g xð Þ � g að Þ
x� a

¼ f 0 að Þ
g0 að Þ : Q.E.D.
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Warning The hypothesis that f að Þ ¼ g að Þ ¼ 0 is essential here. For example, if f xð Þ
:¼ xþ 17 and g xð Þ :¼ 2xþ 3 for x 2 R, then

lim
x!0

f xð Þ
g xð Þ ¼

17

3
; while

f 0 0ð Þ
g0 0ð Þ ¼

1

2
:

The preceding result enables us to deal with limits such as

lim
x!0

x2 þ x

sin 2x
¼ 2 � 0þ 1

2 cos 0
¼ 1

2
:

To handle limits where f and g are not differentiable at the point a, we need a more general

version of the Mean Value Theorem due to Cauchy.

6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on [a, b] and

differentiable on (a, b), and assume that g0 xð Þ 6¼ 0 for all x in (a, b). Then there exists

c in (a, b) such that

f bð Þ � f að Þ
g bð Þ � g að Þ ¼

f 0 cð Þ
g0 cð Þ :

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which

Rolle’s Theorem will apply. First we note that since g0 xð Þ 6¼ 0 for all x in (a, b), it follows

from Rolle’s Theorem that g að Þ 6¼ g bð Þ. For x in [a, b], we now define

h xð Þ :¼ f bð Þ � f að Þ
g bð Þ � g að Þ g xð Þ � g að Þð Þ � f xð Þ � f að Þð Þ:

Then h is continuous on [a, b], differentiable on (a, b), and h að Þ ¼ h bð Þ ¼ 0. Therefore, it

follows from Rolle’s Theorem 6.2.3 that there exists a point c in (a, b) such that

0 ¼ h0 cð Þ ¼ f bð Þ � f að Þ
g bð Þ � g að Þ g

0 cð Þ � f 0 cð Þ:

Since g0 cð Þ 6¼ 0, we obtain the desired result by dividing by g0 cð Þ. Q.E.D.

Remarks The preceding theorem has a geometric interpretation that is similar to that of

the Mean Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve

in the plane by means of the parametric equations x ¼ f tð Þ; y ¼ g tð Þ where a � t � b.

Then the conclusion of the theorem is that there exists a point f cð Þ; g cð Þð Þ on the curve for
some c in (a, b) such that the slope g0 cð Þ=f 0 cð Þ of the line tangent to the curve at that point is
equal to the slope of the line segment joining the endpoints of the curve.

Note that if g xð Þ ¼ x, then the Cauchy Mean Value Theorem reduces to the Mean

Value Theorem 6.2.4.

L’Hospital’s Rule, I

We will now establish the first of L’Hospital’s Rules. For convenience, we will consider

right-hand limits at a point a; left-hand limits, and two-sided limits are treated in exactly

the same way. In fact, the theorem even allows the possibility that a ¼ �1. The reader

should observe that, in contrast with Theorem 6.3.1, the following result does not assume

the differentiability of the functions at the point a. The result asserts that the limiting

behavior of f xð Þ=g xð Þ as x ! aþ is the same as the limiting behavior of f 0 xð Þ=g0 xð Þ as
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x ! aþ, including the case where this limit is infinite. An important hypothesis here is that

both f and g approach 0 as x ! aþ.

6.3.3 L’Hospital’s Rule, I Let�1 � a < b � 1 and let f, g be differentiable on (a, b)

such that g0 xð Þ 6¼ 0 for all x 2 a; bð Þ . Suppose that

ð1Þ lim
x!aþ f xð Þ ¼ 0 ¼ lim

x!aþ g xð Þ:

(a) If lim
x!aþ

f 0 xð Þ
g0 xð Þ ¼ L 2 R ; then lim

x!aþ
f xð Þ
g xð Þ ¼ L:

(b) If lim
x!aþ

f 0 xð Þ
g0 xð Þ ¼ L 2 �1; 1f g; then lim

x!aþ
f xð Þ
g xð Þ ¼ L:

Proof. If a < a < b < b, then Rolle’s Theorem implies that g bð Þ 6¼ g að Þ. Further, by the
Cauchy Mean Value Theorem 6.3.2, there exists u 2 a;bð Þ such that

ð2Þ f bð Þ � f að Þ
g bð Þ � g að Þ ¼

f 0 uð Þ
g0 uð Þ :

Case (a): If L 2 R and if e > 0 is given, there exists c 2 a; bð Þ such that

L� e <
f 0 uð Þ
g0 uð Þ < Lþ e for u 2 a; cð Þ;

whence it follows from (2) that

ð3Þ L� e <
f bð Þ � f að Þ
g bð Þ � g að Þ < Lþ e for a < a < b � c:

If we take the limit in (3) as a ! aþ, we have

L� e � f bð Þ
g bð Þ � Lþ e for b 2 ða; c�:

Since e > 0 is arbitrary, the assertion follows.

Case (b): If L ¼ þ1 and if M > 0 is given, there exists c 2 a; bð Þ such that

f 0 uð Þ
g0 uð Þ > M for u 2 a; cð Þ;

whence it follows from (2) that

ð4Þ f bð Þ � f að Þ
g bð Þ � g að Þ > M for a < a < b < c:

If we take the limit in (4) as a ! aþ, we have

f bð Þ
g bð Þ � M for b 2 a; cð Þ:

Since M > 0 is arbitrary, the assertion follows.

If L ¼ �1, the argument is similar. Q.E.D.

The corresponding theorem for left-hand limits is readily proved in the same manner.

The result for two-sided limits then follows immediately if both one-sided limits exist and
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are equal. In the examples that follow, wewill apply the appropriate version of L’Hospital’s

Rule as needed.

6.3.4 Examples (a) We have

lim
x!0þ

sin xffiffiffi
x

p ¼ lim
x!0þ

cos x

1= 2
ffiffiffi
x

pð Þ
� �

¼ lim
x!0þ

2
ffiffiffi
x

p
cos x ¼ 0:

Observe that the denominator is not differentiable at x ¼ 0 so that Theorem 6.3.1

cannot be applied. However f xð Þ :¼ sin x and g xð Þ :¼ ffiffiffi
x

p
are differentiable on (0,1) and

both approach 0 as x ! 0þ. Moreover, g0 xð Þ 6¼ 0 on (0, 1), so that 6.3.3 is applicable.

(b) We have lim
x!0

1� cos x

x2

� �
¼ lim

x!0

sinx

2x
:

The quotient in the second limit is again indeterminate in the form 0=0. However, the
hypotheses are again satisfied so that a second application of L’Hospital’s Rule is

permissible. Hence, we obtain

lim
x!0

1� cos x

x2

� �
¼ lim

x!0

sin x

2x
¼ lim

x!0

cos x

2
¼ 1

2
:

(c) We have lim
x!0

ex � 1

x
¼ lim

x!0

ex

1
¼ 1.

Similarly, two applications of L’Hospital’s Rule give us

lim
x!0

ex � 1� x

x2

� �
¼ lim

x!0

ex � 1

2x
¼ lim

x!0

ex

2
¼ 1

2
:

(d) We have lim
x!1

ln x

x� 1

� �
¼ lim

x!1

1=xð Þ
1

¼ 1. &

L’Hospital’s Rule, II

This rule is very similar to the first one, except that it treats the case where the denominator

becomes infinite as x ! aþ. Again we will consider only right-hand limits, but it is

possible that a ¼ �1. Left-hand limits and two-sided limits are handled similarly.

6.3.5 L’Hospital’s Rule, II Let�1 � a < b � 1 and let f, g be differentiable on (a, b)

such that g0 xð Þ 6¼ 0 for all x 2 a; bð Þ . Suppose that

ð5Þ lim
x!aþ g xð Þ ¼ 	1:

(a) If lim
x!aþ

f 0 xð Þ
g0 xð Þ ¼ L 2 R , then lim

x!aþ
f xð Þ
g xð Þ ¼ L.

(b) If lim
x!aþ

f 0 xð Þ
g0 xð Þ ¼ L 2 �1;1f g, then lim

x!aþ
f xð Þ
g xð Þ ¼ L.

Proof. We will suppose that (5) holds with limit 1.

As before, we have g bð Þ 6¼ g að Þ for a;b 2 a; bð Þ;a < b. Further, equation (2) in the

proof of 6.3.3 holds for some u 2 a;bð Þ.
Case (a): If L 2 R with L > 0 and e > 0 is given, there is c 2 a; bð Þ such that (3) in the

proof of 6.3.3 holds when a < a < b � c. Since g xð Þ ! 1, we may also assume that
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g cð Þ > 0. Taking b ¼ c in (3), we have

ð6Þ L� e <
f cð Þ � f að Þ
g cð Þ � g að Þ < Lþ e for a 2 a; cð Þ:

Since g cð Þ=g að Þ ! 0 as a ! aþ, we may assume that 0 < g cð Þ=g að Þ < 1 for all

a 2 a; cð Þ, whence it follows that

g að Þ � g cð Þ
g að Þ ¼ 1� g cð Þ

g að Þ > 0 for a 2 a; cð Þ:

If we multiply (6) by g að Þ � g cð Þð Þ=g að Þ > 0, we have

ð7Þ L� eð Þ 1� g cð Þ
g að Þ

� �
<

f að Þ
g að Þ �

f cð Þ
g að Þ < Lþ eð Þ 1� g cð Þ

g að Þ
� �

:

Now, since g cð Þ=g að Þ ! 0 and f cð Þ=g að Þ ! 0 as a ! aþ, then for any d with 0 < d < 1

there exists d 2 a; cð Þ such that 0 < g cð Þ=g að Þ < d and f cð Þj j=g að Þ < d for all a 2 a; dð Þ,
whence (7) gives

ð8Þ L� eð Þ 1� dð Þ � d <
f að Þ
g að Þ < Lþ eð Þ þ d:

If we take d :¼ min 1; e; e= Lj j þ 1ð Þf g, it is an exercise to show that

L� 2e � f að Þ
g að Þ � Lþ 2e:

Since e > 0 is arbitrary, this yields the assertion. The cases L ¼ 0 and L < 0 are handled

similarly.

Case (b): If L ¼ þ1, letM > 1 be given and c 2 a; bð Þ be such that f 0 uð Þ=g0 uð Þ > M

for all u 2 a; cð Þ. Then it follows as before that

ð9Þ f bð Þ � f að Þ
g bð Þ � g að Þ > M for a < a < b � c:

Since g xð Þ ! 1 as x ! aþ, we may suppose that c also satisfies g cð Þ > 0, that

f cð Þj j=g að Þ < 1
2
, and that 0 < g cð Þ=g að Þ < 1

2
for all a 2 a; cð Þ. If we take b ¼ c in (9)

and multiply by 1� g cð Þ=g að Þ > 1
2
, we get

f að Þ � f cð Þ
g að Þ > M 1� g cð Þ

g að Þ
� �

> 1
2
M;

so that

f að Þ
g að Þ >

1
2
Mþ f cð Þ

g að Þ >
1
2
ðM�1Þ for a2 ða; cÞ:

Since M > 1 is arbitrary, it follows that lim
a!aþ f að Þ=g að Þ ¼ 1.

If L ¼ �1, the argument is similar. Q.E.D.

6.3.6 Examples (a) We consider lim
x!1

ln x

x
.

Here f xð Þ :¼ ln x and g xð Þ :¼ x on the interval (0, 1). If we apply the left-hand

version of 6.3.5, we obtain lim
x!1

ln x

x
¼ lim

x!1
1=x

1
¼ 0.

(b) We consider lim
x!1 e�xx2.
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Here we take f xð Þ :¼ x2 and g xð Þ :¼ ex on R . We obtain

lim
x!1

x2

ex
¼ lim

x!1
2x

ex
¼ lim

x!1
2

ex
¼ 0:

(c) We consider lim
x!0þ

ln sin x

lnx
.

Here we take f xð Þ :¼ ln sin x and g xð Þ :¼ ln x on 0;pð Þ. If we apply 6.3.5, we obtain

lim
x!0þ

ln sin x

ln x
¼ lim

x!0þ
cos x=sin x

1=x
¼ lim

x!0þ
x

sin x

h i
� cos x½ �:

Since lim
x!0þ

x=sin x½ � ¼ 1 and lim
x!0þ

cos x ¼ 1, we conclude that the limit under considera-

tion equals 1.

(d) Consider lim
x!1

x� sin x

xþ sin x
. This has indeterminate form 1=1. An application of

L’Hospital’s Rule gives us

lim
x!1

1� cos x

1þ cos x
;

which is useless because this limit does not exist. (Why not?) However, if we rewrite the

original limit, we get directly that

lim
x!1

1� sinx

x

1þ sinx

x

¼ 1� 0

1þ 0
¼ 1:

&

Other Indeterminate Forms

Indeterminate forms such as1�1; 0 � 1; 11; 00; 10 can be reduced to the previously

considered cases by algebraic manipulations and the use of the logarithmic and exponential

functions. Instead of formulating these variations as theorems, we illustrate the pertinent

techniques by means of examples.

6.3.7 Examples (a) Let I :¼ 0;p=2ð Þ and consider

lim
x!0þ

1

x
� 1

sin x

� �
;

which has the indeterminate form 1�1. We have

lim
x!0þ

1

x
� 1

sin x

� �
¼ lim

x!0þ
sinx� x

x sin x
¼ lim

x!0þ
cos x� 1

sin xþ x cos x

¼ lim
x!0þ

�sin x

2 cos x� x sin x
¼ 0

2
¼ 0:

(b) Let I :¼ 0; 1ð Þ and consider lim
x!0þ

x ln x, which has the indeterminate form

0 � �1ð Þ. We have

lim
x!0þ

x ln x ¼ lim
x!0þ

ln x

1=x
¼ lim

x!0þ
1=x

�1=x2
¼ lim

x!0þ
�xð Þ ¼ 0:

(c) Let I :¼ 0; 1ð Þ and consider lim
x!0þ

xx, which has the indeterminate form 00.

We recall from calculus (see also Section 8.3) that xx ¼ ex ln x. It follows from part (b)

and the continuity of the function y 7! ey at y ¼ 0 that lim
x!0þ

xx ¼ e0 ¼ 1.
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(d) Let I :¼ 1;1ð Þ and consider lim
x!1 1þ 1=xð Þx, which has the indeterminate form 11.

We note that

ð10Þ 1þ 1=xð Þx ¼ ex ln 1þ1=xð Þ:

Moreover, we have

lim
x!1 x ln 1þ 1=xð Þ ¼ lim

x!1
ln 1þ 1=xð Þ

1=x

¼ lim
x!1

1þ 1=xð Þ�1 �x�2ð Þ
�x�2

¼ lim
x!1

1

1þ 1=x
¼ 1:

Since y 7! ey is continuous at y ¼ 1, we infer that lim
x!1 1þ 1=xð Þx ¼ e.

(e) Let I :¼ 0;1ð Þ and consider lim
x!0þ

1þ 1=xð Þx, which has the indeterminate form10.

In view of formula (10), we consider

lim
x!0þ

x ln 1þ 1=xð Þ ¼ lim
x!0þ

ln 1þ 1=xð Þ
1=x

¼ lim
x!0þ

1

1þ 1=x
¼ 0:

Therefore we have lim
x!0þ

1þ 1=xð Þx ¼ e0 ¼ 1. &

Exercises for Section 6.3

1. Suppose that f and g are continuous on [a, b], differentiable on (a, b), that c 2 a; b½ � and that

g xð Þ 6¼ 0 for x 2 a; b½ �; x 6¼ c. Let A :¼ lim
x!c

f and B :¼ lim
x!c

g. If B ¼ 0, and if lim
x!c

f xð Þ=g xð Þ
exists in R , show that we must have A ¼ 0. [Hint: f xð Þ ¼ f xð Þ=g xð Þf gg xð Þ.]

2. In addition to the suppositions of the preceding exercise, let g xð Þ > 0 for x 2 a; b½ �; x 6¼ c. If

A > 0 and B ¼ 0, prove that we must have lim
x!c

f xð Þ=g xð Þ ¼ 1. If A < 0 and B ¼ 0, prove that

we must have lim
x!c

f xð Þ=g xð Þ ¼ �1.

3. Let f xð Þ :¼ x2sin 1=xð Þ for 0 < x � 1 and f 0ð Þ :¼ 0, and let g xð Þ :¼ x2 for x 2 0; 1½ �. Then
both f and g are differentiable on [0,1] and g xð Þ > 0 for x 6¼ 0. Show that lim

x!0
f xð Þ ¼ 0 ¼

lim
x!0

g xð Þ and that lim
x!0

f xð Þ=g xð Þ does not exist.
4. Let f xð Þ :¼ x2 for x rational, let f xð Þ :¼ 0 for x irrational, and let g(x) :¼ sin x for x 2 R. Use

Theorem 6.3.1 to show that lim
x!0

f ðxÞ=gðxÞ ¼ 0. Explain why Theorem 6.3.3 cannot be used.

5. Let f xð Þ :¼ x2 sin(l=x) for x 6¼ 0, let f ð0Þ :¼ 0, and let gðxÞ :¼ sin x for x 2 R. Show that

lim
x!0

f ðxÞ=gðxÞ ¼ 0 but that lim
x!0

f 0ðxÞ=g0ðxÞ does not exist.

6. Evaluate the following limits.

(a) lim
x!0

exþe�x � 2

1� cosx
(b) lim

x!0

x2 � sin 2x

x4

7. Evaluate the following limits, where the domain of the quotient is as indicated.

(a) lim
x!0þ

lnðxþ 1Þ
sin x

ð0; p=2Þ, (b) lim
x!0þ

tan x

x
ð0;p=2Þ,

(c) lim
x!0þ

ln cos x

x
ð0;p=2Þ, (d) lim

x!0þ
tan x� x

x3
ð0;p=2Þ.

8. Evaluate the following limits:

(a) lim
x!0

Arctan x

x
ð�1; 1Þ, (b) lim

x!0

1

xðln xÞ2 ð0; 1Þ,

(c) lim
x!0þ

x3 ln x ð0; 1Þ, (d) lim
x!1

x3

e3
ð0; 1Þ
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9. Evaluate the following limits:

(a) lim
x!1

ln x

x2
ð0; 1Þ, (b) lim

x!1
ln xffiffiffi
x

p ð0; 1Þ,

(c) lim
x!0

x ln sin x ð0; pÞ, (d) lim
x!1

xþ ln x

x ln x
ð0; 1Þ.

10. Evaluate the following limits:

(a) lim
x!0þ

x2x ð0; 1Þ, (b) lim
x!0

ð1þ 3=xÞx ð0; 1Þ,

(c) lim
x!1ð1þ 3=xÞx ð0; 1Þ, (d) lim

x!0þ
1

x
� 1

Arctan x

� �
ð0; 1Þ.

11. Evaluate the following limits:

(a) lim
x!1x1=x ð0; 1Þ, (b) lim

x!0þ
ðsinxÞx ð0; pÞ,

(c) lim
x!0þ

xsinx ð0; 1Þ, (d) lim
x!p=2�

ðsec x� tan xÞ ð0; p=2Þ.
12. Let f be differentiable on (0, 1) and suppose that lim

x!1ð f ðxÞ þ f 0ðxÞÞ ¼ L. Show that

lim
x!1 f ðxÞ ¼ L and lim

x!1 f 0ðxÞ ¼ 0. [Hint: f ðxÞ ¼ exf ðxÞ=ex.]
13. Try to use L’Hospital’s Rule to find the limit of

tan x

sec x
as x ! ðp=2Þ�. Then evaluate directly

by changing to sines and cosines.

14. Show that if c > 0, then lim
x!c

xc � cx

xx � cc
¼ 1� ln c

1þ ln c
.

Section 6.4 Taylor’s Theorem

Avery useful technique in the analysis of real functions is the approximation of functions

by polynomials. In this section we will prove a fundamental theorem in this area that goes

back to Brook Taylor (1685–1731), although the remainder term was not provided until

much later by Joseph-Louis Lagrange (1736–1813). Taylor’s Theorem is a powerful result

that has many applications. We will illustrate the versatility of Taylor’s Theorem by briefly

discussing some of its applications to numerical estimation, inequalities, extreme values of

a function, and convex functions.

Taylor’s Theorem can be regarded as an extension of the Mean Value Theorem to

‘‘higher order’’ derivatives. Whereas the Mean Value Theorem relates the values of a

function and its first derivative, Taylor’s Theorem provides a relation between the values of

a function and its higher order derivatives.

Derivatives of order greater than one are obtained by a natural extension of the

differentiation process. If the derivative f 0ðxÞ of a function f exists at every point x in an

interval I containing a point c, then we can consider the existence of the derivative of the

function f 0 at the point c. In case f 0 has a derivative at the point c, we refer to the resulting
number as the second derivative of f at c, and we denote this number by f 00ðcÞ or by
f (2)(c). In similar fashion we define the third derivative f 000ðcÞ ¼ f ð3ÞðcÞ; . . ., and the nth

derivative f (n)(c), whenever these derivatives exist. It is noted that the existence of the

nth derivative at c presumes the existence of the (n � l)st derivative in an interval

containing c, but we do allow the possibility that c might be an endpoint of such an

interval.

If a function f has an nth derivative at a point x0, it is not difficult to construct an

nth degree polynomial Pn such that Pnðx0Þ ¼ f ðx0Þ and PðkÞ
n ðx0Þ ¼ f ðkÞðx0Þ for
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k ¼ 1; 2; . . . ; n. In fact, the polynomial

ð1Þ PnðxÞ :¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ þ f 00ðx0Þ
2!

ðx� x0Þ2

þ � � � þ f ðnÞðx0Þ
n!

ðx� x0Þn

has the property that it and its derivatives up to order n agree with the function f and its

derivatives up to order n, at the specified point x0. This polynomial Pn is called the nth

Taylor polynomial for f at x0. It is natural to expect this polynomial to provide a

reasonable approximation to f for points near x0, but to gauge the quality of the

approximation, it is necessary to have information concerning the remainder

Rn :¼ f � Pn. The following fundamental result provides such information.

6.4.1 Taylor’s Theorem Let n 2 N , let I :¼ ½a; b�, and let f : I ! R be such that f and

its derivatives f 0; f 00; . . .; f ðnÞ are continuous on I and that f ðnþ1Þ exists on (a, b). If x0 2 I,

then for any x in I there exists a point c between x and x0 such that

ð2Þ f ðxÞ ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ þ f 00ðx0Þ
2!

ðx� x0Þ2

þ � � � þ f ðnÞðx0Þ
n!

ðx� x0Þn þ f ðnþ1ÞðcÞ
ðnþ 1Þ! ðx� x0Þnþ1:

Proof. Let x0 and x be given and let J denote the closed interval with endpoints x0 and x.

We define the function F on J by

FðtÞ :¼ f ðxÞ � f ðtÞ � ðx� tÞ f 0ðtÞ � � � � � ðx� tÞn
n!

f ðnÞðtÞ
for t 2 J. Then an easy calculation shows that we have

F0ðtÞ ¼ � ðx� tÞn
n!

f ðnþ1ÞðtÞ:
If we define G on J by

GðtÞ :¼ FðtÞ � x� t

x� x0

� �nþ1

Fðx0Þ

for t 2 J, thenGðx0Þ ¼ GðxÞ ¼ 0. An application of Rolle’s Theorem 6.2.3 yields a point c

between x and x0 such that

0 ¼ G0ðcÞ ¼ F0ðcÞ þ ðnþ 1Þ ðx� cÞn
ðx� x0Þnþ1

Fðx0Þ:

Hence, we obtain

Fðx0Þ ¼ � 1

nþ 1

ðx� x0Þnþ1

ðx� cÞn F0ðcÞ

¼ 1

nþ 1

ðx� x0Þnþ1

ðx� cÞn
ðx� cÞn

n!
f ðnþ1ÞðcÞ ¼ f ðnþ1ÞðcÞ

ðnþ 1Þ! ðx� x0Þnþ1;

which implies the stated result. Q.E.D.

We shall use the notation Pn for the nth Taylor polynomial (1) of f, and Rn for the

remainder. Thus we may write the conclusion of Taylor’s Theorem as f ðxÞ ¼ PnðxÞ þ
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RnðxÞ where Rn is given by

ð3Þ RnðxÞ :¼ f ðnþ1ÞðcÞ
ðnþ 1Þ! ðx� x0Þnþ1

for some point c between x and x0. This formula for Rn is referred to as the Lagrange form
(or the derivative form) of the remainder. Many other expressions for Rn are known; one is

in terms of integration and will be given later. (See Theorem 7.3.18.)

Applications of Taylor’s Theorem

The remainder term Rn in Taylor’s Theorem can be used to estimate the error in

approximating a function by its Taylor polynomial Pn. If the number n is prescribed,

then the question of the accuracy of the approximation arises. On the other hand, if a certain

accuracy is specified, then the question of finding a suitable value of n is germane. The

following examples illustrate how one responds to these questions.

6.4.2 Examples (a) Use Taylor’s Theoremwith n¼ 2 to approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x;3

p
x > �1.

We take the function f ðxÞ :¼ ð1þ xÞ1=3, the point x0 ¼ 0, and n ¼ 2. Since f 0ðxÞ ¼
1
3
ð1þ xÞ�2=3

and f 00ðxÞ ¼ 1
3
ð� 2

3
Þð1þ xÞ�5=3

, we have f 0ð0Þ ¼ 1
3
and f 00ð0Þ ¼ �2=9. Thus

we obtain

f ðxÞ ¼ P2ðxÞ þ R2ðxÞ ¼ 1þ 1
3
x� 1

9
x2 þ R2ðxÞ;

where R2ðxÞ ¼ 1
3!
f 000ðcÞx3 ¼ 5

81
ð1þ cÞ�8=3

x3 for some point c between 0 and x.

For example, if we let x ¼ 0.3, we get the approximation P2(0.3) ¼ 1.09 for
ffiffiffiffiffiffiffiffi
1:3:3

p

Moreover, since c > 0 in this case, then ð1þ cÞ�8=3 < 1 and so the error is at most

R2ð0:3Þ � 5

81

3

10

� �3

¼ 1

600
< 0:17
 10�2:

Hence, we have j ffiffiffiffiffiffiffi
1:33

p �1:09j < 0:5
 10�2, so that two decimal place accuracy is assured.

(b) Approximate the number e with error less than 10�5.

We shall consider the function gðxÞ :¼ ex and take x0 ¼ 0 and x ¼ 1 in Taylor’s

Theorem. We need to determine n so that jRnð1Þj < 10�5. To do so, we shall use the fact

that g0ðxÞ ¼ ex and the initial bound of ex � 3 for 0 � x � 1.

Since g0ðxÞ ¼ ex, it follows that gðkÞðxÞ ¼ ex for all k 2 N , and therefore gðkÞð0Þ ¼ 1

for all k 2 N . Consequently the nth Taylor polynomial is given by

PnðxÞ :¼ 1þ xþ x2

2!
þ � � � þ xn

n!

and the remainder forx¼ 1 is given byRnð1Þ ¼ ec=ðnþ 1Þ! for some c satisfying 0 < c < 1.

Since ec < 3, we seek a value of n such that 3=ðnþ 1Þ! < 10�5. A calculation reveals that

9! ¼ 362; 880 > 3
 105 so that the value n¼ 8will provide the desired accuracy;moreover,

since 8! ¼ 40; 320, no smaller value of n will be certain to suffice. Thus, we obtain

e � P8ð1Þ ¼ 1þ 1þ 1

2!
þ � � � þ 1

8!
¼ 2:718 28

with error less than 10�5. &

Taylor’s Theorem can also be used to derive inequalities.
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6.4.3 Examples (a) 1� 1
2
x2 � cos x for all x 2 R .

Use f ðxÞ :¼ cosx and x0 ¼ 0 in Taylor’s Theorem, to obtain

cosx ¼ 1� 1

2
x2þR2ðxÞ;

where for some c between 0 and x we have

R2ðxÞ ¼ f 000ðcÞ
3!

x3 ¼ sin c

6
x 3:

If 0 � x � p, then 0 � c < p; since c and x3 are both positive, we have R2ðxÞ � 0. Also,

if �p � x � 0, then �p � c � 0; since sin c and x3 are both negative, we again have

R2ðxÞ � 0. Therefore, we see that 1� 1
2
x2 � cos x for jxj � p. If jxj � p, then we have

1� 1
2
x2 < �3 � cos x and the inequality is trivially valid. Hence, the inequality holds for

all x 2 R .

(b) For any k 2 N, and for all x > 0, we have

x� 1

2
x2 þ � � � � 1

2k
x2k < lnð1þ xÞ < x� 1

2
x2 þ � � � þ 1

2k þ 1
x2kþ1:

Using the fact that the derivative of ln(lþ x) is 1=(1þ x) for x> 0, we see that the nth

Taylor polynomial for ln(l þ x) with x0 ¼ 0 is

PnðxÞ ¼ x� 1

2
x2 þ � � � þ ð�1Þn�1 1

n
xn

and the remainder is given by

RnðxÞ ¼ ð�1Þncnþ1

nþ 1
xnþ1

for some c satisfying 0 < c < x. Thus for any x > 0, if n ¼ 2k is even, then we have

R2kðxÞ > 0; and if n ¼ 2k þ 1 is odd, then we have R2kþ1ðxÞ < 0. The stated inequality

then follows immediately.

(c) ep > pe

Taylor’s Theorem gives us the inequality ex > 1þ x for x > 0, which the reader

should verify. Then, since p > e, we have x ¼ p=e� 1 > 0, so that

eðp=e�1Þ > 1 þ ðp=e� 1Þ ¼ p=e:

This implies ep=e > ðp=eÞe ¼ p, and thus we obtain the inequality ep > pe. &

Relative Extrema

It was established in Theorem 6.2.1 that if a function f : I ! R is differentiable at a point c

interior to the interval I, then a necessary condition for f to have a relative extremum at c is

that f 0ðcÞ ¼ 0. One way to determine whether f has a relative maximum or relative

minimum [or neither] at c is to use the First Derivative Test 6.2.8. Higher order derivatives,

if they exist, can also be used in this determination, as we now show.

6.4.4 Theorem Let I be an interval, let x0 be an interior point of I, and let n � 2.

Suppose that the derivatives f 0; f 00 . . . ; f ðnÞ exist and are continuous in a neighborhood

of x0 and that f 0ðx0Þ ¼ � � � ¼ f ðn�1Þðx0Þ ¼ 0, but f ðnÞðx0Þ 6¼ 0.

(i) If n is even and f ðnÞðx0Þ > 0, then f has a relative minimum at x0.

(ii) If n is even and f ðnÞðx0Þ < 0, then f has a relative maximum at x0.

(iii) If n is odd, then f has neither a relative minimum nor relative maximum at x0.
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Proof. Applying Taylor’s Theorem at x0, we find that for x 2 I we have

f ðxÞ ¼ Pn�1ðxÞ þ Rn�1ðxÞ ¼ f ðx0Þ þ f ðnÞðcÞ
n!

ðx� x0Þn;
where c is some point between x0 and x. Since f

(n) is continuous, if f ðnÞðx0Þ 6¼ 0, then there

exists an interval U containing x0 such that f ðnÞðxÞ will have the same sign as f ðnÞðx0Þ for
x 2 U. If x 2 U, then the point c also belongs to U and consequently f ðnÞðcÞ and f ðnÞðx0Þ
will have the same sign.

(i) If n is even and f ðnÞðx0Þ > 0, then for x 2 U we have f ðnÞðcÞ > 0 and ðx� x0Þn �
0 so that Rn�1ðxÞ � 0. Hence, f ðxÞ � f ðx0Þ for x 2 U, and therefore f has a relative

minimum at x0.

(ii) If n is even and f ðnÞðx0Þ < 0, then it follows that Rn�1ðxÞ � 0 for x 2 U, so that

f ðxÞ � f ðx0Þ for x 2 U. Therefore, f has a relative maximum at x0.

(iii) If n is odd, then x� x0ð Þn is positive if x > x0 and negative if x < x0. Conse-

quently, if x 2 U, then Rn�1ðxÞ will have opposite signs to the left and to the right of x0.

Therefore, f has neither a relative minimum nor a relative maximum at x0. Q.E.D.

Convex Functions

The notion of convexity plays an important role in a number of areas, particularly in the

modern theory of optimization. We shall briefly look at convex functions of one real

variable and their relation to differentiation. The basic results, when appropriately

modified, can be extended to higher dimensional spaces.

6.4.5 Definition Let I � R be an interval. A function f : I ! R is said to be convex on I

if for any t satisfying 0 � t � 1 and any points x1; x2 in I, we have

f ðð1� tÞx1 þ tx2Þ � ð1� tÞ f ðx1Þ þ tf ðx2Þ:
Note that if x1 < x2, then as t ranges from 0 to 1, the point ð1� tÞx1 þ tx2 traverses

the interval from x1 to x2. Thus if f is convex on I and if x1; x2 2 I, then the chord joining

any two points ðx1; f ðx1ÞÞ and ðx2; f ðx2ÞÞ on the graph of f lies above the graph of f. (See

Figure 6.4.1.)

A convex function need not be differentiable at every point, as the example

f ðxÞ :¼ jxj; x 2 R , reveals. However, it can be shown that if I is an open interval and if

f : I ! R is convex on I, then the left and right derivatives of f exist at every point of I.As a

Figure 6.4.1 A convex function
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consequence, it follows that a convex function on an open interval is necessarily continuous.

We will not verify the preceding assertions, nor will we develop many other interesting

properties of convex functions. Rather, we will restrict ourselves to establishing the

connection between a convex function f and its second derivative f 00, assuming that f 00 exists.

6.4.6 Theorem Let I be an open interval and let f : I ! R have a second derivative on

I. Then f is a convex function on I if and only if f 00ðxÞ � 0 for all x 2 I.

Proof. ()) We will make use of the fact that the second derivative is given by the limit

ð4Þ f 00ðaÞ ¼ lim
h!0

f ðaþ hÞ � 2f ðaÞ þ f ða� hÞ
h2

for each a 2 I. (See Exercise 16.) Given a 2 I, let h be such that aþ h and a� h belong to I.

Then a ¼ 1
2
ðaþ hÞ þ ða� hÞð Þ, and since f is convex on I, we have

f ðaÞ ¼ f 1
2
ðaþ hÞ þ 1

2
ða� hÞ	 
 � 1

2
f ðaþ hÞ þ 1

2
f ða� hÞ:

Therefore, we have f ðaþ hÞ � 2f ðaÞ þ f ða� hÞ � 0. Since h2 > 0 for all h 6¼ 0, we see

that the limit in (4) must be nonnegative. Hence, we obtain f 00ðaÞ � 0 for any a 2 I.

ð(Þ We will use Taylor’s Theorem. Let x1; x2 be any two points of I, let 0 < t < 1,

and let x0 :¼ ð1� tÞx1 þ tx2. Applying Taylor’s Theorem to f at x0 we obtain a point cl
between x0 and x1 such that

f ðx1Þ ¼ f ðx0Þ þ f 0ðx0Þðx1 � x0Þ þ 1
2
f 00ðc1Þðx1 � x0Þ2;

and a point c2 between x0 and x2 such that

f ðx2Þ ¼ f ðx0Þ þ f 0ðx0Þðx2 � x0Þ þ 1
2
f 00ðc2Þðx2 � x0Þ2:

If f 00 is nonnegative on I, then the term

R :¼ 1
2
ð1� tÞf 00ðc1Þðx1 � x0Þ2 þ 1

2
tf 00ðc2Þðx2 � x0Þ2

is also nonnegative. Thus we obtain

ð1� tÞ f ðx1Þ þ tf ðx2Þ ¼ f ðx0Þ þ f 0ðx0Þ ð1� tÞx1 þ tx2 � x0ð Þ
þ 1

2
ð1� tÞf 00ðc1Þðx1 � x0Þ2 þ 1

2
tf 00ðc2Þðx2 � x0Þ2

¼ f ðx0Þ þ R

� f ðx0Þ ¼ f ð1� tÞx1 þ tx2ð Þ:

Hence, f is a convex function on I. Q.E.D.

Newton’s Method

It is often desirable to estimate a solution of an equation with a high degree of accuracy.

The Bisection Method, used in the proof of the Location of Roots Theorem 5.3.5, provides

one estimation procedure, but it has the disadvantage of converging to a solution rather

slowly. A method that often results in much more rapid convergence is based on the

geometric idea of successively approximating a curve by tangent lines. The method is

named after its discoverer, Isaac Newton.
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Let f be a differentiable function that has a zero at r and let x1 be an initial estimate of

r. The line tangent to the graph at ðx1; f ðx1ÞÞ has the equation y ¼ f ðx1Þ þ f 0ðx1Þðx� x1Þ,
and crosses the x-axis at the point

x2 :¼ x1 � f ðx1Þ
f 0ðx1Þ :

(See Figure 6.4.2.) If we replace x1 by the second estimate x2, then we obtain a point x3,

and so on. At the nth iteration we get the point xnþ1 from the point xn by the formula

xnþ1 :¼ xn � f ðxnÞ
f 0ðxnÞ :

Under suitable hypotheses, the sequence ðxnÞwill converge rapidly to a root of the equation
f ðxÞ ¼ 0, as we now show. The key tool in establishing the rapid rate of convergence is

Taylor’s Theorem.

6.4.7 Newton’s Method Let I :¼ ½a; b� and let f : I ! R be twice differentiable on I.

Suppose that f ðaÞ f ðbÞ < 0 and that there are constants m, M such that j f 0ðxÞj � m > 0

and j f 00ðxÞj � M for x 2 I and let K :¼ M=2m. Then there exists a subinterval I�

containing a zero r of f such that for any x1 2 I� the sequence ðxnÞ defined by

ð5Þ xnþ1 :¼ xn � f ðxnÞ
f 0ðxnÞ f or all n 2 N ;

belongs to I� and ðxnÞ converges to r. Moreover

ð6Þ jxnþ1 � rj � K jxn � rj2 f or all n 2 N :

Proof. Since f ðaÞ f ðbÞ < 0, the numbers f (a) and f (b) have opposite signs; hence by

Theorem 5.3.5 there exists r 2 I such that f ðrÞ ¼ 0. Since f 0 is never zero on I, it follows

from Rolle’s Theorem 6.2.3 that f does not vanish at any other point of I.

We now let x0 2 I be arbitrary; by Taylor’s Theorem there exists a point c0 between x0

and r such that

0 ¼ f ðrÞ ¼ f ðx0Þ þ f 0ðx0Þðr� x0Þ þ 1
2
f 00ðc0Þðr� x0Þ2;

Figure 6.4.2 Newton’s Method
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from which it follows that

�f ðx0Þ ¼ f 0ðx0Þðr� x0Þ þ 1
2
f 00ðc0Þðr� x0Þ2:

If x00 is the number defined from x0 by ‘‘the Newton procedure’’:

x00 :¼ x0 � f ðx0Þ
f 0ðx0Þ ;

then an elementary calculation shows that

x00 ¼ x0 þ ðr� x0Þ þ 1

2

f 00ðc0Þ
f 0ðx0Þ ðr� x0Þ2;

whence it follows that

x00 � r ¼ 1

2

f 00ðc0Þ
f 0ðx0Þ ðx

0 � rÞ2:

Since c0 2 I, the assumed bounds on f 0 and f 00 hold and, setting K :¼ M=2m, we obtain the

inequality

ð7Þ jx00 � rj � K jx0 � rj2:
We now choose d > 0 so small that d < 1=K and that the interval I� :¼ ½r� d; rþ d� is

contained in I. If xn 2 I�, then jxn � rj � d and it follows from (7) that

jxnþ1 � rj � Kjxn � rj2 � Kd2 < d; hence xn 2 I� implies that xnþ1 2 I�. Therefore if

x1 2 I�, we infer that xn 2 I� for all n 2 N . Also if x1 2 I�, then an elementary induction

argument using (7) shows that jxnþ1 � rj < ðKdÞnjx1 � rj for n 2 N. But since Kd < 1 this

proves that limðxnÞ ¼ r. Q.E.D.

6.4.8 Example We will illustrate Newton’s Method by using it to approximate
ffiffiffi
2

p
.

If we let f xð Þ :¼ x2 � 2 for x 2 R, then we seek the positive root of the equation

f ðxÞ ¼ 0. Since f 0ðxÞ ¼ 2x, the iteration formula is

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞ

¼ xn � x2n � 2

2xn
¼ 1

2
xn þ 2

xn

� �
:

If we take x1 :¼ 1 as our initial estimate, we obtain the successive values x2 ¼ 3=2 ¼ 1:5,
x3 ¼ 17=12 ¼ 1:416 666 . . ., x4 ¼ 577=408 ¼ 1:414 215 . . ., and x5 ¼ 665 857=470 832
¼ 1:414 213 562 374 . . ., which is correct to eleven places. &

Remarks (a) If we let en :¼ xn � r be the error in approximating r, then inequality (6)

can be written in the form jKenþ1j � jKenj2. Consequently, if jKenj < 10�m then

jKenþ1j < 10�2m so that the number of significant digits in Ken has been doubled. Because

of this doubling, the sequence generated by Newton’s Method is said to converge

‘‘quadratically.’’

(b) In practice, when Newton’s Method is programmed for a computer, one often makes

an initial guess x1 and lets the computer run. If x1 is poorly chosen, or if the root is too near

the endpoint of I, the procedure may not converge to a zero of f. Two possible difficulties
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are illustrated in Figures 6.4.3 and 6.4.4. One familiar strategy is to use the Bisection

Method to arrive at a fairly close estimate of the root and then to switch to Newton’s

Method for the coup de grâce.

Exercises for Section 6.4

1. Let f ðxÞ :¼ cos ax for x 2 R where a 6¼ 0. Find f ðnÞðxÞ for n 2 N, x 2 R .

2. Let gðxÞ :¼ jx3j for x 2 R. Find g0ðxÞ and g00ðxÞ for x 2 R, and g000ðxÞ for x 6¼ 0. Show that

g000ð0Þ does not exist.
3. Use Induction to prove Leibniz’s rule for the nth derivative of a product:

ð f gÞðnÞðxÞ ¼
Xn
k¼0

n

k

� �
f ðn�kÞðxÞgðkÞðxÞ:

4. Show that if x > 0, then 1þ 1
2
x� 1

8
x2 � ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p � 1þ 1

2
x.

5. Use the preceding exercise to approximate
ffiffiffiffiffiffiffi
1:2

p
and

ffiffiffi
2

p
. What is the best accuracy you can be

sure of, using this inequality?

6. Use Taylor’s Theorem with n ¼ 2 to obtain more accurate approximations for
ffiffiffiffiffiffiffi
1:2

p
and

ffiffiffi
2

p
.

7. If x > 0 show that jð1þ xÞ1=3 � ð1þ 1
3
x� 1

9
x2Þj � ð5=81Þx3. Use this inequality to approxi-

mate
ffiffiffiffiffiffiffi
1:23

p
and

ffiffiffi
23

p
.

8. If f ðxÞ :¼ ex, show that the remainder term in Taylor’s Theorem converges to zero as n ! 1,

for each fixed x0 and x. [Hint: See Theorem 3.2.11.]

9. If gðxÞ :¼ sin x, show that the remainder term in Taylor’s Theorem converges to zero as n ! 1
for each fixed x0 and x.

10. Let hðxÞ :¼ e�1=x2 for x 6¼ 0 and hð0Þ :¼ 0. Show that hðnÞð0Þ ¼ 0 for all n 2 N . Conclude that

the remainder term in Taylor’s Theorem for x0 ¼ 0 does not converge to zero as n ! 1 for

x 6¼ 0. [Hint: By L’Hospital’s Rule, lim
x!0

hðxÞ=xk ¼ 0 for any k 2 N. Use Exercise 3 to calculate

hðnÞðxÞ for x 6¼ 0.]

11. If x 2 0; 1½ � and n 2 N , show that

ln 1þ xð Þ � x� x2

2
þ x3

3
þ � � � þ �1ð Þn�1 x

n

n

� �����
���� < xnþ1

nþ 1
:

Use this to approximate ln 1.5 with an error less than 0.01. Less than 0.001.

Figure 6.4.4 xn oscillates

between x1 and x2Figure 6.4.3 xn ! 1
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12. We wish to approximate sine by a polynomial on �1; 1½ � so that the error is less than 0.001.

Show that we have

sin x� x� x3

6
þ x5

120

� �����
���� < 1

5040
for xj j � 1:

13. Calculate e correct to seven decimal places.

14. Determine whether or not x ¼ 0 is a point of relative extremum of the following functions:

(a) f xð Þ :¼ x3 þ 2; (b) g xð Þ :¼ sin x� x;

(c) h xð Þ :¼ sinxþ 1
6
x3; (d) k xð Þ :¼ cos x� 1þ 1

2
x2:

15. Let f be continuous on [a, b] and assume the second derivative f 00 exists on (a, b). Suppose that
the graph of f and the line segment joining the points a; f að Þð Þ and b; f bð Þð Þ intersect at a point
x0; f x0ð Þð Þ where a < x0 < b. Show that there exists a point c 2 a; bð Þ such that f 00 cð Þ ¼ 0.

16. Let I � R be an open interval, let f : I ! R be differentiable on I, and suppose f 00 að Þ exists at
a 2 I. Show that

f 00 að Þ ¼ lim
h!0

f aþ hð Þ � 2 f að Þ þ f a� hð Þ
h2

:

Give an example where this limit exists, but the function does not have a second derivative at a.

17. Suppose that I � R is an open interval and that f 00 xð Þ � 0 for all x 2 I. If c 2 I, show that the

part of the graph of f on I is never below the tangent line to the graph at (c, f (c)).

18. Let I � R be an interval and let c 2 I. Suppose that f and g are defined on I and that the

derivatives f nð Þ; g nð Þ exist and are continuous on I. If f kð Þ cð Þ ¼ 0 and g kð Þ cð Þ ¼ 0 for

k ¼ 0; 1; . . . ; n� 1, but g nð Þ cð Þ 6¼ 0, show that

lim
x!c

f xð Þ
g xð Þ ¼

f nð Þ cð Þ
g nð Þ cð Þ :

19. Show that the function f xð Þ :¼ x3 � 2x� 5 has a zero r in the interval I :¼ 2; 2:2½ �. If x1 :¼ 2

and if we define the sequence (xn) using the Newton procedure, show that

xnþ1 � rj j � 0:7ð Þ xn � rj j2. Show that x4 is accurate to within six decimal places.

20. Approximate the real zeros of g xð Þ :¼ x4 � x� 3.

21. Approximate the real zeros of h xð Þ :¼ x3 � x� 1. Apply Newton’s Method starting with the

initial choices (a) x1 :¼ 2, (b) x1 :¼ 0, (c) x1 :¼ �2. Explain what happens.

22. The equation ln x ¼ x� 2 has two solutions. Approximate them using Newton’s Method. What

happens if x1 :¼ 1
2
is the initial point?

23. The function f xð Þ ¼ 8x3 � 8x2 þ 1 has two zeros in [0,1]. Approximate them, using Newton’s

Method, with the starting points (a) x1 :¼ 1
8
, (b) x1 :¼ 1

4
. Explain what happens.

24. Approximate the solution of the equation x ¼ cos x, accurate to within six decimals.
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CHAPTER 7

THE RIEMANN INTEGRAL

We have already mentioned the developments, during the 1630s, by Fermat and Descartes

leading to analytic geometry and the theory of the derivative. However, the subject we

know as calculus did not begin to take shape until the late 1660s when Isaac Newton

created his theory of ‘‘fluxions’’ and invented the method of ‘‘inverse tangents’’ to find

areas under curves. The reversal of the process for finding tangent lines to find areas was

also discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton’s

unpublished work and who arrived at the discovery by a very different route. Leibniz

introduced the terminology ‘‘calculus differentialis’’ and ‘‘calculus integralis,’’ since

finding tangent lines involved differences and finding areas involved summations.

Thus, they had discovered that integration, being a process of summation, was inverse

to the operation of differentiation.

During a century and a half of development and refinement of techniques, calculus

consisted of these paired operations and their applications, primarily to physical problems.

In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the

concept of integration from its companion, differentiation, and examined the motivating

summation and limit process of finding areas by itself. He broadened the scope by

considering all functions on an interval for which this process of ‘‘integration’’ could

be defined: the class of ‘‘integrable’’ functions. The Fundamental Theorem of Calculus

became a result that held only for a restricted set of integrable functions. The viewpoint of

Riemann led others to invent other integration theories, the most significant being

Lebesgue’s theory of integration. But there have been some advances made in more

recent times that extend even the Lebesgue theory to a considerable extent. We will give a

brief introduction to these results in Chapter 10.

Bernhard Riemann
(Georg Friedrich) Bernhard Riemann (1826–1866), the son of a poor

Lutheran minister, was born near Hanover, Germany. To please his

father, he enrolled (1846) at the University of G€ottingen as a student of
theology and philosophy, but soon switched to mathematics. He inter-

rupted his studies at G€ottingen to study at Berlin under C. G. J. Jacobi,
P. G. J. Dirichlet, and F. G. Eisenstein, but returned to G€ottingen in 1849
to complete his thesis under Gauss. His thesis dealt with what are now

called ‘‘Riemann surfaces.’’ Gauss was so enthusiastic about Riemann’s

work that he arranged for him to become a privatdozent at G€ottingen in
1854. On admission as a privatdozent, Riemann was required to prove himself by delivering a

probationary lecture before the entire faculty. As tradition dictated, he submitted three topics, the

first two of which he was well prepared to discuss. To Riemann’s surprise, Gauss chose that he

should lecture on the third topic: ‘‘On the hypotheses that underlie the foundations of geometry.’’

After its publication, this lecture had a profound effect on modern geometry.

Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made

major contributions in many areas: the foundations of geometry, number theory, real and complex

analysis, topology, and mathematical physics.
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We begin by defining the concept of Riemann integrability of real-valued functions

defined on a closed bounded interval of R , using the Riemann sums familiar to the reader

from calculus. This method has the advantage that it extends immediately to the case of

functions whose values are complex numbers, or vectors in the space Rn. In Section 7.2, we

will establish the Riemann integrability of several important classes of functions: step

functions, continuous functions, and monotone functions. However, we will also see that

there are functions that are notRiemann integrable. The Fundamental Theorem of Calculus

is the principal result in Section 7.3. We will present it in a form that is slightly more

general than is customary and does not require the function to be a derivative at every point

of the interval. A number of important consequences of the Fundamental Theorem are also

given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion for

Riemann integrability. This famous result is usually not given in books at this level, since

its proof (given in Appendix C) is somewhat complicated. However, its statement is well

within the reach of students, who will also comprehend the power of this result. In Section

7.4, we discuss an alternative approach to the Riemann integral due to Gaston Darboux that

uses the concepts of upper integral and lower integral. The two approaches appear to be

quite different, but in fact they are shown to be equivalent. The final section presents

several methods of approximating integrals, a subject that has become increasingly

important during this era of high-speed computers. While the proofs of these results

are not particularly difficult, we defer them to Appendix D.

An interesting history of integration theory, including a chapter on the Riemann

integral, is given in the book by Hawkins cited in the References.

Section 7.1 Riemann Integral

We will follow the procedure commonly used in calculus courses and define the Riemann

integral as a kind of limit of theRiemann sums as the normof the partitions tend to 0. Sincewe

assume that the reader is familiar—at least informally—with the integral from a calculus

course, we will not provide a motivation of the integral, or discuss its interpretation as the

‘‘area under the graph,’’ or its many applications to physics, engineering, economics, etc.

Instead, we will focus on the purely mathematical aspects of the integral.

However, we first define some basic terms that will be frequently used.

Partitions and Tagged Partitions

If I :¼ a; b½ � is a closed bounded interval in R , then a partition of I is a finite, ordered set

P :¼ x0; x1; . . . ; xn�1; xnð Þ of points in I such that

a ¼ x0 < x1 < � � � < xn�1 < xn ¼ b:

(See Figure 7.1.1.) The points of P are used to divide I ¼ [a, b] into non-overlapping

subintervals

I1 :¼ x0; x1½ �; I2 :¼ x1; x2½ �; . . . ; In :¼ xn�1; xn½ �:

Figure 7.1.1 A partition of [a, b]
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Often we will denote the partition P by the notation P ¼ xi�1; xi½ �f gni¼1. We define the

norm (or mesh) of P to be the number

ð1Þ jjPjj :¼ max x1 � x0; x2 � x1; . . . ; xn � xn�1f g:
Thus the norm of a partition is merely the length of the largest subinterval into which the

partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is not

a function of the norm.

If a point ti has been selected from each subinterval Ii ¼ xi�1; xi½ �, for i ¼ 1; 2; . . . ; n,
then the points are called tags of the subintervals Ii. A set of ordered pairs

_P :¼ xi�1; xi½ �; tið Þf gni¼1

of subintervals and corresponding tags is called a tagged partition of I; see Figure 7.1.2.

(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags can

be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the left

endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an

endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each

tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many

ways. The norm of a tagged partition is defined as for an ordinary partition and does not

depend on the choice of tags.

If _P is the tagged partition given above, we define the Riemann sum of a function

f : a; b½ � ! R corresponding to _P to be the number

ð2Þ S f ;
�P� �

:¼
Xn
i¼1

f tið Þ xi � xi�1ð Þ:

We will also use this notation when _P denotes a subset of a partition, and not the entire

partition.

The reader will perceive that if the function f is positive on [a, b], then the Riemann

sum (2) is the sum of the areas of n rectangles whose bases are the subintervals Ii ¼
xi�1; xi½ � and whose heights are f tið Þ. (See Figure 7.1.3.)

Figure 7.1.2 A tagged partition of [a, b]

Figure 7.1.3 A Riemann sum
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Definition of the Riemann Integral

We now define the Riemann integral of a function f on an interval [a, b].

7.1.1 Definition A function f : a; b½ � ! R is said to be Riemann integrable on [a, b] if

there exists a number L 2 R such that for every e > 0 there exists de > 0 such that if _P is

any tagged partition of [a, b] with jj _Pjj<de, then

S f ;
�P� �� L

�� �� < e:

The set of all Riemann integrable functions on [a, b] will be denoted by R a; b½ �.

Remark It is sometimes said that the integral L is ‘‘the limit’’ of the Riemann sums

S f : _P� �
as the norm jj _Pjj ! 0. However, since S f ; _P� �

is not a function of jj _Pjj, this limit

is not of the type that we have studied before.

First wewill show that if f 2 R a; b½ �, then the number L is uniquely determined. It will

be called the Riemann integral of f over [a, b]. Instead of L, we will usually write

L ¼
Z b

a

f or

Z b

a

f xð Þdx:

It should be understood that any letter other than x can be used in the latter expression, so

long as it does not cause any ambiguity.

7.1.2 Theorem If f 2 R a; b½ �, then the value of the integral is uniquely determined.

Proof. Assume that L0 and L00 both satisfy the definition and let e > 0. Then there exists

d0e=2 > 0 such that if _P1 is any tagged partition with jj _P1jj < d0e=2, then

S f ; _P1

� �� L0
�� �� < e=2:

Also there exists d00e=2 > 0 such that if _P2 is any tagged partition with jj _P2jj < d00e=2, then

S f ;
�P2

� �� L00
�� �� < e=2:

Now let de :¼ min d0e=2; d00e=2
� �

> 0 and let _P be a tagged partition with jj _Pjj < de. Since

both jj _Pjj < d0e=2 and jj _Pjj < d00e=2, then

S f ;
�P� �� L0

�� �� < e=2 and S f ;
�P� �� L00

�� �� < e=2;

whence it follows from the Triangle Inequality that

L0 � L00j j ¼ L0 � S f ;
�P� �þ S f ;

�P� �� L00
�� ��

� L0 � S f ;
�P� ��� ��þ S f ;

�P� �� L00
�� ��

< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, it follows that L0 ¼ L00. Q.E.D.

The next result shows that changing a function at a finite number of points does not

affect its integrability nor the value of its integral.

7.1.3 Theorem If g is Riemann integrable on [a, b] and if f xð Þ ¼ g xð Þ except for a finite
number of points in [a, b], then f is Riemann integrable and

R b

a
f ¼ R b

a
g.
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Proof. If we prove the assertion for the case of one exceptional point, then the extension

to a finite number of points is done by a standard induction argument, which we leave to the

reader.

Let c be a point in the interval and let L ¼ R b

a
g. Assume that f xð Þ ¼ g xð Þ for all x 6¼ c.

For any tagged partition _P, the terms in the two sums S f ; _P� �
and S g; _P� �

are identical

with the exception of at most two terms (in the case that c ¼ xi ¼ xi�1 is an endpoint).

Therefore, we have

S f ;
�P� �� S g;

�P� ��� �� ¼ S f xið Þ � g xið Þð Þ xi � xi�1ð Þj j � 2 g cð Þj jþ f cð Þj jÞ jj �Pjj:�
Now, given e > 0, we let d1 > 0 satisfy d1< e= 4 f cð Þj j þ g cð Þj jð Þð , and let d2 > 0 be such

that jj _Pjj < d2 implies S g; _P� �� L
�� �� < e=2. We now let d :¼ min d1; d2f g. Then, if

jj _Pjj < d, we obtain

S f ;
�P� �� L

�� �� � S f ;
�P� �� S g;

�P� ��� ��þ S g;
�P� �� L

�� �� < e=2þ e=2 ¼ e:

Hence, the function f is integrable with integral L. Q.E.D.

Some Examples

If we use only the definition, in order to show that a function f is Riemann integrable we

must (i) know (or guess correctly) the value L of the integral, and (ii) construct a de that will

suffice for an arbitrary e > 0. The determination of L is sometimes done by calculating

Riemann sums and guessing what L must be. The determination of de is likely to be

difficult.

In actual practice, we usually show that f 2 R a; b½ � by making use of some of the

theorems that will be given later.

7.1.4 Examples (a) Every constant function on [a, b] is in R a; b½ �.
Let f xð Þ :¼ k for all x 2 a; b½ �. If _P :¼ xi�1; xi½ �; tið Þf gni¼1 is any tagged partition of

[a, b], then it is clear that

S f ;
�P� � ¼ Xn

i¼1

k xi � xi�1ð Þ ¼ k b� að Þ:

Hence, for any e > 0, we can choose de :¼ 1 so that if jj _Pjj < de, then

S f ;
�P� �� k b� að Þ�� �� ¼ 0 < e:

Since e > 0 is arbitrary, we conclude that f 2 R a; b½ � and R b

a
f ¼ k b� að Þ.

(b) Let g : 0; 3½ � ! R be defined by g xð Þ :¼ 2 for 0 � x � 1, and g xð Þ :¼ 3 for 1 <
x � 3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests

that we might expect that
R 3

0
g ¼ 8.

Figure 7.1.4 Graph of g
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Let _P be a tagged partition of [0,3] with norm< d; wewill show how to determine d in

order to ensure that S g; _P� ��8j < e
�� . Let _P1 be the subset of _P having its tags in [0,1]

where g(x) ¼ 2, and let _P2 be the subset of _P with its tags in (1, 3] where g(x) ¼ 3. It is

obvious that we have

ð3Þ S g;
�P� � ¼ S g;

�P1

� �þ S g;
�P2

� �
:

If we let U1 denote the union of the subintervals in _P1, then it is readily shown that

ð4Þ 0; 1� d½ � � U1 � 0; 1þ d½ �:
For example, to prove the first inclusion, we let u 2 0; 1� d½ �. Then u lies in an interval

Ik :¼ xk�1; xk½ � of _P1, and since jj _Pjj < d, we have xk � xk�1 < d. Then xk�1 � u �
1� d implies that xk � xk�1 þ d � 1� dð Þ þ d � 1. Thus the tag tk in Ik satisfies tk � 1

and therefore u belongs to a subinterval whose tag is in [0,1], that is, u 2U1. This proves the

first inclusion in (4), and the second inclusion can be shown in the same manner. Since

g tkð Þ ¼ 2 for the tags of _P1 and since the intervals in (4) have lengths 1� d and 1þ d,

respectively, it follows that

2 1� dð Þ � S g;
�P1

� � � 2 1þ dð Þ:
A similar argument shows that the union of all subintervals with tags ti 2 1; 3ð � contains
the interval 1þ d; 3½ � of length 2� d, and is contained in 1� d; 3½ � of length 2þ d.

Therefore,

3 2� dð Þ � S g;
�P2

� � � 3 2þ dð Þ:
Adding these inequalities and using equation (3), we have

8� 5d � S g;
�P� � ¼ S g;

�P1

� �þ S g;
�P2

� � � 8þ 5d;

whence it follows that

S g;
�P� �� 8

�� �� � 5d:

To have this final term < e, we are led to take de < e=5.
Making such a choice (for example, if we take de :¼ e=10), we can retrace the

argument and see that S g; _P� �� 8
�� �� < ewhen jj _Pjj < de. Since e > 0 is arbitrary, we have

proved that g 2 R 0; 3½ � and that
R 3

0
g ¼ 8, as predicted,

(c) Let h xð Þ :¼ x for x 2 0; 1½ �; we will show that h 2 R 0; 1½ �.
We will employ a ‘‘trick’’ that enables us to guess the value of the integral by

considering a particular choice of the tag points. Indeed, if Iif gni¼1 is any partition of [0,1]

and we choose the tag of the interval Ii ¼ xi�1; xi½ � to be the midpoint qi :¼ 1
2
xi�1 þ xið Þ,

then the contribution of this term to the Riemann sum corresponding to the tagged partition
_Q :¼ Ii; qið Þf gni¼1 is

h qið Þ xi � xi�1ð Þ ¼ 1

2
xi þ xi�1ð Þ xi � xi�1ð Þ ¼ 1

2
x2i � x2i�1

� �
:

If we add these terms and note that the sum telescopes, we obtain

S h;
�Q� � ¼ Xn

i¼1

1

2
x2i � x2i�1

� � ¼ 1

2
12 � 02
� � ¼ 1

2
:

Now let _P :¼ Ii; tið Þf gni¼1 be an arbitrary tagged partition of [0,1] with jj _Pjj < d so that

xi � xi�1 < d for i ¼ 1; . . . ; n. Also let _Q have the same partition points, but where we
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choose the tag qi to be the midpoint of the interval Ii. Since both ti and qi belong to this

interval, we have ti � qij j < d. Using the Triangle Inequality, we deduce

S h;
�P� �� S h; _Q� ��� �� ¼ Xn

i¼1

ti xi � xi�1ð Þ �
Xn
i�1

qi xi � xi�1ð Þ
�����

�����

�
Xn
i¼1

ti � qij j xi � xi�1ð Þ < d
Xn
i¼1

xi � xi�1ð Þ ¼ d xn � x0ð Þ ¼ d:

Since S h; _Q� � ¼ 1
2
, we infer that if _P is any tagged partition with jj _Pjj < d, then

S h;
�P� �� 1

2

����
���� < d:

Therefore we are led to take de � e. If we choose de :¼ e, we can retrace the argument to

conclude that h 2 R 0; 1½ � and R 1

0
h ¼ R 1

0
x dx ¼ 1

2
.

(d) Let G xð Þ :¼ 1=n for x ¼ 1=n n 2 Nð Þ, and G xð Þ :¼ 0 elsewhere on 0; 1½ �.
Given e > 0, the set E :¼ x : G xð Þ � ef g is a finite set. (For example, if e ¼ 1=10,

then E ¼ 1; 1=2; 1=3; . . . ; 1=10f g.) If n is the number of points in E, we allow for the

possibility that a tag may be counted twice if it is an endpoint and let d :¼ e=2n. For a given
tagged partition _P such that jj _Pjj < d, we let _P0 be the subset of _P with all tags outside of E

and let _P1 be the subset of _P with one or more tags in E. Since G xð Þ < e for each x outside

of E and G xð Þ � 1 for all x in [0,1], we get

0 � S G;
�P� � ¼ S G;

�P0

� �þ S G;
�P1

� �
< eþ 2nð Þd ¼ 2e:

Since e > 0 is arbitrary, we conclude that G is Riemann integrable with integral equal to

zero. &

Some Properties of the Integral

The difficulties involved in determining the value of the integral and of de suggest that it

would be very useful to have some general theorems. The first result in this direction

enables us to form certain algebraic combinations of integrable functions.

7.1.5 Theorem Suppose that f and g are in R a; b½ �. Then:
(a) If k 2 R , the function kf is in R a; b½ � and

Z b

a

kf ¼ k

Z b

a

f :

(b) The function f þ g is in R a; b½ � and
Z b

a

f þ gð Þ ¼
Z b

a

f þ
Z b

a

g:

(c) If f xð Þ � g xð Þ for all x 2 a; b½ �, then
Z b

a

f �
Z b

a

g:
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Proof. If _P ¼ xi�1; xi½ �; tið Þf gni¼1 is a tagged partition of [a, b], then it is an easy exercise

to show that

S kf ; _P� � ¼ kS f ; _P� �
; S f þ g; _P� � ¼ S f ; _P� �þ S g; _P� �

;

S f ; _P� � � S g; _P� �
:

We leave it to the reader to show that the assertion (a) follows from the first equality.

As an example, we will complete the proofs of (b) and (c).

Given e > 0, we can use the argument in the proof of the Uniqueness Theorem 7.1.2 to

construct a number de > 0 such that if
�P is any tagged partition with jj _Pjj < de, then both

ð5Þ S f ;
�P� ��

Z b

a

f

����
���� < e=2 and S g;

�P� ��
Z b

a

g

����
���� < e=2:

To prove (b), we note that

S f þ g;
�P� ��

Z b

a

f þ
Z b

a

g

� �����
���� ¼ S f ;

�P� �þ S g;
�P� ��

Z b

a

f �
Z b

a

g

����
����

� S f ;
�P� ��

Z b

a

f

����
����þ S g;

�P� ��
Z b

a

g

����
����

< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, we conclude that f þ g 2 R a; b½ � and that its integral is the sum of

the integrals of f and g.

To prove (c), we note that the Triangle Inequality applied to (5) implies

Z b

a

f � e=2 < S f ;
�P� �

and S g;
�P� �

<

Z b

a

gþ e=2:

If we use the fact that S f ; _P� � � S g; _P� �
, we have

Z b

a

f �
Z b

a

gþ e:

But, since e > 0 is arbitrary, we conclude that
R b

a
f � R b

a
g. Q.E.D.

Boundedness Theorem

We now show that an unbounded function cannot be Riemann integrable.

7.1.6 Theorem If f 2 R a; b½ �, then f is bounded on [a, b].

Proof. Assume that f is an unbounded function in R a; b½ � with integral L. Then there

exists d > 0 such that if _P is any tagged partition of a; b½ � with jj _Pjj < d, then we have

S f ; _P� �� L
�� �� < 1, which implies that

ð6Þ S f ;
�P� ��� �� < Lj j þ 1:

Now letQ ¼ xi�1; xi½ �f gnn¼1 be a partition of [a, b] with jjQjj < d. Since fj j is not bounded
on [a, b], then there exists at least one subinterval in Q, say xk�1; xk½ �, on which fj j is not
bounded—for, if fj j is bounded on each subinterval xi�1; xi½ � by Mi, then it is bounded on

[a, b] by max M1; . . . ;Mnf g.
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We will now pick tags for Q that will provide a contradiction to (6). We tag Q by

tt :¼ xi for i 6¼ k and we pick tk 2 xk�1; xk½ � such that

f tkð Þ xk � xk�1ð Þj j > Lj j þ 1þ
���X
i 6¼k

f tið Þ xi � xi�1ð Þ
���:

From the Triangle Inequality (in the form Aþ Bj j � Aj j � Bj j), we have

S f ;
�Q� ��� �� � f tkð Þ xk � xk�1ð Þj j �

���X
i 6¼k

f tið Þ xi � xi�1ð Þ
��� > Lj j þ 1;

which contradicts (6). Q.E.D.

We will close this section with an example of a function that is discontinuous at every

rational number and is not monotone, but is Riemann integrable nevertheless.

7.1.7 Example We consider Thomae’s function h : 0; 1½ � ! R defined, as in Exam-

ple 5.1.6(h), by h xð Þ :¼ 0 if x 2 0; 1½ � is irrational, h 0ð Þ :¼ 1 and by h xð Þ :¼ 1=n if x 2
0; 1½ � is the rational number x ¼ m=n where m; n 2 N have no common integer factors

except 1. It was seen in 5.1.6(h) that h is continuous at every irrational number and

discontinuous at every rational number in [0, l]. See Figure 5.1.2. We will now show that

h 2 R 0; 1½ �.
For e > 0, the set E :¼ x 2 0; 1½ � : h xð Þ � e=2f g is a finite set. (For example, if

e=2 ¼ 1=5, then there are eleven values of x such that h xð Þ � 1=5, namely,

E ¼ 0; 1; 1=2; 1=3; 2=3; 1=4; 3=4; 1=5; 2=5; 3=5; 4=5f g. (Sketch a graph.) We let n

be the number of elements in E and take d :¼ e= 4nð Þ. If _P is a given tagged partition such

that jj _Pjj < d, then we separate _P into two subsets. We let _P1 be the collection of tagged

intervals in _P that have their tags in E, and we let _P2 be the subset of tagged intervals in _P
that have their tags elsewhere in [0, 1]. Allowing for the possibility that a tag of _P1 may be

an endpoint of adjacent intervals, we see that _P1 has at most 2n intervals and the total

length of these intervals can be at most 2nd ¼ e=2. Also, we have 0 < h tið Þ � 1 for each tag

ti in _P1. Consequently, we have S h; _P1

� � � 1 � 2nd � e=2. For tags ti in _P2, we have

h tið Þ < e=2 and the total length of the subintervals in _P2 is clearly less than 1, so that

S h; _P2

� �
< e=2ð Þ � 1 ¼ e=2. Therefore, combining these results, we get

0 � S h;
�P� � ¼ S h;

�P1

� �þ S h;
�P2

� �
< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, we infer that h 2 R 0; 1½ � with integral 0. &

Exercises for Section 7.1

1. If I :¼ 0; 4½ �, calculate the norms of the following partitions:

(a) P1 :¼ 0; 1; 2; 4ð Þ; (b) P2 :¼ 0; 2; 3; 4ð Þ;
(c) P3 :¼ 0; 1; 1:5; 2; 3:4; 4ð Þ; (d) P4 :¼ 0; :5; 2:5; 3:5; 4ð Þ:

2. If f xð Þ :¼ x2 for x 2 0; 4½ �, calculate the following Riemann sums, where _Pi has the same

partition points as in Exercise 1, and the tags are selected as indicated.

(a) _P1 with the tags at the left endpoints of the subintervals.

(b) _P1 with the tags at the right endpoints of the subintervals.

(c) _P2 with the tags at the left endpoints of the subintervals.

(d) _P2 with the tags at the right endpoints of the subintervals.

3. Show that f : a; b½ � ! R is Riemann integrable on [a, b] if and only if there exists L 2 R such

that for every e > 0 there exists de > 0 such that if _P is any tagged partition with norm

jj _Pjj � de, then S f ; _P� �� L
�� �� � e.
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4. Let _P be a tagged partition of [0, 3].

(a) Show that the unionU1 of all subintervals in _P with tags in [0, 1] satisfies 0; 1� jj _Pjj	 
 �
U1 � 0; 1þ jj _Pjj	 


.

(b) Show that the union U2 of all subintervals in _P with tags in [1,2] satisfies 1þ jj _Pjj;	
2� jj _Pjj � � U2 � 1� jj _Pjj; 2þ jj _Pjj	 


:

5. Let _P :¼ Ii; tið Þf gni¼1 be a tagged partition of [a, b] and let c1 < c2.

(a) If u belongs to a subinterval Ii whose tag satisfies c1 � ti � c2, show that c1 � jj _Pjj � u �
c2 þ jj _Pjj.

(b) If v 2 a; b½ � and satisfies c1 þ jj _Pjj � v � c2 � jj _Pjj, then the tag ti of any subinterval Ii
that contains v satisfies ti 2 c1; c2½ �.

6. (a) Let f xð Þ :¼ 2 if 0 � x < 1 and f xð Þ :¼ 1 if 1 � x � 2. Show that f 2 R 0; 2½ � and evaluate
its integral.

(b) Let h xð Þ :¼ 2 if 0 � x < 1; h 1ð Þ :¼ 3 and h xð Þ :¼ 1 if 1 < x � 2. Show that h 2 R 0; 2½ �
and evaluate its integral.

7. Use Mathematical Induction and Theorem 7.1.5 to show that if f 1; . . . ; f n are in R a; b½ �
and if k1; . . . ; kn 2 R , then the linear combination f ¼

Xn
i¼1

ki f i belongs to R a; b½ � and

R b

a
f ¼

Xn
i¼1

ki

Z b

a

f i.

8. If f 2 R a; b½ � and f xð Þj j � M for all x 2 a; b½ �, show that
R b

a
f

��� ��� � M b� að Þ.
9. If f 2 R a; b½ � and if _Pn

� �
is any sequence of tagged partitions of a; b½ � such that jj _Pnjj ! 0,

prove that
R b

a
f ¼ limn S f ; _Pn

� �
.

10. Let g xð Þ :¼ 0 if x 2 0; 1½ � is rational and g xð Þ :¼ 1=x if x 2 0; 1½ � is irrational. Explain why

g =2 R 0; 1½ �. However, show that there exists a sequence _Pn

� �
of tagged partitions of [a, b] such

that jj _Pnjj ! 0 and limn S g; _Pn

� �
exists.

11. Suppose that f is bounded on [a, b] and that there exists two sequences of tagged partitions of

[a, b] such that jj _Pnjj ! 0 and jj _Qnjj ! 0, but such that limn S f ; _Pn

� � 6¼ limn S f ; _Qn

� �
. Show

that f is not in R a; b½ �.
12. Consider the Dirichlet function, introduced in Example 5.1.6(g), defined by f xð Þ :¼ 1 for x 2

0; 1½ � rational and f xð Þ :¼ 0 for x 2 0; 1½ � irrational. Use the preceding exercise to show that f is

not Riemann integrable on [0, 1].

13. Suppose that c � d are points in [a, b]. If w : a; b½ � ! R satisfies w xð Þ ¼ a > 0 for x 2 c; d½ �
and w xð Þ ¼ 0 elsewhere in [a, b], prove that w 2 R a; b½ � and that R b

a
w ¼ a d � cð Þ. [Hint: Given

e > 0 let de :¼ e=4a and show that if jj _Pjj < de then we have a d � c� 2deð Þ � S w; _P� � �
a d � cþ 2deð Þ:�

14. Let 0 � a < b; let Q xð Þ :¼ x2 for x 2 a; b½ � and let P :¼ xi�1; xi½ �f gni¼1 be a partition of [a, b].

For each i, let qi be the positive square root of

1
3
x2i þ xixi�1 þ x2i�1

� �
:

(a) Show that qi satisfies 0 � xi�1 � qi � xi:
(b) Show that Q qið Þ xi � xi�1ð Þ ¼ 1

3
x3i � x3i�1

� �
.

(c) If _Q is the tagged partition with the same subintervals as P and the tags qi, show that

S Q; _Q� � ¼ 1
3
b3 � a3
� �

.

(d) Use the argument in Example 7.1.4(c) to show that Q 2 R a; b½ � and
Z b

a

Q ¼
Z b

a

x2dx ¼ 1
3
b3 � a3
� �

:

15. If f 2 R a; b½ � and c 2 R , we define g on [aþ c; bþ c] by g yð Þ :¼ f y� cð Þ. Prove that

g 2 R aþ c; bþ c½ � and that
R bþc

aþc
g ¼ R b

a
f . The function g is called the c-translate of f.

7.1 RIEMANN INTEGRAL 207



C07 12/13/2010 10:5:33 Page 208

Section 7.2 Riemann Integrable Functions

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze

Theorem, which will be used to establish the Riemann integrability of several classes of

functions (step functions, continuous functions, and monotone functions). Finally we will

establish the Additivity Theorem.

We have already noted that direct use of the definition requires that we know the value

of the integral. The Cauchy Criterion removes this need, but at the cost of considering two

Riemann sums, instead of just one.

7.2.1 Cauchy Criterion A function: a; b½ � ! R belongs to R a; b½ � if and only if for

every e > 0 there exists he > 0 such that if _P and _Q are any tagged partitions of [a, b]with

jj _Pjj < he and jj _Qjj < he, then

S f ;
�P� �� S f ;

�Q� ��� �� < e: &

Proof. )ð Þ If f 2 R a; b½ � with integral L, let he :¼ de=2 > 0 be such that if _P, _Q are

tagged partitions such that jj _Pjj < he and jj _Qjj < he, then

S f ;
�P� �� L

�� �� < e=2 and S f ;
�Q� �� L

�� �� < e=2:

Therefore we have

S f ;
�P� �� S f ;

�Q� ��� �� � S f ;
�P� �� Lþ L� S f ;

�Q� ��� ��
� S f ;

�P� �� L
�� ��þ L� S f ;

�Q� ��� ��
< e=2þ e=2 ¼ e:

(ð Þ For each n 2 N , let dn > 0 be such that if _P and _Q are tagged partitions with

norms < dn, then

S f ;
�P� �� f f ;

�Q� ��� �� < 1=n:

Evidently we may assume that dn � dnþ1 for n 2 N; otherwise, we replace dn by

d0n :¼ min d1; . . . ; dnf g.
For each n 2 N , let _Pn be a tagged partition with jj _Pnjj < dn. Clearly, if m > n then

both _Pm and _Pn have norms < dn, so that

ð1Þ S f ;
�Pn

� �� S f ;
�Pm

� ��� �� < 1=n for m > n:

Consequently, the sequence S f ; _Pm

� �� �1
m¼1

is a Cauchy sequence in R . Therefore (by

Theorem 3.5.5) this sequence converges in R and we let A :¼ limm S f ; _Pm

� �
.

Passing to the limit in (1) as m ! 1, we have

S f ;
�Pn

� �� A
�� �� � 1=n for all n 2 N :

To see that A is the Riemann integral of f, given e > 0, let K 2 N satisfy K > 2=e. If _Q is

any tagged partition with jj _Qjj < dK , then

S f ;
�Q� �� A

�� �� � S f ;
�Q� �� S f ;

�PK

� ��� ��þ S f ;
�PK

� �� A
�� ��

� 1=K þ 1=K < e:

Since e > 0 is arbitrary, then f 2 R a; b½ � with integral A. Q.E.D.

We will now give two examples of the use of the Cauchy Criterion.
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7.2.2 Examples (a) Let g : 0; 3½ � ! R be the function considered in Example 7.1.4(b).

In that example we saw that if
�P is a tagged partition of [0, 3] with norm jj _Pjj < d, then

8� 5d � S g;
�P� � � 8þ 5d:

Hence if _Q is another tagged partition with jj _Qjj < d, then

8� 5d � S g;
�Q� � � 8þ 5d:

If we subtract these two inequalities, we obtain

S g;
�P� �� S g;

�Q� ��� �� � 10d:

In order to make this final term < e, we are led to employ the Cauchy Criterion with

he :¼ e=20. (We leave the details to the reader.)

(b) The Cauchy Criterion can be used to show that a function f : a; b½ � ! R is not

Riemann integrable. To do this we need to show that: There exists e0 > 0 such that for any

h > 0 there exists tagged partitions _P and _Q with jj _Pjj < h and jj _Qjj < h such that

S f ; _P� �� S f ; _Q� ��� �� � e0.
We will apply these remarks to the Dirichlet function, considered in 5.1.6(g), defined

by f xð Þ :¼ 1 if x 2 0; 1½ � is rational and f xð Þ :¼ 0 if x 2 0; 1½ � is irrational.
Here we take e0 :¼ 1

2
. If _P is any partition all of whose tags are rational numbers then

S f ; _P� � ¼ 1, while if _Q is any tagged partition all of whose tags are irrational numbers

then S f ; _Q� � ¼ 0. Since we are able to take such tagged partitions with arbitrarily small

norms, we conclude that the Dirichlet function is not Riemann integrable. &

The Squeeze Theorem

In working with the definition of Riemann integral, we have encountered two types of

difficulties. First, for each partition, there are infinitely many choices of tags. And second,

there are infinitely many partitions that have a norm less than a specified amount. We have

experienced dealing with these difficulties in examples and proofs of theorems. We will

now establish an important tool for proving integrability called the Squeeze Theorem that

will provide some relief from those difficulties. It states that if a given function can be

‘‘squeezed’’ or bracketed between two functions that are known to be Riemann integrable

with sufficient accuracy, then we may conclude that the given function is also Riemann

integrable. The exact conditions are given in the statement of the theorem. (The idea of

squeezing a function to establish integrability led the French mathematician Gaston

Darboux to develop an approach to integration by means of upper and lower integrals,

and this approach is presented in Section 7.4.)

7.2.3 Squeeze Theorem Let f : a; b½ � ! R . Then f 2 R a; b½ � if and only if for every

e > 0 there exist functions ae and ve in R a; b½ � with

ð2Þ ae xð Þ � f xð Þ � ve xð Þ for all x 2 a; b½ �;
and such that

ð3Þ
Z b

a

ve � aeð Þ < e:
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Proof. ()) Take ae ¼ ve ¼ f for all e > 0.

(() Let e > 0. Since ae and ve belong to R a; b½ �, there exists de > 0 such that if _P is

any tagged partition with jj _Pjj < de then

S ae;
�P� ��

Z b

a

ae

����
���� < e and S ve;

�P� ��
Z b

a

ve

����
���� < e:

It follows from these inequalities that

Z b

a

ae � e < S ae;
�P� �

and S ve;
�P� �

<

Z b

a

ve þ e:

In view of inequality (2), we have S ae; _P
� � � S f ; _P� � � S ve; _P

� �
, whenceZ b

a

ae � e < S f ;
�P� �

<

Z b

a

ve þ e:

If _Q is another tagged partition with jj _Qjj < de, then we also haveZ b

a

ae � e < S f ;
�Q� �

<

Z b

a

ve þ e:

If we subtract these two inequalities and use (3), we conclude that

S f ;
�P� �� S f ;

�Q� ��� �� <
Z b

a

ve �
Z b

a

ae þ 2e

¼
Z b

a

ve � aeð Þ þ 2e < 3e:

Since e > 0 is arbitrary, the Cauchy Criterion implies that f 2 R a; b½ �. Q.E.D.

Classes of Riemann Integrable Functions

The Squeeze Theorem is often used in connection with the class of step functions. It will be

recalled from Definition 5.4.9 that a function w : a; b½ � ! R is a step function if it has only

a finite number of distinct values, each value being assumed on one or more subintervals of

[a, b]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4.

7.2.4 Lemma If J is a subinterval of [a, b] having endpoints c < d and if wJ xð Þ :¼ 1 for

x 2 J and wJ xð Þ :¼ 0 elsewhere in [a, b], then wJ 2 R a; b½ � and R b

a
wJ ¼ d � c.

Proof. If J ¼ c; d½ � with c � d, this is Exercise 7.1.13 and we can choose de :¼ e=4.
There are three other subintervals J having the same endpoints c and d, namely, [c, d ),

(c, d ], and (c, d ). Since, by Theorem 7.1.3, we can change the value of a function at finitely

many points without changing the integral, we have the same result for these other three

subintervals. Therefore, we conclude that all four functions wJ are integrable with integral

equal to d � c. Q.E.D.

It is an important fact that any step function is Riemann integrable.

7.2.5 Theorem If w : a; b½ � ! R is a step function, then w 2 R a; b½ �.

Proof. Step functions of the type appearing in 7.2.4 are called ‘‘elementary step

functions.’’ In Exercise 5 it is shown that an arbitrary step function w can be expressed
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as a linear combination of such elementary step functions:

ð4Þ w ¼
Xm
j¼1

kjwJj
;

where Jj has endpoints cj < dj . The lemma and Theorem 7.1.5(a, b) imply that w 2 R a; b½ �
and that

ð5Þ
Z b

a

w ¼
Xm
j¼1

kj dj � cj
� �

: Q.E.D.

We illustrate the use of step functions and the Squeeze Theorem in the next two

examples. The first reconsiders a function that originally required a complicated

calculation.

7.2.6 Examples (a) The function g in Example 7.1.4(b) is defined by g xð Þ ¼ 2 for

0 � x � 1 and g xð Þ ¼ 3 for 1 < x � 3. We now see that g is a step function and therefore

we calculate its integral to be
R 3

0
g ¼ 2� 1� 0ð Þ þ 3� 3� 1ð Þ ¼ 2þ 6 ¼ 8.

(b) Let h xð Þ :¼ x on [0,1] and let Pn :¼ 0; 1=n; 2=n; . . . ; n� 1ð Þ=n; n=n ¼ 1ð Þ. We

define the step functions an and vn on the disjoint subintervals 0; 1=n½ Þ; 1=n; 2=n½ Þ;
. . . ; n� 2ð Þ=n½ Þ; n� 1ð Þ=nÞ; n� 1ð Þ=n; 1½ � as follows: an xð Þ :¼ h k � 1ð Þ=nð Þ ¼
k � 1ð Þ=n for x in k � 1ð Þ=n; k=n½ Þ for k ¼ 1; 2; . . . ; n� 1, and an xð Þ :¼
h n� 1ð Þ=nð Þ ¼ n� 1ð Þ=n for x in n� 1ð Þ=n; 1½ �. That is, an has the minimum value

of h on each subinterval. Similarly, we define vn to be the maximum value of h on each

subinterval, that is, vn xð Þ :¼ k=n for x in k � 1ð Þ=n; k=n½ Þ for k ¼ 1; 2; . . . ; n� 1, and

vn xð Þ :¼ 1 for x in n� 1ð Þ=n; 1½ �. (The reader should draw a sketch for the case n ¼ 4.)

Then we get

Z 1

0

an ¼ 1

n
0þ 1=nþ 2=nþ � � � þ n� 1ð Þ=nð Þ

¼ 1

n2
1þ 2þ � � � þ n� 1ð Þð Þ

¼ 1

n2
n� 1ð Þn

2
¼ 1

2
1� 1=nð Þ:

In a similar manner, we also get
R 1

0
vn ¼ 1

2
1þ 1=nð Þ. Thus we have

an xð Þ � h xð Þ � vn xð Þ

for x 2 0; 1½ � and
Z 1

0

vn � anð Þ ¼ 1

n
:

Since for a given e > 0, we can choose n so that 1
n
< e, it follows from the Squeeze Theorem

that h is integrable. We also see that the value of the integral of h lies between the integrals

of an and vn for all n and therefore has value 1
2
. &

Wewill now use the Squeeze Theorem to show that an arbitrary continuous function is

Riemann integrable.
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7.2.7 Theorem If f : a; b½ � ! R is continuous on [a, b], then f 2 R a; b½ �.

Proof. It follows from Theorem 5.4.3 that f is uniformly continuous on [a, b]. Therefore,

given e > 0 there exists de > 0 such that if u; v 2 a; b½ � and u� vj j < de, then we have

f uð Þ � f vð Þj j < e= b� að Þ.
Let P ¼ Iif gni¼1 be a partition such that jjPjj < de. Applying Theorem 5.3.4 we let

ui 2 Ii be a point where f attains its minimum value on Ii, and let vi 2 Ii be a point where f

attains its maximum value on Ii.

Let ae be the step function defined by ae xð Þ :¼ f uið Þ for x 2 xi�1; xi½ Þ i ¼ 1; . . . ;ð
n� 1Þ and ae xð Þ :¼ f unð Þ for x 2 xn�1; xn½ �. Let ve be defined similarly using the points vi
instead of the ui. Then one has

ae xð Þ � f xð Þ � ve xð Þ for all x 2 a; b½ �:
Moreover, it is clear that

0 �
Z b

a

ve � aeð Þ ¼
Xn
i¼1

f við Þ � f uið Þð Þ xi � xi�1ð Þ

<
Xn
i¼1

e
b� a

� �
xi � xi�1ð Þ ¼ e:

Therefore it follows from the Squeeze Theorem that f 2 R a; b½ �. Q.E.D.

Monotone functions are not necessarily continuous at every point, but they are also

Riemann integrable.

7.2.8 Theorem If f : a; b½ � ! R is monotone on [a, b], then f 2 R a; b½ �.

Proof. Assume that f is increasing on I ¼ a; b½ �. Partitioning the interval into n equal

subintervals Ik ¼ xk�1; xk½ � gives us xk � xk�1 ¼ b� að Þ=n; k ¼ 1; 2; . . . ; n. Since f

is increasing on Ik, its minimum value is attained at the left endpoint xk�1 and its

maximum value is attained at the right endpoint xk. Therefore, we define the step

functions a xð Þ :¼ f xk�1ð Þ and v xð Þ :¼ f xkð Þ for x 2 xk�1; xk½ Þ; k ¼ 1; 2; . . . ; n� 1, and

a xð Þ :¼ f xn�1ð Þ and v xð Þ :¼ f xnð Þ for x 2 xn�1; xn½ �. Then we have a xð Þ � f xð Þ �
v xð Þ for all x 2 I, and

Z b

a

a ¼ b� a

n
f x0ð Þ þ f x1ð Þ þ � � � þ f xn�1ð Þð Þ

Z b

a

v ¼ b� a

n
f x1ð Þ þ � � � þ f xn�1ð Þ þ f xnð Þð Þ:

Subtracting, and noting the many cancellations, we obtain

Z b

a

v� að Þ ¼ b� a

n
f xnð Þ � f x0ð Þð Þ ¼ b� a

n
f bð Þ � f að Þð Þ:

Thus for a given e > 0, we choose n such that n > b� að Þ f bð Þ � f að Þð Þ=e. Then we haveR b

a
v� að Þ < e and the Squeeze Theorem implies that f is integrable on I. Q.E.D.
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The Additivity Theorem

We now return to arbitrary Riemann integrable functions. Our next result shows that the

integral is an ‘‘additive function’’ of the interval over which the function is integrated.

This property is no surprise, but its proof is a bit delicate and may be omitted on a first

reading.

7.2.9 Additivity Theorem Let f :¼ a; b½ � ! R and let c 2 a; bð Þ. Then f 2 R a; b½ � if
and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case

ð6Þ
Z b

a

f ¼
Z c

a

f þ
Z b

c

f :

Proof. (ð Þ Suppose that the restriction f1 of f to [a, c], and the restriction f2 of f to

[c, b] are Riemann integrable to L1 and L2 respectively. Then, given e > 0 there exists d0 > 0

such that if _P1 is a tagged partition of [a, c] with jj _P1jj < d0, then S f 1; _P1

� �� L1
�� �� < e=3.

Also there exists d00 > 0 such that if _P2 is a tagged partition of [c, b] wilh jj _P2jj < d00 then
S f 2; _P2

� �� L2
�� �� < e=3. IfM is a bound for j f j, we define de :¼ min d0; d00; e=6Mf g and let
_P be a tagged partition of [a, b] with jj _Qjj < d. We will prove that

ð7Þ S f ;
�Q� �� L1 þ L2ð Þ�� �� < e:

(i) If c is a partition point of _Q, we split _Q into a partition _Q1 of [a, c] and a partition
_Q2 of [c, b]. Since S f ; _Q� � ¼ S f ; _Q1

� �þ S f ; _Q2

� �
, and since _Q1 has norm < d0 and _Q2

has norm < d00, the inequality (7) is clear.

(ii) If c is not a partition point in _Q ¼ Ik; tkð Þf gmk¼1, there exists k � m such that

c 2 xk�1; xkð Þ. We let _Q1 be the tagged partition of [a, c] defined by

�Q1 :¼ I1; t1ð Þ; . . . ; Ik�1; tk�1ð Þ; xk�1; c½ �; cð Þf g;
and _Q2 be the tagged partition of [c, b] defined by

�Q2 :¼ c; xk½ �; cð Þ; Ikþ1; tkþ1ð Þ; . . . ; Im; tmð Þf g:
A straightforward calculation shows that

S f ;
�Q� �� S f ;

�Q1

� �� S f ;
�Q2

� � ¼ f tkð Þ xk � xk�1ð Þ � f cð Þ xk � xk�1ð Þ
¼ f tkð Þ � f cð Þð Þ � xk � xk�1ð Þ;

whence it follows that

S f ;
�Q� �� S f ;

�Q1

� �� S f ;
�Q2

� ��� �� � 2M xk � xk�1ð Þ < e=3:

But since jj _Q1jj < d � d0 and jj _Q2jj < d � d00, it follows that

S f ;
�Q1

� �� L1
�� �� < e=3 and S f ;

�Q2

� �� L2
�� �� < e=3;

from which we obtain (7). Since e > 0 is arbitrary, we infer that f 2 R a; b½ � and that (6)

holds.

)ð Þ We suppose that f 2 R a; b½ � and, given e > 0, we let he > 0 satisfy the Cauchy

Criterion 7.2.1. Let f1 be the restriction of f to [a, c] and let _P1; _Q1 be tagged partitions of
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[a, c] with jj _P1jj < he and jj _Q1jj < he. By adding additional partition points and tags from

[c, b], we can extend _P1 and _Q1 to tagged partitions _P and _Q of [a, b] that satisfy jj _Pjj < he
and jj _Qjj < he. If we use the same additional points and tags in [c, b] for both _P and _Q, then

S f 1;
�P1

� �� S f 1;
�Q1

� � ¼ S f ;
�P� �� S f ;

�Q� �
:

Since both _P and _Q have norm he, then S f 1; _P1

� �� S f 1;
_Q1

� ��� �� < e. Therefore theCauchy
Condition shows that the restriction f1 of f to [a, c] is inR a; c½ �. In the sameway, we see that

the restriction f2 of f to [c, b] is in R c; d½ �.
The equality (6) now follows from the first part of the theorem. Q.E.D.

7.2.10 Corollary If f 2 R a; b½ � , and if c; d½ � � a; b½ � , then the restriction of f to [c, d ]

is in R c; d½ �.

Proof. Since f 2 R a; b½ � and c 2 a; b½ �, it follows from the theorem that its restriction

to [c, b] is in R c; b½ �. But if d 2 c; b½ �, then another application of the theorem shows that

the restriction of f to c; d½ � is in R c; d½ �. Q.E.D.

7.2.11 Corollary If f 2 R a; b½ � and if a ¼ c0 < c1 < � � � < cm ¼ b, then the restric-

tions of f to each of the subintervals ci�1; ci½ � are Riemann integrable and

Z b

a

f ¼
Xm
i¼1

Z ci

ci�1

f :

Until now, we have considered the Riemann integral over an interval [a, b] where

a < b. It is convenient to have the integral defined more generally.

7.2.12 Definition If f 2 R a; b½ � and if a;b 2 a; b½ � with a < b, we define

Z a

b

f :¼ �
Z b

a

f and

Z a

a

f :¼ 0:

7.2.13 Theorem If f 2 R a; b½ � and if a;b; g are any numbers in [a, b], then

ð8Þ
Z b

a

f ¼
Z g

a

f þ
Z b

g

f ;

in the sense that the existence of any two of these integrals implies the existence of the

third integral and the equality (8).

Proof. If any two of the numbers a;b; g are equal, then (8) holds. Thus we may suppose

that all three of these numbers are distinct.

For the sake of symmetry, we introduce the expression

L a;b; gð Þ :¼
Z b

a

f þ
Z g

b

f þ
Z a

g

f :

It is clear that (8) holds if and only if L a;b; gð Þ ¼ 0. Therefore, to establish the assertion,

we need to show that L ¼ 0 for all six permutations of the arguments a;b, and g.
We note that the Additivity Theorem 7.2.9 implies that L a;b; gð Þ ¼ 0 when

a < g < b. But it is easily seen that both L b; g;að Þ and L g;a;bð Þ equal L a;b; gð Þ.
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Moreover, the numbers

L b;a; gð Þ; L a; g;bð Þ; and L g;b;að Þ

are all equal to �L a;b; gð Þ. Therefore, L vanishes for all possible configurations of these

three points. Q.E.D.

Exercises for Section 7.2

1. Let f : a; b½ � ! R . Show that f =2 R a; b½ � if and only if there exists e0 > 0 such that for every

n 2 N there exist tagged partitions _Pn and _Qn with jj _Pnjj < 1=n and jj _Qnjj < 1=n such that

S f ; _Pn

� �� S f ; _Qn

� ��� �� � e0.

2. Consider the function h defined by h xð Þ :¼ xþ 1 for x 2 0; 1½ � rational, and h xð Þ :¼ 0 for

x 2 0; 1½ � irrational. Show that h is not Riemann integrable.

3. Let H xð Þ :¼ k for x ¼ 1=k k 2 Nð Þ and H xð Þ :¼ 0 elsewhere on [0, 1]. Use Exercise 1, or the

argument in 7.2.2(b), to show that H is not Riemann integrable.

4. If a xð Þ :¼ �x and v xð Þ :¼ x and if a xð Þ � f xð Þ � v xð Þ for all x 2 0; 1½ �, does it follow from

the Squeeze Theorem 7.2.3 that f 2 R 0; 1½ �?
5. If J is any subinterval of [a, b] and if wJ xð Þ :¼ 1 for x 2 J and wJ xð Þ :¼ 0 elsewhere on [a, b], we

say that wJ is an elementary step function on [a, b]. Show that every step function is a linear

combination of elementary step functions.

6. If c : a; b½ � ! R takes on only a finite number of distinct values, is c a step function?

7. If S f ; _P� �
is any Riemann sum of f : a; b½ � ! R , show that there exists a step function

w : a; b½ � ! R such that
R b

a
w ¼ S f ; _P� �

.

8. Suppose that f is continuous on [a, b], that f xð Þ � 0 for all x 2 a; b½ � and that
R b

a
f ¼ 0. Prove

that f xð Þ ¼ 0 for all x 2 a; b½ �.
9. Show that the continuity hypothesis in the preceding exercise cannot be dropped.

10. If f and g are continuous on [a, b] and if
R b

a
f ¼ R b

a
g, prove that there exists c 2 a; b½ � such that

f cð Þ ¼ g cð Þ.
11. If f is bounded by M on [a, b] and if the restriction of f to every interval [c, b] where c 2 a; bð Þ is

Riemann integrable, show that f 2 R a; b½ � and that
R b

c
f ! R b

a
f as c ! aþ. [Hint: Let ac xð Þ :¼

�M and vc xð Þ :¼ M for x 2 ½a; cÞ and ac xð Þ :¼ vc xð Þ :¼ f xð Þ for x 2 c; b½ �. Apply the Squeeze
Theorem 7.2.3 for c sufficiently near a.]

12. Show that g xð Þ :¼ sinð1=xÞ for x 2 ð0; 1� and g 0ð Þ :¼ 0 belongs to R 0; 1½ �.
13. Give an example of a function f : a; b½ � ! R that is in R c; b½ � for every c 2 a; bð Þ but which is

not in R a; b½ �.
14. Suppose that f : a; b½ � ! R , that a ¼ c0 < c1 < � � � < cm ¼ b and that the restrictions of f to

ci�1; ci½ � belong to R ci�1; ci½ � for i ¼ 1; . . . ;m. Prove that f 2 R a; b½ � and that the formula in

Corollary 7.2.11 holds.

15. If f is bounded and there is a finite set E such that f is continuous at every point of a; b½ �nE, show
that f 2 R a; b½ �.

16. If f is continuous on [a, b], a < b, show that there exists c 2 a; b½ � such that we have
R b

a
f ¼

f cð Þ b� að Þ. This result is sometimes called the Mean Value Theorem for Integrals.

17. If f and g are continuous on [a, b] and g xð Þ > 0 for all x 2 a; b½ �, show that there exists c 2 a; b½ �
such that

R b

a
f g ¼ f cð Þ R b

a
g. Show that this conclusion fails if we do not have g xð Þ > 0. (Note

that this result is an extension of the preceding exercise.)
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18. Let f be continuous on [a, b], let f xð Þ � 0 for x 2 a; b½ �, and let Mn :¼ ðR b

a
f nÞ1=n. Show that

lim Mnð Þ ¼ sup f xð Þ : x 2 a; b½ �f g.
19. Suppose that a > 0 and that f 2 R �a; a½ �.

(a) If f is even (that is, if f �xð Þ ¼ f xð Þ for all x 2 0; a½ �Þ, show that
R a

�a
f ¼ 2

R a

0
f .

(b) If f is odd (that is, if f �xð Þ ¼ �f xð Þ for all x 2 0; a½ �Þ, show that
R a

�a
f ¼ 0.

20. If f is continuous on �a; a½ �, show that
R a

�a
f x2ð Þdx ¼ 2

R a

0
f x2ð Þdx.

Section 7.3 The Fundamental Theorem

Wewill now explore the connection between the notions of the derivative and the integral.

In fact, there are two theorems relating to this problem: one has to do with integrating a

derivative, and the other with differentiating an integral. These theorems, taken together,

are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the

operations of differentiation and integration are inverse to each other. However, there are

some subtleties that should not be overlooked.

The Fundamental Theorem (First Form)

The First Form of the Fundamental Theorem provides a theoretical basis for the method of

calculating an integral that the reader learned in calculus. It asserts that if a function f is the

derivative of a function F, and if f belongs to R a; b½ �, then the integral
R b

a
f can be

calculated by means of the evaluation F b
a :¼ F bð Þ � F að Þ�� . A function F such that F0 xð Þ ¼

f xð Þ for all x 2 a; b½ � is called an antiderivative or a primitive of f on [a, b]. Thus, when f

has an antiderivative, it is a very simple matter to calculate its integral.

In practice, it is convenient to allow some exceptional points c where F0 cð Þ does not
exist in R , or where it does not equal f cð Þ. It turns out that we can permit a finite number of

such exceptional points.

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a finite set E
in [a, b] and functions f, F :¼ a; b½ � ! R such that:

(a) F is continuous on [a, b],

(b) F0 xð Þ ¼ f xð Þ for all x 2 a; b½ �nE,
(c) f belongs to R a; b½ �.

Then we have

ð1Þ
Z b

a

f ¼ F bð Þ � F að Þ:

Proof. We will prove the theorem in the case where E :¼ a; bf g. The general case can

be obtained by breaking the interval into the union of a finite number of intervals (see

Exercise 1).

Let e > 0 be given. Since f 2 R a; b½ � by assumption (c), there exists de > 0 such that if
_P is any tagged partition with jj _Pjj < de, then

ð2Þ S f ;
�P� ��

Z b

a

f

����
���� < e:
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If the subintervals in _P are xi�1; xi½ �, then the Mean Value Theorem 6.2.4 applied to F on

xi�1; xi½ � implies that there exists ui 2 xi�1; xið Þ such that

F xið Þ � F xi�1ð Þ ¼ F0 uið Þ � xi � xi�1ð Þ for i ¼ 1; . . . ; n:

If we add these terms, note the telescoping of the sum, and use the fact that F0 uið Þ ¼ f uið Þ,
we obtain

F bð Þ � F að Þ ¼
Xn
i¼1

F xið Þ � F xi�1ð Þð Þ ¼
Xn
i¼1

f uið Þ xi � xi�1ð Þ:

Now let _Pu :¼ xi�1; xi½ �; uið Þf gni¼1, so the sum on the right equals S f ; _Pu

� �
. If we substitute

F bð Þ � F að Þ ¼ S f ; _Pu

� �
into (2), we conclude that

F bð Þ � F að Þ �
Z b

a

f

����
���� < e:

But, since e > 0 is arbitrary, we infer that equation (1) holds. Q.E.D.

Remark If the function F is differentiable at every point of [a, b], then (by Theorem

6.1.2) hypothesis (a) is automatically satisfied. If f is not defined for some point c 2 E, we

take f cð Þ :¼ 0. Even if F is differentiable at every point of [a, b], condition (c) is not

automatically satisfied, since there exist functions F such that F0 is not Riemann

integrable. (See Example 7.3.2(e).)

7.3.2 Examples (a) If F xð Þ :¼ 1
2
x2 for all x 2 a; b½ �, then F0 xð Þ ¼ x for all x 2 a; b½ �.

Further, f ¼ F0 is continuous so it is inR a; b½ �. Therefore the Fundamental Theorem (with

E ¼ ;) implies that

Z b

a

x dx ¼ F bð Þ � F að Þ ¼ 1
2
b2 � a2
� �

:

(b) If G xð Þ :¼ Arctan x for x 2 a; b½ �, then G0ðxÞ ¼ 1=ðx2 þ 1Þ for all x 2 a; b½ �; also
G0 is continuous, so it is in R a; b½ �. Therefore the Fundamental Theorem (with E ¼ ;)
implies that

Z b

a

1

x2 þ 1
dx ¼ Arctan b� Arctan a:

(c) If A xð Þ :¼ xj j for x 2 �10; 10½ �, then A0 xð Þ ¼ �1 if x 2 ½�10; 0Þ and A0 xð Þ ¼ þ1 for

x 2 0; 10ð �. Recalling the definition of the signum function (in 4.1.10(b)), we have A0 xð Þ ¼
sgn xð Þ for all x 2 �10; 10½ �n 0f g. Since the signum function is a step function, it belongs

to R �10; 10½ �. Therefore the Fundamental Theorem (with E ¼ 0f g) implies that

Z 10

�10

sgn xð Þ dx ¼ A 10ð Þ � A �10ð Þ ¼ 10� 10 ¼ 0:

(d) If H xð Þ :¼ 2
ffiffiffi
x

p
for x 2 0; b½ �, then H is continuous on [0, b] and H0 xð Þ ¼ 1=

ffiffiffi
x

p
for x 2 0; bð �. Since h :¼ H0 is not bounded on (0, b], it does not belong to R 0; b½ � no
matter how we define h 0ð Þ. Therefore, the Fundamental Theorem 7.3.1 does not apply.

(However, we will see in Example 10.1.10(a) that h is generalized Riemann integrable

on [0, b].)
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(e) Let K xð Þ :¼ x2cos 1=x2ð Þ for x 2 0; 1ð � and let K 0ð Þ :¼ 0. It follows from the Product

Rule 6.1.3(c) and the Chain Rule 6.1.6 that

K 0 xð Þ ¼ 2x cos 1=x2ð Þ þ 2=xð Þsin 1=x2ð Þ for x 2 0; 1ð �:
Further, as in Example 6.1.7(e), it can be shown that K 0 0ð Þ ¼ 0. Thus K is continuous and

differentiable at every point of [0, 1]. Since it can be seen that the function K 0 is not

bounded on [0, 1], it does not belong toR 0; 1½ � and the Fundamental Theorem 7.3.1 does

not apply toK 0. (However, wewill see from Theorem 10.1.9 thatK 0 is generalizedRiemann

integrable on [0, 1].) &

The Fundamental Theorem (Second Form)

We now turn to the Fundamental Theorem (Second Form) in which wewish to differentiate

an integral involving a variable upper limit.

7.3.3 Definition If f 2 R a; b½ �, then the function defined by

ð3Þ F zð Þ :¼
Z z

a

f for z 2 a; b½ �;

is called the indefinite integral of f with basepoint a. (Sometimes a point other than a is

used as a basepoint; see Exercise 6.)

We will first show that if f 2 R a; b½ �, then its indefinite integral F satisfies a Lipschitz

condition; hence F is continuous on [a, b].

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b]. In fact, if

f xð Þj j � M for all x 2 a; b½ �, then F zð Þ � F wð Þj j � M z� wj j for all z; w 2 a; b½ �.

Proof. The Additivity Theorem 7.2.9 implies that if z; w 2 a; b½ � and w � z, then

F zð Þ ¼
Z z

a

f ¼
Z w

a

f þ
Z z

w

f ¼ F wð Þ þ
Z z

w

f ;

whence we have

F zð Þ � F wð Þ ¼
Z z

w

f :

Now if �M � f xð Þ � M for all x 2 a; b½ �, then Theorem 7.1.5(c) implies that

�M z� wð Þ �
Z z

w

f � M z� wð Þ;

whence it follows that

F zð Þ � F wð Þj j �
Z z

w

f

����
���� � M z� wj j;

as asserted. Q.E.D.

We will now show that the indefinite integral F is differentiable at any point where f

is continuous.
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7.3.5 Fundamental Theorem of Calculus (Second Form) Let f 2 R a; b½ � and let f be

continuous at a point c 2 a; b½ � . Then the indefinite integral, defined by (3), is differen-

tiable at c and F0 cð Þ ¼ f cð Þ.

Proof. We will suppose that c 2 a; b½ Þ and consider the right-hand derivative of

F at c. Since f is continuous at c, given e > 0 there exists he > 0 such that if

c � x < cþ he, then

ð4Þ f cð Þ � e < f xð Þ < f cð Þ þ e:

Let h satisfy 0 < h < he. The Additivity Theorem 7.2.9 implies that f is integrable on the

intervals a; c½ �; a; cþ h½ � and c; cþ h½ � and that

F cþ hð Þ � F cð Þ ¼
Z cþh

c

f :

Now on the interval c; cþ h½ � the function f satisfies inequality (4), so that we have

f cð Þ � eð Þ � h � F cþ hð Þ � F cð Þ ¼
Z cþh

c

f � f cð Þ þ eð Þ � h:

If we divide by h > 0 and subtract f cð Þ, we obtain

F cþ hð Þ � F cð Þ
h

� f cð Þ
����

���� � e:

But, since e > 0 is arbitrary, we conclude that the right-hand limit is given by

lim
x!0þ

F cþ hð Þ � F cð Þ
h

¼ f cð Þ:

It is proved in the same way that the left-hand limit of this difference quotient also equals

f cð Þ when c 2 a; bð �, whence the assertion follows. Q.E.D.

If f is continuous on all of [a, b], we obtain the following result.

7.3.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by (3),

is differentiable on [a, b] and F0 xð Þ ¼ f xð Þ for all x 2 a; b½ �.

Theorem 7.3.6 can be summarized: If f is continuous on [a, b], then its indefinite

integral is an antiderivative of f. We will now see that, in general, the indefinite integral

need not be an antiderivative (either because the derivative of the indefinite integral does

not exist or does not equal f xð Þ).

7.3.7 Examples (a) If f xð Þ :¼ sgn x on �1; 1½ �, then f 2 R �1; 1½ � and has the

indefinite integral F xð Þ :¼ xj j � 1 with the basepoint �1. However, since F0 0ð Þ does

not exist, F is not an antiderivative of f on �1; 1½ �.
(b) If h denotes Thomae’s function, considered in 7.1.7, then its indefinite integral

H xð Þ :¼ R x

0
h is identically 0 on [0, 1]. Here, the derivative of this indefinite integral exists

at every point and H0 xð Þ ¼ 0. But H0 xð Þ 6¼ h xð Þ whenever x 2 Q \ 0; 1½ �, so that H is not

an antiderivative of h on [0, 1]. &
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Substitution Theorem

The next theorem provides the justification for the ‘‘change of variable’’ method that is

often used to evaluate integrals. This theorem is employed (usually implicitly) in the

evaluation by means of procedures that involve the manipulation of ‘‘differentials,’’

common in elementary courses.

7.3.8 Substitution Theorem Let J :¼ a; b½ � and let w : J ! R have a continuous

derivative on J. If f : I ! R is continuous on an interval I containing w Jð Þ, then

ð5Þ
Z b

a

f w tð Þð Þ � w0 tð Þdt ¼
Z w bð Þ

w að Þ
f xð Þdx:

The proof of this theorem is based on the Chain Rule 6.1.6, and will be outlined in

Exercise 17. The hypotheses that f and w0 are continuous are restrictive, but are used to

ensure the existence of the Riemann integral on the left side of (5).

7.3.9 Examples (a) Consider the integral

Z 4

1

sin
ffiffi
t

p
ffiffi
t

p dt.

Here we substitute w tð Þ :¼ ffiffi
t

p
for t 2 1; 4½ � so that w0 tð Þ ¼ 1= 2

ffiffi
t

p� �
is continuous on

[1, 4]. If we let f xð Þ :¼ 2 sin x, then the integrand has the form f 	 wð Þ � w0 and the

Substitution Theorem 7.3.8 implies that the integral equals
R 2

1
2 sinx dx ¼ �2 cos xj21¼

2 cos 1� cos 2ð Þ.

(b) Consider the integral

Z 4

0

sin
ffiffi
t

p
ffiffi
t

p dt.

Since w tð Þ :¼ ffiffi
t

p
does not have a continuous derivative on [0, 4], the Substitution

Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious that

this integral exists; however, we can apply Exercise 7.2.11 to obtain this conclusion. We

could then apply the Fundamental Theorem 7.3.1 to F tð Þ :¼ �2 cos
ffiffi
t

p
with E :¼ 0f g to

evaluate this integral.) &

We will give a more powerful Substitution Theorem for the generalized Riemann

integral in Section 10.1.

Lebesgue’s lntegrability Criterion

We will now present a statement of the definitive theorem due to Henri Lebesgue

(1875–1941) giving a necessary and sufficient condition for a function to be Riemann

integrable, and will give some applications of this theorem. In order to state this result,

we need to introduce the important notion of a null set.

Warning Some people use the term ‘‘null set’’ as a synonym for the terms ‘‘empty set’’

or ‘‘void set’’ referring to ; (¼ the set that has no elements). However, we will always use

the term ‘‘null set’’ in conformity with our next definition, as is customary in the theory of

integration.

7.3.10 Definition (a) A set Z � R is said to be a null set if for every e > 0 there exists a

countable collection ak; bkð Þf g1k¼1 of open intervals such that

ð6Þ Z �
[1
k¼1

ak; bkð Þ and
X1
k¼1

bk � akð Þ � e:
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(b) If Q(x) is a statement about the point x 2 I, we say that Q(x) holds almost every-

where on I (or for almost every x 2 I), if there exists a null set Z � I such that Q(x)

holds for all x 2 InZ. In this case we may write

Q xð Þ for a:e: x 2 I:

It is trivial that any subset of a null set is also a null set, and it is easy to see that the

union of two null sets is a null set. We will now give an example that may be very

surprising.

7.3.11 Example The Q 1 of rational numbers in [0, 1] is a null set.

We enumerate Q 1 ¼ r1; r2; . . .f g. Given e > 0, note that the open interval J1 :¼
r1 � e=4; r1 þ e=4ð Þ contains r1 and has length e=2; also the open interval J2 :¼ r2�ð
e=8; r2 þ e=8) contains r2 and has length e=4. In general, the open interval

Jk :¼ rk � e

2kþ1
; rk þ e

2kþ1

� �

contains the point rk and has length e=2k. Therefore, the union
S1

k¼1Jk of these open

intervals contains every point of Q 1; moreover, the sum of the lengths is
X1
k¼1

e=2k
� � ¼ e.

Since e > 0 is arbitrary, Q 1 is a null set. &

The argument just given can be modified to show that: Every countable set is a null set.

However, it can be shown that there exist uncountable null sets in R ; for example, the

Cantor set that will be introduced in Definition 11.1.10.

We now state Lebesgue’s Integrability Criterion. It asserts that a bounded function on

an interval is Riemann integrable if and only if its points of discontinuity form a null set.

7.3.12 Lebesgue’s Integrability Criterion A bounded function f : a; b½ � ! R is

Riemann integrable if and only if it is continuous almost everywhere on [a, b].

A proof of this result will be given in Appendix C. However, we will apply Lebesgue’s

Theorem here to some specific functions, and show that some of our previous results follow

immediately from it. We shall also use this theorem to obtain the important Composition

and Product Theorems.

7.3.13 Examples (a) The step function g in Example 7.1.4(b) is continuous at every

point except the point x ¼ 1. Therefore it follows from the Lebesgue Integrability Criterion

that g is Riemann integrable.

In fact, since every step function has at most a finite set of points of discontinuity, then:

Every step function on [a, b] is Riemann integrable.

(b) Since it was seen in Theorem 5.6.4 that the set of points of discontinuity of a monotone

function is countable, we conclude that: Every monotone function on [a, b] is Riemann

integrable.

(c) The function G in Example 7.1.4(d) is discontinuous precisely at the points D :¼
1; 1=2; . . . ; 1=n; . . .f g. Since this is a countable set, it is a null set and Lebesgue’s Criterion

implies that G is Riemann integrable.

(d) The Dirichlet function was shown in Example 7.2.2(b) not to be Riemann integrable.

Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the

interval [0, 1] is not a null set, Lebesgue’s Criterion yields the same conclusion.
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(e) Let h : 0; 1½ � ! R be Thomae’s function, defined in Examples 5.1.6(h) and 7.l.7.

In Example 5.1.6(h), we saw that h is continuous at every irrational number and is

discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on

a null set, so Lebesgue’s Criterion implies that Thomae’s function is Riemann integrable on

[0, 1], as we saw in Example 7.1.7. &

We now obtain a result that will enable us to take other combinations of Riemann

integrable functions.

7.3.14 Composition Theorem Let f 2 R a; b½ � with f a; b½ �ð Þ � c; d½ � and let w :
c; d½ � ! R be continuous. Then the composition w 	 f belongs to R a; b½ �.

Proof. If f is continuous at a point u 2 a; b½ �, then w 	 f is also continuous at u. Since the

set D of points of discontinuity of f is a null set, it follows that the set D1 � D of points of

discontinuity of w 	 f is also a null set. Therefore the composition w 	 f also belongs to

R a; b½ �. Q.E.D.

It will be seen in Exercise 22 that the hypothesis that w is continuous cannot be

dropped. The next result is a corollary of the Composition Theorem.

7.3.15 Corollary Suppose that f 2 R a; b½ �. Then its absolute value fj j is inR a; b½ �, andZ b

a

f

����
���� �

Z b

a

fj j � M b� að Þ;

where f xð Þj j � M for all x 2 a; b½ �.

Proof. We have seen in Theorem 7.1.6 that if f is integrable, then there existsM such that

f xð Þj j � M for all x 2 a; b½ �. Let w tð Þ :¼ tj j for t 2 �M; M½ �; then the Composition

Theorem implies that fj j ¼ w 	 f 2 R a; b½ �. The first inequality follows from the fact that

� fj j � f � fj j and 7.1.5(c), and the second from the fact that f xð Þj j � M. Q.E.D.

7.3.16 The Product Theorem If f and g belong to R a; b½ �, then the product fg belongs

to R a; b½ �.

Proof. If w tð Þ :¼ t2 for t 2 �M; M½ �, it follows from the Composition Theorem that

f 2 ¼ w 	 f belongs to R a; b½ �. Similarly, f þ gð Þ2 and g2 belong to R a; b½ �. But since we
can write the product as

f g ¼ 1

2
f þ gð Þ2 � f 2 � g2

h i
;

it follows that f g 2 R a; b½ �. Q.E.D.

Integration by Parts

We will conclude this section with a rather general form of Integration by Parts for the

Riemann integral, and Taylor’s Theorem with the Remainder.

7.3.17 Integration by Parts Let F,G be differentiable on [a, b] and let f :¼ F0 and
g :¼ G0 belong to R a; b½ � . Then

ð7Þ
Z b

a

fG ¼ FG
b

a

���� �
Z b

a

Fg:
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Proof. By Theorem 6.1.3(c), the derivative FGð Þ0 exists on [a, b] and

FGð Þ0 ¼ F0Gþ FG0 ¼ fGþ Fg:

Since F, G are continuous and f, g belong to R a; b½ �, the Product Theorem 7.3.16 implies

that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3.1 implies that

FG
b

a

���� ¼
Z b

a

FGð Þ0 ¼
Z b

a

fGþ
Z b

a

Fg;

from which (7) follows. Q.E.D.

A special, but useful, case of this theorem is when f and g are continuous on [a, b] and

F, G are their indefinite integrals F xð Þ :¼ R x

a
f and G xð Þ :¼ R x

a
g.

We close this section with a version of Taylor’s Theorem for the Riemann Integral.

7.3.18 Taylor’s Theorem with the Remainder Suppose that f 0; . . . ; f nð Þ; f nþ1ð Þ exist
on [a, b] and that f nþ1ð Þ 2 R a; b½ �. Then we have

ð8Þ f bð Þ ¼ f að Þ þ f 0 að Þ
1!

b� að Þ þ � � � þ f nð Þ að Þ
n!

b� að Þn þ Rn;

where the remainder is given by

ð9Þ Rn ¼ 1

n!

Z b

a

f nþ1ð Þ tð Þ � b� tð Þndt:

Proof. Apply Integration by Parts to equation (9), with F tð Þ :¼ f nð Þ tð Þ and G tð Þ :¼
b� tð Þn=n!, so that g tð Þ ¼ � b� tð Þn�1= n� 1ð Þ!, to get

Rn ¼ 1

n!
f nð Þ tð Þ � b� tð Þn

���t¼b

t¼a
þ 1

n� 1ð Þ!
Z b

a

f nð Þ tð Þ � b� að Þn�1
dt

¼ � f nð Þ að Þ
n!

� b� að Þn þ 1

n� 1ð Þ!
Z b

a

f nð Þ tð Þ � b� tð Þn�1
dt:

If we continue to integrate by parts in this way, we obtain (8). Q.E.D.

Exercises for Section 7.3

1. Extend the proof of the Fundamental Theorem 7.3.1 to the case of an arbitrary finite set E.

2. If n 2 N and Hn xð Þ :¼ xnþ1= nþ 1ð Þ for x 2 a; b½ �, show that the Fundamental Theorem 7.3.1

implies that
R b

a
xndx ¼ bnþ1 � anþ1

� �
= nþ 1ð Þ. What is the set E here?

3. If g xð Þ :¼ x for xj j � 1 and g xð Þ :¼ �x for xj j < 1 and if G xð Þ :¼ 1
2
x2 � 1
�� ��, show thatR 3

�2
g xð Þdx ¼ G 3ð Þ � G �2ð Þ ¼ 5=2.

4. Let B xð Þ :¼ � 1
2
x2 for x < 0 and B xð Þ :¼ 1

2
x2 for x � 0. Show that

R b

a
xj jdx ¼ B bð Þ � B að Þ.

5. Let f : a; b½ � ! R and let C 2 R .

(a) If F : a; b½ � ! R is an antiderivative of f on [a, b], show that FC xð Þ :¼ F xð Þ þ C is also

an antiderivative of f on [a, b].

(b) IfF1 andF2 are antiderivatives of f on [a, b], show thatF1 �F2 is a constant function on

[a, b].
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6. If f 2 R a; b½ � and if c 2 a; b½ �, the function defined by Fc zð Þ :¼ R z

c
f for z 2 a; b½ � is called the

indefinite integral of f with basepoint c. Find a relation between Fa and Fc.

7. We have seen in Example 7.1.7 that Thomae’s function is inR 0; 1½ �with integral equal to 0. Can
the Fundamental Theorem 7.3.1 be used to obtain this conclusion? Explain your answer.

8. Let F(x) be defined for x � 0 by F xð Þ :¼ n� 1ð Þx� n� 1ð Þn=2 for x 2 n� 1; n½ Þ; n 2 N.

Show that F is continuous and evaluate F0 xð Þ at points where this derivative exists. Use this

result to evaluate
R b

a
½x�½ �dx for 0 � a < b, where ½x�½ � denotes the greatest integer in x, as defined

in Exercise 5.1.4.

9. Let f 2 R a; b½ � and define F xð Þ :¼ R x

a
f for x 2 a; b½ �.

(a) Evaluate G xð Þ :¼ R x

c
f in terms of F, where c 2 a; b½ �.

(b) Evaluate H xð Þ :¼ R b

x
f in terms of F.

(c) Evaluate S xð Þ :¼ R sin x

x
f in terms of F.

10. Let f : a; b½ � ! R be continuous on [a, b] and let v : c; d½ � ! R be differentiable on [c, d] with

v c; d½ �ð Þ � a; b½ �. If we define G xð Þ :¼ R v xð Þ
a

f , show that G0 xð Þ ¼ f v xð Þð Þ � v0 xð Þ for all

x 2 c; d½ �.
11. Find F0 xð Þ when F is defined on [0, 1] by:

(a) F xð Þ :¼ R x2

0
1þ t3ð Þ�1

dt: (b) F xð Þ :¼ R x

x2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
dt:

12. Let f : 0; 3½ � ! R be defined by f xð Þ :¼ x for 0 � x < 1; f xð Þ :¼ 1 for 1 � x < 2 and f xð Þ :¼ x

for 2 � x � 3. Obtain formulas for F xð Þ :¼ R x

0
f and sketch the graphs of f and F. Where is F

differentiable? Evaluate F0 xð Þ at all such points.

13. The function g is defined on [0, 3] by g xð Þ :¼ �1 if 0 � x < 2 and g xð Þ :¼ 1 if 2 � x � 3. Find

the indefinite integral G xð Þ ¼ R x

0
g for 0 � x � 3, and sketch the graphs of g and G. Does

G0 xð Þ ¼ g xð Þ for all x in [0, 3]?

14. Show there does not exist a continuously differentiable function f on [0, 2] such that

f 0ð Þ ¼ �1; f 2ð Þ ¼ 4, and f 0 xð Þ � 2 for 0 � x � 2. (Apply the Fundamental Theorem.)

15. If f : R ! R is continuous and c > 0, define g : R ! R by g xð Þ :¼ R xþc

x�c
f tð Þdt. Show that g is

differentiable on R and find g0 xð Þ.
16. If f : 0; 1½ � ! R is continuous and

R x

0
f ¼ R 1

x
f for all x 2 0; 1½ �, show that f xð Þ ¼ 0 for all

x 2 0; 1½ �.
17. Use the following argument to prove the SubstitutionTheorem7.3.8. DefineF uð Þ :¼ R u

w að Þ f xð Þdx
for u 2 I, and H tð Þ :¼ F w tð Þð Þ for t 2 J. Show that H0 tð Þ ¼ f w tð Þð Þw0 tð Þ for t 2 J and that

Z w bð Þ

w að Þ
f xð Þdx ¼ F w bð Þð Þ ¼ H bð Þ ¼

Z b

a

f w tð Þð Þw0 tð Þdt:

18. Use the Substitution Theorem 7.3.8 to evaluate the following integrals.

(a)

Z 1

0

t
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
dt; (b)

Z 2

0

t2 1þ t3
� ��1=2

dt ¼ 4=3;

(c)

Z 4

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffi

t
pp

ffiffi
t

p dt; (d)

Z 4

1

cos
ffiffi
t

p
ffiffi
t

p dt ¼ 2 sin 2� sin1ð Þ:

19. Explain why Theorem 7.3.8 and/or Exercise 7.3.17 cannot be applied to evaluate the following

integrals, using the indicated substitution.

(a)

Z 4

0

ffiffi
t

p
dt

1þ ffiffi
t

p w tð Þ ¼ ffiffi
t

p
; (b)

Z 4

0

cos
ffiffi
t

p
dtffiffi

t
p w tð Þ ¼ ffiffi

t
p

;

(c)

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 tj j

p
dt w tð Þ ¼ tj j; (d)

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p w tð Þ ¼ Arcsin t:
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20. (a) If Z1 and Z2 are null sets, show that Z1 [ Z2 is a null set.

(b) More generally, if Zn is a null set for each n 2 N , show that
S1

n¼1Zn is a null set. [Hint:

Given e > 0 and n 2 N , let Jnk : k 2 N
� �

be a countable collection of open intervals whose

union contains Zn and the sum of whose lengths is � e=2n. Now consider the countable

collection Jnk : n; k 2 N
� �

.]

21. Let f ; g 2 R a; b½ �.
(a) If t 2 R , show that

R b

a
tf 
 gð Þ2 � 0.

(b) Use (a) to show that 2
R b

a
f g

��� ��� � t
R b

a
f 2 þ 1=tð Þ R b

a
g2 for t > 0.

(c) If
R b

a
f 2 ¼ 0, show that

R b

a
f g ¼ 0.

(d) Now prove that
R b

a
f g

��� ���2 � R b

a
f gj j

� �2

� R b

a
f 2

� �
� R b

a
g2

� �
. This inequality is called the

Cauchy-Bunyakovsky-Schwarz Inequality (or simply the Schwarz Inequality).

22. Let h : 0; 1½ � ! R be Thomae’s function and let sgn be the signum function. Show that the

composite function sgn 	 h is not Riemann integrable on [0, 1].

Section 7.4 The Darboux Integral

An alternative approach to the integral is due to the French mathematician Gaston Darboux

(1842–1917). Darboux had translated Riemann’s work on integration into French for

publication in a French journal and inspired by a remark of Riemann, he developed a

treatment of the integral in terms of upper and lower integrals that was published in 1875.

Approximating sums in this approach are obtained from partitions using the infima and

suprema of function values on subintervals, which need not be attained as function values

and thus the sums need not be Riemann sums.

This approach is technically simpler in the sense that it avoids the complications of

working with infinitely many possible choices of tags. But working with infima and

suprema also has its complications, such as lack of additivity of these quantities. Moreover,

the reliance on the order properties of the real numbers causes difficulties in extending the

Darboux integral to higher dimensions, and, more importantly, impedes generalization to

more abstract surfaces such as manifolds. Also, the powerful Henstock-Kurzweil approach

to integration presented in Chapter 10, which includes the Lebesgue integral, is based on

the Riemann definition as given in Section 7.1.

In this section we introduce the upper and lower integrals of a bounded function on an

interval, and define a function to be Darboux integrable if these two quantities are equal.

We then look at examples and establish a Cauchy-like integrability criterion for the

Darboux integral. We conclude the section by proving that the Riemann and Darboux

approaches to the integral are in fact equivalent, that is, a function on a closed, bounded

interval is Riemann integrable if and only if it is Darboux integrable. Later topics in the

book do not depend on the Darboux definition of integral so that this section can be

regarded as optional.

Upper and Lower Sums

Let f : I ! R be a bounded function on I ¼ a; b½ � and let P ¼ x0; x1; . . . ; xnð Þ be a

partition of I. For k ¼ 1; 2; . . . ; n we let

mk :¼ inf f xð Þ : x 2 xk�1; xk½ �f g; Mk :¼ sup f xð Þ : x 2 xk�1; xk½ �f g:
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The lower sum of f corresponding to the partition P is defined to be

L f ;Pð Þ :¼
Xn
k¼1

mk xk � xk�1ð Þ;

and the upper sum of f corresponding to P is defined to be

U f ;Pð Þ :¼
Xn
k¼1

Mk xk � xk�1ð Þ:

If f is a positive function, then the lower sum L f ;Pð Þ can be interpreted as the area of the
union of rectangleswith base xk�1; xk½ � and heightmk. (See Figure 7.4.1.) Similarly, the upper

sumU f ;Pð Þ can be interpreted as the area of the union of rectangles with base xk�1; xk½ � and
heightMk. (See Figure 7.4.2.) The geometric interpretation suggests that, for a given partition,

the lower sum is less than or equal to the upper sum. We now show this to be the case.

7.4.1 Lemma If f :¼ I ! R is bounded and P is any partition of I, then

L f ;Pð Þ � U f ;Pð Þ.

Proof. Let P :¼ x0; x1; . . . ; xnð Þ. Since mk � Mk for k ¼ 1; 2; . . . ; n and since

xk � xk�1 > 0 for k ¼ 1; 2; . . . ; n; it follows that

L f ;Pð Þ ¼
Xn
k¼1

mk xk � xk�1ð Þ �
Xn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Pð Þ: Q.E.D.

If P :¼ x0; x1; . . . ; xnð Þ andQ :¼ y0; y1; . . . ; ymð Þ are partitions of I, we say thatQ is a

refinement of P if each partition point xk 2 P also belongs to Q (that is, if P � Q). A

refinementQ of a partitionP can be obtained by adjoining a finite number of points toP. In
this case, each one of the intervals xk�1; xk½ � into which P divides I can be written as the

union of intervals whose end points belong to Q; that is,

xk�1; xk½ � ¼ yj�1; yj
	 
 [ yj ; yjþ1

	 
 [ � � � [ yh�1; yh½ �:
We now show that refining a partition increases lower sums and decreases upper sums.

7.4.2 Lemma If f : I ! R is bounded, if P is a partition of I, and if Q is a refinement of

P, then
L f ;Pð Þ � L f ;Qð Þ and U f ;Qð Þ � U f ;Pð Þ

Proof. Let P ¼ x0; x1; . . . ;xnð Þ. We first examine the effect of adjoining one point to P.
Let z 2 I satisfy xk�1 < z < xk and let P0 be the partition

P0 :¼ x0; x1; . . . ; xk�1; z; xk; . . . ; xnð Þ;

Figure 7.4.1 L f ;Pð Þ a lower sum Figure 7.4.2 U f ;Pð Þ an upper sum
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obtained from P by adjoining z to P. Let m0
k and m00

k be the numbers

m0
k :¼ inf f xð Þ : x 2 xk�1; z½ �f g; m00

k :¼ inf f xð Þ : x 2 z; xk½ �f g:
Then mk � m0

k and mk � m00
k (why?) and therefore

mk xk � xk�1ð Þ ¼ mk z� xk�1ð Þ þmk xk � zð Þ � m0
k z� xk�1ð Þ þm00

k xk � zð Þ:
If we add the terms mj xj � xj�1

� �
for j 6¼ k to the above inequality, we obtain

L f ;Pð Þ � L f ;P0ð Þ.
Now if Q is any refinement of P (i.e., if P � Q), then Q can be obtained from P by

adjoining a finite number of points to P one at a time. Hence, repeating the preceding

argument, we infer that L f ;Pð Þ � L f ;Qð Þ.
Upper sums are handled similarly; we leave the details as an exercise. Q.E.D.

These two results are now combined to conclude that a lower sum is always smaller

than an upper sum even if they correspond to different partitions.

7.4.3 Lemma Let f : I ! R be bounded. If P1;P2 are any two partitions of I, then

L f ;P1ð Þ � U f ;P2ð Þ.

Proof. LetQ :¼ P1 [ P2 be the partition obtained by combining the points ofP1 andP2.

ThenQ is a refinement of bothP1 andP2. Hence, by Lemmas 7.4.1 and 7.4.2, we conclude

that

L f ;P1ð Þ � L f ;Qð Þ � U f ;Qð Þ � U f ;P2ð Þ: Q.E.D.

Upper and Lower Integrals

We shall denote the collection of all partitions of the interval I by P Ið Þ. If f : I ! R is

bounded, then each P in P Ið Þ determines two numbers: L f ;Pð Þ and U f ;Pð Þ. Thus, the
collection P Ið Þ determines two sets of numbers: the set of lower sums L f ;Pð Þ for

P 2 P Ið Þ, and the set of upper sums U f ;Pð Þ for P 2 P Ið Þ. Hence, we are led to the

following definitions.

7.4.4 Definition Let I :¼ a; b½ � and let f : I ! R be a bounded function. The lower

integral of f on I is the number

L fð Þ :¼ sup L f ;Pð Þ : P 2 P Ið Þf g;
and the upper integral of f on I is the number

U fð Þ :¼ inf U f ;Pð Þ : P 2 P Ið Þf g:
Since f is a bounded function, we are assured of the existence of the numbers

mI :¼ inf f xð Þ : x 2 If g and MI :¼ sup f xð Þ : x 2 If g:
It is readily seen that for any P 2 P Ið Þ, we have

mI b� að Þ � L f ;Pð Þ � U f ;Pð Þ � MI b� að Þ:
Hence it follows that

ð1Þ mI b� að Þ � L fð Þ and U fð Þ � MI b� að Þ:
The next inequality is also anticipated.
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7.4.5 Theorem Let I ¼ a; b½ � and let f : I ! R be a bounded function. Then the lower

integral L fð Þ and the upper integral U fð Þ of f on I exist. Moreover,

ð2Þ L fð Þ � U fð Þ:

Proof. If P1 and P2 are any partitions of I, then it follows from Lemma 7.4.3 that

L f ;P1ð Þ � U f ;P2ð Þ. Therefore the number U f ;P2ð Þ is an upper bound for the set

L f ;Pð Þ : P 2 P Ið Þf g. Consequently, L fð Þ, being the supremum of this set, satisfies

L fð Þ � U f ;P2ð Þ. Since P2 is an arbitrary partition of I, then L fð Þ is a lower bound for the
set U f ;Pð Þ : P 2 P Ið Þf g. Consequently, the infimum U fð Þ of this set satisfies the

inequality (2). Q.E.D.

The Darboux Integral

If I is a closed bounded interval and f : I ! R is a bounded function, we have proved in

Theorem 7.4.5 that the lower integral L fð Þ and the upper integral U fð Þ always exist.

Moreover, we always have L fð Þ � U fð Þ. However, it is possible that we might have

L fð Þ < U fð Þ, as we will see in Example 7.4.7(d). On the other hand, there is a large class

of functions for which L fð Þ ¼ U fð Þ.

7.4.6 Definition Let I ¼ a; b½ � and let f : I ! R be a bounded function. Then f is said

to beDarboux integrable on I if L fð Þ ¼ U fð Þ. In this case theDarboux integral of f over
I is defined to be the value L fð Þ ¼ U fð Þ.

Thus we see that if the Darboux integral of a function on an interval exists, then the

integral is the unique real number that lies between the lower sums and the upper sums.

Since we will soon establish the equivalence of the Darboux and Riemann integrals,

we will use the standard notation
R b

a
f or

R b

a
f xð Þ dx for the Darboux integral of a function

f on a; b½ �. The context should prevent any confusion from arising.

7.4.7 Examples (a) A constant function is Darboux integrable.

Let f xð Þ :¼ c for x 2 I :¼ a; b½ �. If P is any partition of I, it is easy to see that

L f ;Pð Þ ¼ c b� að Þ ¼ U f ;Pð Þ (See Exercise 7.4.2). Therefore the lower and upper

integrals are given by L fð Þ ¼ c b� að Þ ¼ U fð Þ. Consequently, f is integrable on I andR b

a
f ¼ R b

a
c dx ¼ c b� að Þ:

(b) Let g be defined on [0, 3] as follows: g xð Þ :¼ 2 if 0 � x � 1 and g xð Þ :¼ 3 if

2 < x � 3. (See Example 7.1.4(b).) For e > 0, if we define the partition

Pe :¼ 0; 1; 1þ e; 3ð Þ, then we get the upper sum

U g;Peð Þ ¼ 2 � 1� 0ð Þ þ 3 1þ e� 1ð Þ þ 3 2� eð Þ ¼ 2þ 3eþ 6� 3e ¼ 8:

Therefore, the upper integral satisfies U gð Þ � 8. (Note that we cannot yet claim

equality because U gð Þ is the infimum over all partitions of [0, 3].) Similarly, we get

the lower sum

L g;Peð Þ ¼ 2þ 2eþ 3 2� eð Þ ¼ 8� e;

so that the lower integral satisfies L gð Þ � 8. Then we have 8 � L gð Þ � U gð Þ � 8, and

hence L gð Þ ¼ U gð Þ ¼ 8. Thus the Darboux integral of g is
R 3

0
g ¼ 8.
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(c) The function h xð Þ :¼ x is integrable on [0, 1].

Let Pn be the partition of I :¼ 0; 1½ � into n subintervals given by

Pn :¼ 0;
1

n
;
2

n
; . . . ;

n� 1

n
;
n

n
¼ 1

� �
:

Since h is an increasing function, its infimum and supremum on the subinterval

k � 1ð Þ=n; k=n½ � are attained at the left and right end points, respectively, and are thus

given by mk ¼ k � 1ð Þ=n and Mk ¼ k=n. Moreover, since xk � xk�1 ¼ 1=n for all

k ¼ 1; 2; . . . ; n, we have

L h;Pnð Þ ¼ 0þ 1þ � � � þ n� 1ð Þð Þ=n2; U h;Pnð Þ ¼ 1þ 2þ � � � þ nð Þ=n2:
If we use the formula 1þ 2þ � � � þm ¼ m mþ 1ð Þ=2, for m 2 N, we obtain

L h;Pnð Þ ¼ n� 1ð Þn
2n2

¼ 1

2
1� 1

n

� �
; U h;Pnð Þ ¼ n nþ 1ð Þ

2n2
¼ 1

2
1þ 1

n

� �
:

Since the set of partitions Pn : n 2 Nf g is a subset of the set of all partitions of P Ið Þ of I,
it follows that

1

2
¼ sup L h;Pnð Þ : n 2 Nf g � sup L h;Pð Þ : P 2 P Ið Þf g ¼ L hð Þ;

and also that

U hð Þ ¼ inf U h;Pð Þ : P 2 P Ið Þf g � inf U h;Pnð Þ : n 2 Nf g ¼ 1

2
:

Since 1
2
� L hð Þ � U hð Þ � 1

2
, we conclude that L hð Þ ¼ U hð Þ ¼ 1

2
. Therefore h is

Darboux integrable on I ¼ [0, 1] and
R 1

0
h ¼ R 1

0
x dx ¼ 1

2
:

(d) A nonintegrable function.

Let I :¼ 0; 1½ � and let f : I ! R be the Dirichlet function defined by

f xð Þ :¼ 1 for x rational;
:¼ 0 for x irrational:

IfP :¼ x0; x1; . . . ; xnð Þ is any partition of [0, 1], then since every nontrivial interval contains
both rational numbers and irrational numbers (see the Density Theorem 2.4.8 and its

corollary), we have mk ¼ 0 and Mk ¼ 1. Therefore, we have L f ;Pð Þ ¼ 0; U f ;Pð Þ ¼ 1;
for all P 2 P Ið Þ, so that L fð Þ ¼ 0; U fð Þ ¼ 1: Since L fð Þ 6¼ U fð Þ, the function f is not

Darboux integrable on [0, 1].

We now establish some conditions for the existence of the integral.

7.4.8 Integrability Criterion Let I :¼ a; b½ � and let f : I ! R be a bounded function

on I. Then f is Darboux integrable on I if and only if for each e > 0 there is a partitionPe of

I such that

ð3Þ U f ;Peð Þ � L f ;Peð Þ < e:

Proof. If f is integrable, then we have L fð Þ ¼ U fð Þ. If e > 0 is given, then from the

definition of the lower integral as a supremum, there is a partition P1 of I such that L fð Þ �
e=2 < L f ;P1ð Þ: Similarly, there is a partition P2 of I such that U f ;P2ð Þ < U fð Þ þ e=2:
If we let Pe :¼ P1 [ P2, then Pe is a refinement of both P1 and P2. Consequently, by
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Lemmas 7.4.1 and 7.4.2, we have

L fð Þ � e=2 < L f ;P1ð Þ � L f ; Peð Þ
� U f ;Peð Þ � U f ;P2ð Þ < U fð Þ þ e=2:

Since L fð Þ ¼ U fð Þ, we conclude that (3) holds.

To establish the converse, we first observe that for any partition P we have

L f ;Pð Þ � L fð Þ and U fð Þ � U f ;Pð Þ. Therefore,
U fð Þ � L fð Þ � U f ;Pð Þ � L f ;Pð Þ:

Now suppose that for each e > 0 there exists a partition Pe such that (3) holds.

Then we have

U fð Þ � L fð Þ � U f ;Peð Þ � L f ;Peð Þ < e:

Since e > 0 is arbitrary, we conclude that U fð Þ � L fð Þ. Since the inequality L fð Þ � U fð Þ
is always valid, we have L fð Þ ¼ U fð Þ. Hence f is Darboux integrable. Q.E.D.

7.4.9 Corollary Let I ¼ a; b½ � and let f : I ! R be a bounded function. If Pn : n 2 Nf g
is a sequence of partitions of I such that

lim
n

U f ;Pnð Þ � L f ;Pnð Þð Þ ¼ 0;

then f is integrable and lim
n
L f ;Pnð Þ ¼ R b

a
f ¼ limn U f ;Pnð Þ.

Proof. If e > 0 is given, it follows from the hypothesis that there exists K such that if

n � K then U f ;Pnð Þ � L f ;Pnð Þ < e, whence the integrability of f follows from the

Integrability Criterion. We leave the remainder of the proof as an exercise. Q.E.D.

The significance of the corollary is the fact that although the definition of the Darboux

integral involves the set of all possible partitions of an interval, for a given function, the

existence of the integral and its value can often be determined by a special sequence of

partitions.

For example, if h xð Þ ¼ x on [0, 1] and Pn is the partition as in Example 7.4.7(c), then

lim U h;Pnð Þ � L h;Pnð Þð Þ ¼ lim 1=n ¼ 0

and therefore
R 1

0
x dx ¼ limU h;Pnð Þ ¼ lim 1

2
1þ 1=nð Þ ¼ 1

2
:

Continuous and Monotone Functions

It was shown in Section 7.2 that functions that are continuous or monotone on a closed

bounded interval are Riemann integrable. (See Theorems 7.2.7 and 7.2.8.) The proofs

employed approximation by step functions and the Squeeze Theorem 7.2.3 as the main

tools. Both proofs made essential use of the fact that both continuous functions and

monotone functions attain a maximum value and a minimum value on a closed bounded

interval. That is, if f is a continuous or monotone function on [a, b], then for a partition

P ¼ x0; x1; . . . ; xnð Þ, the numbersMk ¼ sup f xð Þ : x 2 Ikf g andmk ¼ inf f xð Þ :f x 2 Ikg,
k ¼ 1; 2; . . . ; n, are attained as function values. For continuous functions, this is Theorem
5.3.4, and for monotone functions, these values are attained at the right and left endpoints

of the interval.

If we define the step function v on [a, b] by v xð Þ :¼ Mk for x 2 ½xk�1; xkÞ for

k ¼ 1; 2; . . . ; n� 1, and v xð Þ :¼ Mn for x 2 xn�1; xn½ �, then we observe that the Riemann
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integral of v is given by
R b

a
v ¼ Pn

k¼1

Mk xk � xk�1ð Þ. (See Theorem 7.2.5.) Now we

recognize the sum on the right as the upper Darboux sum U f ;Pð Þ, so that we have

Z b

a

v ¼
Xn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Pð Þ:

Similarly, if the step function a is defined by a xð Þ :¼ mk for x 2 xk�1; xk½ Þ, k ¼ 1;
2; . . . ; n� 1, and a xð Þ :¼ mn for x 2 xn�1; xn½ �, then we have the Riemann integral

Z b

a

a ¼
Xn
k¼1

mk xk � xk�1ð Þ ¼ L f ;Pð Þ:

Subtraction then gives us

Z b

a

v� að Þ ¼
Xn
k¼1

Mk �mkð Þ xk � xk�1ð Þ ¼ U f ;Pð Þ � L f ;Pð Þ:

We thus see that the Integrability Criterion 7.4.8 is the Darboux integral counterpart to the

Squeeze Theorem 7.2.3 for the Riemann integral.

Therefore, if we examine the proofs of Theorems 7.2.7 and 7.2.8 that establish the

Riemann integrability of continuous and monotone functions, respectively, and replace the

integrals of step functions by the corresponding lower and upper sums, then we obtain

proofs of the theorems for the Darboux integral. (For example, in Theorem 7.2.7 for

continuous functions, we would have ae xð Þ ¼ f uið Þ ¼ mi and ve xð Þ ¼ f við Þ ¼ Mi and

replace the integral of ve � ae with U f ;Pð Þ � L f ;Pð Þ:)
Thus we have the following theorem. We leave it as an exercise for the reader to write

out the proof.

7.4.10 Theorem If the function f on the interval I ¼ [a, b] is either continuous or

monotone on I, then f is Darboux integrable on I.

The preceding observation that connects the Riemann and Darboux integrals plays a

role in the proof of the equivalence of the two approaches to integration, which we now

discuss. Of course, once equivalence has been established, then the preceding theorem

would be an immediate consequence.

Equivalence

We conclude this section with a proof that the Riemann and Darboux definitions of the

integral are equivalent in the sense that a function on a closed, bounded interval is Riemann

integrable if and only if it is Darboux integrable, and their integrals are equal. This is not

immediately apparent. The Riemann integral is defined in terms of sums that use function

values (tags) together with a limiting process based on the length of subintervals in a

partition. On the other hand, the Darboux integral is defined in terms of sums that use

infima and suprema of function values, which need not be function values, and a limiting

process based on refinement of partitions, not the size of subintervals in a partition. Yet the

two are equivalent.

The background needed to prove equivalence is at hand. For example, if a function is

Darboux integrable, we recognize that upper and lower Darboux sums are Riemann

integrals of step functions. Thus the Integrability Criterion 7.4.8 for the Darboux integral
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corresponds to the Squeeze Theorem 7.2.3 for the Riemann integral in its application. In

the other direction, if a function is Riemann integrable, the definitions of supremum and

infimum enable us to choose tags to obtain Riemann sums that are as close to upper and

lower Darboux sums as we wish. In this way, we connect the Riemann integral to the upper

and lower Darboux integrals. The details are given in the proof.

7.4.11 Equivalence Theorem A function f on I ¼ [a, b] is Darboux integrable if and

only if it is Riemann integrable.

Proof. Assume that f is Darboux integrable. For e > 0, let Pe be a partition of [a, b] such

that U f ;Peð Þ � L f ;Peð Þ < e. For this partition, as in the preceding discussion, we define

the step functions ae and ve on [a, b] by ae xð Þ :¼ mk and ve xð Þ :¼ Mk for

x 2 xk�1; xk½ Þ; k ¼ 1; 2; . . . ; n� 1, and ae xð Þ :¼ mn; ve xð Þ :¼ Mn for x 2 xn�1; xn½ �,
where, as usual, Mk is the supremum and mk the infimum of f on Ik ¼ xk�1; xk½ �. Clearly
we have

ð4Þ ae xð Þ � f xð Þ � ve xð Þ for all x in a; b½ �:
Moreover, by Theorem 7.2.5, these functions are Riemann integrable and their integrals are

equal to

ð5Þ
Z b

a

ve ¼
Pn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Peð Þ;
Z b

a

ae ¼
Pn
k¼1

mk xk � xk�1ð Þ ¼ L f ;Peð Þ:

Therefore, we have Z b

a

ve � aeð Þ ¼ U f ;Peð Þ � L f ;Peð Þ < e:

By the Squeeze Theorem 7.2.3, it follows that f is Riemann integrable. Moreover, we note

that (4) and (5) are valid for any partition P and therefore the Riemann integral of f lies

between L f ;Pð Þ and U f ;Pð Þ for any partition P. Therefore the Riemann integral of f is

equal to the Darboux integral of f.

Now assume that f is Riemann integrable and let A ¼ R b

a
f denote the value of the

integral. Then, f is bounded by Theorem 7.1.6, and given e > 0, there exists d > 0 such that

for any tagged partition _P with jj _Pjj < d, we have S f ; _P� �� A
�� �� < e, which can be written

ð6Þ A� e < S f ; _P� �
< Aþ e:

If P ¼ x0; x1; . . . ; xnð Þ, then because Mk ¼ sup f xð Þ : x 2 Ikf g is a supremum, we can

choose tags tk in Ik such that f tkð Þ > Mk � e= b� að Þ. Summing, and noting thatPn
k¼1

xk � xk�1ð Þ ¼ b� a; we obtain

ð7Þ S f ; _P� �¼Pn
k¼1

f tkð Þ xk � xk�1ð Þ>Pn
k¼1

Mk xk � xk�1ð Þ�e ¼ U f ;Pð Þ�e � U fð Þ�e:

Combining inequalities (6) and (7), we get

Aþ e > S f ; _P� � � U fð Þ � e;

and hence we have U fð Þ < Aþ 2e. Since e > 0 is arbitrary, this implies that U fð Þ � A.

In the same manner, we can approximate lower sums by Riemann sums and show that

L fð Þ > A� 2e for arbitrary e > 0, which implies L fð Þ � A. Thus we have obtained the

inequality A � L fð Þ � U fð Þ � A, which gives us L fð Þ ¼ U fð Þ ¼ A ¼ R b

a
f . Hence, the

function f is Darboux integrable with value equal to the Riemann integral. Q.E.D.
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Exercises for Section 7.4

1. Let f xð Þ :¼ xj j for �1 � x � 2. Calculate L f ;Pð Þ and U f ;Pð Þ for the following partitions:

(a) P1 :¼ �1; 0; 1; 2ð Þ, (b) P2 :¼ �1;�1=2; 0; 1=2; 1; 3=2; 2ð Þ.
2. Prove if f xð Þ :¼ c for x 2 a; b½ �, then its Darboux integral is equal to c b� að Þ.
3. Let f and g be bounded functions on I :¼ a; b½ �. If f xð Þ � g xð Þ for all x 2 I, show that L fð Þ �

L gð Þ and U fð Þ � U gð Þ.
4. Let f be bounded on [a, b] and let k > 0. Show that L kfð Þ ¼ kL fð Þ and U kfð Þ ¼ kU fð Þ.
5. Let f, g, h be bounded functions on I :¼ a; b½ � such that f xð Þ � g xð Þ � h xð Þ for all x 2 I. Show

that if f and h are Darboux integrable and if
R b

a
f ¼ R b

a
h, then g is also Darboux integrable withR b

a
g ¼ R b

a
f .

6. Let f be defined on [0, 2] by f xð Þ :¼ 1 if x 6¼ 1 and f 1ð Þ :¼ 0. Show that the Darboux integral

exists and find its value.

7. (a) Prove that if g xð Þ :¼ 0 for 0 � x � 1
2
and g xð Þ :¼ 1 for 1

2
< x � 1, then the Darboux

integral of g on [0, 1] is equal to 1
2
.

(b) Does the conclusion hold if we change the value of g at the point 1
2
to 13?

8. Let f be continuous on I :¼ a; b½ � and assume f xð Þ � 0 for all x 2 I. Prove if L fð Þ ¼ 0, then

f xð Þ ¼ 0 for all x 2 I.

9. Let f 1 and f 2 be bounded functions on a; b½ �. Show that L f 1ð Þ þ L f 2ð Þ � L f 1 þ f 2ð Þ.
10. Give an example to show that strict inequality can hold in the preceding exercise.

11. If f is a bounded function on [a, b] such that f xð Þ ¼ 0 except for x in c1; c2; . . . ; cnf g in [a, b],

show that U fð Þ ¼ L fð Þ ¼ 0.

12. Let f xð Þ ¼ x2 for 0 � x � 1. For the partition Pn :¼ 0; 1=n; 2=n; . . . ; n� 1ð Þ=n; 1ð Þ, calculate
L f ;Pnð Þ and U f ;Pnð Þ, and show that L fð Þ ¼ U fð Þ ¼ 1

3
. ðUse the formula 12 þ 22

þ � � � þm2 ¼ 1
6
m mþ 1ð Þ 2mþ 1ð Þ:Þ

13. Let Pe be the partition whose existence is asserted in the Integrability Criterion 7.4.8. Show that

if P is any refinement of Pe, then U f ;Pð Þ � L f ;Pð Þ < e.

14. Write out the proofs that a function f on [a, b] is Darboux integrable if it is either (a) continuous,

or (b) monotone.

15. Let f be defined on I :¼ a; b½ � and assume that f satisfies the Lipschitz condition

f xð Þ � f yð Þj j � K x� yj j for all x; y in I. If Pn is the partition of I into n equal parts, show

that 0 � U f ;Pnð Þ � R b

a
f � K b� að Þ2=n:

Section 7.5 Approximate Integration

The Fundamental Theorem of Calculus 7.3.1 yields an effective method of evaluating the

integral
R b

a
f provided we can find an antiderivative F such that F0 xð Þ ¼ f xð Þ when

x 2 a; b½ �. However, when we cannot find such an F, we may not be able to use the

Fundamental Theorem. Nevertheless,when f is continuous, there are a number of techniques

for approximating the Riemann integral
R b

a
f by using sums that resemble the Riemann sums.

One very elementary procedure to obtain quick estimates of
R b

a
f , based on Theorem

7.1.5(c), is to note that if g xð Þ � f xð Þ � h xð Þ for all x 2 a; b½ �, then
Z b

a

g �
Z b

a

f �
Z b

a

h:
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If the integrals of g and h can be calculated, then we have bounds for
R b

a
f . Often these

bounds are accurate enough for our needs.

For example, suppose we wish to estimate the value of
R 1

0
e�x2dx. It is easy to show

that e�x � e�x2 � 1 for x 2 0; 1½ �, so that

Z 1

0

e�xdx �
Z 1

0

e�x2dx �
Z 1

0

1 dx:

Consequently, we have 1� 1=e � R 1

0
e�x2dx � 1. If we use the mean of the bracketing

values, we obtain the estimate 1� 1=2e � 0:816 for the integral with an error less than

1=2e < 0:184. This estimate is crude, but it is obtained rapidly and may be quite

satisfactory for our needs. If a better approximation is desired, we can attempt to find

closer approximating functions g and h.

Taylor’s Theorem 6.4.1 can be used to approximate e�x2 by a polynomial. In using

Taylor’s Theorem, we must get bounds on the remainder term for our calculations to have

significance. For example, if we apply Taylor’s Theorem to e�y for 0 � y � 1, we get

e�y ¼ 1� yþ 1

2
y2 � 1

6
y3 þ R3;

where R3 ¼ y4e�c=24 where c is some number with 0 � c � 1. Since we have no better

information as to the location of c, we must be content with the estimate 0 � R3 � y4=24.
Hence we have

e�x2 ¼ 1� x2 þ 1

2
x4 � 1

6
x6 þ R3;

where 0 � R3 � x8=24, for x 2 0; 1½ �. Therefore, we obtain

Z 1

0

e�x2dx ¼
Z 1

0

1� x2 þ 1

2
x4 � 1

6
x6

� �
dxþ

Z 1

0

R3dx

¼ 1� 1

3
þ 1

10
� 1

42
þ
Z 1

0

R3dx:

Since we have 0 � R 1

0
R3dx � 1

9 � 24 ¼ 1

216
< 0:005, it follows that

Z 1

0

e�x2dx � 26

35
� 0:7429ð Þ;

with an error less than 0.005.

Equal Partitions

If f : a; b½ � ! R is continuous, we know that its Riemann integral exists. To find an

approximate value for this integral with the minimum amount of calculation, it is

convenient to consider partitions Pn of a; b½ � into n equal subintervals having length

hn :¼ b� að Þ=n. Hence Pn is the partition:

a < aþ hn < aþ 2hn < � � � < aþ nhn ¼ b:

If we pick our tag points to be the left endpoints and the right endpoints of the subintervals,

we obtain the nth left approximation given by

Ln fð Þ :¼ hn
Xn�1

k¼0

f aþ khnð Þ;
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and the nth right approximation given by

Rn fð Þ :¼ hn
Xn
k¼1

f aþ khnð Þ:

It should be noted that it is almost as easy to evaluate both of these approximations as only

one of them, since they differ only by the terms f(a) and f(b).

Unless we have reason to believe that one of Ln fð Þ or Rn fð Þ is closer to the actual value
of the integral than the other one, we generally take their mean:

1

2
Ln fð Þ þ Rn fð Þð Þ;

which is readily seen to equal

ð1Þ Tn fð Þ :¼ hn

�
1

2
f að Þ þ

Xn�1

k¼1

f aþ khnð Þ þ 1

2
f bð Þ

�
;

as a reasonable approximation to
R b

a
f .

However, we note that if f is increasing on [a, b], then it is clear from a sketch of the

graph of f that

ð2Þ Ln fð Þ �
Z b

a

f � Rn fð Þ:

In this case, we readily see that

Z b

a

f � Tn fð Þ
����

���� � 1

2
Rn fð Þ � Ln fð Þð Þ

¼ 1

2
hn f bð Þ � f að Þð Þ ¼ f bð Þ � f að Þð Þ: b� að Þ

2n
:

An error estimate such as this is useful, since it gives an upper bound for the error of the

approximation in terms of quantities that are known at the outset. In particular, it can be

used to determine how largewe should choose n in order to have an approximation that will

be correct to within a specified error e > 0.

The above discussion was valid for the case that f is increasing on [a, b]. If f is

decreasing, then the inequalities in (2) should be reversed. We can summarize both cases in

the following statement.

7.5.1 Theorem If f : a; b½ � ! R is monotone and if Tn fð Þ is given by (1), then

ð3Þ
Z b

a

f � Tn fð Þ
����

���� � f bð Þ � f að Þj j � b� að Þ
2n

:

7.5.2 Example If f xð Þ :¼ e�x2on [0, 1], then f is decreasing. It follows from (3) that

if n ¼ 8, then j R 1

0
e�x2dx� T8 fð Þj � 1� e�1ð Þ=16 < 0:04, and if n ¼ 16, then

j R 1

0
e�x2dx� T16ð f Þj � 1� e�1ð Þ=32 < 0:02. Actually, the approximation is consider-

ably better, as we will see in Example 7.5.5. &

The Trapezoidal Rule

The method of numerical integration called the ‘‘Trapezoidal Rule’’ is based on approxi-

mating the continuous function f : a; b½ � ! R by a piecewise linear continuous function.
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Let n 2 N and, as before, let hn :¼ b� að Þ=n and consider the partition Pn. We approxi-

mate f by the piecewise linear function gn that passes through the points

aþ khn; f aþ khnð Þð Þ, where k ¼ 0; 1; . . . ; n. It seems reasonable that the integral
R b

a
f

will be ‘‘approximately equal to’’ the integral
R b

a
gn when n is sufficiently large (provided

that f is reasonably smooth).

Since the area of a trapezoid with horizontal base h and vertical sides l1 and l2 is known

to be 1
2
h l1 þ l2ð Þ, we have

Z aþ kþ1ð Þhn

aþkhn

gn ¼
1

2
hn � f aþ khnð Þ þ f aþ k þ 1ð Þhnð Þ½ �;

for k ¼ 0; 1; . . . ; n� 1. Summing these terms and noting that each partition point in Pn

except a and b belongs to two adjacent subintervals, we obtain

Z b

a

gn ¼ hn
1

2
f að Þ þ f aþ hnð Þ þ � � � þ f aþ k � 1ð Þhnð Þ þ 1

2
f bð Þ

� �
:

But the term on the right is precisely Tn fð Þ, found in (1) as the mean of Ln fð Þ and Rn fð Þ.
We call Tn fð Þ the nth Trapezoidal Approximation of f.

In Theorem 7.5.1 we obtained an error estimate in the case where f is monotone; we

now state one without this restriction on f, but in terms of the second derivative f 00 of f .

7.5.3 Theorem Let f, f 0 and f 00 be continuous on [a, b] and let Tn fð Þ be the nth

Trapezoidal Approximation (1). Then there exists c 2 a; b½ � such that

ð4Þ Tn fð Þ �
Z b

a

f ¼ b� að Þh2n
12

� f 00 cð Þ:

A proof of this result will be given in Appendix D; it depends on a number of results we

have obtained in Chapters 5 and 6.

The equality (4) is interesting in that it can give both an upper bound and a lower bound

for the difference Tn fð Þ � R b

a
f . For example, if f 00 xð Þ � A > 0 for all x 2 a; b½ �, then (4)

implies that this difference always exceeds 1
12
A b� að Þh2n. If we only have f 00 xð Þ � 0 for

x 2 a; b½ �, which is the case when f is convex (¼ concave upward), then the Trapezoidal

Approximation is always too large. The reader should draw a figure to visualize this.

However, it is usually the upper bound that is of greater interest.

7.5.4 Corollary Let f, f 0, and f 00 be continuous, and let f 00 xð Þj j � B2 for all x 2 a; b½ �.
Then

ð5Þ Tn fð Þ �
Z b

a

f

����
���� � b� að Þh2n

12
� B2 ¼ b� að Þ3

12n2
� B2:

When an upper bound B2 can be found, (5) can be used to determine how large nmust

be chosen in order to be certain of a desired accuracy.

7.5.5 Example If f xð Þ :¼ e�x2 on [0, 1], then a calculation shows that f 00 xð Þ ¼
2e�x2 2x2 � 1ð Þ, so that we can take B2 ¼ 2. Thus, if n ¼ 8, then

T8 fð Þ �
Z 1

0

f

����
���� � 2

12 � 64 ¼ 1

384
< 0:003:
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On the other hand, if n ¼ 16, then we have

T16 fð Þ �
Z 1

0

f

����
���� � 2

12 � 256 ¼ 1

1 536
< 0:000 66:

Thus, the accuracy in this case is considerably better than predicted in Example

7.5.2. &

The Midpoint Rule

One obvious method of approximating the integral of f is to take the Riemann sums

evaluated at the midpoints of the subintervals. Thus, if Pn is the equally spaced partition

given before, the Midpoint Approximation of f is given by

ð6Þ Mn fð Þ :¼ hn f aþ 1

2
hn

� �
þ f aþ 3

2
hn

� �
þ � � � þ f a n� 1

2

� �
hn

� �� �

¼ hn
Xn
k¼1

f aþ k � 1

2

� �
hn

� �
:

Another method might be to use piecewise linear functions that are tangent to the

graph of f at the midpoints of these subintervals. At first glance, it seems as if we would

need to know the slope of the tangent line to the graph of f at each of the midpoints

aþ k � 1
2
hn

� �
k ¼ 1; 2; . . . ; nð Þ. However, it is an exercise in geometry to show that the

area of the trapezoid whose top is this tangent line at the midpoint aþ k � 1
2

� �
hn is equal to

the area of the rectangle whose height is f aþ k � 1
2

� �
hn

� �
. (See Figure 7.5.1.) Thus, this

area is given by (6), and the ‘‘Tangent Trapezoid Rule’’ turns out to be the same as the

‘‘Midpoint Rule.’’ We now state a theorem showing that the Midpoint Rule gives better

accuracy than the Trapezoidal Rule by a factor of 2.

7.5.6 Theorem Let f, f 0, and f 00 be continuous on [a, b] and let Mn fð Þ be the nth

Midpoint Approximation (6). Then there exists g 2 a; b½ � such that

ð7Þ
Z b

a

f �Mn fð Þ ¼ b� að Þh2n
24

� f 00 gð Þ:

The proof of this result is in Appendix D.

Figure 7.5.1 The tangent trapezoid
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As in the casewith Theorem 7.5.3, formula (7) can be used to give both an upper bound

and a lower bound for the difference
R b

a
f �Mn fð Þ, although it is an upper bound that is

usually of greater interest. In contrast with the Trapezoidal Rule, if the function is convex,

then the Midpoint Approximation is always too small.

The next result is parallel to Corollary 7.5.4.

7.5.7 Corollary Let f, f 0, and f 00 be continuous, and let f 00 xð Þj j � B2 for all x 2 a; b½ �.
Then

ð8Þ Mn fð Þ �
Z b

a

f

����
���� � b� að Þh2n

24
� B2 ¼ b� að Þ3

24n2
� B2:

Simpson’s Rule

The final approximation procedure that we will consider usually gives a better approxi-

mation than either the Trapezoidal or the Midpoint Rule and requires essentially no extra

calculation. However, the convexity (or the concavity) of f does not give any information

about the error for this method.

Whereas the Trapezoidal and Midpoint Rules were based on the approximation of f by

piecewise linear functions, Simpson’s Rule approximates the graph of f by parabolic arcs.

To help motivate the formula, the reader may show that if three points

�h; y0ð Þ; 0; y1ð Þ; and h; y2ð Þ
are given, then the quadratic function q xð Þ :¼ Ax2 þ Bxþ C that passes through these

points has the property that Z h

�h

q ¼ 1

3
h y0 þ 4y1 þ y2ð Þ:

Now let f be a continuous function on [a, b] and let n 2 N be even, and let

hn :¼ b� að Þ=n. On each ‘‘double subinterval’’

a; aþ 2hn½ �; aþ 2hn; aþ 4hn½ �; . . . ; b� 2hn; b½ �;
we approximate f by n=2 quadratic functions that agree with f at the points

y0 :¼ f að Þ; y1 :¼ f aþ hnð Þ; y2 :¼ f aþ 2hnð Þ; . . . ; yn :¼ f bð Þ:
These considerations lead to the nth Simpson Approximation, defined by

ð9Þ
Snð f Þ :¼ 1

3
hn
�
f ðaÞ þ 4f ðaþ hnÞ þ 2 f ðaþ 2hnÞ þ 4 f ðaþ 3hnÞ

þ 2 f aþ 4hnð Þ þ � � � þ 2 f b� 2hnð Þ þ 4 f b� hnð Þ þ f bð Þ�:
Note that the coefficients of the values of f at the nþ 1 partition points follow the pattern

1; 4; 2; 4; 2; . . . ; 4; 2; 4; 1.
We now state a theorem that gives an estimate about the accuracy of the Simpson

Approximation; it involves the fourth derivative of f.

7.5.8 Theorem Let f, f 0, f 00, f 3ð Þ, and f 4ð Þ be continuous on [a, b] and let n 2 N be even. If

Sn fð Þ is the nth Simpson Approximation (9), then there exists c 2 a; b½ � such that

ð10Þ Sn fð Þ �
Z b

a

f ¼ b� að Þh4n
180

� f 4ð Þ cð Þ:

A proof of this result is given in Appendix D.
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The next result is parallel to Corollaries 7.5.4 and 7.5.7.

7.5.9 Corollary Let f, f 0, f 00, f 3ð Þ, and f 4ð Þ be continuous on [a, b] and let f 4ð Þ xð Þ�� �� � B4

for all x 2 a; b½ �. Then

ð11Þ Sn fð Þ �
Z b

a

f

����
���� � b� að Þh4n

180
� B4 ¼ b� að Þ5

180n4
� B4:

Successful use of the estimate (11) depends on being able to find an upper bound for

the fourth derivative.

7.5.10 Example If f xð Þ :¼ 4e�x2 on [0, 1] then a calculation shows that

f 4ð Þ xð Þ ¼ 4e�x2 4x4 � 12x2 þ 3
� �

;

whence it follows that f 4ð Þ xð Þ�� �� � 20 for x 2 0; 1½ �, sowe can take B4 ¼ 20. It follows from

(11) that if n ¼ 8 then

S8 fð Þ �
Z 1

0

f

����
���� � 1

180 � 84 � 20 ¼ 1

36; 864
< 0:000 03

and that if n ¼ 16 then

S16 fð Þ �
Z 1

0

f

����
���� � 1

589;824
< 0:000 001 7: &

Remark The nth Midpoint ApproximationMn fð Þ can be used to ‘‘step up’’ to the (2n)th
Trapezoidal and Simpson Approximations by using the formulas

T2n fð Þ ¼ 1

2
Mn fð Þ þ 1

2
Tn fð Þ and S2n fð Þ ¼ 2

3
Mn fð Þ þ 1

3
Tn fð Þ;

that are given in the exercises. Thus once the initial Trapezoidal Approximation T1 ¼
T1 fð Þ has been calculated, only theMidpoint ApproximationsMn ¼ Mn fð Þ need be found.
That is, we employ the following sequence of calculations:

T1 ¼ 1

2
b� að Þ f að Þ þ f bð Þð Þ;

M1 ¼ b� að Þf 1

2
aþ bð Þ

� �
; T2 ¼ 1

2
M1 þ 1

2
T1; S2 ¼ 2

3
M1 þ 1

3
T1;

M2; T4 ¼ 1

2
M2 þ 1

2
T2; S4 ¼ 2

3
M2 þ 1

3
T2;

M4; T8 ¼ 1

2
M4 þ 1

2
T4; S8 ¼ 2

3
M4 þ 1

3
T4;

� � � � � � � � � � � � � � �

Exercises for Section 7.5

1. Use the Trapezoidal Approximation with n ¼ 4 to evaluate ln 2 ¼ R 2

1
1=xð Þdx. Show that

0:6866 � ln 2 � 0:6958 and that

0:0013 <
1

768
� T4 � ln 2 � 1

96
< 0:0105:
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2. Use the Simpson Approximation with n ¼ 4 to evaluate ln 2 ¼ R 2

1
1=xð Þdx. Show that 0:6927 �

ln 2 � 0:6933 and that

0:000 016 <
1

25
� 1

1920
� S4 � ln 2

1

1920
< 0:000 521:

3. Let f xð Þ :¼ 1þ x2ð Þ�1
for x 2 0; 1½ �. Show that f 00 xð Þ ¼ 2 3x2 � 1ð Þ 1þ x2ð Þ�3

and that

f 00 xð Þjj � 2 for x 2 [0, 1]. Use the Trapezoidal Approximation with n ¼ 4 to evaluate p=4 ¼R 1

0
f xð Þdx. Show that T4 fð Þ � p=4ð Þj j � 1=96 < 0:0105:

4. If the Trapezoidal Approximation Tn fð Þ is used to approximate p=4 as in Exercise 3, show that

we must take n � 409 in order to be sure that the error is less than 10�6.

5. Let f be as in Exercise 3. Show that f 4ð Þ xð Þ ¼ 24 5x4 � 10x2 þ 1ð Þ 1þ x2ð Þ�5
and that

f 4ð Þ xð Þ�� �� � 96 for x 2 0; 1½ �. Use Simpson’s Approximation with n ¼ 4 to evaluate p=4.

Show that S4 fð Þ � p=4ð Þj j � 1=480 < 0:0021:

6. If the Simpson Approximation Sn fð Þ is used to approximate p=4 as in Exercise 5, show that we

must take n � 28 in order to be sure that the error is less than 10�6.

7. If p is a polynomial of degree at most 3, show that the Simpson Approximations are exact.

8. Show that if f 00 xð Þ � 0 on a; b½ � (that is, if f is convex on [a, b]), then for any natural numbers

m, n we have Mn fð Þ � R b

a
f xð Þdx � Tm fð Þ: If f 00 xð Þ � 0 on [a, b], this inequality is reversed.

9. Show that T2n fð Þ ¼ 1
2
Mn fð Þ þ Tn fð Þ½ �:

10. Show that S2n fð Þ ¼ 2
3
Mn fð Þ þ 1

3
Tn fð Þ:

11. Show that one has the estimate Sn fð Þ � R b

a
f xð Þdx

��� ��� � b� að Þ2=18n2
h i

B2, where B2 � f 00 xð Þj j
for all x 2 a; b½ �.

12. Note that
R 1

0
1� x2ð Þ1=2dx ¼ p=4. Explain why the error estimates given by formulas (4), (7),

and (10) cannot be used. Show that if h xð Þ ¼ 1� x2ð Þ1=2 for x in [0, 1], then

Tn hð Þ � p=4 � Mn hð Þ. Calculate M8 hð Þ and T8 hð Þ.
13. If h is as in Exercise 12, explain why K :¼ R 1=

ffiffi
2

p
0

h xð Þdx ¼ p=8þ 1=4. Show that h00 xð Þj j �
23=2 and that h 4ð Þ xð Þ

��� ��� � 9 � 27=2 for x 2 0; 1=
ffiffiffi
2

p	 

. Show that K � Tn hð Þj j � 1=12n2 and that

K � Sn hð Þj j � 1=10n4. Use these results to calculate p.

In Exercises 14–20, approximate the indicated integrals, giving estimates for the error. Use a
calculator to obtain a high degree of precision.

14.

Z 2

0

1þ x4
� �1=2

dx: 15.

Z 2

0

4þ x3
� �1=2

dx: 16.

Z 1

0

dx

1þ x3
:

17.

Z p

0

sin x

x
dx: 18.

Z p=2

0

dx

1þ sin x
: 19.

Z p=2

0

ffiffiffiffiffiffiffiffiffiffi
sin x

p
dx:

20.

Z 1

0

cos x2
� �

dx:
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CHAPTER 8

SEQUENCES OF FUNCTIONS

In previous chapters we have often made use of sequences of real numbers. In this chapter

we shall consider sequences whose terms are functions rather than real numbers.

Sequences of functions arise naturally in real analysis and are especially useful in obtaining

approximations to a given function and defining new functions from known ones.

In Section 8.1 wewill introduce two different notions of convergence for a sequence of

functions: pointwise convergence and uniform convergence. The latter type of convergence

is very important, and will be the main focus of our attention. The reason for this focus is

the fact that, as is shown in Section 8.2, uniform convergence ‘‘preserves’’ certain

properties in the sense that if each term of a uniformly convergent sequence of functions

possesses these properties, then the limit function also possesses the properties.

In Section 8.3 we will apply the concept of uniform convergence to define and derive

the basic properties of the exponential and logarithmic functions. Section 8.4 is devoted to

a similar treatment of the trigonometric functions.

Section 8.1 Pointwise and Uniform Convergence

Let A � R be given and suppose that for each n 2 N there is a function f n : A ! R ; we

shall say that ( fn) is a sequence of functions on A to R . Clearly, for each x 2 A, such a

sequence gives rise to a sequence of real numbers, namely the sequence

ð1Þ f n xð Þð Þ;
obtained by evaluating each of the functions at the point x. For certain values of x 2 A the

sequence (1) may converge, and for other values of x 2 A this sequence may diverge. For

each x 2 A for which the sequence (1) converges, there is a uniquely determined real

number lim f n xð Þð Þ. In general, the value of this limit, when it exists, will depend on the

choice of the point x 2 A. Thus, there arises in this way a function whose domain consists

of all numbers x 2 A for which the sequence (1) converges.

8.1.1 Definition Let f nð Þ be a sequence of functions on A � R to R , let A0 � A, and let

f : A0 ! R . We say that the sequence f nð Þ converges on A0 to f if, for each x 2 A0, the

sequence f n xð Þð Þ converges to f (x) in R . In this case we call f the limit on A0 of the

sequence f nð Þ. When such a function f exists, we say that the sequence f nð Þ is convergent
on A0, or that f nð Þ converges pointwise on A0.

It follows from Theorem 3.1.4 that, except for a possible modification of the domain

A0, the limit function is uniquely determined. Ordinarily we choose A0 to be the largest set

possible; that is, we take A0 to be the set of all x 2 A for which the sequence (1) is

convergent in R .
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In order to symbolize that the sequence f nð Þ converges on A0 to f, we sometimes

write

f ¼ lim f nð Þ on A0; or f n ! f on A0:

Sometimes, when fn and f are given by formulas, we write

f xð Þ ¼ lim f n xð Þ for x 2 A0; or f n xð Þ ! f xð Þ for x 2 A0:

8.1.2 Examples (a) lim(x=n) ¼ 0 for x 2 R.

For n 2 N, let f n xð Þ :¼ x=n and let f xð Þ :¼ 0 for x 2 R. By Example 3.1.6(a), we

have lim(1=n) ¼ 0. Hence it follows from Theorem 3.2.3 that

lim f n xð Þð Þ ¼ limðx=nÞ ¼ x limð1=nÞ ¼ x � 0 ¼ 0

for all x 2 R . (See Figure 8.1.1.)

(b) lim(xn).

Let gnðxÞ :¼ xn for x 2 R ; n 2 N. (See Figure 8.1.2.) Clearly, if x ¼ 1, then the

sequence (gn(1)) ¼ (1) converges to 1. It follows from Example 3.1.11(b) that lim(xn) ¼ 0

for 0 � x < 1 and it is readily seen that this is also true for �1 < x < 0. If x ¼ �1, then

gnð�1Þ ¼ ð�1Þn, and it was seen in Example 3.2.8(b) that the sequence is divergent.

Similarly, if xj j > 1, then the sequence (xn) is not bounded, and so it is not convergent in R .

We conclude that if

gðxÞ :¼ 0 for �1 < x < 1;
1 for x ¼ 1;

�

then the sequence (gn) converges to g on the set ð�1; 1�.
(c) limððx2 þ nxÞ=nÞ ¼ x for x 2 R .

Let hnðxÞ:¼ x2 þ nxð Þ=n for x 2 R, n 2 N , and let hðxÞ :¼ x for x 2 R. (See

Figure 8.1.3.) Since we have hnðxÞ ¼ x2=nð Þ þ x, it follows from Example 3.1.6(a)

and Theorem 3.2.3 that hnðxÞ ! x ¼ hðxÞ for all x 2 R .

Figure 8.1.2 gn(x) ¼ xnFigure 8.1.1 fn(x) ¼ x=n
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(d) lim((1=n) sin(nx þ n)) ¼ 0 for x 2 R.

Let FnðxÞ :¼ ð1=nÞ sinðnxþ nÞ for x 2 R ; n 2 N ; and let FðxÞ :¼ 0 for x 2 R. (See

Figure 8.1.4.) Since j sin y j � 1 for all y 2 R we have

ð2Þ FnðxÞ � FðxÞj j ¼ 1

n
sinðnxþ nÞ

����
���� � 1

n

for all x 2 R . Therefore it follows that lim(Fn(x)) ¼ 0 ¼ F(x) for all x 2 R . The reader

should note that, given any e > 0, if n is sufficiently large, then FnðxÞ � FðxÞj j < e for all
values of x simultaneously! &

Partly to reinforce Definition 8.1.1 and partly to prepare the way for the important

notion of uniform convergence, we reformulate Definition 8.1.1 as follows.

8.1.3 Lemma A sequence ( fn) of functions on A � R to R converges to a function

f : A0 ! R on A0 if and only if for each e > 0 and each x 2 A0 there is a natural number

Kðe; xÞ such that if n � Kðe; xÞ, then
ð3Þ f nðxÞ � f ðxÞj j < e:

We leave it to the reader to show that this is equivalent to Definition 8.1.1. We wish to

emphasize that the value of Kðe; xÞ will depend, in general, on both e > 0 and x 2 A0. The

reader should confirm the fact that in Examples 8.1.2(a–c), the value of Kðe; xÞ required to
obtain an inequality such as (3) does depend on both e > 0 and x 2 A0. The intuitive reason

for this is that the convergence of the sequence is ‘‘significantly faster’’ at some points than

it is at others. However, in Example 8.1.2(d), as we have seen in inequality (2), if we choose

n sufficiently large, we can make FnðxÞ � FðxÞj j < e for all values of x 2 R . It is precisely

this rather subtle difference that distinguishes between the notion of the ‘‘pointwise

convergence’’ of a sequence of functions (as defined in Definition 8.1.1) and the notion of

‘‘uniform convergence.’’

Uniform Convergence

8.1.4 Definition A sequence ( fn) of functions on A � R to R converges uniformly on

A0 � A to a function f : A0 ! R if for each e > 0 there is a natural number KðeÞ
(depending on e but not on x 2 A0) such that if n � KðeÞ, then
ð4Þ f nðxÞ � f ðxÞj j < e for all x 2 A0:

Figure 8.1.4 Fn(x) ¼ sin(nx þ n)=nFigure 8.1.3 hn (x) ¼ (x2 þ nx)=n
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In this case we say that the sequence ( fn) is uniformly convergent on A0. Sometimes we

write

f n F f on A0; or f nðxÞ F f ðxÞ for x 2 A0:

It is an immediate consequence of the definitions that if the sequence ( fn) is uniformly

convergent on A0 to f, then this sequence also converges pointwise on A0 to f in the sense of

Definition 8.1.1. That the converse is not always true is seen by a careful examination of

Examples 8.1.2(a–c); other examples will be given below.

It is sometimes useful to have the following necessary and sufficient condition for a

sequence ( fn) to fail to converge uniformly on A0 to f.

8.1.5 Lemma A sequence ( fn) of functions on A � R to R does not converge uniformly

on A0 � A to a function f : A0 ! R if and only if for some e0 > 0 there is a subsequence

f nk
� �

of f nð Þ and a sequence xkð Þ in A0 such that

ð5Þ f nkðxkÞ � f xkð Þ�� �� � e0 for all k 2 N :

The proof of this result requires only that the reader negate Definition 8.1.4; we

leave this to the reader as an important exercise. We now show how this result can be

used.

8.1.6 Examples (a) Consider Example 8.1.2(a). If we let nk :¼ k and xk :¼ k, then

f nkðxkÞ ¼ 1 so that f nkðxkÞ � f ðxkÞ
�� �� ¼ 1� 0j j ¼ 1. Therefore the sequence ( fn) does not

converge uniformly on R to f.

(b) Consider Example 8.1.2(b). If nk :¼ k and xk :¼ 1
2

� �1=k
, then

gnkðxkÞ � gðxkÞ
�� �� ¼ 1

2
� 0

�� �� ¼ 1
2
:

Therefore the sequence (gn) does not converge uniformly on ð�1; 1� to g.

(c) Consider Example 8.1.2(c). If nk :¼ k and xk :¼ �k, then hnk ðxkÞ ¼ 0 and hðxkÞ ¼
�k so that hnk ðxkÞ � hðxkÞj j ¼ k. Therefore the sequence (hn) does not converge uni-

formly on R to h. &

The Uniform Norm

In discussing uniform convergence, it is often convenient to use the notion of the uniform

norm on a set of bounded functions.

8.1.7 Definition If A � R and w : A ! R is a function, we say that w is bounded on

A if the set w(A) is a bounded subset of R . If w is bounded we define the uniform norm of
w on A by

ð6Þ j wj jjA :¼ sup wðxÞj j : x 2 Af g:
Note that it follows that if e > 0, then

ð7Þ j wj jjA � e () wðxÞj j � e for all x 2 A:

8.1.8 Lemma A sequence ( fn) of bounded functions on A � R converges uniformly on A

to f if and only if j f n � fj jjA ! 0.
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Proof. ()) If ( fn) converges uniformly on A to f, then by Definition 8.1.4, given any e > 0

there exists K(e) such that if n � KðeÞ and x 2 A then

f nðxÞ � f ðxÞj j � e:

From the definition of supremum, it follows that j f n � fj jjA � e whenever n � KðeÞ. Since
e > 0 is arbitrary this implies that j f n � fj jjA ! 0.

(() If j f n � fj jjA ! 0, then given e > 0 there is a natural number H(e) such that if

n � HðeÞ then j f n � fj jjA � e. It follows from (7) that f nðxÞ � f ðxÞj j � e for all n � HðeÞ
and x 2 A. Therefore ( fn) converges uniformly on A to f. Q.E.D.

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of

bounded functions for uniform convergence.

8.1.9 Examples (a) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(a)

since the function f nðxÞ � f ðxÞ ¼ x=n is not bounded on R .

For the sake of illustration, let A :¼ ½0; 1�. Although the sequence (x=n) did not

converge uniformly on R to the zero function, we shall show that the convergence is

uniform on A. To see this, we observe that

j f n � fj jjA ¼ sup x=n� 0j j : 0 � x � 1f g ¼ 1

n

so that j f n � fj jjA ! 0. Therefore ( fn) is uniformly convergent on A to f.

(b) Let gnðxÞ :¼ xn for x 2 A :¼ ½0; 1� and n 2 N , and let gðxÞ :¼ 0 for 0 � x < 1 and

gð1Þ :¼ 1. The functions gnðxÞ � gðxÞ are bounded on A and

j gn � gj jjA ¼ sup
xn for 0 � x < 1

0 for x ¼ 1

� �
¼ 1

for any n 2 N. Since j gn � gj jjA does not converge to 0, we infer that the sequence (gn)

does not converge uniformly on A to g.

(c) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(c) since the function

hnðxÞ � hðxÞ ¼ x2=n is not bounded on R .

Instead, let A :¼ ½0; 8� and consider

j hn � hj jjA ¼ sup x2=n : 0 � x � 8
� � ¼ 64=n:

Therefore, the sequence (hn) converges uniformly on A to h.

(d) If we refer to Example 8.1.2(d), we see from (2) that j Fn � Fj jj
R
� 1=n. Hence (Fn)

converges uniformly on R to F.

(e) Let GðxÞ :¼ xnð1� xÞ for x 2 A :¼ ½0; 1�. Then the sequence (Gn(x)) converges to

GðxÞ :¼ 0 for each x 2 A. To calculate the uniform norm ofGn � G ¼ Gn on A, we find the

derivative and solve

G0
nðxÞ ¼ xn�1ðn� ðnþ 1ÞxÞ ¼ 0

to obtain the point xn :¼ n=ðnþ 1Þ. This is an interior point of [0, 1], and it is easily

verified by using the First Derivative Test 6.2.8 that Gn attains a maximum on [0, 1] at xn.

Therefore, we obtain

jGnj jjA ¼ Gn xnð Þ ¼ ð1þ 1=nÞ�n � 1

nþ 1
;

which converges to ð1=eÞ � 0 ¼ 0. Thus we see that convergence is uniform on A. &
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Bymaking use of the uniform norm, we can obtain a necessary and sufficient condition

for uniform convergence that is often useful.

8.1.10 Cauchy Criterion for Uniform Convergence Let ( fn) be a sequence of bounded

functions on A � R . Then this sequence converges uniformly on A to a bounded function f

if and only if for each e > 0 there is a number H(e) in N such that for all m; n � HðeÞ, then
j f m � f nj jjA � e. &

Proof. ()) If f n F f on A, then given e > 0 there exists a natural number K 1
2
e

� �
such

that if n � K 1
2
e

� �
then j f n � fj jjA � 1

2
e. Hence, if both m; n � K 1

2
e

� �
, then we conclude

that

f mðxÞ � f nðxÞj j � f mðxÞ � f ðxÞj j þ f nðxÞ � f ðxÞj j � 1
2
eþ 1

2
e ¼ e

for all x 2 A. Therefore j f m � f nj jjA � e for m; n � K 1
2
e

� � ¼: HðeÞ.
(() Conversely, suppose that for e > 0 there is H(e) such that if m; n � HðeÞ, then

j f m � f nj jjA � e. Therefore, for each x 2 A we have

ð8Þ f mðxÞ � f nðxÞj j � j f m � f nj jjA � e for m; n � HðeÞ:
It follows that (fn(x)) is a Cauchy sequence in R ; therefore, by Theorem 3.5.5, it is a

convergent sequence. We define f : A ! R by

f ðxÞ :¼ lim f nðxÞð Þ for x 2 A:

If we let n ! 1 in (8), it follows from Theorem 3.2.6 that for each x 2 A we have

f mðxÞ � f ðxÞj j � e for m � HðeÞ:
Therefore the sequence ( fn) converges uniformly on A to f. Q.E.D.

Exercises for Section 8.1

1. Show that lim(x=(x þ n)) ¼ 0 for all x 2 R ; x � 0.

2. Show that lim(nx=(1 þ n2x2)) ¼ 0 for all x 2 R .

3. Evaluate lim(nx=(1 þ nx)) for x 2 R ; x � 0.

4. Evaluate lim(xn=(1 þ xn)) for x 2 R ; x � 0.

5. Evaluate lim((sin nx)=(1 þ nx)) for x 2 R ; x � 0.

6. Show that lim(Arctan nx) ¼ (p=2)sgn x for x 2 R.

7. Evaluate lim(e�nx) for x 2 R ; x � 0.

8. Show that lim xe�nxð Þ ¼ 0 for x 2 R ; x � 0.

9. Show that lim x2e�nxð Þ ¼ 0 and that lim n2x2e�nxð Þ ¼ 0 for x 2 R ; x � 0.

10. Show that limð cos pxð Þ2nÞ exists for all x 2 R . What is its limit?

11. Show that if a> 0, then the convergence of the sequence in Exercise 1 is uniform on the interval

[0, a], but is not uniform on the interval [0, 1).

12. Show that if a> 0, then the convergence of the sequence in Exercise 2 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

13. Show that if a> 0, then the convergence of the sequence in Exercise 3 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).
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14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the

interval [0, b], but is not uniform on the interval [0, 1].

15. Show that if a> 0, then the convergence of the sequence in Exercise 5 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

16. Show that if a> 0, then the convergence of the sequence in Exercise 6 is uniform on the interval

[a, 1), but is not uniform on the interval (0, 1).

17. Show that if a> 0, then the convergence of the sequence in Exercise 7 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, 1).

19. Show that the sequence x2e�nxð Þ converges uniformly on [0, 1).

20. Show that if a> 0, then the sequence n2x2e�nxð Þ converges uniformly on the interval [a,1), but

that it does not converge uniformly on the interval [0, 1).

21. Show that if ( fn), (gn) converge uniformly on the set A to f, g, respectively, then ( fn þ gn)

converges uniformly on A to f þ g.

22. Show that if f nðxÞ :¼ xþ 1=n and f ðxÞ :¼ x for x 2 R, then ( fn) converges uniformly on R to f,

but the sequence f 2n
� �

does not converge uniformly on R . (Thus the product of uniformly

convergent sequences of functions may not converge uniformly.)

23. Let ( fn), (gn) be sequences of bounded functions on A that converge uniformly on A to f, g,

respectively. Show that f ngnð Þ converges uniformly on A to fg.

24. Let ( fn) be a sequence of functions that converges uniformly to f on A and that satisfies f nðxÞj j �
M for all n 2 N and all x 2 A. If g is continuous on the interval �M;M½ �, show that the sequence

(g � fn) converges uniformly to g � f on A.

Section 8.2 Interchange of Limits

It is often useful to know whether the limit of a sequence of functions is a continuous

function, a differentiable function, or a Riemann integrable function. Unfortunately, it is

not always the case that the limit of a sequence of functions possesses these useful

properties.

8.2.1 Examples (a) Let gnðxÞ :¼ xn for x 2 ½0; 1� and n 2 N . Then, as we have noted in

Example 8.1.2(b), the sequence (gn) converges pointwise to the function

gðxÞ :¼ 0 for 0 � x < 1;
1 for x ¼ 1:

�

Although all of the functions gn are continuous at x ¼ 1, the limit function g is not

continuous at x ¼ 1. Recall that it was shown in Example 8.1.6(b) that this sequence does

not converge uniformly to g on [0, 1].

(b) Each of the functions gnðxÞ ¼ xn in part (a) has a continuous derivative on [0,1].

However, the limit function g does not have a derivative at x¼ 1, since it is not continuous

at that point.

(c) Let f n : ½0; 1� ! R be defined for n � 2 by

f nðxÞ :¼
n2x for 0 � x � 1=n;
�n2ðx� 2=nÞ for 1=n � x � 2=n;
0 for 2=n � x � 1:

8<
:
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(See Figure 8.2.1.) It is clear that each of the functions fn is continuous on [0, 1]; hence it is

Riemann integrable. Either by means of a direct calculation, or by referring to the

significance of the integral as an area, we obtain

Z 1

0

f nðxÞdx ¼ 1 for n � 2:

The reader may show that f nðxÞ ! 0 for all x 2 ½0; 1�; hence the limit function f vanishes

identically and is continuous (and hence integrable), and
R 1

0
f ðxÞdx ¼ 0. Therefore we

have the uncomfortable situation that:

Z 1

0

f ðxÞdx ¼ 0 6¼ 1 ¼ lim

Z 1

0

f nðxÞdx:

(d) Thosewho consider the functions fn in part (c) to be ‘‘artificial’’ may prefer to consider

the sequence (hn) defined by hnðxÞ :¼ 2nxe�nx2 for x 2 ½0; 1�; n 2 N. Since hn ¼ H0
n,

where HnðxÞ :¼ �e�nx2 , the Fundamental Theorem 7.3.1 givesZ 1

0

hnðxÞdx ¼ Hnð1Þ � Hnð0Þ ¼ 1� e�n:

It is an exercise to show that hðxÞ :¼ limðhnðxÞÞ ¼ 0 for all x 2 ½0; 1�; hence
Z 1

0

hðxÞdx 6¼ lim

Z 1

0

hnðxÞdx: &

Although the extent of the discontinuity of the limit function in Example 8.2.1 (a) is

not very great, it is evident that more complicated examples can be constructed that will

produce more extensive discontinuity. In any case, we must abandon the hope that the limit

of a convergent sequence of continuous [respectively, differentiable, integrable] functions

will be continuous [respectively, differentiable, integrable].

It will now be seen that the additional hypothesis of uniform convergence is sufficient

to guarantee that the limit of a sequence of continuous functions is continuous. Similar

results will also be established for sequences of differentiable and integrable functions.

Interchange of Limit and Continuity

8.2.2 Theorem Let ( fn) be a sequence of continuous functions on a set A � R and sup-

pose that ( fn) converges uniformly on A to a function f : A ! R . Then f is continuous on A.

Figure 8.2.1 Example 8.2.1(c)
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Proof. By hypothesis, given e > 0 there exists a natural number H :¼ H 1
3
e

� �
such that if

n � H then f nðxÞ � f ðxÞj j < 1
3
e for all x 2 A. Let c 2 A be arbitrary; we will show that f is

continuous at c. By the Triangle Inequality we have

f ðxÞ � f ðcÞj j � f ðxÞ � f HðxÞj j þ f HðxÞ � f HðcÞj j þ f HðcÞ � f ðcÞj j
� 1

3
eþ f HðxÞ � f HðcÞj j þ 1

3
e:

Since fH is continuous at c, there exists a number d :¼ d 1
3
e; c; f H

� �
> 0 such that if

x� cj j < d and x 2 A, then f HðxÞ � f HðcÞj j < 1
3
e. Therefore, if x� cj j < d and x 2 A,

then we have f ðxÞ � f ðcÞj j < e. Since e > 0 is arbitrary, this establishes the continuity of f

at the arbitrary point c 2 A. (See Figure 8.2.2.) Q.E.D.

Remark Although the uniform convergence of the sequence of continuous functions

is sufficient to guarantee the continuity of the limit function, it is not necessary.

(See Exercise 2.)

Interchange of Limit and Derivative

Wementioned in Section 6.1 thatWeierstrass showed that the function defined by the series

f ðxÞ :¼
X1
k¼0

2�kcos 3kx
� �

is continuous at every point but does not have a derivative at any point in R . By considering

the partial sums of this series, we obtain a sequence of functions ( fn) that possess a

derivative at every point and are uniformly convergent to f. Thus, even though the sequence

of differentiable functions ( fn) is uniformly convergent, it does not follow that the limit

function is differentiable. (See Exercises 9 and 10.)

We now show that if the sequence of derivatives f 0n
� �

is uniformly convergent, then all

is well. If one adds the hypothesis that the derivatives are continuous, then it is possible to

give a short proof, based on the integral. (See Exercise 11.) However, if the derivatives are

not assumed to be continuous, a somewhat more delicate argument is required.

8.2.3 Theorem Let J � R be a bounded interval and let ( fn) be a sequence of functions

on J to R . Suppose that there exists x0 2 J such that ð f nðx0ÞÞ converges, and that the

sequence f 0n
� �

of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence ( fn) converges uniformly on J to a function f that has a derivative at

every point of J and f 0 ¼ g.

Figure 8.2.2 f ðxÞ � f ðcÞj j < e
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Proof. Let a< b be the endpoints of J and let x 2 J be arbitrary. Ifm; n 2 N , we apply the

Mean Value Theorem 6.2.4 to the difference fm � fn on the interval with endpoints x0, x.

We conclude that there exists a point y (depending on m, n) such that

f mðxÞ � f nðxÞ ¼ f m x0ð Þ � f n x0ð Þ þ x� x0ð Þ f 0mðyÞ � f 0nðyÞf g:
Hence we have

ð1Þ j f m � f nj jjJ � f m x0ð Þ � f n x0ð Þj j þ ðb� aÞ j f 0m � f 0nj jjJ :
From Theorem 8.1.10, it follows from (1) and the hypotheses that f n x0ð Þð Þ is convergent
and that f 0nð Þ is uniformly convergent on J, that ( fn) is uniformly convergent on J. We

denote the limit of the sequence ( fn) by f. Since the fn are all continuous and the

convergence is uniform, it follows from Theorem 8.2.2 that f is continuous on J.

To establish the existence of the derivative of f at a point c 2 J, we apply the Mean

Value Theorem 6.2.4 to f m � f n on an interval with end points c, x. We conclude that there

exists a point z (depending on m, n) such that

f mðxÞ � f nðxÞf g � f mðcÞ � f nðcÞf g ¼ ðx� cÞ f 0mðzÞ � f 0nðzÞf g:
Hence, if x 6¼ c, we have

f mðxÞ � f mðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � j f 0m � f 0nj jjJ :

Since f 0nð Þ converges uniformly on J, if e > 0 is given there exists H(e) such that if m; n �
HðeÞ and x 6¼ c, then

ð2Þ f mðxÞ � f mðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � e:

If we take the limit in (2) with respect to m and use Theorem 3.2.6, we have

f ðxÞ � f ðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � e:

provided that x 6¼ c, n � H(e). Since gðcÞ ¼ lim f 0n cð Þ� �
, there exists N(e) such that if n �

N(e), then f 0nðcÞ � gðcÞj j < e. Now let K :¼ sup HðeÞ; NðeÞf g. Since f 0KðcÞ exists, there

exists dK(e) > 0 such that if 0 < x� cj j < dKðeÞ, then
f KðxÞ � f KðcÞ

x� c
� f 0KðcÞ

����
���� < e:

Combining these inequalities, we conclude that if 0 < x� cj j < dKðeÞ, then
f ðxÞ � f ðcÞ

x� c
� gðcÞ

����
���� < 3e:

Since e> 0 is arbitrary, this shows that f 0(c) exists and equals g(c). Since c 2 J is arbitrary,

we conclude that f 0¼ g on J. Q.E.D.

Interchange of Limit and Integral

We have seen in Example 8.2.1(c) that if ( fn) is a sequenceR½a; b� that converges on [a, b]
to a function f in R½a; b�, then it need not happen that

ð3Þ
Z b

a

f ¼ lim
n!1

Z b

a

f n:
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We will now show that uniform convergence of the sequence is sufficient to guarantee that

this equality holds.

8.2.4 Theorem Let ( fn) be a sequence of functions in R½a; b� and suppose that ( fn)

converges uniformly on [a, b] to f. Then f 2 R½a; b� and (3) holds.

Proof. It follows from the Cauchy Criterion 8.1.10 that given e > 0 there existsH(e) such
that if m > n � H(e) then

�e � f mðxÞ � f nðxÞ � e for x 2 ½a; b�:

Theorem 7.1.5 implies that

�eðb� aÞ �
Z b

a

f m �
Z b

a

f n � eðb� aÞ:

Since e > 0 is arbitrary, the sequence ðR b

a
f mÞ is a Cauchy sequence in R and therefore

converges to some number, say A 2 R.

We now show f 2 R½a; b�with integral A. If e> 0 is given, let K(e) be such that ifm>
K(e), then j f mðxÞ � f ðxÞj < e for all x 2 ½a; b�. If _P :¼ fð½xi�1; xi�; tiÞgni¼1 is any tagged

partition of [a, b] and if m > K(e), then

jSð f m; _PÞ � Sð f ; _PÞj ¼
Xn
i¼1

f mðtiÞ � f ðtiÞf gðxi � xi�1Þ
�����

�����
�

Xn
i¼1

�� f mðtiÞ � f ðtiÞjðxi � xi�1Þ

�
Xn
i¼1

eðxi � xi�1Þ ¼ eðb� aÞ:

We now choose r � K(e) such that j R b

a
f r � Aj < e and we let dr;e > 0 be such that

j R b

a
f r � Sð f r; _PÞj < e whenever jj _Pjj < dr;e. Then we have

jSð f ; _PÞ � Aj � jSð f ; _PÞ � Sð f r; _PÞj þ Sð f r; _PÞ �
Z b

a

f r

����
����þ

Z b

a

f r � A

����
����

� eðb� aÞ þ eþ e ¼ eðb� aþ 2Þ:

But since e > 0 is arbitrary, it follows that f 2 R½a; b� and R b

a
f ¼ A. Q.E.D.

The hypothesis of uniform convergence is a very stringent one and restricts the utility

of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem

8.2.4. For the present, we will state a result that does not require the uniformity of the

convergence, but does require that the limit function be Riemann integrable. The proof is

omitted.

8.2.5 Bounded Convergence Theorem Let ( fn) be a sequence inR½a; b� that converges
on [a, b] to a function f 2 R½a; b� . Suppose also that there exists B > 0 such that

j f nðxÞj � B for all x 2 ½a; b�; n 2 N . Then equation (3) holds.
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Dini’s Theorem

Wewill end this section with a famous theorem due to Ulisse Dini (1845–1918) that gives a

partial converse to Theorem 8.2.2 when the sequence is monotone. We will present a proof

using nonconstant gauges (see Section 5.5).

8.2.6 Dini’s Theorem Suppose that (fn) is a monotone sequence of continuous functions

on I :¼ [a, b] that converges on I to a continuous function f. Then the convergence of the

sequence is uniform.

Proof. We suppose that the sequence ( fn) is decreasing and let gm :¼ fm� f. Then (gm) is a

decreasing sequence of continuous functions converging on I to the 0-function. We will

show that the convergence is uniform on I.

Given e > 0, t 2 I, there exists me;t 2 N such that 0 � gme;t
ðtÞ < e=2. Since gme;t

is

continuous at t, there exists deðtÞ > 0 such that 0 � gme;t
ðxÞ < e for all x 2 I satisfying

jx� 1j � deðtÞ. Thus, de is a gauge on I, and if _P ¼ ðIi; tiÞf gni¼1 is a de -fine partition, we set

Me :¼ maxfme;t1 ; . . . ;me;tng. If m � Me and x 2 I, then (by Lemma 5.5.3) there exists an

index i with jx� tij � deðtiÞ and hence

0 � gmðxÞ � gm;tiðxÞ < e:

Therefore, the sequence (gm) converges uniformly to the 0-function. Q.E.D.

It will be seen in the exercises that we cannot drop any one of the three hypotheses:

(i) the functions fn are continuous, (ii) the limit function f is continuous, (iii) I is a closed

bounded interval.

Exercises for Section 8.2

1. Show that the sequence (xn=(1þ xn)) does not converge uniformly on [0, 2] by showing that the

limit function is not continuous on [0, 2].

2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions

that converges nonuniformly to a continuous limit.

3. Construct a sequence of functions on [0, 1] each of which is discontinuous at every point of [0, 1]

and which converges uniformly to a function that is continuous at every point.

4. Suppose ( fn) is a sequence of continuous functions on an interval I that converges uniformly on I

to a function f. If (xn) � I converges to x0 2 I, show that lim( fn(xn)) ¼ f (x0).

5. Let f : R ! R be uniformly continuous on R and let fn(x) :¼ f (x þ 1=n) for x 2 R . Show that

( fn) converges uniformly on R to f.

6. Let fn(x) :¼ 1=(1 þ x)n for x 2 [0, 1]. Find the pointwise limit f of the sequence ( fn) on [0, 1].

Does ( fn) converge uniformly to f on [0, 1]?

7. Suppose the sequence ( fn) converges uniformly to f on the set A, and suppose that each fn is

bounded on A. (That is, for each n there is a constant Mn such that j f nðxÞj � Mn for all x 2 A.)

Show that the function f is bounded on A.

8. Let fn(x) :¼ nx=(1 þ nx2) for x 2 A :¼ [0, 1). Show that each fn is bounded on A,

but the pointwise limit f of the sequence is not bounded on A. Does ( fn) converge uniformly to

f on A?
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9. Let fn (x) :¼ xn=n for x 2 [0, 1]. Show that the sequence ( fn) of differentiable functions

converges uniformly to a differentiable function f on [0, 1], and that the sequence ( f 0n) converges
on [0, 1] to a function g, but that gð1Þ 6¼ f 0ð1Þ.

10. Let gnðxÞ :¼ e�nx=n for x � 0; n 2 N. Examine the relation between lim(gn) and lim( g0n).

11. Let I :¼ [a, b] and let ( fn) be a sequence of functions on I ! R that converges on I to f. Suppose

that each derivative f 0n is continuous on I and that the sequence ( f 0n) is uniformly convergent to g

on I. Prove that f ðxÞ � f ðaÞ ¼ R x

a
gðtÞdt and that f 0ðxÞ ¼ gðxÞ for all x 2 I.

12. Show that lim
R 2

1
e�nx2dx ¼ 0.

13. If a > 0, show that lim
R p

a
ðsin nxÞ=ðnxÞdx ¼ 0. What happens if a ¼ 0?

14. Let f nðxÞ :¼ nx=ð1þ nxÞ for x 2 ½0; 1�. Show that ( fn) converges nonuniformly to an integrable

function f and that
R 1

0
f ðxÞdx ¼ lim

R 1

0
f nðxÞdx.

15. Let gnðxÞ :¼ nxð1� xÞn for x 2 ½0; 1�; n 2 N. Discuss the convergence of (gn) and ðR 1

0
gndxÞ.

16. Let {r1, r2, . . . , rn . . . } be an enumeration of the rational numbers in I :¼ ½0; 1�, and let f n :
I ! R be defined to be 1 if x ¼ r1; . . . ; rn and equal to 0 otherwise. Show that fn is Riemann

integrable for each n 2 N , that f 1ðxÞ � f 2ðxÞ � � � � � f nðxÞ � � � �, and that f ðxÞ :¼ limð f nðxÞÞ
is the Dirichlet function, which is not Riemann integrable on [0, 1].

17. Let f nðxÞ :¼ 1 for x 2 ð0; 1=nÞ and f nðxÞ :¼ 0 elsewhere in [0, 1]. Show that ( fn) is a decreasing

sequence of discontinuous functions that converges to a continuous limit function, but the

convergence is not uniform on [0, 1].

18. Let f nðxÞ :¼ xn for x 2 ½0; 1�; n 2 N . Show that ( fn) is a decreasing sequence of continuous func-

tions that converges to a function that is not continuous, but the convergence isnot uniformon [0, 1].

19. Let f nðxÞ :¼ x=n for x 2 ½0;1Þ; n 2 N . Show that ( fn) is a decreasing sequence of continuous

functionsthatconvergestoacontinuous limit function,buttheconvergenceisnotuniformon[0,1).

20. Give an example of a decreasing sequence ( fn) of continuous functions on [0, 1) that converges

to a continuous limit function, but the convergence is not uniform on [0, 1).

Section 8.3 The Exponential and Logarithmic Functions

We will now introduce the exponential and logarithmic functions and will derive some of

their most important properties. In earlier sections of this book we assumed some

familiarity with these functions for the purpose of discussing examples. However, it is

necessary at some point to place these important functions on a firm foundation in order to

establish their existence and determine their basic properties. We will do that here. There

are several alternative approaches one can take to accomplish this goal. Wewill proceed by

first proving the existence of a function that has itself as derivative. From this basic result,

we obtain the main properties of the exponential function. The logarithm function is then

introduced as the inverse of the exponential function, and this inverse relation is used to

derive the properties of the logarithm function.

The Exponential Function

We begin by establishing the key existence result for the exponential function.

8.3.1 Theorem There exists a function E : R ! R such that:

(i) E0ðxÞ ¼ EðxÞ f or all x 2 R .

(ii) Eð0Þ ¼ 1.
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Proof. We inductively define a sequence (En) of continuous functions as follows:

ð1Þ E1ðxÞ :¼ 1þ x;

ð2Þ Enþ1ðxÞ :¼ 1þ
Z x

0
EnðtÞdt;

for all n 2 N ; x 2 R . Clearly E1 is continuous on R and hence is integrable over any

bounded interval. If En has been defined and is continuous on R , then it is integrable over

any bounded interval, so that Enþ1 is well-defined by the above formula. Moreover, it

follows from the Fundamental Theorem (Second Form) 7.3.5 that Enþ1 is differentiable at

any point x 2 R and that

ð3Þ E0
nþ1ðxÞ ¼ EnðxÞ for n 2 N :

An Induction argument (which we leave to the reader) shows that

ð4Þ EnðxÞ ¼ 1þ x

1!
þ x2

2!
þ � � � þ xn

n!
for x 2 R :

Let A > 0 be given; then if jxj � A and m > n > 2A, we have

ð5Þ jEmðxÞ � EnðxÞj ¼ xnþ1

ðnþ 1Þ!þ � � � þ xm

m!

����
����

� Anþ1

ðnþ 1Þ! 1þ A

n
þ � � � þ A

n

	 
m�n�1
" #

<
Anþ1

ðnþ 1Þ! 2:

Since lim(An=n!)¼ 0, it follows that the sequence (En) converges uniformly on the interval

[�A, A] where A > 0 is arbitrary. In particular this means that (En(x)) converges for each

x 2 R . We define E : R ! R by

EðxÞ :¼ limEnðxÞ for x 2 R :

Since each x 2 R is contained inside some interval [�A, A], it follows from Theorem 8.2.2

that E is continuous at x.Moreover, it is clear from (1) and (2) that Enð0Þ ¼ 1 for all n 2 N .

Therefore Eð0Þ ¼ 1, which proves (ii).

On any interval [�A, A] we have the uniform convergence of the sequence (En). In

view of (3), we also have the uniform convergence of the sequence (E0
n) of derivatives. It

therefore follows from Theorem 8.2.3 that the limit function E is differentiable on [�A, A]

and that

E0ðxÞ ¼ limðE0
nðxÞÞ ¼ limðEn�1ðxÞÞ ¼ EðxÞ

for all x 2 [�A, A]. Since A > 0 is arbitrary, statement (i) is established. Q.E.D.

8.3.2 Corollary The function E has a derivative of every order and E (n)(x)¼ E(x) for all

n 2 N ; x 2 R .
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Proof. If n ¼ 1, the statement is merely property (i). It follows for arbitrary n 2 N by

Induction. Q.E.D.

8.3.3 Corollary If x > 0, then 1 þ x < E(x).

Proof. It is clear from (4) that if x > 0, then the sequence (En (x)) is strictly increasing.

Hence E1(x) < E(x) for all x > 0. Q.E.D.

It is next shown that the function E, whose existencewas established in Theorem 8.3.1,

is unique.

8.3.4 Theorem The function E : R ! R that satisfies (i) and (ii) of Theorem 8.3.1 is

unique.

Proof. Let E1 and E2 be two functions on R to R that satisfy properties (i) and (ii) of

Theorem 8.3.1 and let F :¼ E1 � E2. Then

F0ðxÞ ¼ E0
1ðxÞ � E0

2ðxÞ ¼ E1ðxÞ � E2ðxÞ ¼ FðxÞ
for all x 2 R and

Fð0Þ ¼ E1ð0Þ � E2ð0Þ ¼ 1� 1 ¼ 0:

It is clear (by Induction) that F has derivatives of all orders and indeed that FðnÞðxÞ ¼ FðxÞ
for n 2 N ; x 2 R.

Let x 2 R be arbitrary, and let Ix be the closed interval with endpoints 0, x. Since F is

continuous on Ix, there existsK > 0 such that jFðtÞj � K for all t 2 Ix. If we apply Taylor’s

Theorem 6.4.1 to F on the interval Ix and use the fact that F
(k)(0)¼ F(0)¼ 0 for all k 2 N ,

it follows that for each n 2 N there is a point cn 2 Ix such that

FðxÞ ¼ Fð0Þ þ F0ð0Þ
1!

xþ � � � þ Fðn�1Þ

ðn� 1Þ! x
n�1 þ FðnÞðcnÞ

n!
xn

¼ FðcnÞ
n!

xn:

Therefore we have

jFðxÞj � Kjxjn
n!

for all n 2 N :

But since lim(jxj=n!)¼ 0, we conclude that F(x)¼ 0. Since x 2 R is arbitrary, we infer that

E1ðxÞ � E2ðxÞ ¼ FðxÞ ¼ 0 for all x 2 R . Q.E.D.

The standard terminology and notation for the function E (which we now know exists

and is unique) is given in the following definition.

8.3.5 Definition The unique function E : R ! R , such that E0ðxÞ ¼ EðxÞ for all x 2 R

and E(0) ¼ 1, is called the exponential function. The number e :¼ E(1) is called Euler’s

number. We will frequently write

expðxÞ :¼ EðxÞ or ex :¼ EðxÞ for x 2 R :

The number e can be obtained as a limit, and thereby approximated, in several different

ways. [See Exercises 1 and 10, and Example 3.3.6.]

The use of the notation ex for E(x) is justified by property (v) in the next theorem,

where it is noted that if r is a rational number, then E(r) and er coincide. (Rational
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exponents were discussed in Section 5.6.) Thus, the function E can be viewed as extending

the idea of exponentiation from rational numbers to arbitrary real numbers. For a definition

of ax for a > 0 and arbitrary x 2 R, see Definition 8.3.10.

8.3.6 Theorem The exponential function satisfies the following properties:

(iii) EðxÞ 6¼ 0 f or all x 2 R ;

(iv) Eðxþ yÞ ¼ EðxÞEðyÞ f or all x; y 2 R ;

(v) EðrÞ ¼ er f or all r 2 Q :

Proof. (iii) Let a 2 R be such that E(a) ¼ 0, and let Ja be the closed interval with

endpoints 0, a. Let K � jEðtÞj for all t 2 Ja. Taylor’s Theorem 6.4.1 implies that for each

n 2 N there exists a point cn 2 Ja such that

1 ¼ Eð0Þ ¼ EðaÞ þ E0ðaÞ
1!

ð�aÞ þ � � � þ Eðn�1ÞðaÞ
ðn� 1Þ! ð�aÞn�1

þ EðnÞðaÞ
ðnÞ! ð�aÞn ¼ EðcnÞ

n!
ð�aÞn:

Thus we have 0 < 1 � ðK=n!Þjajn for n 2 N. But since limðjajn=n!Þ ¼ 0, this is a

contradiction.

(iv) Let y be fixed; by (iii) we have EðyÞ 6¼ 0. Let G : R ! R be defined by

GðxÞ :¼ Eðxþ yÞ
EðyÞ for x 2 R :

Evidently we have G0ðxÞ ¼ E0ðxþ yÞ=EðyÞ ¼ Eðxþ yÞ=EðyÞ ¼ GðxÞ for all x 2 R , and

Gð0Þ ¼ Eð0þ yÞ=EðyÞ ¼ 1. It follows from the uniqueness of E, proved in Theorem 8.3.4,

that GðxÞ ¼ EðxÞ for all x 2 R . Hence Eðxþ yÞ ¼ EðxÞEðyÞ for all x 2 R . Since y 2 R

is arbitrary, we obtain (iv).

(v) It follows from (iv) and Induction that if n 2 N ; x 2 R , then

EðnxÞ ¼ EðxÞn:

If we let x ¼ 1=n, this relation implies that

e ¼ Eð1Þ ¼ E n � 1
n

	 

¼ E

1

n

	 
	 
n

;

whence it follows that Eð1=nÞ ¼ e1=n. Also we have Eð�mÞ ¼ 1=EðmÞ ¼ 1=em ¼ e�m for

m 2 N . Therefore, if m 2 Z, n 2 N , we have

Eðm=nÞ ¼ Eð1=nÞð Þm ¼ ðe1=nÞm ¼ em=n:
This establishes (v). Q.E.D.

8.3.7 Theorem The exponential function E is strictly increasing on R and has range

equal to fy 2 R : y > 0g. Further, we have

(vi) lim
x!�1EðxÞ ¼ 0 and lim

x!1EðxÞ ¼ 1:

Proof. We know that Eð0Þ ¼ 1 > 0 and EðxÞ 6¼ 0 for all x 2 R . Since E is continuous on

R , it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that EðxÞ > 0 for all

x 2 R . Therefore E0ðxÞ ¼ EðxÞ > 0 for x 2 R, so that E is strictly increasing on R .
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It follows from Corollary 8.3.3 that 2 < e and that lim
x!1EðxÞ ¼ 1. Also, if z > 0, then

since 0 < Eð�zÞ ¼ 1=EðzÞ it follows that lim
x!�1EðxÞ ¼ 0. Therefore, by the Intermediate

Value Theorem 5.3.7, every y 2 R with y > 0 belongs to the range of E. Q.E.D.

The Logarithm Function

We have seen that the exponential function E is a strictly increasing differentiable function

with domain R and range fy 2 R : y > 0g. (See Figure 8.3.1.) It follows that R has an

inverse function.

8.3.8 Definition The function inverse to E : R ! R is called the logarithm (or the

natural logarithm). (See Figure 8.3.2.) It will be denoted by L , or by ln.

Since E and L are inverse functions, we have

ðL � EÞðxÞ ¼ x for all x 2 R

and

ðE � LÞðyÞ ¼ y for all y 2 R ; y > 0:

These formulas may also be written in the form

ln ex ¼ x; eln y ¼ y:

8.3.9 Theorem The logarithm is a strictly increasing function L with domain

fx 2 R : x > 0g and range R . The derivative of L is given by

(vii) L0ðxÞ ¼ 1=x f or x > 0:
The logarithm satisfies the functional equation

(viii) LðxyÞ ¼ LðxÞ þ LðyÞ for x > 0; y > 0:
Moreover, we have

(ix) LðlÞ ¼ 0 and LðeÞ ¼ 1;

(x) LðxrÞ ¼ rLðxÞ for x > 0; r 2 Q :

(xi) lim
x!0þ

LðxÞ ¼ �1 and lim
x!1 LðxÞ ¼ 1:

Figure 8.3.1 Graph of E Figure 8.3.2 Graph of L
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Proof. That L is strictly increasing with domain fx 2 R : x > 0g and range R follows

from the fact that E is strictly increasing with domain R and range fy 2 R : y > 0g.
(vii) Since E0ðxÞ ¼ EðxÞ > 0, it follows from Theorem 6.1.9 that L is differentiable

on (0, 1) and that

L0ðxÞ ¼ 1

ðE0 � LÞðxÞ ¼
1

ðE � LÞðxÞ ¼
1

x
for x 2 ð0;1Þ:

(viii) If x> 0, y> 0, let u :¼ L(x) and v :¼ L(y). Then we have x¼ E(u) and y¼ E(v).

It follows from property (iv) of Theorem 8.3.6 that

xy ¼ EðuÞEðvÞ ¼ Eðuþ vÞ;
so that LðxyÞ ¼ ðL � EÞðuþ vÞ ¼ uþ v ¼ LðxÞ þ LðyÞ. This establishes (viii).

The properties in (ix) follow from the relations Eð0Þ ¼ 1 and Eð1Þ ¼ e.

(x) This result follows from (viii) and Mathematical Induction for n 2 N, and is

extended to r 2 Q by arguments similar to those in the proof of 8.3.6(v).

To establish property (xi), we first note that since 2 < e, then lim(en) ¼ 1 and

lim(e�n) ¼ 0. Since L(en) ¼ n and L(e�n) ¼ �n it follows from the fact that L is strictly

increasing that

lim
x!1 LðxÞ ¼ lim LðenÞ ¼ 1 and lim

x!0þ
LðxÞ ¼ lim Lðe�nÞ ¼ �1: Q.E.D.

Power Functions

In Definition 5.6.6, we discussed the power function x 7! xr; x > 0, where r is a rational

number. By using the exponential and logarithm functions, we can extend the notion of

power functions from rational to arbitrary real powers.

8.3.10 Definition If a 2 R and x > 0, the number xa is defined to be

xa :¼ ea ln x ¼ EðaLðxÞÞ:
The function x 7! xa for x > 0 is called the power function with exponent a.

Note If x > 0 and a ¼ m=n where m 2 Z; n 2 N , then we defined xa :¼ ðxmÞ1=n in

Section 5.6. Hence we have ln xa ¼ a ln x, whence xa ¼ eln xa ¼ ea ln x. Hence Definition

8.3.10 is consistent with the definition given in Section 5.6.

We now state some properties of the power functions. Their proofs are immediate

consequences of the properties of the exponential and logarithm functions and will be left

to the reader.

8.3.11 Theorem If a 2 R and x, y belong to (0, 1), then:

( a ) 1a ¼ 1; ( b ) xa > 0;
( c ) ðxyÞa ¼ xaya; ( d ) ðx=yÞa ¼ xa=ya:

8.3.12 Theorem If a; b 2 R and x 2 ð0; 1Þ, then:
( a ) xaþb ¼ xaxb ( b ) ðxaÞb ¼ xab ¼ ðxbÞa;
( c ) x�a ¼ 1=xa; ( d ) if a < b; then xa < xb f or x > 1:

The next result concerns the differentiability of the power functions.
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8.3.13 Theorem Let a 2 R . Then the function x 7! xa on (0,1) toR is continuous and

differentiable, and

Dxa ¼ axa�1 for x 2 ð0;1Þ:
Proof. By the Chain Rule we have

Dxa ¼ Dea ln x ¼ ea ln x � Dða ln xÞ
¼ xa � a

x
¼ axa�1 for x 2 ð0;1Þ: Q.E.D.

It will be seen in an exercise that if a> 0, the power function x 7! xa is strictly increasing

on (0,1) to R , and that if a< 0, the function x 7! xa is strictly decreasing. (What happens

if a ¼ 0?)
The graphs of the functions x 7! xa on (0,1) to R are similar to those in Figure 5.6.8.

The Function loga

If a > 0, a 6¼ 1, it is sometimes useful to define the function loga.

8.3.14 Definition Let a > 0, a 6¼ 1. We define

logaðxÞ :¼
ln x

ln a
for x 2 ð0;1Þ:

For x 2 (0,1), the number loga(x) is called the logarithm of x to the base a. The case a¼
e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The case a ¼ 10

gives the base 10 logarithm (or common logarithm) function log10 often used in

computations. Properties of the functions loga will be given in the exercises.

Exercises for Section 8.3

1. Show that if x > 0 and if n > 2x, then

ex � 1þ x

1!
þ � � � þ xn

n!

	 
����
���� < 2xnþ1

ðnþ 1Þ!

Use this formula to show that 2 2
3
< e < 2 3

4
, hence e is not an integer.

2. Calculate e correct to five decimal places.

3. Show that if 0 � x � a and n 2 N , then

1þ x

1!
þ � � � þ xn

n!
� ex � 1þ x

1!
þ � � � þ xn�1

ðn� 1Þ!þ
eaxn

n!
:

4. Show that if n � 2, then

0 < en!� 1þ 1þ 1

2!
þ � � � þ 1

n!

	 

n! <

e

nþ 1
< 1:

Use this inequality to prove that e is not a rational number.

5. If x � 0 and n 2 N , show that

1

xþ 1
¼ 1� xþ x2 � x3 þ � � � þ ð�xÞn�1 þ ð�xÞn

1þ x
:

Use this to show that

lnðxþ 1Þ ¼ x� x2

2
þ x3

3
� � � � þ ð�1Þn�1 x

n

n
þ
Z x

0

ð�tÞn
1þ t

dt
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and that

lnðxþ 1Þ � x� x2

2
þ x3

3
� � � � þ ð�1Þn�1 x

n

n

	 
����
���� � xnþ1

nþ 1
:

6. Use the formula in the preceding exercise to calculate ln 1.1 and ln 1.4 accurate to four decimal

places. How large must one choose n in this inequality to calculate ln 2 accurate to four decimal

places?

7. Show that ln(e=2) ¼ 1 � ln 2. Use this result to calculate ln 2 accurate to four decimal places.

8. Let f : R ! R be such that f 0(x) ¼ f (x) for all x 2 R . Show that there exists K 2 R such that

f (x) ¼ Kex for all x 2 R .

9. Let ak > 0 for k ¼ 1, . . . , n and let A :¼ ða1 þ � � � þ anÞ=n be the arithmetic mean of these

numbers. For each k, put xk :¼ ak=A� 1 in the inequality 1 þ x � ex. Multiply the resulting

terms to prove the Arithmetic–Geometric Mean Inequality

ð6Þ a1 � � � anð Þ1=n � 1

n
ða1 þ � � � þ anÞ:

Moreover, show that equality holds in (6) if and only if a1 ¼ a2 ¼ � � � ¼ an.

10. Evaluate L0(1) by using the sequence (1 þ 1=n) and the fact that e ¼ lim
�ð1þ 1=nÞn�.

11. Establish the assertions in Theorem 8.3.11.

12. Establish the assertions in Theorem 8.3.12.

13. (a) Show that if a > 0, then the function x 7! xa is strictly increasing on (0,1) to R and that

lim
x!0þ

xa ¼ 0 and lim
x!1 xa ¼ 1.

(b) Show that if a< 0, then the function x 7! xa is strictly decreasing on (0,1) to R and that

lim
x!0þ

xa ¼ 1 and lim
x!1 xa ¼ 0.

14. Prove that if a > 0, a 6¼ 1, then alogax ¼ x for all x 2 (0, 1) and loga(a
y) ¼ y for all y 2 R .

Therefore the function x 7! logax on (0, 1) to R is inverse to the function y 7! ay on R .

15. If a> 0, a 6¼ 1, show that the function x 7! logax is differentiable on (0,1) and thatD logax¼
1=(x ln a) for x 2 (0, 1).

16. If a > 0, a 6¼ 1, and x and y belong to (0, 1), prove that loga (xy) ¼ logax þ logay.

17. If a > 0, a 6¼ 1, and b > 0, b 6¼ 1, show that

logax ¼ ln b

ln a

	 

logbx for x 2 ð0;1Þ:

In particular, show that log10x ¼ (ln e=ln 10) ln x ¼ (log10e) ln x for x 2 (0, 1).

Section 8.4 The Trigonometric Functions

Along with the exponential and logarithmic functions, there is another very important

collection of transcendental functions known as the ‘‘trigonometric functions.’’ These are

the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses,

they are usually introduced on a geometric basis in terms of either triangles or the unit

circle. In this section, we introduce the trigonometric functions in an analytical manner and

then establish some of their basic properties. In particular, the various properties of the

trigonometric functions that were used in examples in earlier parts of this book will be

derived rigorously in this section.

It suffices to deal with the sine and cosine since the other four trigonometric functions

are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to
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our approach to the exponential function in that we first establish the existence of functions

that satisfy certain differentiation properties.

8.4.1 Theorem There exist functions C : R ! R and S : R ! R such that

(i) C00ðxÞ ¼ �CðxÞ and S00ðxÞ ¼ �SðxÞ f or all x 2 R :

(ii) Cð0Þ ¼ 1;C0ð0Þ ¼ 0; and Sð0Þ ¼ 0; S0ð0Þ ¼ 1:

Proof. We define the sequences (Cn) and (Sn) of continuous functions inductively as

follows:

ð1Þ C1ðxÞ :¼ 1; S1ðxÞ :¼ x;

ð2Þ SnðxÞ :¼
Z x

0
CnðtÞdt;

ð3Þ Cnþ1ðxÞ :¼ 1�
Z x

0
SnðtÞdt;

for all n 2 N , x 2 R .

One sees by Induction that the functions Cn and Sn are continuous on R and hence they

are integrable over any bounded interval; thus these functions are well-defined by the above

formulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that Sn and Cnþ1 are

differentiable at every point and that

ð4Þ S0nðxÞ ¼ CnðxÞ and C0
nþ1ðxÞ ¼ �SnðxÞ for n 2 N ; x 2 R :

Induction arguments (which we leave to the reader) show that

Cnþ1ðxÞ ¼ 1� x2

2!
þ x4

4!
� � � � þ ð�1Þn x2n

ð2nÞ! ;

Snþ1ðxÞ ¼ x� x3

3!
þ x5

5!
� � � � þ ð�1Þn x2nþ1

ð2nþ 1Þ! :

Let A > 0 be given. Then if xj j � A and m > n > 2A, we have that (since A=2n < 1=4):

ð5Þ CmðxÞ � CnðxÞj j ¼ x2n

ð2nÞ!�
x2nþ2

ð2nþ 2Þ!þ � � � 	 x2m�2

ð2m� 2Þ!
����

����

� A2n

ð2nÞ! 1þ A

2n

	 
2

þ � � � þ A

2n

	 
2m�2n�2
" #

<
A2n

ð2nÞ!
16

15

	 

:

Since limðA2n=ð2nÞ!Þ ¼ 0, the sequence (Cn) converges uniformly on the interval ½�A;A�,
where A > 0 is arbitrary. In particular, this means that (CnðxÞ) converges for each x 2 R .

We define C : R ! R by
CðxÞ :¼ lim CnðxÞ for x 2 R :

It follows from Theorem 8.2.2 thatC is continuous onR and, sinceCnð0Þ ¼ 1 for all n 2 N ,

that Cð0Þ ¼ 1.

If xj j � A and m � n > 2A, it follows from (2) that

SmðxÞ � SnðxÞ ¼
Z x

0

CmðtÞ � CnðtÞf gdt:
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If we use (5) and Corollary 7.3.15, we conclude that

SmðxÞ � SnðxÞj j � A2n

ð2nÞ!
16

15
A

	 

;

whence the sequence (Sn) converges uniformly on ½�A;A�. We define S : R ! R by

SðxÞ :¼ lim SnðxÞ for x 2 R :

It follows from Theorem 8.2.2 that S is continuous on R and, since Snð0Þ ¼ 0 for all n 2 N ,

that Sð0Þ ¼ 0.

Since C0
nðxÞ ¼ �Sn�1ðxÞ for n > 1, it follows from the above that the sequence

(C0
n) converges uniformly on ½�A;A�. Hence by Theorem 8.2.3, the limit function C is

differentiable on ½�A;A� and
C0ðxÞ ¼ limC0

nðxÞ ¼ limð�Sn�1ðxÞÞ ¼ �SðxÞ for x 2 ½�A;A�:
Since A > 0 is arbitrary, we have

ð6Þ C0ðxÞ ¼ �SðxÞ for x 2 R :

A similar argument, based on the fact that S0nðxÞ ¼ CnðxÞ, shows that S is differentiable on
R and that

ð7Þ S0ðxÞ ¼ CðxÞ for all x 2 R :

It follows from (6) and (7) that

C00ðxÞ ¼ �ðSðxÞÞ0 ¼ �CðxÞ and S00ðxÞ ¼ ðCðxÞÞ0 ¼ �SðxÞ
for all x 2 R . Moreover, we have

C0ð0Þ ¼ �Sð0Þ ¼ 0; S0ð0Þ ¼ Cð0Þ ¼ 1:

Thus statements (i) and (ii) are proved. Q.E.D.

8.4.2 Corollary If C, S are the functions in Theorem 8.4.1, then

(iii) C0ðxÞ ¼ �SðxÞ and S0ðxÞ ¼ CðxÞ for x 2 R .

Moreover, these functions have derivatives of all orders.

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher order

derivatives follows by Induction. Q.E.D.

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity:

(iv) ðCðxÞÞ2 þ ðSðxÞÞ2 ¼ 1 for x 2 R .

Proof. Let f ðxÞ :¼ ðCðxÞÞ2 þ ðSðxÞÞ2 for x 2 R , so that

f 0ðxÞ ¼ 2CðxÞð�SðxÞÞ þ 2SðxÞðCðxÞÞ ¼ 0 for x 2 R :

Thus it follows that f (x) is a constant for all x 2 R . But since f ð0Þ ¼ 1þ 0 ¼ 1, we

conclude that f ðxÞ ¼ 1 for all x 2 R . Q.E.D.

We next establish the uniqueness of the functions C and S.

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1

are unique.
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Proof. Let C1 and C2 be two functions on R to R that satisfy C00
jðxÞ ¼ �CjðxÞ for all

x 2 R andCjð0Þ ¼ 1,C0
jð0Þ ¼ 0 for j ¼ 1; 2. If we letD :¼ C1 � C2, thenD

00ðxÞ ¼ �DðxÞ
for x 2 R and Dð0Þ ¼ 0 and DðkÞð0Þ ¼ 0 for all k 2 N .

Now let x 2 R be arbitrary, and let Ix be the interval with endpoints 0; x. Since D ¼
C1 � C2 and T :¼ S1 � S2 ¼ C0

2 � C0
1 are continuous on Ix, there exists K > 0 such that

DðtÞj j � K and TðtÞj j � K for all t 2 Ix. If we apply Taylor’s Theorem 6.4.1 toD on Ix and

use the fact that Dð0Þ ¼ 0; DðkÞð0Þ ¼ 0 for k 2 N, it follows that for each n 2 N there is a

point cn 2 Ix such that

DðxÞ ¼ Dð0Þ þ D0ð0Þ
1!

xþ � � � þ Dðn�1Þð0Þ
ðn� 1Þ! x

n�1 þ DðnÞðcnÞ
n!

xn

¼ DðnÞðcnÞ
n!

xn:

Now either DðnÞðcnÞ ¼ 	DðcnÞ or DðnÞðcnÞ ¼ 	TðcnÞ. In either case we have

DðxÞj j � K xj jn
n!

:

But since lim xj jn=n!ð Þ ¼ 0, we conclude that DðxÞ ¼ 0. Since x 2 R is arbitrary, we infer

that C1ðxÞ � C2ðxÞ ¼ 0 for all x 2 R .

A similar argument shows that if S1 and S2 are two functions on R ! R such that

S00jðxÞ ¼ �SjðxÞ for all x 2 R and Sjð0Þ ¼ 0, S0jð0Þ ¼ 1 for j ¼ 1, 2, then we have S1ðxÞ ¼
S2ðxÞ for all x 2 R . Q.E.D.

Now that existence and uniqueness of the functions C and S have been established, we

shall give these functions their familiar names.

8.4.5 Definition The unique functions C : R ! R and S : R ! R such that C00ðxÞ ¼
�CðxÞ and S00ðxÞ ¼ �SðxÞ for all x 2 R and Cð0Þ ¼ 1, C0ð0Þ ¼ 0, and Sð0Þ ¼ 0,

S0ð0Þ ¼ 1, are called the cosine function and the sine function, respectively. We ordinarily

write

cos x :¼ CðxÞ and sinx :¼ SðxÞ for x 2 R :

The differentiation properties in (i) of Theorem 8.4.1 do not by themselves lead to

uniquely determined functions. We have the following relationship.

8.4.6 Theorem If f : R ! R is such that

f 00ðxÞ ¼ �f ðxÞ for x 2 R ;

then there exist real numbers a, b such that

f ðxÞ ¼ aCðxÞ þ bSðxÞ for x 2 R :

Proof. Let gðxÞ :¼ f ð0ÞCðxÞ þ f 0ð0ÞSðxÞ for x 2 R. It is readily seen that g00ðxÞ ¼
�gðxÞ and that gð0Þ ¼ f ð0Þ, and since

g0ðxÞ ¼ �f ð0ÞSðxÞ þ f 0ð0ÞCðxÞ;
that g0ð0Þ ¼ f 0ð0Þ. Therefore the function h :¼ f � g is such that h00ðxÞ ¼ �hðxÞ for all
x 2 R and hð0Þ ¼ 0, h0ð0Þ ¼ 0. Thus it follows from the proof of the preceding theorem

that hðxÞ ¼ 0 for all x 2 R . Therefore f ðxÞ ¼ gðxÞ for all x 2 R . Q.E.D.
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We shall now derive a few of the basic properties of the cosine and sine functions.

8.4.7 Theorem The function C is even and S is odd in the sense that

(v) Cð�xÞ ¼ CðxÞ and Sð�xÞ ¼ �SðxÞ for x 2 R .

If x, y 2 R , then we have the ‘‘addition formulas’’

(vi) Cðxþ yÞ ¼ CðxÞCðyÞ � SðxÞSðyÞ; Sðxþ yÞ ¼ SðxÞCðyÞ þ CðxÞSðyÞ.

Proof. (v) If wðxÞ :¼ Cð�xÞ for x 2 R, then a calculation shows that w00ðxÞ ¼ �wðxÞ for
x 2 R . Moreover, wð0Þ ¼ 1 and w0ð0Þ ¼ 0 so that w ¼ C. Hence, Cð�xÞ ¼ CðxÞ for all
x 2 R . In a similar way one shows that Sð�xÞ ¼ �SðxÞ for all x 2 R .

(vi) Let y 2 R be given and let f ðxÞ :¼ Cðxþ yÞ for x 2 R. A calculation shows that

f 00ðxÞ ¼ �f ðxÞ for x 2 R. Hence, by Theorem 8.4.6, there exists real numbers a, b such

that

f ðxÞ ¼ Cðxþ yÞ ¼ aCðxÞ þ bSðxÞ and

f 0ðxÞ ¼ �Sðxþ yÞ ¼ �aSðxÞ þ bCðxÞ
for x 2 R. If we let x ¼ 0, we obtain CðyÞ ¼ a and�SðyÞ ¼ b, whence the first formula in

(vi) follows. The second formula is proved similarly.
Q.E.D.

The following inequalities were used earlier (for example, in 4.2.8).

8.4.8 Theorem If x 2 R , x � 0, then we have

(vii) �x � SðxÞ � x; (viii) 1� 1
2
x2 � CðxÞ � 1;

(ix) x� 1
6
x3 � SðxÞ � x; (x) 1� 1

2
x2 � CðxÞ � 1� 1

2
x2 þ 1

24
x4.

Proof. Corollary 8.4.3 implies that �1 � CðtÞ � 1 for t 2 R, so that if x � 0, then

�x �
Z x

0

CðtÞdt � x;

whence we have (vii). If we integrate (vii), we obtain

� 1
2
x2 �

Z x

0

SðtÞ dt � 1
2
x2;

whence we have

� 1
2
x2 � �CðxÞ þ 1 � 1

2
x2:

Thus we have 1� 1
2
x2 � CðxÞ, which implies (viii).

Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). Q.E.D.

The number p is obtained via the following lemma.

8.4.9 Lemma There exists a root g of the cosine function in the interval (
ffiffiffi
2

p
;

ffiffiffi
3

p
).

Moreover CðxÞ > 0 for x 2 ½0; gÞ. The number 2g is the smallest positive root of S.

Proof. Inequality (x) of Theorem 8.4.8 implies that C has a root between the positive rootffiffiffi
2

p
of x2 � 2 ¼ 0 and the smallest positive root of x4 � 12x2 þ 24 ¼ 0, which isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2
ffiffiffi
3

pp
<

ffiffiffi
3

p
. We let g be the smallest such root of C.
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It follows from the second formula in (vi) with x ¼ y that Sð2xÞ ¼ 2SðxÞCðxÞ. This
relation implies that Sð2gÞ ¼ 0, so that 2g is a positive root of S. The same relation implies

that if 2d > 0 is the smallest positive root of S, then CðdÞ ¼ 0. Since g is the smallest

positive root of C, we have d ¼ g. Q.E.D.

8.4.10 Definition Let p :¼ 2g denote the smallest positive root of S.

Note The inequality
ffiffiffi
2

p
< g <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2

ffiffiffi
3

pp
implies that 2:828 < p < 3:185.

8.4.11 Theorem The functions C and S have period 2p in the sense that

(xi) Cðxþ 2pÞ ¼ CðxÞ and Sðxþ 2pÞ ¼ SðxÞ for x 2 R .

Moreover we have

(xii) SðxÞ ¼ C 1
2
p� x

� � ¼ �C xþ 1
2
p

� �
; CðxÞ ¼ S 1

2
p� x

� � ¼ S xþ 1
2
p

� �
for all

x 2 R .

Proof. (xi) Since Sð2xÞ ¼ 2SðxÞCðxÞ and SðpÞ ¼ 0, then Sð2pÞ ¼ 0. Further, if x ¼ y

in (vi), we obtain Cð2xÞ ¼ ðCðxÞÞ2 � ðSðxÞÞ2. Therefore Cð2pÞ ¼ 1. Hence (vi) with

y ¼ 2p gives

Cðxþ 2pÞ ¼ CðxÞCð2pÞ � SðxÞSð2pÞ ¼ CðxÞ;
and

Sðxþ 2pÞ ¼ SðxÞCð2pÞ þ CðxÞSð2pÞ ¼ SðxÞ:

(xii) We note that C 1
2
p

� � ¼ 0, and it is an exercise to show that S 1
2
p

� � ¼ 1. If we

employ these together with formulas (vi), the desired relations are obtained. Q.E.D.

Exercises for Section 8.4

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places.

2. Show that sin xj j � 1 and cos xj j � 1 for all x 2 R .

3. Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have sinxj j � xj j
for all x 2 R . Also show that sin x� xj j � xj j3=6 for all x 2 R .

4. Show that if x > 0 then

1� x2

2
þ x4

24
� x6

720
� cos x � 1� x2

2
þ x4

24
:

Use this inequality to establish a lower bound for p.

5. Calculate p by approximating the smallest positive zero of sin. (Either bisect intervals or use

Newton’s Method of Section 6.4.)

6. Define the sequence (cn) and (sn) inductively by c1ðxÞ :¼ 1; s1ðxÞ :¼ x, and

snðxÞ :¼
Z x

0

cnðtÞdt; cnþ1ðxÞ :¼ 1þ
Z x

0

snðtÞdt

for all n 2 N , x 2 R . Reason as in the proof of Theorem 8.4.1 to conclude that there exist

functions c : R ! R and s : R ! R such that (j) c00ðxÞ ¼ cðxÞ and s00ðxÞ ¼ sðxÞ for all x 2 R ,

and (jj) cð0Þ ¼ 1, c0ð0Þ ¼ 0 and sð0Þ ¼ 0, s0ð0Þ ¼ 1. Moreover, c0ðxÞ ¼ sðxÞ and s0ðxÞ ¼ cðxÞ
for all x 2 R .
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7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they

satisfy the identity ðcðxÞÞ2 � ðsðxÞÞ2 ¼ 1 for all x 2 R . Moreover, they are the unique functions

satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine

functions, respectively.)

8. If f : R ! R is such that f 00ðxÞ ¼ f ðxÞ for all x 2 R , show that there exist real numbers a, b

such that f ðxÞ ¼ acðxÞ þ bsðxÞ for all x 2 R . Apply this to the functions f 1ðxÞ :¼ ex and

f 2ðxÞ :¼ e�x for x 2 R. Show that cðxÞ ¼ 1
2
ex þ e�xð Þ and sðxÞ ¼ 1

2
ex � e�xð Þ for x 2 R.

9. Show that the functions c, s in the preceding exercises are even and odd, respectively, and that

cðxþ yÞ ¼ cðxÞcðyÞ þ sðxÞsðyÞ; sðxþ yÞ ¼ sðxÞcðyÞ þ cðxÞsðyÞ;
for all x; y 2 R .

10. Show that cðxÞ � 1 for all x 2 R , that both c and s are strictly increasing on (0;1), and that

lim
x!1 cðxÞ ¼ lim

x!1 sðxÞ ¼ 1.
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CHAPTER 9

INFINITE SERIES

In Section 3.7 we gave a brief introduction to the theory of infinite series. The reader will do

well to look over that section at this time, since wewill not repeat the definitions and results

given there.

Instead, in Section 9.1 we will introduce the important notion of the ‘‘absolute

convergence’’ of a series. In Section 9.2 we will present some ‘‘tests’’ for absolute

convergence that will probably be familiar to the reader from calculus. The third section

gives a discussion of series that are not absolutely convergent. In the final section we study

series of functions and will establish the basic properties of power series, which are very

important in applications.

Section 9.1 Absolute Convergence

We have already met (in Section 3.7) a number of infinite series that are convergent and

others that are divergent. For example, in Example 3.7.6(b) we saw that the harmonic

series:

X1
n¼1

1

n

is divergent since its sequence of partial sums sn :¼ 1
1
þ 1

2
þ � � � þ 1

n
n 2 Nð Þ is unbounded.

On the other hand, we saw in Example 3.7.6(f) that the alternating harmonic series:

X1
n¼1

�1ð Þnþ1

n

is convergent because of the subtraction that takes place. Since

�1ð Þnþ1

n

�����
����� ¼

1

n
;

these two series illustrate the fact that a series
P

xn may be convergent, but the series
P jxnj

obtained by taking the absolute values of the termsmay be divergent. This observation leads

us to an important definition.

9.1.1 Definition LetX :¼ (xn) be a sequence inR .We say that the series
P

xn is absolutely

convergent if the series
P jxnj is convergent in R . A series is said to be conditionally (or

nonabsolutely) convergent if it is convergent, but it is not absolutely convergent.

It is trivial that a series of positive terms is absolutely convergent if and only if it is

convergent. We have noted above that the alternating harmonic series is conditionally

convergent.
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9.1.2 Theorem If a series in R is absolutely convergent, then it is convergent.

Proof. Since
P jxnj is convergent, the Cauchy Criterion 3.7.4 implies that, given e > 0

there exists M(e) 2 N such that if m > n � M(e), then

jxnþ1j þ jxnþ1j þ � � � þ jxmj < e:

However, by the Triangle Inequality, the left side of this expression dominates:

jsm � snj ¼ jxnþ1 þ xnþ2 þ � � � þ xmj:
Since e > 0 is arbitrary, Cauchy’s Criterion implies that

P
xn converges. Q.E.D.

Grouping of Series

Given a series
P

xn, we can construct many other series
P

yk by leaving the order of the

terms xn fixed, but inserting parentheses that group together finite numbers of terms. For

example, the series indicated by

1� 1

2
þ 1

3
� 1

4

� �
þ 1

5
� 1

6
þ 1

7

� �
� 1

8
þ 1

9
� � � � þ 1

13

� �
� � � �

is obtained by grouping the terms in the alternating harmonic series. It is an interesting fact

that such grouping does not affect the convergence or the value of a convergent series.

9.1.3 Theorem If a series
P

xn is convergent, then any series obtained from it by

grouping the terms is also convergent and to the same value.

Proof. Suppose that we have

y1 :¼ x1 þ � � � þ xk1 ; y2 :¼ xk1þ1 þ � � � þ xk2 ; � � � :
If sndenotes thenth partial sumof

P
xn and tkdenotes thekth partial sumof

P
yk, thenwehave

t1 ¼ y1 ¼ sk1 ; t2 ¼ y1 þ y2 ¼ sk2 ; � � � :
Thus, the sequence (tk) of partial sums of the grouped series

P
yk is a subsequence of the

sequence (sn) of partial sums of
P

xn. Since this latter series was assumed to be convergent,

so is the grouped series
P

yk. Q.E.D.

It is clear that the converse to this theorem is not true. Indeed, the grouping

ð1� 1Þ þ ð1� 1Þ þ ð1� 1Þ þ � � �

produces a convergent series from
X1
n¼0

�1ð Þn, which was seen to be divergent in Example

3.7.2(b) since the terms do not approach 0.

Rearrangements of Series

Loosely speaking, a ‘‘rearrangement’’ of a series is another series that is obtained from the

given one by using all of the terms exactly once, but scrambling the order in which the

terms are taken. For example, the harmonic series has rearrangements

1

2
þ 1

1
þ 1

4
þ 1

3
þ � � � þ 1

2n
þ 1

2n� 1
þ � � � ;

1

1
þ 1

2
þ 1

4
þ 1

3
þ 1

5
þ 1

7
þ � � � :
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The first rearrangement is obtained from the harmonic series by interchanging the first and

second terms, the third and fourth terms, and so forth. The second rearrangement is

obtained from the harmonic series by taking one ‘‘odd term,’’ two ‘‘even terms,’’ three

‘‘odd terms,’’ and so forth. It is obvious that there are infinitely many other possible

rearrangements of the harmonic series.

9.1.4 Definition A series
P

yk in R is a rearrangement of a series
P

xn if there is a

bijection f of N onto N such that yk ¼ xf (k) for all k 2 N .

While a grouping series does not affect the convergence of a series, making rearrange-

ments may do so. If fact, there is a remarkable observation, due to Riemann, that if
P

sn is a

conditionally convergent series in R , and if c 2 R is arbitrary, then there is a rearrangement

of
P

xn that converges to c.

To prove this assertion, we first note that a conditionally convergent series must contain

infinitely many positive terms and infinitely many negative terms (see Exercise 1), and that

both the series of positive terms and the series of negative terms diverge (see Exercise 2). To

construct a series converging to c, we take positive terms until the partial sum is greater than c,

then we take negative terms until the partial sum is less than c, then we take positive terms

until the partial sum is greater than c, then we take negative terms, etc.

In our manipulations with series, we generally want to be sure that rearrangements will not

affect the convergence or the value of the series. That is why the following result is important.

9.1.5 Rearrangement Theorem Let
P

xn be an absolutely convergent series in R .

Then any rearrangement
P

yk of
P

xn converges to the same value.

Proof. Suppose that
P

xn converges to x 2 R . Thus, if e > 0, let N be such that if

n, q > N and sn :¼ x1 þ � � � þ xn, then

jx� snj < e and
Xq

k¼Nþ1

jxkj < e :

Let M 2 N be such that all of the terms x1, . . . , xN are contained as summands in tM :¼
y1 þ � � � þ yM. It follows that if m �M, then tm � sn is the sum of a finite number of terms

xk with index k > N. Hence, for some q > N, we have

jtm � snj �
Xq

k¼Nþ1

jxkj < e:

Therefore, if m � M, then we have

jtm � xj � jtm � snj þ jsn � xj < eþ e ¼ 2e:

Since e > 0 is arbitrary, we conclude that
P

yk converges to x. Q.E.D.

Exercises for Section 9.1

1. Show that if a convergent series contains only a finite number of negative terms, then it is

absolutely convergent.

2. Show that if a series is conditionally convergent, then the series obtained from its positive terms

is divergent, and the series obtained from its negative terms is divergent.
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3. If
P

an is conditionally convergent, give an argument to show that there exists a rearrangement

whose partial sums diverge to 1.

4. Where is the fact that the series
P

xn is absolutely convergent used in the proof of 9.1.5?

5. If
P

an is absolutely convergent, is it true that every rearrangement of
P

an is also absolutely

convergent?

6. Find an explicit expression for the nth partial sum of
X1
n¼2

ln 1� 1=n2
� �

to show that this series

converges to �ln 2. Is this convergence absolute?

7. (a) If
P

an is absolutely convergent and (bn) is a bounded sequence, show that
P

anbn is

absolutely convergent.

(b) Give an example to show that if the convergence of
P

an is conditional and (bn) is a

bounded sequence, then
P

anbn may diverge.

8. Give an example of a convergent series
P

an such that
P

a2n is not convergent. (Compare this

with Exercise 3.7.11.)

9. If (an) is a decreasing sequence of strictly positive numbers and if
P

an is convergent, show that

lim(nan) ¼ 0.

10. Give an example of a divergent series
P

an with (an) decreasing and such that lim(nan) ¼ 0.

11. If (an) is a sequence and if lim(n2an) exists in R , show that
P

an is absolutely convergent.

12. Let a> 0. Show that the series
P

1þ a nð Þ�1
is divergent if 0< a� 1 and is convergent if a> 1.

13. (a) Does the series
X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p
ffiffiffi
n

p
� �

converge?

(b) Does the series
X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p
n

� �
converge?

14. If ðank Þ is a subsequence of (an), then the series
P

ank is called a subseries of
P

an. Show thatP
an is absolutely convergent if and only if every subseries of it is convergent.

15. Let a : N � N ! R and write aij :¼ a(i, j). If Ai :¼
X1
j¼1

aij for each i 2 N and if A :¼
X1
i¼1

Ai, we

say that A is an iterated sum of the aij and write A ¼
X1
i¼1

X1
j¼1

aij . We define the other iterated

sum, denoted by
X1
j¼1

X1
i¼1

aij, in a similar way.

Suppose aij � 0 for i; j 2 N. If (ck) is any enumeration of faij : i; j 2 Ng, show that the

following statements are equivalent:

(i) The iterated sum
X1
i¼1

X1
j¼1

aij converges to B.

(ii) The series
X1
k¼1

ck converges to C.

In this case, we have B ¼ C.

16. The preceding exercise may fail if the terms are not positive. For example, let aij :¼þ1 if i� j¼
1, aij :¼ �1 if i � j ¼ �1, and aij :¼ 0 elsewhere. Show that the iterated sums

X1
i¼1

X1
j¼1

aij and
X1
j¼1

X1
i¼1

aij

both exist but are not equal.

Section 9.2 Tests for Absolute Convergence

In Section 3.7 we gave some results concerning the convergence of infinite series; namely,

the nth Term Test, the fact that a series of positive terms is convergent if and only if its

270 CHAPTER 9 INFINITE SERIES



C09 12/08/2010 15:9:17 Page 271

sequence of partial sums is bounded, the Cauchy Criterion, and the Comparison and Limit

Comparison Tests.

We will now give some additional results that may be familiar from calculus. These

results are particularly useful in establishing absolute convergence.

9.2.1 Limit Comparison Test, II Suppose that X :¼ (xn) and Y :¼ (yn) are nonzero real

sequences and suppose that the following limit exists in R :

ð1Þ r :¼ lim
xn

yn

����
����:

(a) If r 6¼ 0, then
P

xn is absolutely convergent if and only if
P

yn is absolutely

convergent.

(b) If r ¼ 0 and if
P

yn is absolutely convergent, then
P

xn is absolutely convergent.

Proof. This result follows immediately from Theorem 3.7.8. Q.E.D.

The Root and Ratio Tests

The following test is due to Cauchy.

9.2.2 Root Test Let X :¼ (xn) be a sequence in R .

(a) If there exist r 2 R with r < 1 and K 2 N such that

ð2Þ jxnj1=n � r f or n � K;

then the series
P

xn is absolutely convergent.

(b) If there exists K 2 N such that

ð3Þ jxnj1=n � 1 f or n � K;

then the series
P

xn is divergent. &

Proof. (a) If (2) holds, then we have jxnj � rn for n� K. Since the geometric series
P

rn

is convergent for 0 � r < 1, the Comparison Test 3.7.7 implies that
P jxnj is convergent.

(b) If (3) holds, then jxnj � 1 for n � K, so the terms do not approach 0 and the nth

Term Test 3.7.3 applies. Q.E.D.

In calculus courses, one often meets the following version of the Root Test.

9.2.3 Corollary Let X :¼ (xn) be a sequence in R and suppose that the limit

ð4Þ r :¼ lim jxnj1=n

exists in R . Then
P

xn is absolutely convergent when r < 1 and is divergent when r > 1.

Proof. If the limit in (4) exists and r < 1, then there exist r1 with r < r1 < 1 and K 2 N

such that jxnj1=n < r1 for n > K. In this case we can apply 9.2.2(a).

If r > 1, then there exists K 2 N such that jxnj1=n > 1 for n� K and the nth Term Test

applies. Q.E.D.
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Note No conclusion is possible in Corollary 9.2.3 when r ¼ 1, for either convergence or

divergence is possible. See Example 9.2.7(b).

Our next test is due to D’Alembert.

9.2.4 Ratio Test Let X :¼ (xn) be a sequence of nonzero real numbers.

(a) If there exist r 2 R with 0 < r < 1 and K 2 N such that

ð5Þ xnþ1

xn

����
���� � r f or n � K;

then the series
P

xn is absolutely convergent.

(b) If there exists K 2 N such that

ð6Þ xnþ1

xn

����
���� � 1 f or n � K;

then the series
P

xn is divergent.

Proof. (a) If (5) holds, an Induction argument shows that jxKþmj � jxKjrm for m 2 N.

Thus, for n � K the terms in
P jxnj are dominated by a fixed multiple of the terms in the

geometric series
P

rm with 0< r< 1. The Comparison Test 3.7.7 then implies that
P jxnj

is convergent.

(b) If (6) holds, an Induction argument shows that jxKþmj � jxKj form 2 N and the nth

Term Test applies. Q.E.D.

Once again we have a familiar result from calculus.

9.2.5 Corollary Let X :¼ (xn) be a nonzero sequence in R and suppose that the limit

ð7Þ r :¼ lim
xnþ1

xn

����
����

exists in R . Then
P

xn is absolutely convergent when r < 1 and is divergent when r > 1.

Proof. If r< 1 and if r< r1< 1, then there exists K 2 R such that jxnþ1=xnj< r1 for n�
K. Thus Theorem 9.2.4(a) applies to give the absolute convergence of

P
xn.

If r > 1, then there exists K 2 N such that jxnþ1=xnj>1 for n � K, whence it follows

that jxkj does not converge to 0 and the nth Term Test applies. Q.E.D.

Note No conclusion is possible in Corollary 9.2.5 when r ¼ 1, for either convergence or

divergence is possible. See Example 9.2.7(c).

The Integral Test

The next test—a very powerful one—uses the notion of the improper integral, which is

defined as follows: If f is inR[a, b] for every b > a and if the limit lim
b!1

R b

a
f ðtÞdt exists in

R , then the improper integral
R1
a

f ðtÞdt is defined to be this limit.
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9.2.6 Integral Test Let f be a positive, decreasing function on {t : t� 1}. Then the seriesX1
k¼1

f ðkÞ converges if and only if the improper integral

Z 1

1

f ðtÞdt ¼ lim
b!1

Z b

1

f ðtÞdt

exists. In the case of convergence, the partial sum sn ¼
Xn
k¼1

f ðkÞ and the sum s ¼
X1
k¼1

f ðkÞ

satisfy the estimate

ð8Þ
Z 1

nþ1

f ðtÞdt � s� sn �
Z 1

n

f ðtÞdt:

Proof. Since f is positive and decreasing on the interval [k � 1, k], we have

ð9Þ f ðkÞ �
Z k

k�1

f ðtÞdt � f ðk � 1Þ:

By adding this inequality for k ¼ 2, 3, . . . , n, we obtain

sn � f ð1Þ �
Z n

1

f ðtÞdt � sn�1;

which shows that either both or neither of the limits

lim
n!1 sn and lim

n!1

Z n

1

f ðtÞdt

exist. If they exist, then on adding (9) for k ¼ n þ 1, . . . , m, we obtain

sm � sn �
Z m

n

f ðtÞdt � sm�1 � sn�1;

from which it follows thatZ mþ1

nþ1

f ðtÞdt � sm � sn �
Z m

n

f ðtÞdt:

If we take the limit in this last inequality as m ! 1, we obtain (8). Q.E.D.

We will now show how the results in Theorems 9.2.1–9.2.6 can be applied to the

p-series, which were introduced in Example 3.7.6(d, e).

9.2.7 Examples (a) Consider the case p ¼ 2; that is, the series
P

1=n2. We compare it

with the convergent series
P

1=ðnðnþ 1ÞÞ of Example 3.7.2(c). Since

1

n2
� 1

nðnþ 1Þ
����

���� ¼ nþ 1

n
¼ 1þ 1

n
! 1;

the Limit Comparison Test 9.2.1 implies that
P

1=n2 is convergent.

(b) We demonstrate the failure of the Root Test for the p-series. Note that

1

np

����
����
1=n

¼ 1

ðnpÞ1=n
¼ 1

ðn1=nÞp :

Since (see Example 3.1.11(d)) we know that n1/n! 1, we have r¼ 1 in Corollary 9.2.3, and

the theorem does not give any information.
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(c) We apply the Ratio Test to the p-series. Since

1

ðnþ 1Þp �
1

np

����
���� ¼ np

ðnþ 1Þp ¼
1

ð1þ 1=nÞp ! 1;

the Ratio Test, in the form of Corollary 9.2.5, does not give any information.

(d) Finally, we apply the Integral Test to the p-series. Let f (t) :¼ 1=tp for t� 1 and recall

that Z n

1

1

t
dt ¼ ln n� ln 1;

Z n

1

1

tp
dt ¼ 1

1� p

1

np�1
� 1

� �
for p 6¼ 1:

From these relations we see that the p-series converges if p> 1 and diverges if p� 1, as we

have seen before in 3.7.6(d, e). &

Raabe’s Test

If the limits limjxnj1=n and lim(jxnþ1=xnj) that are used in Corollaries 9.2.3 and 9.2.5 equal
1, we have seen that these tests do not give any information about the convergence or

divergence of the series. In this case it is often useful to employ a more delicate test. Here is

one that is frequently useful.

9.2.8 Raabe’s Test Let X :¼ (xn) be a sequence of nonzero real numbers.

(a) If there exist numbers a > 1 and K 2 N such that

ð10Þ xnþ1

xn

����
���� � 1� a

n
for n � K;

then
P

xn is absolutely convergent.

(b) If there exist real numbers a � 1 and K 2 N such that

ð11Þ xnþ1

xn

����
���� � 1� a

n
for n � K;

then
P

xn is not absolutely convergent. &

Proof. (a) If the inequality (10) holds, then we have (after replacing n by k and

multiplying)

kjxkþ1j � ðk � 1Þjxkj � ða� 1Þjxkj for k � K:

On reorganizing the inequality, we have

ð12Þ ðk � 1Þjxkj � kjxkþ1j � ða� 1Þjxkj > 0 for k � K;

from which we deduce that the sequence (kjxkþ1j) is decreasing for k � K. If we add (12)

for k ¼ K, . . . , n and note that the left side telescopes, we get

ðK � 1ÞjxK j � njxnþ1j � ða� 1ÞðjxK j þ � � � þ jxnjÞ:
This shows (why?) that the partial sums of

P jxnj are bounded and establishes the absolute
convergence of the series.
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(b) If the relation (11) holds for n � K, then since a � 1, we have

njxnþ1j � ðn� aÞjxnj � ðn� 1Þjxnj for n � K :

Therefore the sequence (njxnþ1j) is increasing for n � K and there exists a number c > 0

such that jxnþlj > c=n for n � K. But since the harmonic series
P

1=n diverges, the seriesP jxnj also diverges. Q.E.D.

In the application of Raabe’s Test, it is often convenient to use the following limiting

form.

9.2.9 Corollary Let X :¼ (xn) be a nonzero sequence in R and let

ð13Þ a :¼ lim n 1� xnþ1

xn

����
����

� �� �
;

whenever this limit exists. Then
P

xn is absolutely convergent when a > 1 and is not

absolutely convergent when a < 1.

Proof. Suppose the limit in (13) exists and that a> 1. If a1 is any number with a> a1> 1,

then there existsK 2 N such that a1< n(1� jxnþ1=xnj) for n>K. Therefore jxnþ1=xnj< 1�
a1=n for n � K and Raabe’s Test 9.2.8(a) applies.

The case where a < 1 is similar and is left to the reader. Q.E.D.

Note There is no conclusion when a¼ 1; either convergence or divergence is possible, as

the reader can show.

9.2.10 Examples (a) We reconsider the p-series in the light of Raabe’s Test. Applying

L’Hospital’s Rule when p � 1, we obtain (why?)

a ¼ lim n 1� np

nþ 1ð Þp
� 	� �

¼ lim n
nþ 1ð Þp � np

nþ 1ð Þp
� 	� �

¼ lim
1þ 1=nð Þp � 1

1=n

� �
� lim 1

1þ 1=nð Þp
� �

¼ p � 1 ¼ p:

We conclude that if p> 1 then the p-series is convergent, and if 0< p< 1 then the series is

divergent (since the terms are positive). However, if p¼ 1 (the harmonic series!), Corollary

9.2.9 yields no information.

(b) We now consider
P1
n¼1

n

n2 þ 1
:

An easy calculation shows that lim(xnþ1=xn) ¼ 1, so that Corollary 9.2.5 does not

apply. Also, we have lim(n(1� xnþ1=xn))¼ 1, so that Corollary 9.2.9 does not apply either.

However, it is an exercise to establish the inequality xnþ1=xn � (n � 1)=n, from which it

follows from Raabe’s Test 9.2.8(b) that the series is divergent. (Of course, the Integral Test,

or the Limit Comparison Test with (yn) ¼ (1=n), can be applied here.) &

Although the limiting form 9.2.9 of Raabe’s Test is much easier to apply, Example

9.2.10(b) shows that the form 9.2.8 is stronger than 9.2.9.

Remark Leonard Euler’s calculational prowess was remarkable, including his work in

the area of infinite series. His methods are not covered in this book, but we will state one of

his famous results. We know the series 1
12

þ 1
22

þ 1
32

þ � � � þ 1
n2

þ � � � converges
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(Example 9.2.7(a)), but the problem of determining its exact value is quite difficult. The

problem was known as the Basel problem, named after Basel University in Switzerland,

and Euler solved it in 1735 when he obtained the surprising result that
X1
n¼1

1

n2
¼ p2

6
. He also

described a process to derive the values of series with higher even powers of 1=n. For

example, he showed that
X1
n¼1

1

n4
¼ p4

90
and

X1
n¼1

1

n6
¼ p6

945
. However, the values of the

corresponding series of odd powers of 1=n were not discovered and stay elusive to the

present day.

Another famous problem involves a number that is defined as follows. The harmonic

series is known to diverge, but Euler observed that the sequence

cn :¼ 1þ 1

2
þ 1

3
þ � � � þ 1

n
� ln n

is convergent. (See Exercise 15.) The limit of the sequence, g :¼ lim (cn), is called Euler’s

constant and is approximately equal to 0.5772156649. . . . The question of whether g is

a rational or irrational number is a famous unsolved problem. Computers have calculated

over two trillion decimal places, and though the prevailing opinion is that g is irrational, no

proof has yet been found.

Exercises for Section 9.2

1. Establish the convergence or the divergence of the series whose nth term is:

(a)
1

ðnþ 1Þðnþ 2Þ, (b)
n

ðnþ 1Þðnþ 2Þ,

(c) 2�1=n, (d) n=2n.

2. Establish the convergence or divergence of the series whose nth term is:

(a) ðnðnþ 1ÞÞ�1=2; (b) ðn2ðnþ 1ÞÞ�1=2;

(c) n!=n n; (d) ð�1Þnn=ðnþ 1Þ:
3. Discuss the convergence or the divergence of the series with nth term (for sufficiently large n)

given by

(a) ðln nÞ�p; (b) ðln nÞ�n;
(c) ðln nÞ�ln n; (d) ðln nÞ�ln ln n;
(e) ðn ln nÞ�1; (f) ðnðln nÞðln ln nÞ2Þ�1

4. Discuss the convergence or the divergence of the series with nth term:

(a) 2ne�n; (b) nne�n;
(c) e�ln n; (d) ðln nÞe�

ffiffi
n

p
;

(e) n!e�n; (f) n!e�n2 :

5. Show that the series 1=12 þ 1=23 þ 1=32 þ 1=43 þ � � � is convergent, but that both the Ratio

and the Root Tests fail to apply.

6. If a and b are positive numbers, then
P ðanþ bÞ�p

converges if p > 1 and diverges if p � 1.

7. Discuss the series whose nth term is

(a)
n!

3 � 5 � 7 � � � ð2nþ 1Þ ; (b)
ðn!Þ2
ð2nÞ! ;

(c)
2 � 4 � � � ð2nÞ

3 � 5 � � � ð2nþ 1Þ ; (d)
2 � 4 � � � ð2nÞ

5 � 7 � � � ð2nþ 3Þ :
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8. Let 0 < a < 1 and consider the series

a2 þ aþ a4 þ a3 þ � � � þ a2n þ a2n�1 þ � � � :
Show that the Root Test applies, but that the Ratio Test does not apply.

9. If r 2 ð0; 1Þ satisfies (2) in the Root Test 9.2.2, show that the partial sums sn of
P

xn
approximate its limit s according to the estimate js� snj � rnþ1=ð1� rÞ for n � K.

10. If r 2 (0, 1) satisfies (5) in the Ratio Test 9.2.4, show that js� snj � rjxnj=ð1� rÞ for n � K.

11. If a > 1 satisfies (10) in Raabe’s Test 9.2.8, show that js� snj � njxnj=ða� 1Þ for n � K.

12. For each of the series in Exercise 1 that converge, estimate the remainder if only four terms are

taken; if only ten terms are taken. If we wish to determine the sum of the series within 1=1000,
how many terms should be taken?

13. Answer the questions posed in Exercise 12 for the series given in Exercise 2.

14. Show that the series 1þ 1
2
� 1

3
þ 1

4
þ 1

5
� 1

6
þþ� � � � is divergent.

15. For n 2 N, let cn be defined by cn :¼ 1
1
þ 1

2
þ � � � þ 1=n� ln n. Show that (cn) is a decreasing

sequence of positive numbers. Show that if we put

bn :¼ 1

1
� 1

2
þ 1

3
� � � � � 1

2n
;

then the sequence (bn) converges to ln 2. [Hint: bn ¼ c2n � cn þ ln 2.]

16. Let {n1, n2, . . .} denote the collection of natural numbers that do not use the digit 6 in their

decimal expansion. Show that
P

1=nk converges to a number less than 80. If {m1, m2, . . . } is

the collection of numbers that end in 6, then
P

1=mk diverges. If {p1, p2, . . . } is the collection

of numbers that do not end in 6, then
P

1=pk diverges.

17. If p > 0, q > 0, show that the series

X ðpþ 1Þðpþ 2Þ � � � ðpþ nÞ
ðqþ 1Þðqþ 2Þ � � � ðqþ nÞ

converges for q > p þ 1 and diverges for q � p þ 1.

18. Suppose that none of the numbers a, b, c is a negative integer or zero. Prove that the

hypergeometric series

ab

1!c
þ aðaþ 1Þbðbþ 1Þ

2!cðcþ 1Þ þ aðaþ 1Þðaþ 2Þbðbþ 1Þðbþ 2Þ
3!cðcþ 1Þðcþ 2Þ þ � � �

is absolutely convergent for c > a þ b and divergent for c < a þ b.

19. Letan> 0and suppose that
P

an converges.Construct a convergent series
P

bn withbn> 0such that

lim(an=bn)¼ 0; hence
P

bn converges less rapidly than
P

an. [Hint: Let (An) be the partial sums ofP
an and A its limit. Define b1 :¼

ffiffiffi
A

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� A1

p
and bn :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� An�1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� An

p
for n� 1.]

20. Let (an) be a decreasing sequence of real numbers converging to 0 and suppose that
P

an diverges.

Construct a divergent series
P

bn with bn> 0 such that lim(bn=an)¼ 0; hence
P

bn diverges less

rapidly than
P

an. [Hint: Let bn :¼ an=
ffiffiffiffiffi
An

p
where An is the nth partial sum of

P
an.]

Section 9.3 Tests for Nonabsolute Convergence

The convergence tests that were discussed in the preceding section were primarily directed

to establishing the absolute convergence of a series. Since there are many series, such as

ð1Þ
X1
n¼1

ð�1Þnþ1

n
;

X1
n¼1

ð�1Þnþ1ffiffiffi
n

p ;
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that are convergent but not absolutely convergent, it is desirable to have some tests for this

phenomenon. In this short section we shall present first the test for alternating series and

then tests for more general series due to Dirichlet and Abel.

Alternating Series

The most familiar test for nonabsolutely convergent series is the one due to Leibniz that is

applicable to series that are ‘‘alternating’’ in the following sense.

9.3.1 Definition A sequence X :¼ (xn) of nonzero real numbers is said to be alternating

if the terms ð�1Þnþ1
xn; n 2 N , are all positive (or all negative) real numbers. If the sequence

X ¼ (xn) is alternating, we say that the series
P

xn it generates is an alternating series.

In the case of an alternating series, it is useful to set xn¼ (�1)nþ1zn [or xn¼ (�1)nzn],

where zn > 0 for all n 2 N .

9.3.2 Alternating Series Test Let Z :¼ (zn) be a decreasing sequence of strictly posi-

tive numbers with limðznÞ ¼ 0. Then the alternating series
P ð�1Þnþ1

zn is convergent.

Proof. Since we have

s2n ¼ ðz1 � z2Þ þ ðz3 � z4Þ þ � � � þ ðz2n�1 � z2nÞ;
and since zk � zkþ1 � 0, it follows that the subsequence (s2n) of partial sums is increasing.

Since

s2n ¼ z1 � ðz2 � z3Þ � � � � � ðz2n�2 � z2n�1Þ � z2n;

it also follows that s2n � z1 for all n 2 N . It follows from the Monotone Convergence

Theorem 3.3.2 that the subsequence (s2n) converges to some number s 2 R.

We now show that the entire sequence (sn) converges to s. Indeed, if e > 0, let K be

such that if n � K then js2n � sj � 1
2
e and jz2nþ1j � 1

2
e. It follows that if n � K then

js2nþ1 � sj ¼ js2n þ z2nþ1 � sj
� js2n � sj þ jz2nþ1j � 1

2
eþ 1

2
e ¼ e:

Therefore every partial sum of an odd number of terms is also within e of s if n is large

enough. Since e > 0 is arbitrary, the convergence of (sn) and hence of
P ð�1Þnþ1

zn is

established. Q.E.D.

Note It is an exercise to show that if s is the sum of the alternating series and if sn is its nth

partial sum, then

ð2Þ js� snj � znþ1:

It is clear that this Alternating Series Test establishes the convergence of the two series

already mentioned, in (1).

The Dirichlet and Abel Tests

We will now present two other tests of wide applicability. They are based on the following

lemma, which is sometimes called the partial summation formula, since it corresponds to

the familiar formula for integration by parts.
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9.3.3 Abel’s Lemma Let X :¼ (xn) and Y :¼ (yn) be sequences in R and let the partial

sums of
P

yn be denoted by (sn) with s0 :¼ 0. If m > n, then

ð3Þ
Xm

k¼nþ1

xkyk ¼ xmsm � xnþ1snð Þ þ
Xm�1

k¼nþ1

xk � xkþ1ð Þsk:

Proof. Since yk ¼ sk � sk�1 for k ¼ 1, 2, . . . , the left side of (3) is seen to be equal toXm
k¼nþ1

xkðsk � sk�1Þ. If we collect the terms multiplying sn, snþ1, . . . , sm, we obtain the

right side of (3). Q.E.D.

We now apply Abel’s Lemma to obtain tests for convergence of series of the formP
xnyn.

9.3.4 Dirichlet’s Test If X :¼ (xn) is a decreasing sequence with lim xn ¼ 0, and if the

partial sums (sn) of
P

yn are bounded, then the series
P

xnyn is convergent.

Proof. Let jsnj � B for all n 2 N . If m > n, it follows from Abel’s Lemma 9.3.3 and the

fact that xk � xkþ1 � 0 that

Xm
k¼nþ1

xkyk

�����
����� � xm þ xnþ1ð ÞBþ

Xm�1

k¼nþ1

xk � xkþ1ð ÞB

¼ xm þ xnþ1ð Þ þ xnþ1 � xmð Þ½ �B
¼ 2xnþ1B:

Since lim(xk) ¼ 0, the convergence of
P

xkyk follows from the Cauchy Convergence

Criterion 3.7.4. Q.E.D.

9.3.5 Abel’s Test If X :¼ (xn) is a convergent monotone sequence and the series
P

yn
is convergent, then the series

P
xnyn is also convergent.

Proof. If (xn) is decreasing with limit x, let un :¼ xn� x, n2N , so that (un) decreases to 0.

Then xn ¼ x þ un, whence xnyn ¼ xyn þ unyn. It follows from the Dirichlet Test 9.3.4 thatP
unyn is convergent and, since

P
xyn converges (because of the assumed convergence of

the series
P

yn), we conclude that
P

xnyn is convergent.

If (xn) is increasing with limit x, let vn :¼ x� xn, n 2 N , so that (vn) decreases to 0. Here

xn ¼ x � vn, whence xnyn ¼ xyn � vnyn, and the argument proceeds as before. Q.E.D.

9.3.6 Examples (a) Since we have

2ðsin 1
2
xÞ ðcos xþ � � � þ cos nxÞ ¼ sinðnþ 1

2
Þx� sin 1

2
x;

it follows that if x 6¼ 2kp ðk 2 NÞ, then

jcos xþ � � � þ cos nxj ¼ jsinðnþ 1
2
Þx� sin 1

2
xj

j2 sin 1
2
xj � 1

jsin 1
2
xj :

Hence Dirichlet’s Test implies that if (an) is decreasing with lim(an) ¼ 0, then the seriesX1
n¼1

an cos nx converges provided x 6¼ 2kp.
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(b) Since we have

2 sin 1

2
x


 �
sin xþ � � � þ sin nxð Þ ¼ cos 1

2
x� cos nþ 1

2


 �
x;

it follows that if x 6¼ 2kp ðk 2 NÞ, then
sin xþ � � � þ sin nxj j � 1

sin 1
2
x

�� �� :

As before, if (an) is decreasing and if lim(an)¼ 0, then the series
X1
n¼1

an sin nx converges for

x 6¼ 2kp (and it also converges for these values). &

Exercises for Section 9.3

1. Test the following series for convergence and for absolute convergence:

(a)
P1
n¼1

�1ð Þnþ1

n2 þ 1
; (b)

P1
n¼1

�1ð Þnþ1

nþ 1
;

(c)
P1
n¼1

�1ð Þnþ1
n

nþ 2
; (d)

P1
n¼1

�1ð Þnþ1 ln n

n
:

2. If sn is the nth partial sum of the alternating series
X1
n¼1

ð�1Þnþ1
zn, and if s denotes the sum of this

series, show that js� snj � znþ1.

3. Give an example to show that the Alternating Series Test 9.3.2 may fail if (zn) is not a decreasing

sequence.

4. Show that the Alternating Series Test is a consequence of Dirichlet’s Test 9.3.4.

5. Consider the series

1� 1

2
� 1

3
þ 1

4
þ 1

5
� 1

6
� 1

7
þþ�� � � � ;

where the signs come in pairs. Does it converge?

6. Let an 2 R for n 2 N and let p < q. If the series
P

an=n
p is convergent, show that the seriesP

an=n
q is also convergent.

7. If p and q are positive numbers, show that
P ð�1Þnðln nÞp=nq is a convergent series.

8. Discuss the series whose nth term is:

(a) �1ð Þn nn

nþ 1ð Þnþ1
; (b)

nn

nþ 1ð Þnþ1
;

(c) �1ð Þn nþ 1ð Þn
nn

; (d)
nþ 1ð Þn
nnþ1

:

9. If the partial sums of
P

an are bounded, show that the series
X1
n¼1

ane
�nt converges for t > 0.

10. If the partial sums sn of
X1
n¼1

an are bounded, show that the series
X1
n¼1

an=n converges toX1
n¼1

sn=nðnþ 1Þ.

11. Can Dirichlet’s Test be applied to establish the convergence of

1� 1

2
� 1

3
þ 1

4
þ 1

5
þ 1

6
� � � �

where the number of signs increases by one in each ‘‘block’’? If not, use another method to

establish the convergence of this series.
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12. Show that the hypothesis that the sequence X :¼ (xn) is decreasing in Dirichlet’s Test 9.3.4 can

be replaced by the hypothesis that
X1
n¼1

jxn � xnþ1j is convergent.
13. If (an) is a bounded decreasing sequence and (bn) is a bounded increasing sequence and if xn :¼

an þ bn for n 2 N, show that
X1
n¼1

jxn � xnþ1j is convergent.
14. Show that if the partial sums sn of the series

X1
k¼1

ak satisfy jsnj � Mnr for some r < 1, then the

series
X1
n¼1

an=n converges.

15. Suppose that
P

an is a convergent series of real numbers. Either prove that
P

bn converges or

give a counter-example, when we define bn by

(a) an=n, (b)
ffiffiffiffiffi
an

p
=n an � 0ð Þ,

(c) an sin n, (d)
ffiffiffiffiffiffiffiffiffiffi
an=n

p
an � 0ð Þ,

(e) n1=nan, (f) an= 1þ janjð Þ.

Section 9.4 Series of Functions

Because of their frequent appearance and importance, we now present a discussion of infinite

series of functions. Since the convergence of an infinite series is handled by examining the

sequence of partial sums, questions concerning series of functions are answered by examining

corresponding questions for sequences of functions. For this reason, a portion of the present

section is merely a translation of facts already established for sequences of functions into

series terminology. However, in the second part of the section, where we discuss power series,

some new features arise because of the special character of the functions involved.

9.4.1 Definition If ( fn) is a sequence of functions defined on a subsetD of R with values

in R , the sequence of partial sums (sn) of the infinite series
P

f n is defined for x in D by

s1ðxÞ :¼ f 1ðxÞ;
s2ðxÞ :¼ s1ðxÞ þ f 2ðxÞ
. . . . . . . . .. . . . . . . . . . . . . . . . . .
snþ1ðxÞ :¼ snðxÞ þ f nþ1ðxÞ
. . . . . . . . .. . . . . . . . . . . . . . . . . .

In case the sequence (sn) of functions converges onD to a function f, we say that the infinite

series of functions
P

f n converges to f on D. We will often write

X
f n or

X1
n¼1

f n

to denote either the series or the limit function, when it exists.

If the series
P j f nðxÞj converges for each x in D, we say that

P
f n is absolutely

convergent onD. If the sequence (sn) of partial sums is uniformly convergent onD to f, we

say that
P

f n is uniformly convergent on D, or that it converges to f uniformly on D.

One of the main reasons for the interest in uniformly convergent series of functions is

the validity of the following results, which give conditions justifying the change of order of

the summation and other limiting operations.

9.4.2 Theorem If fn is continuous on D 	 R to R for each n 2 N and if
P

f n converges

to f uniformly on D, then f is continuous on D.
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This is a direct translation of Theorem 8.2.2 for series. The next result is a translation

of Theorem 8.2.4.

9.4.3 Theorem Suppose that the real-valued functions fn , n 2 N , are Riemann integra-

ble on the interval J :¼ [a, b]. If the series
P

f n converges to f uniformly on J, then f is

Riemann integrable and

ð1Þ
Z b

a

f ¼
X1
n¼1

Z b

a

f n:

Next we turn to the corresponding theorem pertaining to differentiation. Here we

assume the uniform convergence of the series obtained after term-by-term differentiation

of the given series. This result is an immediate consequence of Theorem 8.2.3.

9.4.4 Theorem For each n 2 N , let fn be a real-valued junction on J :¼ [a, b] that has a

derivative f 0n on J. Suppose that the series
P

f n converges for at least one point of J and

that the series of derivatives
P

f 0n converges uniformly on J.

Then there exists a real-valued function f on J such that
P

f n converges uniformly on

J to f. In addition, f has a derivative on J and f 0 ¼ P
f 0n.

Tests for Uniform Convergence

Since we have stated some consequences of uniform convergence of series, we shall now

present a few tests that can be used to establish uniform convergence.

9.4.5 Cauchy Criterion Let ( fn) be a sequence of functions on D 	 R to R . The seriesP
f n is uniformly convergent on D if and only if for every e > 0 there exists an M(e) such

that if m > n � M(e), then

j f nþ1ðxÞ þ � � � þ f mðxÞj < e for all x 2 D :

9.4.6 Weierstrass M-Test Let (Mn) be a sequence of positive real numbers such that

j f nðxÞj � Mn for x 2 D, n 2 N . If the series
P

Mn is convergent, then
P

f n is uniformly

convergent on D.

Proof. If m > n, we have the relation

j f nþ1ðxÞ þ � � � þ f mðxÞj � Mnþ1 þ � � � þMm for x 2 D:

Now apply 3.7.4, 9.4.5, and the convergence of
P

Mn. Q.E.D.

InAppendix Ewewill use theWeierstrassM-Test to construct two interesting examples.

Power Series

We shall now turn to a discussion of power series. This is an important class of series of

functions and enjoys properties that are not valid for general series of functions.

9.4.7 Definition A series of real functions
P

f n is said to be a power series around

x ¼ c if the function fn has the form

f n xð Þ ¼ an x� cð Þn;
where an and c belong to R and where n ¼ 0, 1, 2, . . . .
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For the sake of simplicity of our notation, we shall treat only the case where c¼ 0. This

is no loss of generality, however, since the translation x0 ¼ x� c reduces a power series

around c to a power series around 0. Thus, whenever we refer to a power series, we shall

mean a series of the form

ð2Þ
X1
n¼0

anx
n ¼ a0 þ a1xþ � � � þ anx

n þ � � � :

Even though the functions appearing in (2) are defined over all of R , it is not to be

expected that the series (2) will converge for all x in R . For example, by using the Ratio

Test 9.2.4, we can show that the series

X1
n¼0

n!xn;
X1
n¼0

xn;
X1
n¼0

xn=n!;

converge for x in the sets

f0g; x 2 R : jxj < 1f g; R ;

respectively. Thus, the set on which a power series converges may be small, medium, or

large. However, an arbitrary subset of R cannot be the precise set on which a power series

converges, as we shall show.

If (bn) is a bounded sequence of nonnegative real numbers, then we define the limit

superior of (bn) to be the infimum of those numbers v such that bn � v for all sufficiently

large n 2 N . This infimum is uniquely determined and is denoted by lim sup(bn). The only

facts we need to know are (i) that if v > lim sup(bn), then bn � v for all sufficiently large

n 2 N , and (ii) that if w < lim sup(bn), then w � bn for infinitely many n 2 N. (See 3.4.10

and 3.4.11.)

9.4.8 Definition Let
P

anx
n be a power series. If the sequence ðjanj1=nÞ is bounded, we

set r :¼ lim supðjanj1=nÞ; if this sequence is not bounded we set r ¼ þ1. We define the

radius of convergence of
P

anx
n to be given by

R :¼
0 if r ¼ þ1;
1=r if 0 < r < þ1;
þ1 if r ¼ 0:

8<
:

The interval of convergence is the open interval (�R, R).

We shall now justify the term ‘‘radius of convergence.’’

9.4.9 Cauchy-Hadamard Theorem If R is the radius of convergence of the power

series
P

anx
n, then the series is absolutely convergent if jxj < R and is divergent if

jxj > R.

Proof. We shall treat only the case where 0 < R < þ1, leaving the cases R ¼ 0 and

R ¼ þ1 as exercises. If 0 < jxj < R, then there exists a positive number c < 1 such that

jxj < cR. Therefore r < c=jxj and so it follows that if n is sufficiently large, then

janj1=n � c=jxj. This is equivalent to the statement that

ð3Þ janxnj � cn

for all sufficiently large n. Since c < 1, the absolute convergence of
P

anx
n follows from

the Comparison Test 3.7.7.
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If jxj > R ¼ 1=r, then there are infinitely many n 2 N for which janj1=n > 1=jxj.
Therefore, janxnj > 1 for infinitely many n, so that the sequence anx

nð Þ does not converge
to zero. Q.E.D.

Remark It will be noted that the Cauchy-Hadamard Theorem makes no statement as to

whether the power series converges when jxj ¼ R. Indeed, anything can happen, as the

examples

X
xn;

X 1

n
xn;

X 1

n2
xn;

show. Since lim(n1/n)¼ 1, each of these power series has radius of convergence equal to 1.

The first power series converges at neither of the points x ¼ �1 and x ¼ þ1; the second

series converges at x¼�1 but diverges at x¼þ1; and the third power series converges at

both x ¼ �1 and x ¼ þ1. (Find a power series with R ¼ 1 that converges at x ¼ þ1 but

diverges x ¼ �1.)

It is an exercise to show that the radius of convergence of the series
P

anx
n is also

given by

ð4Þ lim
an

anþ1

����
����;

provided this limit exists. Frequently, it is more convenient to use (4) than Definition 9.4.8.

The argument used in the proof of the Cauchy-Hadamard Theorem yields the uniform

convergence of the power series on any fixed closed and bounded interval in the interval of

convergence (�R, R).

9.4.10 Theorem Let R be the radius of convergence of
P

anx
n and let K be a closed and

bounded interval contained in the interval of convergence (�R, R). Then the power series

converges uniformly on K.

Proof. The hypothesis on K 	 ð�R;RÞ implies that there exists a positive constant c< 1

such that jxj < cR for all x 2 K. (Why?) By the argument in 9.4.9, we infer that for

sufficiently large n, the estimate (3) holds for all x 2 K. Since c < 1, the uniform

convergence of
P

anx
n on K is a direct consequence of the Weierstrass M-test with

Mn :¼ cn. Q.E.D.

9.4.11 Theorem The limit of a power series is continuous on the interval of conver-

gence. A power series can be integrated term-by-term over any closed and bounded

interval contained in the interval of convergence.

Proof. If jx0j < R, then the preceding result asserts that
P

anx
n converges uniformly on

any closed and bounded neighborhood of x0 contained in (�R, R). The continuity at x0 then

follows from Theorem 9.4.2, and the term-by-term integration is justified by Theorem

9.4.3. Q.E.D.

We now show that a power series can be differentiated term-by-term. Unlike the

situation for general series, we do not need to assume that the differentiated series is

uniformly convergent. Hence this result is stronger than Theorem 9.4.4.
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9.4.12 Differentiation Theorem A power series can be differentiated term-by-term

within the interval of convergence. In fact, if

f ðxÞ ¼
X1
n¼0

anx
n; then f 0ðxÞ ¼

X1
n¼1

nanx
n�1 for jxj < R:

Both series have the same radius of convergence.

Proof. Since lim(n1=n)¼ 1, the sequence ðjnanj1=nÞ is bounded if and only if the sequence
ðjanj1=nÞ is bounded. Moreover, it is easily seen that

lim sup jnanj1=n

 �

¼ lim sup janj1=n

 �

:

Therefore, the radius of convergence of the two series is the same, so the formally

differentiated series is uniformly convergent on each closed and bounded interval contained

in the interval of convergence. We can then apply Theorem 9.4.4 to conclude that the

formally differentiated series converges to the derivative of the given series. Q.E.D.

Remark It is to be observed that the theorem makes no assertion about the endpoints of

the interval of convergence. If a series is convergent at an endpoint, then the differentiated

series may or may not be convergent at this point. For example, the series
X1
n¼1

xn=n2

converges at both endpoints x ¼ �1 and x ¼ þ1. However, the differentiated series given

by
X1
n¼1

xn�1=n converges at x ¼ �1 but diverges at x ¼ þ1.

By repeated application of the preceding result, we conclude that if k 2 N thenX1
n¼0

anx
n can be differentiated term-by-term k times to obtain

ð5Þ
X1
n¼k

n!

n� kð Þ! anx
n�k:

Moreover, this series converges absolutely to f ðkÞðxÞ for jxj < R and uniformly over any

closed and bounded interval in the interval of convergence. If we substitute x¼ 0 in (5), we

obtain the important formula

f ðkÞð0Þ ¼ k!ak:

9.4.13 Uniqueness Theorem If
P

anx
n and

P
bnx

n converge on some interval

(�r, r), r > 0, to the same function f, then

an ¼ bn for all n 2 N :

Proof. Our preceding remarks show that n!an ¼ f ðnÞð0Þ ¼ n!bn for all n 2 N . Q.E.D.

Taylor Series

If a function f has derivatives of all orders at a point c in R , then we can calculate the

Taylor coefficients by a0 :¼ f ðcÞ; an :¼ f ðnÞðcÞ=n! for n 2 N and in this way obtain a power

series with these coefficients. However, it is not necessarily true that the resulting power series

converges to the function f in an interval about c. (See Exercise 12 for an example.) The issue of

convergence is resolved by the remainder term Rn in Taylor’s Theorem 6.4.1. We will write

ð6Þ f ðxÞ ¼
X1
n¼0

f ðnÞðcÞ
n!

ðx� cÞn
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for jx� cj < R if and only if the sequence (Rn (x)) of remainders converges to 0 for each x

in some interval fx : jx� cj < Rg. In this case we say that the power series (6) is the

Taylor expansion of f at c. We observe that the Taylor polynomials for f discussed in

Section 6.4 are just the partial sums of the Taylor expansion (6) of f. (Recall that 0! :¼ 1.)

9.4.14 Examples (a) If f (x) :¼ sin x, x 2 R , we have f (2n)(x) ¼ (�1)n sin x and

f (2nþ1)(x) ¼ (�1)n cos x for n 2 N, x 2 R . Evaluating at c ¼ 0, we get the Taylor

coefficients a2n¼ 0 and a2nþ1¼ (�l)n=(2nþ 1)! for n 2 N. Since jsinxj � 1 and jcos xj �
1 for all x, then jRnðxÞj � jxjn=n! for n 2 N and x 2 R . Since lim(Rn(x)) ¼ 0 for each

x 2 R , we obtain the Taylor expansion

sin x ¼
X1
n¼0

�1ð Þn
2nþ 1ð Þ! x

2nþ1 for all x 2 R :

An application of Theorem 9.4.12 gives us the Taylor expansion

cos x ¼
X1
n¼0

ð�1Þn
ð2nÞ! x

2n for all x 2 R :

(b) If gðxÞ :¼ ex, x 2 R , then gðnÞðxÞ ¼ ex for all n 2 N , and hence the Taylor coefficients

are given by an ¼ 1=n! for n 2 N. For a given x 2 R , we have jRnðxÞj � ejxjjxjn=n! and
therefore (Rn(x)) tends to 0 as n ! 1. Therefore, we obtain the Taylor expansion

ð7Þ ex ¼
X1
n¼0

1

n!
xn for all x 2 R :

We can obtain the Taylor expansion at an arbitrary c 2 R by the device of replacing x by

x � c in (7) and noting that

ex ¼ ec � ex�c ¼ ec
X1
n¼0

1

n!
x� cð Þn ¼

X1
n¼0

ec

n!
x� cð Þn for x 2 R :

&

Exercises for Section 9.4

1. Discuss the convergence and the uniform convergence of the series
P

f n, where f nðxÞ is given
by:

(a) x2 þ n2ð Þ�1
; (b) nxð Þ�2

x 6¼ 0ð Þ ;
(c) sin x=n2ð Þ; (d) xn þ 1ð Þ�1

x 6¼ 0ð Þ;
(e) xn= xn þ 1ð Þ x � 0ð Þ; (f) �1ð Þn nþ xð Þ�1

x � 0ð Þ:
2. If

P
an is an absolutely convergent series, then the series

P
an sin nx is absolutely and

uniformly convergent.

3. Let (cn) be a decreasing sequence of positive numbers. If
P

cn sin nx is uniformly convergent,

then limðncnÞ ¼ 0.

4. Discuss the cases R ¼ 0, R ¼ þ1 in the Cauchy-Hadamard Theorem 9.4.9.

5. Show that the radius of convergence R of the power series
P

anx
n is given by lim jan=anþ1jð Þ

whenever this limit exists. Give an example of a power series where this limit does not exist.

6. Determine the radius of convergence of the series
P

anx
n, where an is given by:

(a) 1=nn, (b) na=n!,
(c) nn=n!, (d) ln nð Þ�1; n � 2 ,

(e) n!ð Þ2= 2nð Þ!, (f) n�
ffiffi
n

p
.
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7. If an :¼ 1 when n is the square of a natural number and an :¼ 0 otherwise, find the radius of

convergence of
P

anx
n. If bn :¼ 1 when n ¼ m! for m 2 N and bn :¼ 0 otherwise, find the

radius of convergence of the series
P

bnx
n.

8. Prove in detail that lim sup
�jnanj1=n� ¼ lim sup

�janj1=n�.
9. If 0 < p � janj � q for all n 2 N , find the radius of convergence of

P
anx

n.

10. Let f ðxÞ ¼ P
anx

n for jxj < R. If f ðxÞ ¼ f ð�xÞ for all jxj < R, show that an ¼ 0 for all odd n.

11. Prove that if f is defined for jxj < r and if there exists a constant B such that j f ðnÞðxÞj � B for all

jxj < r and n 2 N , then the Taylor series expansion

X1
n¼0

f ðnÞð0Þ
n!

xn

converges to f (x) for jxj < r.

12. Prove by Induction that the function given by f ðxÞ :¼ e�1=x2 for x 6¼ 0, f ð0Þ :¼ 0, has

derivatives of all orders at every point and that all of these derivatives vanish at x ¼ 0. Hence

this function is not given by its Taylor expansion about x ¼ 0.

13. Give an example of a function that is equal to its Taylor series expansion about x ¼ 0 for

x � 0, but is not equal to this expansion for x < 0.

14. Use the Lagrange form of the remainder to justify the general Binomial Expansion

1þ xð Þm ¼
X1
n¼0

m

n

� �
xn for 0 � x < 1 :

15. (Geometric series) Show directly that if jxj < 1, then 1=ð1� xÞ ¼
X1
n¼0

xn.

16. Show by integrating the series for 1=(1 þ x) that if jxj < 1, then

lnð1þ xÞ ¼
X1
n¼1

ð�1Þnþ1

n
xn:

17. Show that if jxj < 1, then Arctan x ¼
X1
n¼0

ð�1Þn
2nþ 1

x2nþ1.

18. Show that if jxj < 1, then Arcsin x ¼
X1
n¼0

1 � 3 � � � ð2n� 1Þ
2 � 4 � � � 2n � x2nþ1

2nþ 1
.

19. Find a series expansion for

Z x

0

e�t2dt for x 2 R.

20. If a 2 R and jkj < 1, the integral F a; kð Þ :¼
Z a

0

1� k2 sin xð Þ2

 ��1=2

dx is called an elliptic

integral of the first kind. Show that

F

�
p

2
; k

�
¼ p

2

X1
n¼0

1 � 3 � � � 2n� 1ð Þ
2 � 4 � � � 2n

� �2

k2n for jkj < 1 :
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CHAPTER 10

THE GENERALIZED
RIEMANN INTEGRAL

In Chapter 7 we gave a rather complete discussion of the Riemann integral of a function on

a closed bounded interval, defining the integral as the limit of Riemann sums of the

function. This is the integral (and the approach) that the reader met in calculus courses; it is

also the integral that is most frequently used in applications to engineering and other areas.

We have seen that continuous and monotone functions on [a, b] are Riemann integrable, so

most of the functions arising in calculus are included in its scope.

However, by the end of the nineteenth century, some inadequacies in the Riemann

theory of integration had become apparent. These failings came primarily from the fact that

the collection of Riemann integrable functions became inconveniently small asmathematics

developed. For example, the set of functions for which the Newton–Leibniz formula,

Z b

a

F0 ¼ FðbÞ � FðaÞ;

holds does not include all differentiable functions. Also, limits of sequences of Riemann

integrable functions are not necessarily Riemann integrable. These inadequacies led others

to invent other integration theories, the best known of which was due to Henri Lebesgue

(1875–1941) and was developed at the very beginning of the twentieth century. (For an

account of the history of the development of the Lebesgue integral, the reader should

consult the book by Hawkins given in the References.)

Indeed, the Lebesgue theory of integration has become pre-eminent in contemporary

mathematical research, since it enables one to integrate a much larger collection of

functions, and to take limits of integrals more freely. However, the Lebesgue integral also

has several inadequacies and difficulties: (1) There exist functions F that are differentiable

on [a, b] but such that F0 is not Lebesgue integrable. (2) Some ‘‘improper integrals,’’ such

as the important Dirichlet integral, Z 1

0

sin x

x
dx;

do not exist as Lebesgue integrals. (3) Most treatments of the Lebesgue integral have

considerable prerequisites and are not easily within the reach of an undergraduate student

of mathematics.

As important as the Lebesgue integral is, there are even more inclusive theories of

integration. One of these was developed independently in the late 1950s by the Czech

mathematician Jaroslav Kurzweil (b. 1926) and the English mathematician Ralph

Henstock (b. 1923). Surprisingly, their approach is only slightly different from that

used by Riemann, yet it yields an integral (which we will call the generalized Riemann

integral ) that includes both the Riemann and the Lebesgue integrals as special cases. Since

the approach is so similar to that of Riemann, it is technically much simpler than the usual
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Lebesgue integral—yet its scope is considerably greater; in particular, it includes functions

that are derivatives, and also includes all ‘‘improper integrals.’’

In this chapter, we give an exposition of the generalized Riemann integral. In Section

10.1, it will be seen that the basic theory is almost exactly the same as for the ordinary

Riemann integral. However, we have omitted the proofs of a few results when their proofs

are unduly complicated. In the short Section 10.2, we indicate that improper integrals on

[a, b] are included in the generalized theory. We will introduce the class of Lebesgue

integrable functions as those generalized integrable functions f whose absolute value j f j is
also generalized integrable; this is a very different approach to the Lebesgue integral than is

usual, but it gives the same class of functions. In Section 10.3, we will integrate functions

on unbounded closed intervals. In the final section, we discuss the limit theorems that hold

for the generalized Riemann and Lebesgue integrals, and we will give some interesting

applications of these theorems. We will also define what is meant by a ‘‘measurable

function’’ and relate that notion to generalized integrability.

Readers wishing to study the proofs that are omitted here should consult the first

author’s book, AModern Theory of Integration, which we refer to as [MTI], or the books of

DePree and Swartz, Gordon, and McLeod listed in the References.

Section 10.1 Definition and Main Properties

In Definition 5.5.2, we defined a gauge on [a, b] to be a strictly positive function d : [a; b] !
ð0;1Þ. Further, a tagged partition _P :¼ fðIi; tiÞgni¼1 of ½a; b�, where Ii :¼ [xi�1; xi], is said

to be d-fine in the case

ð1Þ ti 2 Ii � ½ti � dðtiÞ; ti þ dðtiÞ� for i ¼ 1; . . . ; n:

Ralph Henstock and Jaroslav Kurzweil
Ralph Henstock (1923–2007), pictured on the left, was

born in Nottinghamshire, England, the son of a mine-

worker. At an early age he showed that he was a gifted

scholar inmathematics and science.He entered St. John’s

College, Cambridge, in 1941, studying with J. D. Bernal,

G. H. Hardy, and J. C. Burkhill and was classified

Wrangler in Part II of the Tripos Exams in 1943. He

earned his B.A. at Cambridge in 1944 and his Ph.D. at the

University ofLondon in1948.His research is in the theory

of summability, linear analysis, and integration theory.

Most of his teaching was in Northern Ireland.

Jaroslav Kurzweil (pictured on the right) was born on May 7, 1926, in Prague. A student of

V. Jarnik, he has done a considerable amount of research in the theory of differential equations and

the theory of integration, and also has had a serious interest in mathematical education. In 1964 he

was awarded the Klement Gottwald State Prize, and in 1981 he was awarded the Bolzano medal

of the Czechoslovak Academy of Sciences. Since 1989 he has been Director of the Mathematical

Institute of the Czech Academy of Sciences in Prague and has had a profound influence on the

mathematicians there. In 2006, he was awarded the ‘‘Czech Mind,’’ the highest scientific prize of

the Czech Republic.
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This is shown in Figure 5.5.1. Note that (i) only a tagged partition can be d-fine, and (ii) the

d-fineness of a tagged partition depends on the choice of the tags ti and the values dðtiÞ.
In Examples 5.5.4, we gave some specific examples of gauges, and in Theorem 5.5.5

we showed that if d is any gauge on [a, b], then there exist d-fine tagged partitions of [a, b].
We will define the generalized Riemann (or the ‘‘Henstock–Kurzweil’’) integral. It

will be seen that the definition is very similar to that of the ordinary Riemann integral, and

that many of the proofs are essentially the same. Indeed, the only difference between the

definitions of these integrals is that the notion of smallness of a tagged partition is specified

by a gauge, rather than its norm. It will be seen that this—apparently minor—difference

results in a very much larger class of integrable functions. In order to avoid some

complications, a few proofs will be omitted; they can be found in [MTI].

Before we begin our study, it is appropriate that we ask: Why are gauges more useful

than norms? Briefly, the reason is that the norm of a partition is a rather coarse measure of

the fineness of the partition, since it is merely the length of the largest subinterval in the

partition. On the other hand, gauges can give one more delicate control of the subintervals

in the partitions, by requiring the use of small subinterals when the function is varying

rapidly but permitting the use of larger subintervals when the function is nearly constant.

Moreover, gauges can be used to force specific points to be tags; this is often useful when

unusual behavior takes place at such a point. Since gauges are more flexible than norms,

their use permits a larger class of functions to become integrable.

10.1.1 Definition A function f : ½a; b� ! R is said to be generalized Riemann integra-

ble on [a, b] if there exists a number L 2 R such that for every e > 0 there exists a gauge de
on [a, b] such that if _P is any de-fine partition of [a, b], then

jSð f ; �PÞ � Lj < e:

The collection of all generalized Riemann integrable functions will usually be denoted by

R�½a; b�.

It will be shown that if f 2 R�½a; b�, then the number L is uniquely determined; it will

be called the generalized Riemann integral of f over [a, b]. It will also be shown that if

f 2 R½a; b�, then f 2 R�½a; b� and the value of the two integrals is the same. Therefore, it

will not cause any ambiguity if we also denote the generalized Riemann integral of f 2
R�½a; b� by the symbols

Z b

a

f or

Z b

a

f ðxÞ dx:

Our first result gives the uniqueness of the value of the generalized Riemann integral.

Although its proof is almost identical to that of Theorem 7.1.2, we will write it out to show

how gauges are used instead of norms of partitions.

10.1.2 Uniqueness Theorem If f 2 R�½a; b�, then the value of the integral is uniquely

determined.

Proof. Assume that L0 and L00 both satisfy the definition and let e > 0. Thus there exists a

gauge d0e=2 such that if _P1 is any d0e=2-fine partition, then

jS� f ; �P1

�� L0j < e=2:
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Also there exists a gauge d00e=2 such that if _P2 is any d00e=2-fine partition, then

jS f ;
�P2

� �� L00j < e=2:

We define de by deðtÞ :¼ min d0e=2ðtÞ; d00e=2ðtÞ
n o

for t 2 ½a; b�, so that de is a gauge on ½a; b�.
If _P is a de-fine partition, then the partition _P is both d0e=2-fine and d00e=2-fine, so that

jS f ;
�P� �� L0j < e=2 and jS f ;

�P� �� L00j < e=2;

whence it follows that

jL0 � L00j � jL0 � S f ;
�P� �j þ jS f ;

�P� �� L00j
< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, it follows that L0 ¼ L00. Q.E.D.

We now show that every Riemann integrable function f is also generalized Riemann

integrable, and with the same value for the integral. This is done by using a gauge that is a

constant function.

10.1.3 Consistency Theorem If f 2 R½a; b� with integral L, then also f 2 R�½a; b� with
integral L.

Proof. Given e > 0, we need to construct an appropriate gauge on [a, b]. Since

f 2 R½a; b�, there exists a number de > 0 such that if _P is any tagged partition with
_P�� ���� �� < de, then S f ; _P� �� L

�� �� < e. We define the function d�e ðtÞ :¼ 1
4
de for t 2 ½a; b�, so that

d�e is a gauge on [a, b].

If _P ¼ ðIi; tiÞf gni¼1, where Ii :¼ xi�1; xi½ �, is a d�e -fine partition, then since

Ii � ti � d�e tið Þ; ti þ d�e tið Þ� � ¼ ti � 1
4
de; ti þ 1

4
de

� �
;

it is readily seen that 0 < xi � xi�1 � 1
2
de < de for all i ¼ 1; . . . ; n. Therefore this partition

also satisfies _P�� ���� �� < de and consequently Sð f : _PÞ � L
�� �� < e.

Thus every d�e -fine partition _P also satisfies S f : _P� �� L
�� �� < e. Since e > 0 is

arbitrary, it follows that f is generalized Riemann integrable to L. Q.E.D.

From Theorems 7.2.5, 7.2.7, and 7.2.8, we conclude that: Every step function, every

continuous function, and every monotone function belongs toR�½a; b�. We will now show

that Dirichlet’s function, which was shown not to be Riemann integrable in 7.2.2(b) and

7.3.13(d), is generalized Riemann integrable.

10.1.4 Examples (a) The Dirichlet function f belongs to R�½0; 1� and has integral 0.

We enumerate the rational numbers in [0, 1] as frkg1k¼1. Given e > 0 we define deðrkÞ
:¼ e=2kþ2 and deðxÞ :¼ 1 when x is irrational. Thus de is a gauge on [0,1] and if the

partition _P :¼ ðIi; tiÞf gni¼1 is de-fine, then we have xi � xi�1 � 2deðtiÞ. Since the only

nonzero contributions to S f ; _P� �
come from rational tags ti ¼ rk, where

0 < f rkð Þ xi � xi�1ð Þ ¼ 1 � xi � xi�1ð Þ � 2e

2kþ2
¼ e

2kþ1
;
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and since each such tag can occur in at most two subintervals, we have

0 � Sð f ; �PÞ <
X1
k¼1

2e

2kþ1
¼
X1
k¼1

e

2k
¼ e:

Since e > 0 is arbitrary, then f 2 R�½0; 1� and R 1
0
f ¼ 0.

(b) Let H : ½0; 1� ! R be defined by Hð1=kÞ :¼ k for k 2 N and HðxÞ :¼ 0 elsewhere on

[0, 1].

Since H is not bounded on [0, 1], it follows from the Boundedness Theorem 7.1.6 that

it is not Riemann integrable on [0, 1]. We will now show that H is generalized Riemann

integrable to 0.

In fact, given e > 0, we define deð1=kÞ :¼ e= k2kþ2
� �

and set deðxÞ :¼ 1 elsewhere on

[0, 1], so de is a gauge on [0, 1]. If _P is a de-fine partition of [0, 1] then xi � xi�1 � 2de tið Þ.
Since the only nonzero contributions to SðH; _PÞ come from tags ti ¼ 1=k, where

0 < Hð1=kÞ xi � xi�1ð Þ ¼ k � xi � xi�1ð Þ � k � 2e
k2kþ2

¼ e
2kþ1

;

and since each such tag can occur in at most two subintervals, we have

0 � S H;
�P� �

<
X1
k¼1

e

2k
¼ e:

Since e > 0 is arbitrary, then H 2 R�½0; 1� and R 1
0
H ¼ 0: &

The next result is exactly similar to Theorem 7.1.5.

10.1.5 Theorem Suppose that f and g are in R�½a; b�. Then:
(a) If k 2 R , the function kf is in R�½a; b� and

Z b

a

kf ¼ k

Z b

a

f :

(b) The function f þ g is in R�½a; b� and
Z b

a

ð f þ gÞ ¼
Z b

a

f þ
Z b

a

g:

(c) If f ðxÞ � gðxÞ for all x 2 ½a; b�, then
Z b

a

f �
Z b

a

g:

Proof. (b) Given e > 0, we can use the argument in the proof of the Uniqueness Theorem

10.1.2 to construct a gauge de on [a, b] such that if _P is any de-fine partition of [a, b], then

S f ;
�P� ��

Z b

a

f

����
���� < e=2 and S g;

�P� ��
Z b

a

g

����
���� < e=2:
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Since S f þ g; _P� � ¼ S f ; _P� �þ S g; _P� �
, it follows as in the proof of Theorem 7.1.5(b) that

S f þ g;
�P� ��

Z b

a

f þ
Z b

a

g

� �����
���� � S f ;

�P� ��
Z b

a

f

����
����þ S g;

�P� ��
Z b

a

g

����
����

< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, then f þ g 2 R�½a; b� and its integral is the sum of the integrals of f

and g.

The proofs of (a) and (c) are analogous and are left to the reader. Q.E.D.

It might be expected that an argument similar to that given in Theorem 7.1.6 can be

used to show that a function in R�½a; b� is necessarily bounded. However, that is not the

case; indeed, we have already seen an unbounded function inR�½0; 1� in Example 10.1.4(b)

and will encounter more later. However, it is a profitable exercise for the reader to

determine exactly where the proof of Theorem 7.1.6 breaks down for a function inR�½a; b�.

The Cauchy Criterion

There is an analogous form for the Cauchy Criterion for functions in R�½a; b�. It is
important because it eliminates the need to know the value of the integral. Its proof is

essentially the same as that of 7.2.1.

10.1.6 Cauchy Criterion A function f : ½a; b� ! R belongs toR�½a; b� if and only if for
every e > 0 there exists a gauge he on ½a, b� such that if _P and _Q are any partitions of

[a, b] that are he-fine, then

S f ;
�P� �� S f ;

�Q� ��� �� < e:

Proof. ()) If f 2 R�½a; b�with integral L, let de=2 be a gauge on [a, b] such that if _P and _Q
are de=2-fine partitions of [a, b], then

jS f ;
�P� �� Lj < e=2 and jS f ;

�
Q

� �� Lj < e=2:

We set heðtÞ :¼ de=2ðtÞ for t 2 ½a; b�, so if _P and _Q are he-fine, then

jS f ;
�P� �� S f ;

�Q� �j � jS f ;
�P� �� Lj þ jL� S f ;

�Q� �j
< e=2þ e=2 ¼ e:

(() For each n 2 N , let dn be a gauge on [a, b] such that if _P and _Q are partitions that

are dn-fine, then

S f ;
�P� �� S f ;

�Q� ��� �� < 1=n:

We may assume that dnðtÞ � dnþ1ðtÞ for all t 2 ½a; b� and n 2 N; otherwise, we replace dn
by the gauge d0nðtÞ ¼ minfd1ðtÞ; . . . ; dnðtÞg for all t 2 ½a; b�.

For each n 2 N , let _Pn be a partition that is dn-fine. Clearly, ifm > n then both _Pm and
_Pn are dn-fine, so that

ð2Þ S f ;
�Pn

� �� S f ;
�Pm

� ��� �� < 1=n for m > n:

Consequently, the sequence S f ; _Pm

� �� �1
m¼1

is a Cauchy sequence in R , so it converges to

some number A. Passing to the limit in (2) as m ! 1, we have

S f ;
�Pn

� �� A
�� �� � 1=n for all n 2 N :
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To see that A is the generalized Riemann integral of f, given e > 0, let K 2 N satisfy

K > 2=e. If _Q is a dk-fine partition, then

S f ;
�Q� �� A

�� �� � S f ;
�Q� �� S f ;

�PK

� ��� ��þ S f ;
�PK

� �� A
�� ��

� 1=K þ 1=K < e:

Since e > 0 is arbitrary, then f 2 R�½a; b� with integral A. Q.E.D.

10.1.7 Squeeze Theorem Let f : ½a; b� ! R . Then f 2 R�½a; b� if and only if for every

e > 0 there exist functions ae and ve in R�½a; b� with
aeðxÞ � f ðxÞ � veðxÞ f or all x 2 ½a; b�;

and such that Z b

a

ve � aeð Þ � e:

The proof of this result is exactly similar to the proof of Theorem 7.2.3, and will be left

to the reader.

The Additivity Theorem

We now present a result quite analogous to Theorem 7.2.9. Its proof is a modification of the

proof of that theorem, but since it is somewhat technical, the reader may choose to omit the

proof on a first reading.

10.1.8 Additivity Theorem Let f : ½a; b� ! R and let c 2 ða; bÞ. Then f 2 R�½a; b� if
and only if its restrictions to ½a, c� and ½c, b� are both generalized Riemann integrable. In

this case

ð3Þ
Z b

a

f ¼
Z c

a

f þ
Z b

c

f :

Proof. (() Suppose that the restriction f1 of f to [a, c] and the restriction f2 of f to [c, b] are

generalized Riemann integrable to L1 and L2, respectively. Then, given e > 0 there exists a

gauge d0 on [a, c] such that if _P1 is a d
0-fine partition of [a, c] then S f 1; _P1

� �� L1
�� �� < e=2.

Also there exists a gauge d00 on [c, b] such that if _P2 is a d00-fine partition of [c, b] then

S f 2; _P2

� �� L2
�� �� < e=2.

We now define a gauge de on [a, b] by

deðtÞ :¼
min d0ðtÞ; 1

2
ðc� tÞ	 


for t 2 ½a; cÞ;
min d0ðcÞ; d00ðcÞf g for t ¼ c;

min d00ðtÞ; 1
2
ðc� tÞ	 


for t 2 ðc; b�:

8><
>:

(This gauge has the property that any de-fine partition must have c as a tag for any

subinterval containing the point c.)

We will show that if _Q is any de-fine partition of [a, b], then there exist a d0-fine
partition _Q1 of [a, c] and a d00-fine partition _Q2 of [c, b] such that

ð4Þ S f ;
�Q� � ¼ S f 1;

�Q1

� �þ S f 2;
�Q2

� �
:

Case (i) If c is a partition point of _Q, then it belongs to two subintervals of _Q and is the

tag for both of these subintervals. If _Q1 consists of the part of _Q having subintervals in
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[a, c], then _Q1 is d
0-fine. Similarly, if _Q2 consists of the part of _Q having subintervals in

[c, b], then _Q2 is d00-fine. The relation (4) is now clear.

Case (ii) If c is not a partition point in _Q ¼ ðIi; tiÞf gmi¼1, then it is the tag for some

subinterval, say xk�1; xk½ �. We replace the pair xk�1; xk½ �; cð Þ by the two pairs xk�1; c½ �; cð Þ
and c; xk½ �; cð Þ, and let _Q1 and _Q2 be the tagged partitions of [a, c] and [c, b] that result.

Since f ðcÞ xk � xk�1ð Þ ¼ f ðcÞ c� xk�1ð Þ þ f ðcÞ xk � cð Þ, it is seen that the relation (4)

also holds.

In either case, equation (4) and the Triangle Inequality imply that

jSð f ; �QÞ � ðL1 þ L2Þj ¼ jðSð f ; �Q1Þ þ Sð f ; �Q2ÞÞ � ðL1 þ L2Þj
� jSð f ; �Q1Þ � L1j þ jSð f ; �Q2Þ � L2j:

Since _Q1 is d0-fine and _Q2 is d00-fine, we conclude that

jSð f ; �QÞ � ðL1 þ L2Þj < e:

Since e > 0 is arbitrary, we infer that f 2 R�½a; b� and that (3) holds.

()) Suppose that f 2 R�½a; b� and, given e > 0, let the gauge he satisfy the Cauchy

Criterion. Let f 1 be the restriction of f to [a, c] and let
_P1; _Q1 be he-fine partitions of [a, c].

By adding additional partition points and tags from [c, b], we can extend _P1 and _Q1 to

he-fine partitions _P and _Q of [a, b]. If we use the same additional points and tags in [c, b]

for both _P and _Q, then

Sð f ; �PÞ � Sð f ; �QÞ ¼ Sð f 1; �P1Þ � Sð f 1; �Q1Þ:
Since both _P and _Q are he-fine, then jSð f 1; _P1Þ � Sð f 1; _Q1Þj < e also holds. Therefore the
Cauchy Condition shows that the restriction f 1 of f to [a, c] is in R�½a; c�. Similarly, the

restriction f 2 of f to [c, d] is in R�½c; d�.
The equality (3) now follows from the first part of the theorem. Q.E.D.

It is easy to see that results exactly similar to 7.2.10–7.2.13 hold for the generalized

Riemann integral. We leave their statements to the reader, but will use these results freely.

The Fundamental Theorem (First Form)

We will now give versions of the Fundamental Theorems for the generalized Riemann

integral. It will be seen that the First Form is significantly stronger than for the (ordinary)

Riemann integral; indeed, we will show that the derivative of any function automatically

belongs toR�½a; b�, so the integrability of the function becomes a conclusion, rather than a

hypothesis.

10.1.9 The Fundamental Theorem of Calculus (First Form) Suppose there exists a

countable set E in [a, b], and functions f ;F : ½a; b� ! R such that:

(a) F is continuous on [a, b].

(b) F0ðxÞ ¼ f ðxÞ f or all x 2 ½a; b�nE:
Then f belongs to R�½a; b� and

ð5Þ
Z b

a

f ¼ FðbÞ � FðaÞ:

Proof. We will prove the theorem in the case where E ¼;, leaving the general case to be
handled in the exercises.
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Thus, we assume that (b) holds for all x 2 ½a; b�. Since we wish to show that

f 2 R�½a; b�, given e > 0, we need to construct a gauge de; this will be done by using

the differentiability of F on [a, b]. If t 2 I, since the derivative f ðtÞ ¼ F0ðtÞ exists, there
exists deðtÞ > 0 such that if 0 < jz� tj � deðtÞ; z 2 ½a; b�, then

FðzÞ � FðtÞ
z� t

� f ðtÞ
����

���� < 1

2
e:

If we multiply this inequality by jz� tj, we obtain

jFðzÞ � FðtÞ � f ðtÞðz� tÞj � 1
2
ejz� tj

whenever z 2 ½t� deðtÞ; tþ deðtÞ� \ ½a; b�. The function de is our desired gauge.

Now let u; v 2 ½a; b� with u < v satisfy t 2 ½u; v� � ½t� deðtÞ; tþ deðtÞ�. If we subtract
and add the term FðtÞ � f ðtÞ � t and use the Triangle Inequality and the fact that v� t � 0

and t� u � 0, we get

jFðvÞ � FðuÞ � f ðtÞðv� uÞj
� jFðvÞ � FðtÞ � f ðtÞðv� tÞj þ jFðtÞ � FðuÞ � f ðtÞðt� uÞj

� 1
2
eðv� tÞ þ 1

2
eðt� uÞ ¼ 1

2
eðv� uÞ:

Therefore, if t 2 ½u; v� � ½t� deðtÞ; tþ deðtÞ�, then we have

ð6Þ jFðvÞ � FðuÞ � f ðtÞðv� uÞj � 1
2
eðv� uÞ:

We will show that f 2 R�½a; b� with integral given by the telescoping sum

ð7Þ FðbÞ � FðaÞ ¼
Xn
i¼1

fFðxiÞ � Fðxi�1Þg:

For, if the partition _P :¼ fð½xi�1; xi�; tiÞgni¼1 is de-fine, then

ti 2 ½xi�1; xi� � ½ti � deðtiÞ; ti þ deðtiÞ� for i ¼ 1; . . . ; n;

and so we can use (7), the Triangle Inequality, and (6) to obtain

jFðbÞ � FðaÞ � Sð f ;PÞj¼
Xn
i¼1

fFðxiÞ � Fðxi�1Þ � f ðtiÞðxi � xi�1Þg
�����

�����
�
Xn
i¼1

jFðxiÞ � Fðxi�1Þ � f ðtiÞðxi � xi�1Þj

�
Xn
i¼1

1
2
eðxi � xi�1Þ < eðb� aÞ:

Since e > 0 is arbitrary, we conclude that f 2 R�½a; b� and (5) holds. Q.E.D.

10.1.10 Examples (a) IfHðxÞ :¼ 2
ffiffiffi
x

p
for x 2 ½0; b�, thenH is continuous on ½0; b� and

H0ðxÞ ¼ 1=
ffiffiffi
x

p
for x 2 ð0; b�. We define hðxÞ :¼ H0ðxÞ for x 2 ð0; b� and hð0Þ :¼ 0. It

follows from the Fundamental Theorem 10.1.9 with E :¼ f0g that h belongs to R�½0; b�
and that

R b
0
h ¼ HðbÞ � Hð0Þ ¼ HðbÞ, which we write asZ b

0

1ffiffiffi
x

p dx ¼ 2
ffiffiffi
b

p
:

(b) More generally, if a > 0, letHaðxÞ :¼ xa=a ¼ ea lnx=a for x 2 ð0; b� andHað0Þ :¼ 0

so that Ha is continuous on [0, b] and H0
aðxÞ ¼ xa�1 for all x 2 ð0; b�; see 8.3.10 and

8.3.13. We define haðxÞ :¼ H0
aðxÞ for x 2 ð0; b� and hað0Þ :¼ 0.
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Then Theorem 10.1.9 implies that ha 2 R�½0; b� and that
R b
0
ha ¼ HaðbÞ � Hað0Þ ¼

HaðbÞ, which we write as

Z b

0

xa�1dx ¼ ba

a
:

(c) Let LðxÞ :¼ x ln x� x for x 2 ð0; b� and Lð0Þ :¼ 0. Then L is continuous on [0, b]

(use l’Hospital’s Rule at x ¼ 0), and it is seen that L0 xð Þ ¼ ln x for x 2 ð0; b�.
It follows from Theorem 10.1.9 with E ¼ f0g that the unbounded function lðxÞ :¼ ln x

forx 2 ð0; b� and lð0Þ :¼ 0 belongs toR�½0; b� and thatR b
0
l ¼ LðbÞ � Lð0Þ,whichwewrite as

Z b

0

ln x dx ¼ b ln b� b:

(d) Let AðxÞ :¼ Arcsin x for x 2 ½�1; 1� so that A is continuous on ½�1; 1� and A0ðxÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
for x 2 ð�1; 1Þ. We define sðxÞ :¼ A0ðxÞ for x 2 ð�1; 1Þ and let

sð�1Þ ¼ sð1Þ :¼ 0.

Then Theorem 10.1.9 with E ¼ f�1; 1g implies that s 2 R�½�1; 1� and thatR 1
�1

s ¼ Að1Þ � Að�1Þ ¼ p, which we write as

Z 1

�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ Arcsin 1� Arcsinð�1Þ ¼ p: &

The Fundamental Theorem (Second Form)

We now turn to the Second Form of the Fundamental Theorem, in which we wish to

differentiate the indefinite integral F of f, defined by:

ð8Þ FðzÞ :¼
Z z

a

f ðxÞ dx for z 2 ½a; b�:

10.1.11 Fundamental Theorem of Calculus (Second Form) Let f belong to R�½a; b�
and let F be the indefinite integral of f. Then we have:

(a) F is continuous on [a, b].

(b) There exists a null set Z such that if x 2 ½a; b�nZ, then F is differentiable at x and

F0ðxÞ ¼ f ðxÞ.
(c) If f is continuous at c 2 ½a; b�, then F0ðcÞ ¼ f ðcÞ.

Proof. The proofs of (a) and (b) can be found in [MTI]. The proof of (c) is exactly as the

proof of Theorem 7.3.5 except that we use Theorems 10.1.5(c) and 10.1.8. Q.E.D.

We can restate conclusion (b) as: The indefinite integral F of f is differentiable to f

almost everywhere on [a, b].

Substitution Theorem

In view of the simplicity of the Fundamental Theorem 10.1.9, we can improve the theorem

justifying the ‘‘substitution formula.’’ The next result is a considerable strengthening of

Theorem 7.3.8. The reader should write out the hypotheses in the case Ef ¼ Ew ¼ E ¼ ;.

10.1.12 Substitution Theorem (a) Let I :¼ ½a; b� and J :¼ ½a;b�, and let F : I ! R

and w : J ! R be continuous functions with wðJÞ � I.
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(b) Suppose there exist sets Ef 	 I and Ew 	 J such that f ðxÞ ¼ F0ðxÞ for x 2 InEf ,

that w0ðtÞ exists for t 2 JnEw, and that E :¼ w�1ðEf Þ [ Ew is countable.

(c) Set f ðxÞ :¼ 0 for x 2 Ef and w0ðtÞ :¼ 0 for t 2 Ew.

We conclude that f 2 R�ðwðJÞÞ, that ð f 
 wÞ � w0 2 R�ðJÞ and that

ð9Þ
Z b

a

ð f 
 wÞ � w0 ¼ F 
 w
���b
a
¼
Z wðbÞ

wðaÞ
f :

Proof. Since w is continuous on J, Theorem 5.3.9 implies that wðJÞ is a closed interval in
I. Also w�1ðEf Þ is countable, whence Ef \ wðJÞ ¼ wðw�1ðEf ÞÞ is also countable. Since

f ðxÞ ¼ F0ðxÞ for all x 2 wðJÞnEf , the Fundamental Theorem 10.1.9 implies that f 2
R�ðwðJÞÞ and that

Z wðbÞ

wðaÞ
f ¼ F

���wðbÞ
wðaÞ

¼ FðwðbÞÞ � FðwðaÞÞ:

If t 2 JnE, then t 2 JnEw and wðtÞ 2 InEf . Hence the Chain Rule 6.1.6 implies that

ðF 
 wÞ0ðtÞ ¼ f ðwðtÞÞ � w0ðtÞ for t 2 JnE::
Since E is countable, the Fundamental Theorem implies that ð f 
 wÞ � w0 2 R�ðJÞ and that

Z b

a

ð f 
 wÞ � w0 ¼ F 
 w
���b
a
¼ FðaðbÞÞ � FðwðaÞÞ:

The conclusion follows by equating these two terms. Q.E.D.

10.1.13 Examples (a) Consider the integral

Z 4

0

cos
ffiffi
t

p
ffiffi
t

p dt.

Since the integrand is unbounded as t ! 0þ, there is some doubt about the existence

of the integral. Also, we have seen in Exercise 7.3.19(b) that Theorem 7.3.8 does not apply

with wðtÞ :¼ ffiffi
t

p
. However, Theorem 10.1.12 applies.

Indeed, this substitution gives w0ðtÞ ¼ 1=ð2 ffiffi
t

p Þ for t 2 ð0; 4� and we set w0ð0Þ :¼ 0. If

we put FðxÞ :¼ 2 sin x, then f ðxÞ ¼ F0ðxÞ ¼ 2 cos x and the integrand has the form

f ðwðtÞÞ � w0ðtÞ ¼ 2 cos
ffiffi
t

p� � 1
2
ffiffi
t

p
� �

for t 6¼ 0:

Thus, the Substitution Theorem 10.1.12 with Ew :¼ f0g;Ef :¼ ;; E :¼ f0g implies that

Z t¼4

t¼0

cos
ffiffi
t

p
ffiffi
t

p dt ¼
Z x¼2

x¼0

2 cos x dx ¼ 2 sin 2:

(b) Consider the integral

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffi
t� t2

p ¼
Z 1

0

dtffiffi
t

p ffiffiffiffiffiffiffiffiffiffi
1� t

p :

Note that this integrand is unbounded as t ! 0þ and as t ! 1�. As in (a), we let

x ¼ wðtÞ :¼ ffiffi
t

p
for t 2 ½0; 1� so that w0ðtÞ ¼ 1= 2

ffiffi
t

p� �
for t 2 ð0; 1�. Since

ffiffiffiffiffiffiffiffiffiffi
1� t

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, the integrand takes the form

2ffiffiffiffiffiffiffiffiffiffi
1� t

p � 1

2
ffiffi
t

p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � w0ðtÞ;
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which suggests f ðxÞ ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
for x 6¼ 1. Therefore, we are led to choose FðxÞ :¼

2 Arcsin x for x 2 ½0; 1�, since
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ¼ F0ðxÞ ¼ ð2Arcsin xÞ0 for x 2 ½0; 1Þ:

Consequently, we have Ew ¼ f0g and Ef ¼ f1g, so that E ¼ f0; 1g, and the Substitution

Theorem yields

Z t¼1

t¼0

dtffiffi
t

p ffiffiffiffiffiffiffiffiffiffi
1� t

p ¼
Z x¼1

x¼0

2dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 2Arcsin x
���1
0
¼ 2Arcsin 1 ¼ p: &

Other formulations of the Substitution Theorem are given in [MTI].

The Multiplication Theorem

In Theorem 7.3.16 we saw that the product of two Riemann integrable functions is

Riemann integrable. That result is not true for generalized Riemann integrable functions;

see Exercises 18 and 20. However, we will state a theorem in this direction that is often

useful. Its proof will be found in [MTI].

10.1.14 Multiplication Theorem If f 2 R�½a; b� and if g is a monotone function on

[a, b], then the product f � g belongs to R�½a; b�.

Integration by Parts

The following version of the formula for integration by parts is useful.

10.1.15 Integration by Parts Theorem Let F and G be differentiable on [a, b]. Then

F0G belongs to R�½a; b� if and only if FG0 belongs to R�½a; b�. In this case we have

ð10Þ
Z b

a

F0G ¼ FG

����
b

a

�
Z b

a

FG0:

The proof uses Theorem 6.1.3(c); it will be left to the reader. In applications, we

usually have F0ðxÞ ¼ f ðxÞ andG0ðxÞ ¼ gðxÞ for all x 2 ½a; b�. It will be noted that we need
to assume that one of the functions fG ¼ F0G and Fg ¼ FG0 belongs to R�½a; b�.

The reader should contrast the next result with Theorem 7.3.18. Note that we do not

need to assume the integrability of f ðnþ1Þ.

10.1.16 Taylor’s Theorem Suppose that f ; f 0; f 00; . . . ; f ðnÞ and f ðnþ1Þ exist on [a, b].

Then we have

ð11Þ f ðbÞ ¼ f ðaÞ þ f 0ðaÞ
1!

ðb� aÞ þ � � � þ f ðnÞðaÞ
n!

ðb� aÞn þ Rn;

where the remainder is given by

ð12Þ Rn ¼ 1

n!

Z b

a

f ðnþ1ÞðtÞ � ðb� tÞndt:

Proof. Since f ðnþ1Þ is a derivative, it belongs toR�½a; b�. Moreover, since t 7! ðb� tÞn is
monotone on [a, b], the Multiplication Theorem 10.1.14 implies the integral in (12) exists.

Integrating by parts repeatedly, we obtain (11). Q.E.D.
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Exercises for Section 10.1

1. Let d be a gauge on [a, b] and let _P ¼ fð½xi�1; xi�; tiÞgni¼1 be a d-fine partition of [a, b].

(a) Show that 0 < xi � xi�1 � 2d(ti) for i ¼ 1; . . . ; n.
(b) If d� :¼ supfdðtÞ : t 2 ½a; b�g < 1, show that k _Pk � 2d�.
(c) If d� :¼ inffdðtÞ : t 2 ½a; b�g satisfies d� > 0, and if _Q is a tagged partition of [a, b] such

that we have k _Qk � d�, show that _Q is d-fine.

(d) If e ¼ 1, show that the gauge d1 in Example 10.1.4(a) has the property that inffd1ðtÞ : t 2
½0; 1�g ¼ 0.

2. (a) If _P is a tagged partition of [a, b], show that each tag can belong to at most two subintervals

in _P.
(b) Are there tagged partitions in which every tag belongs to exactly two subintervals?

3. Let d be a gauge on [a, b] and let _P be a d-fine partition of [a, b].

(a) Show that there exists a d-fine partition _Q1 such that (i) no tag belongs to two subintervals

in _Q1, and (ii) Sð f ; _Q1Þ ¼ Sð f ; _PÞ for any function f on [a, b].

(b) Does there exist a d-fine partition _Q2 such that (j) every tag belongs to two subintervals in
_Q2, and (jj) Sð f ; _Q2Þ ¼ Sð f ; _PÞ for any function f on [a, b]?

(c) Show that there exists a d-fine partition _Q3 such that (k) every tag is an endpoint of its

subinterval, and (kk) Sð f ; _Q3Þ ¼ Sð f ; _PÞ for any function f on [a, b].

4. If d is defined on [0, 2] by dðtÞ :¼ 1
2
jt� 1j for x 6¼ 1 and dð1Þ :¼ 0:01, show that every d-fine

partition _P of [0, 2] has t ¼ 1 as a tag for at least one subinterval, and that the total length of the

subintervals in _P having 1 as a tag is � 0:02.

5. (a) Construct a gauge d on [0, 4] that will force the numbers 1, 2, 3 to be tags of any d-fine

partition of this interval.

(b) Given a gauge d1 on [0, 4], construct a gauge d2 such that every d2-fine partition of [0, 4]

will (i) have the numbers 1, 2, 3 in its collection of tags, and (ii) be d1-fine.

6. Show that f 2 R�½a; b� with integral L if and only if for every e > 0 there exists a gauge ge on

[a, b] such that if _P ¼ fð½xi�1; xi�; tiÞgni¼1 is any tagged partition such that 0 < xi � xi�1 �
geðtiÞ for i ¼ 1; . . . ; n, then jSð f ; _PÞ � Lj < e. (This provides an alternate—but equivalent—

way of defining the generalized Riemann integral.)

7. Show that the following functions belong toR�½0; 1� by finding a function Fk that is continuous

on [0, 1] and such that F0
kðxÞ ¼ f kðxÞ for x 2 ½0; 1�nEk, for some finite set Ek.

(a) f 1ðxÞ :¼ ðxþ 1Þ= ffiffiffi
x

p
for x 2 ð0; 1� and f 1ð0Þ :¼ 0.

(b) f 2ðxÞ :¼ x=
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
for x 2 ½0; 1Þ and f 2ð1Þ :¼ 0.

(c) f 3ðxÞ :¼
ffiffiffi
x

p
ln x for x 2 ð0; 1� and f 3ð0Þ :¼ 0.

(d) f 4ðxÞ :¼ ðlnxÞ= ffiffiffi
x

p
for x 2 ð0; 1� and f 4ð0Þ :¼ 0.

(e) f 5ðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞ=ð1� xÞp

for x 2 ½0; 1Þ and f 5ð1Þ :¼ 0.

(f) f 6ðxÞ :¼ 1=ð ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
2� x

p Þ for x 2 ð0; 1� and f 6ð0Þ :¼ 0.

8. Explain why the argument in Theorem 7.1.6 does not apply to show that a function inR�½a; b� is
bounded.

9. Let f ðxÞ :¼ 1=x for x 2 ð0; 1� and f ð0Þ :¼ 0; then f is continuous except at x ¼ 0. Show that f

does not belong to R�½0; 1�. [Hint: Compare f with snðxÞ :¼ 1 on ð1=2; 1�; snðxÞ :¼ 2 on

ð1=3; 1=2�; snðxÞ :¼ 3 on ð1=4; 1=3�; . . . ; snðxÞ :¼ n on [0, 1=n].]

10. Let k : ½0; 1� ! R be defined by kðxÞ :¼ 0 if x 2 ½0; 1� is 0 or is irrational, and kðm=nÞ :¼ n if

m; n 2 N have no common integer factors other than 1. Show that k 2 R�½0; 1� with integral

equal to 0. Also show that k is not continuous at any point, and not bounded on any subinterval

[c, d] with c < d.

11. Let f be Dirichlet’s function on [0, 1] and FðxÞ :¼ 0 for all x 2 ½0; 1�. Since F0ðxÞ ¼ f ðxÞ for
all x 2 ½0; 1�nQ , show that the Fundamental Theorem 10.1.9 implies that f 2 R�½0; 1�.
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12. LetMðxÞ :¼ lnjxj for x 6¼ 0 andMð0Þ :¼ 0. Show thatM0ðxÞ ¼ 1=x for all x 6¼ 0. Explain why

it does not follow that
R 2
�2
ð1=xÞdx ¼ lnj�2j � ln 2 ¼ 0.

13. Let L1ðxÞ :¼ x ln jxj � x for x 6¼ 0 and L1ð0Þ :¼ 0, and let l1ðxÞ :¼ lnjxj if x 6¼ 0 and

l1ð0Þ :¼ 0. If [a, b] is any interval, show that l1 2 R�½a; b� and that R b
a
lnjxjdx ¼ L1ðbÞ � L1ðaÞ.

14. Let E :¼ fc1; c2; . . .g and let F be continuous on [a, b] and F0ðxÞ ¼ f ðxÞ for x 2 ½a; b�nE and

f ðckÞ :¼ 0. We want to show that f 2 R�½a; b� and that equation (5) holds.

(a) Given e > 0 and t 2 ½a; b�nE, let deðtÞ be defined as in the proof of 10.1.9. Choose deðckÞ >
0 such that if jz� ckj < deðckÞ and z 2 ½a; b�, then jFðzÞ � FðckÞj < e=2kþ2.

(b) Show that if the partition _P is de-fine and has a tag ti ¼ ck, then we have

jFðxiÞ � Fðxi�1Þ � f ðckÞðxi � xi�1Þj < e=2kþ1.

(c) Use the argument in 10.1.9 to get jSð f ; _PÞ � ðFðbÞ � FðaÞÞj < eðb� aþ 1Þ.
15. Show that the function g1ðxÞ :¼ x�1=2sinð1=xÞ for x 2 ð0; 1� and g1ð0Þ :¼ 0 belongs to

R�½0; 1�. [Hint: Differentiate C1ðxÞ :¼ x3=2cosð1=xÞ for x 2 ð0; 1� and C1ð0Þ :¼ 0.]

16. Show that the function g2ðxÞ :¼ ð1=xÞsinð1=xÞ for x 2 ð0; 1� and g2ð0Þ :¼ 0 belongs to

R�½0; 1�. [Hint: Differentiate C2ðxÞ :¼ x cosð1=xÞ for x 2 ð0; 1� and C2ð0Þ :¼ 0, and use

the result for the cosine function that corresponds to Exercise 7.2.12.]

17. Use the Substitution Theorem 10.1.12 to evaluate the following integrals:

(a)

Z 3

�3

ð2tþ 1Þsgnðt2 þ t� 2Þdt ¼ 6; (b)

Z 4

0

ffiffi
t

p
dt

1þ ffiffi
t

p ;

(c)

Z 5

1

dt

t
ffiffiffiffiffiffiffiffiffiffi
t� 1

p ¼ 2Arctan 2; (d)

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
dt:

18. Give an example of a function f 2 R�½0; 1� whose square f 2 does not belong to R�½0; 1�.
19. Let FðxÞ :¼ x cosðp=xÞ for x 2 ð0; 1� and Fð0Þ :¼ 0. It will be seen that f :¼ F0 2 R�½0; 1� but

that its absolute value j f j ¼ jF0j =2 R�½0; 1�. (Here f ð0Þ :¼ 0.)

(a) Show that F0 and jF0j are continuous on any interval ½c; 1�; 0 < c < 1 and f 2 R�½0; 1�.
(b) If ak :¼ 2=ð2k þ 1Þ and bk :¼ 1=k for k 2 N, then the intervals ½ak; bk� are non-

overlapping and 1=k � R bk
ak

j f j.
(c) Since the series

X1
k¼1

1=k diverges, then j f j =2 R�½0; 1�.
20. Let f be as in Exercise 19 and let mðxÞ :¼ ð�1Þk for x 2 ½ak; bk�ðk 2 NÞ, and mðxÞ :¼ 0

elsewhere in [0, 1]. Show that m � f ¼ jm � f j. Use Exercise 7.2.11 to show that the bounded

functions m and jmj belong toR½0; 1�. Conclude that the product of a function inR�½0; 1� and a
bounded function in R½0; 1� may not belong to R�½0; 1�.

21. Let FðxÞ :¼ xjcosðp=xÞj for x 2 ð0; 1� and let Fð0Þ :¼ 0. Then F is continuous on [0, 1] and

F0ðxÞ exists for x =2 E :¼ f0g [ fak : k 2 Ng, where ak :¼ 2=ð2k þ 1Þ. Let wðxÞ :¼ F0ðxÞ for
x =2 E and wðxÞ :¼ 0 for x 2 E. Show that w is not bounded on [0,1]. Using the Fundamental

Theorem 10.1.9 with E countable, conclude that w 2 R�½0; 1� and that R b
a
w ¼ FðbÞ �FðaÞ for

a; b 2 ½0; 1�. As in Exercise 19, show that jwj =2 R�½0; 1�.
22. Let CðxÞ :¼ x2jcosðp=xÞj for x 2 ð0; 1� and Cð0Þ :¼ 0. Then C is continuous on [0, 1] and

C0ðxÞ exists for x =2 E1 :¼ fakg. Let CðxÞ :¼ C0ðxÞ for x =2 E1, and cðxÞ :¼ 0 for x 2 E1.

Show that c is bounded on [0, 1] and (using Exercise 7.2.11) that c 2 R½0; 1�. Show thatR b
a
c ¼ CðbÞ �CðaÞ for a; b 2 ½0; 1�. Also show that jcj 2 R½0; 1�.

23. If f : ½a; b� ! R is continuous and if p 2 R�½a; b� does not change sign on [a, b], and if

f p 2 R�½a; b�, then there exists j 2 ½a; b� such that R b
a
f p ¼ f ðjÞ R b

a
p. (This is a generalization of

Exercise 7.2.16; it is called the First Mean Value Theorem for integrals.)

24. Let f 2 R�½a; b�, let g be monotone on [a, b] and suppose that f � 0. Then there exists j 2 ½a; b�
such that

R b
a
f g ¼ gðaÞ R j

a
f þ gðbÞ R b

j
f . (This is a form of the Second Mean Value Theorem for

integrals.)
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Section 10.2 Improper and Lebesgue Integrals

We have seen in Theorem 7.1.6 that a function f in R½a; b� must be bounded on [a, b]

(although this need not be the case for a function inR�½a; b�). In order to integrate certain

functions that have infinite limits at a point c in [a, b], or that are highly oscillatory at such a

point, one learns in calculus to take limits of integrals over subintervals, as the endpoints of

these subintervals tend to the point c.

For example, the function hðxÞ :¼ 1=
ffiffiffi
x

p
for x 2 ð0; 1� and hð0Þ :¼ 0 is unbounded on

a neighborhood of the left endpoint of [0, 1]. However, it does belong to R½g; 1� for every
g 2 ð0; 1� and we define the ‘‘improper Riemann integral’’ of h on [0, 1] to be the limit

Z 1

0

1ffiffiffi
x

p dx :¼ lim
g!0þ

Z 1

g

1ffiffiffi
x

p dx:

We would treat the oscillatory function kðxÞ :¼ sinð1=xÞ for x 2 ð0; 1� and kð0Þ :¼ 0 in

the same way.

One handles a function that becomes unbounded, or is highly oscillatory, at the right

endpoint of the interval in a similar fashion. Furthermore, if a function g is unbounded, or is

highly oscillatory, near some c 2 ða; bÞ, then we define the ‘‘improper Riemann integral’’

to be

ð1Þ
Z b

a

g :¼ lim
a!c�

Z a

a

gþ lim
b!cþ

Z b

b

g:

These limiting processes are not necessary when one deals with the generalized
Riemann integral.

For example, we have seen in Example 10.1.10(a) that if HðxÞ :¼ 2
ffiffiffi
x

p
for x 2 ½0; 1�

then H0ðxÞ ¼ 1=
ffiffiffi
x

p ¼: hðxÞ for x 2 ð0; 1� and the Fundamental Theorem 10.1.9 asserts

that h 2 R�½0; 1� and that

Z 1

0

1ffiffiffi
x

p dx ¼ Hð1Þ � Hð0Þ ¼ 2:

This example is an instance of a remarkable theorem due to Heinrich Hake, which we now

state in the case where the function becomes unbounded or is oscillatory near the right

endpoint of the interval.

10.2.1 Hake’s Theorem If f : ½a; b� ! R , then f 2 R�½a; b� if and only if for every g 2
ða; bÞ the restriction of f to ½a; g� belongs to R�½a; g� and

ð2Þ lim
g!b�

Z g

a

f ¼ A 2 R :

In this case

Z b

a

f ¼ A.

The idea of the proof of the ð(Þ part of this result is to take an increasing sequence

ðgnÞ converging to b so that f 2 R�½a; gn� and limn

R gn
a

f ¼ A. In order to show that

f 2 R�½a; b�, we need to construct gauges on [a, b]. This is done by carefully ‘‘piecing

together’’ gauges that work for the intervals ½g i�1; g i� to obtain a gauge on [a, b]. Since the
details of this construction are somewhat delicate and not particularly informative, we will

not go through them here but refer the reader to [MTI].
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It is important to understand the significance of Hake’s Theorem.

� It implies that the generalized Riemann integral cannot be extended by taking limits as

in (2). Indeed, if a function f has the property that its restriction to every subinterval

[a, g], where g 2 ða; bÞ, is generalized Riemann integrable and such that (2) holds, then

f already belongs to R�½a; b�.
An alternative way of expressing this fact is that the generalized Riemann integral does

not need to be extended by taking such limits.

� One can test a function for integrability on [a, b] by examining its behavior on

subintervals [a, g] with g < b. Since it is usually difficult to establish that a function

is inR�½a; b� by using Definition 10.1.1, this fact gives us another tool for showing that a
function is generalized Riemann integrable on [a, b].

� It is often useful to evaluate the integral of a function by using (2).

We will use these observations to give an important example that provides insight into

the set of generalized Riemann integrable functions.

10.2.2 Example (a) Let
X1
k¼1

ak be any series of real numbers converging to A 2 R . We

will construct a function w 2 R�½0; 1� such that

Z 1

0

w ¼
X1
k¼1

ak ¼ A:

Indeed, we define w : ½0; 1� ! R to be the function that takes the values

2a1; 2
2a2; 2

3a3; . . . on the intervals 0; 1
2
Þ; 1

2
; 3
4
Þ; 3

4
; 7
8
Þ; . . .���

. (See Figure 10.2.1.) For conve-

nience, let ck :¼ 1� 1=2k for k ¼ 0; 1; . . . ; then

wðxÞ :¼ 2kak for ck�1 � x < ckðk 2 NÞ;
0 for x ¼ 1:

�

Clearly the restriction of w to each interval ½0; g� for g 2 ð0; 1Þ, is a step function and
therefore is integrable. In fact, if g 2 ½cn; cnþ1Þ thenZ g

0

w ¼ ð2a1Þ � 1

2

� �
þ ð22a2Þ � 1

22

� �
þ � � � þ ð2nanÞ � 1

2n

� �
þ rg

¼ a1 þ a2 þ � � � þ an þ rg ;

where jrg j � janþ1j. But since the series is convergent, then rg ! 0 and so

lim
g!1�

Z g

0

w ¼ lim
n!1

Xn
k¼1

ak ¼ A:

Figure 10.2.1 The graph of w
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(b) If the series
X1
k¼1

ak is absolutely convergent in the sense of Definition 9.1.1, then it

follows as in (a) that the function jwj also belongs to R�½0; 1� and thatZ 1

0

jwj ¼
X1
k¼1

jakj:

However, if the series
X1
k¼1

jakj is not convergent, then the function jwj does not belong to

R�½0; 1�.
Since there are many convergent series that are not absolutely convergent (for

example,
X1
k¼1

ð�1Þk=k), we have examples of functions that belong toR�½0; 1� but whose
absolute values do not belong to R�½0; 1�. We have already encountered such functions in

Exercises 10.1.19 and 10.1.21. &

The fact that there are generalizedRiemann integrable functionswhose absolute value is

not generalized Riemann integrable is often summarized by saying that the generalized

Riemann integral is not an ‘‘absolute integral.’’ Thus, in passing to the generalized Riemann

integralwe lose an important property of the (ordinary)Riemann integral. But that is the price

that one must pay in order to be able to integrate a much larger class of functions.

Lebesgue Integrable Functions

In view of the importance of the subset of functions inR�½a; b� whose absolute values also
belong to R�½a; b�, we will introduce the following definition.

10.2.3 Definition A function f 2 R�½a; b� such that j f j 2 R�½a; b� is said to be Leb-

esgue integrable on [a, b]. The collection of all Lebesgue integrable functions on [a, b] is

denoted by L½a; b�.

Note The collection of all Lebesgue integrable functions is usually introduced in a totally

different manner. One of the advantages of the generalized Riemann integral is that it

includes the collection of Lebesgue integrable functions as a special—and easily identifi-

able—collection of functions.

It is clear that if f 2 R�½a; b� and if f ðxÞ � 0 for all x 2 ½a; b�, then we have

j f j ¼ f 2 R�½a; b�, so that f 2 L½a; b�. That is, a nonnegative function f 2 R�½a; b�
belongs to L½a; b�. The next result gives a more powerful test for a function in R�½a; b�
to belong to L½a; b�.
10.2.4 Comparison Test If f ;v 2 R�½a; b� and j f ðxÞj � vðxÞ for all x 2 ½a; b�, then
f 2 L½a; b� and

ð3Þ
Z b

a

f

����
���� �

Z b

a

j f j �
Z b

a

v:

Partial Proof. The fact that j f j 2 R�½a; b� is proved in [MTI]. Since j f j � 0, this

implies that f 2 L½a; b�.
To establish (3), we note that �j f j � f � j f j and 10.1.5(c) imply that

�
Z b

a

j f j �
Z b

a

f �
Z b

a

j f j;
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whence the first inequality in (3) follows. The second inequality follows from another

application of 10.1.5 (c). Q.E.D.

The next result shows that constant multiples and sums of functions in L½a; b� also
belong to L½a; b�.

10.2.5 Theorem If f ; g 2 L½a; b� and if c 2 R , then cf and f þ g also belong to L½a; b�.
Moreover

ð4Þ
Z b

a

cf ¼ c

Z b

a

f and

Z b

a

j f þ gj �
Z b

a

j f j þ
Z b

a

jgj:

Proof. Since jcf ðxÞj ¼ jcjj f ðxÞj for all x 2 ½a; b�, the hypothesis that j f j belongs to

R�½a; b� implies that cf and jcf j also belong to R�½a; b�, whence cf 2L½a; b�.
The Triangle Inequality implies that j f ðxÞ þ gðxÞj � j f ðxÞj þ jgðxÞj for all x 2 ½a; b�.

But since v :¼ j f j þ jgj belongs toR�½a; b�, the Comparison Test 10.2.4 implies that f þ g

belongs to L½a; b� and that

Z b

a

j f þ gj �
Z b

a

ðj f j þ jgjÞ ¼
Z b

a

j f j þ
Z b

a

jgj: Q.E.D.

The next result asserts that one only needs to establish a one-sided inequality in order

to show that a function f 2 R�½a; b� actually belongs to L½a; b�.

10.2.6 Theorem If f 2 R�½a; b�, the following assertions are equivalent:

(a) f 2 L½a; b�.
(b) There exists v 2 L½a; b� such that f ðxÞ � vðxÞ for all x 2 ½a; b�.
(c) There exists a 2 L½a; b� such that aðxÞ � f ðxÞ for all x 2 ½a; b�.

Proof. (a) ) (b) Let v :¼ f .

(b) ) (a) Note that f ¼ v� ðv� f Þ. Since v� f � 0 and since v� f belongs to

R�½a; b�, it follows that v� f 2 L½a; b�. Now apply Theorem 10.2.5.

We leave the proof that (a) () (c) to the reader. Q.E.D.

10.2.7 Theorem If f ; g 2 L½a; b�, then the functions maxf f ; gg and minf f ; gg also

belong to L½a; b�.

Proof. It follows from Exercise 2.2.18 that if x 2 ½a; b�, then

maxf f ðxÞ; gðxÞg ¼ 1
2
ð f ðxÞ þ gðxÞ þ j f ðxÞ � gðxÞjÞ;

minf f ðxÞ; gðxÞg ¼ 1
2
ð f ðxÞ þ gðxÞ � j f ðxÞ � gðxÞjÞ:

The assertions follow from these equations and Theorem 10.2.5. Q.E.D.

In fact, the preceding result gives a useful conclusion about the maximum and the

minimum of two functions in R�½a; b�.
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10.2.8 Theorem Suppose that f ; g;a, and v belong to R�½a; b�. If
f � v; g � v or if a � f ;a � g;

then maxf f ; gg and minf f ; gg also belong to R�½a; b�.

Proof. Suppose that f � v and g � v; then maxf f ; gg � v. It follows from the first

equality in the proof of Theorem 10.2.7 that

0 � j f � gj ¼ 2maxf f ; gg � f � g � 2v� f � g:

Since 2v� f � g � 0, this function belongs to L½a; b�. The Comparison Test 10.2.4

implies that 2maxf f ; gg � f � g belongs to L½a; b�, and so maxf f ; gg belongs toR�½a; b�.
The second part of the assertion is proved similarly. Q.E.D.

The Seminorm in L½a; b�
We will now define the ‘‘seminorm’’ of a function in L½a; b� and the ‘‘distance between’’

two such functions.

10.2.9 Definition If f 2 L½a; b�, we define the seminorm of f to be

k fk :¼
Z b

a

j f j:

If f ; g 2 L½a; b�, we define the distance between f and g to be

distð f ; gÞ :¼ f � gj jj j ¼
Z b

a

j f � gj:

We now establish a few properties of the seminorm and distance functions.

10.2.10 Theorem The seminorm function satisfies:

(i) fj jj j � 0 for all f 2 L½a; b�.
(ii) If f ðxÞ ¼ 0 for x 2 ½a; b�, then fj jj j ¼ 0.

(iii) If f 2 L½a; b� and c 2 R , then cfj jj j ¼ jcj � fj jj j.
(iv) If f ; g 2 L½a; b�, then f þ gj jj j � fj jj j þ gj jj j.

Proof. Parts (i)–(iii) are easily seen. Part (iv) follows from the fact that j f þ gj � j f jþ
jgj and Theorem 10.1.5(c). Q.E.D.

10.2.11 Theorem The distance function satisfies:

(i) distð f ; gÞ � 0 for all f ; g 2 L½a; b�.
(ii) If f ðxÞ ¼ gðxÞ for x 2 ½a; b�, then distð f ; gÞ ¼ 0.

(iii) distð f ; gÞ ¼ distðg; f Þ for all f ; g 2 L½a; b�.
(iv) distð f ; hÞ � distð f ; gÞ þ distðg; hÞ for all f ; g; h 2 L½a; b�.

These assertions follow from the corresponding ones in Theorem 10.2.10. Their proofs

will be left as exercises.

Using the seminorm (or the distance function) we can define what we mean for a

sequence of functions ð f nÞ in L½a; b� to converge to a function f 2 L½a; b�; namely, given
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any e > 0 there exists KðeÞ such that if n � KðeÞ then
f n � fj jj j ¼ distð f n; f Þ < e:

This notion of convergence can be used exactly as we have used the distance function in R

for the convergence of sequences of real numbers.

We will conclude this section with a statement of the Completeness Theorem for

L½a; b� (also called the Riesz-Fischer Theorem). It plays the same role in the space L½a; b�
that the Completeness Property plays in R .

10.2.12 Completeness Theorem A sequence ð f nÞ of functions in L½a; b� converges to a
function f 2 L½a; b� if and only if it has the property that for every e > 0 there exists HðeÞ
such that if m; n � HðeÞ then

f m � f nj jj j ¼ distð f m; f nÞ < e:

Thedirection ()) is veryeasy toproveand is left as anexercise.Aproofof thedirection (()

is more involved, but can be based on the following idea: Find a subsequence ðgkÞ :¼ ð f nkÞ of
ð f nÞ such that jjgkþ1 � gkjj < 1=2k anddefine f ðxÞ :¼ g1ðxÞ þ

X1
k¼1

ðgkþ1ðxÞ� gkðxÞÞ,where
this series is absolutely convergent, and f ðxÞ :¼ 0 elsewhere. It can then be shown that f 2
L½a; b� and that jj f n � f jj ! 0. (The details are given in [MTI].)

Exercises for Section 10.2

1. Show that Hake’s Theorem 10.2.1 can be given the following sequential formulation: A function

f 2 R�½a; b� if and only if there exists A 2 R such that for any increasing sequence ðcnÞ in ða; bÞ
with cn ! b, then f 2 R�½a; cn� and

R cn
a
f ! A.

2. (a) Apply Hake’s Theorem to conclude that gðxÞ :¼ 1=x2=3 for x 2 ð0; 1� and gð0Þ :¼ 0

belongs to R�½0; 1�.
(b) Explain why Hake’s Theorem does not apply to f ðxÞ :¼ 1=x for x 2 ð0; 1� and f ð0Þ :¼ 0

(which does not belong to R�½0; 1�).
3. Apply Hake’s Theorem to gðxÞ :¼ ð1� xÞ�1=2

for x 2 ½0; 1Þ and gð1Þ :¼ 0.

4. Suppose that f 2 R�½a; c� for all c 2 ða; bÞ and that there exists g 2 ða; bÞ and v 2 L½a; b� such
that j f ðxÞj � vðxÞ for x 2 ½g; b�. Show that f 2 R�½a; b�.

5. Show that the function g1ðxÞ :¼ x�1=2sinð1=xÞ for x 2 ð0; 1� and g1ð0Þ :¼ 0 belongs to L½0; 1�.
(This function was also considered in Exercise 10.1.15.)

6. Show that the following functions (properly defined when necessary) are in L½0; 1�.
(a)

x ln x

1þ x2
, (b)

sin p x

ln x
,

(c) ðln xÞðlnð1� xÞÞ, (d)
ln xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p :

7. Determinewhether the following integrals are convergent or divergent. (Define the integrands to

be 0 where they are not already defined.)

(a)

Z 1

0

sin x dx

x3=2
, (b)

Z 1

0

cos x dx

x3=2
,

(c)

Z 1

0

ln x dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , (d)

Z 1

0

ln x dx

1� x
,

(e)

Z 1

0

ðln xÞðsinð1=xÞÞ dx, (f)

Z 1

0

dxffiffiffi
x

p ð1� xÞ.
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8. If f 2 R½a; b�, show that f 2 L½a; b�.
9. If f 2 L½a; b�, show that f 2 is not necessarily in L½a; b�.
10. If f ; g 2 L½a; b� and if g is bounded andmonotone, show that f g 2 L½a; b�. More exactly, if jg(x)j

� B, show that f gj jj j � B fj jj j.
11. (a) Give an example of a function f 2 R�½0; 1� such that max {f, 0} does not belong toR�½0; 1�.

(b) Can you give an example of f 2 L½0; 1� such that maxf f ; 0g =2 L½0; 1�?
12. Write out the details of the proof that minf f ; gg 2 R�½a; b� in Theorem 10.2.8 when a � f and

a � g.

13. Write out the details of the proofs of Theorem 10.2.11.

14. Give an f 2 L½a; b� with f not identically 0, but such that fj jj j ¼ 0.

15. If f ; g 2 L½a; b�, show that
�� fj jj j � gj jj j�� � f � gj jj j.

16. Establish the easy part of the Completeness Theorem 10.2.12.

17. If fn(x) :¼ xn for n 2 N, show that f n 2 L½0; 1� and that f nj jj j ! 0. Thus f n � uj jj j ! 0, where u

denotes the function identically equal to 0.

18. Let gn(x) :¼ �1 for x 2 [�1,�1=n), let gn(x) :¼ nx for x 2 [�1=n, 1=n] and let gn(x) :¼ 1 for x 2
(1/n, 1]. Show that gm � gnj jj j ! 0 asm, n!1, so that the Completeness Theorem 10.2.12 implies

that there exists g 2 L½�1; 1� such that (gn) converges to g in L½�1; 1�. Find such a function g.

19. Let hn(x) :¼ n for x 2 (0, 1=n) and hn(x) :¼ 0 elsewhere in [0, 1]. Does there exist h 2 L½0; 1�
such that hn � hj jj j ! 0?

20. Let kn(x) :¼ n for x 2 (0, 1=n2) and kn(x) :¼ 0 elsewhere in [0, 1]. Does there exist k 2 L½0; 1�
such that kn � kj jj j ! 0?

Section 10.3 Infinite Intervals

In the preceding two sections, we have discussed the integration of functions defined on

bounded closed intervals [a, b]. However, in applications we often want to integrate

functions defined on unbounded closed intervals, such as

½a;1Þ; ð�1; b�; or ð�1;1Þ:
In calculus, the standard approach is to define an integral over [a, 1) as a limit:Z 1

a

f :¼ lim
g!1

Z g

a

f ;

and to define integrals over the other infinite intervals similarly. In this section, wewill treat

the generalized Riemann integrable (and Lebesgue integrable) functions defined on infinite

intervals.

In defining the generalized Riemann integral of a function f on [a, 1), we will

adopt a somewhat different procedure from that in calculus. We note that if _Q :¼
x0; x1½ �; t1ð Þ; . . . ; xn�1; xn½ �; tnð Þ; xn;1½ �; tnþ1ð Þf g is a tagged partition of [a, 1], then

x0 ¼ a and xnþ1 ¼ 1 and the Riemann sum corresponding to _Q has the form:

ð1Þ f t1ð Þ x1 � x0ð Þ þ � � � þ f tnð Þ xn � xn�1ð Þ þ f tnþ1ð Þ 1 � xnð Þ:
Since the final term f tnþ1ð Þ 1 � xnð Þ in (1) is not meaningful, we wish to suppress this

term. We can do this in two different ways: (i) define the Riemann sum to contain only the

first n terms, or (ii) have a procedure that will enable us to deal with the symbols � 1 in

calculations in such a way that we eliminate the final term in (1).
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We choose to adopt method (i): instead of dealing with partitions of [a,1) into a finite

number of non-overlapping intervals (one ofwhichmust necessarily have infinite length),we

deal with certain subpartitions of [a, 1), which are finite collections of non-overlapping

intervals of finite length whose union is properly contained in [a, 1).

We define a gauge on [a, 1] to be an ordered pair consisting of a strictly positive

function d defined on [a,1) and a number d� > 0. When we say that a tagged subpartition
_P :¼ x0; x1½ �; t1ð Þ; . . . ; xn�1; xn½ �; tnð Þf g is (d, d�)-fine, we mean that

ð2Þ ½a;1Þ ¼
[n
i¼1

xi�1; xi½ � [ ½xn;1Þ;

that

ð3Þ ½xi�1; xi� � ½ti � dðtiÞ; ti þ dðtiÞ� for i ¼ 1; . . . ; n;

and that

ð4Þ ½xn;1Þ � ½1=d�;1Þ
or, equivalency, that

ð40Þ 1=d� � xn:

Note Ordinarily we consider a gauge on [a, 1] to be a strictly positive function d with

domain ½a;1� :¼ ½a;1Þ [ f1g where d(1) :¼ d�.

We will now define the generalized Riemann integral over [a, 1).

10.3.1 Definition (a) A function f : ½a;1Þ ! R is said to be generalized Riemann

integrable if there exists A 2 R such that for every e > 0 there exists a gauge de on [a,1]

such that if _P is any de-fine tagged subpartition of [a, 1), then Sð f ; _PÞ � A
�� �� � e. In this

case we write f 2 R�½a;1Þ and Z 1

a

f :¼ A:

(b) A function f : ½a;1Þ ! R is said to be Lebesgue integrable if both f and j f j belong
to R�½a;1Þ. In this case we write f 2 L½a;1Þ.

Of particular importance is the version of Hake’s Theorem for functions inR�½a;1Þ.
Other results for functions in L½a;1Þ will be given in the exercises.

10.3.2 Hake’s Theorem If f : ½a;1Þ ! R , then f 2 R�½a;1Þ if and only if for every

g 2 ða;1Þ the restriction of f to [a, g] belongs to R�½a; g� and

ð5Þ lim
g!1

Z g

a

f ¼ A 2 R :

In this case

Z 1

a

f ¼ A.

The idea of the proof of Hake’s Theorem is as before; the details are given in [MTI].

The generalized Riemann integral on the unbounded interval [a, 1) has the same

properties as this integral on a bounded interval [a, b] that were demonstrated in

Section 10.1. They can be obtained by either modifying the proofs given there, or by

using Hake’s Theorem. We will give two examples.
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10.3.3 Examples (a) If f ; g 2 R�½a;1Þ, then f þ g 2 R�½a;1Þ and
Z 1

a

ð f þ gÞ ¼
Z 1

a

f þ
Z 1

a

g:

If e > 0 is given let df be a gauge on [a, 1] such that if _P is df-fine, then

Sð f ; _PÞ � R1
a

f
�� �� � e=2, and there exists a gauge dg such that if _P is dg-fine, then

Sðg; _PÞ � R1
a

g
�� �� � e=2. Now let deðtÞ :¼ minfdf ðtÞ; dgðtÞg for t 2 ½a;1� and argue as

in the proof of 10.1.5(b).

(b) Let f : ½a;1Þ ! R and let c 2 ða;1Þ. Then f 2 R�½a;1Þ if and only if its restric-

tions to [a, c] and [c, 1) are integrable. In this case,

ð6Þ
Z 1

a

f ¼
Z c

a

f þ
Z 1

c

f :

Wewill prove (() using Hake’s Theorem. By hypothesis, the restriction of f to [c,1)

is integrable. Therefore, Hake’s Theorem implies that for every g 2 ðc;1Þ, the restriction
of f to [c, g] is integrable and thatZ 1

c

f ¼ lim
g!1

Z g

c

f :

If we apply the Additivity Theorem 10.1.8 to the interval ½a; g� ¼ ½a; c� [ ½c; g�, we

conclude that the restriction of f to [a, g] is integrable and thatZ g

a

f ¼
Z c

a

f þ
Z g

c

f ;

whence it follows that

lim
g!1

Z g

a

f ¼
Z c

a

f þ lim
g!1

Z g

c

f ¼
Z c

a

f þ
Z 1

c

f :

Another application of Hake’s Theorem establishes (6). &

10.3.4 Examples (a) Let a > 1 and let fa(x) :¼ l=xa for x 2 ½1;1Þ. We will show that

f a 2 R�½1;1Þ.
Indeed, if y 2 ð1;1Þ then the restriction of fa to [1, g] is continuous and therefore

belongs to R�½1; g�. Moreover, we haveZ g

1

1

xa
dx ¼ 1

1� a
� x1�a

����
g

1

¼ 1

a� 1
� 1� 1

ga�1


 �
:

But since the last term tends to l=(a � 1) as g ! 1, Hake’s Theorem implies that f a 2
R�½1;1Þ and that Z 1

1

1

xa
dx ¼ 1

a� 1
when a > 1:

(b) Let
X1
k¼1

ak be a series of real numbers that converges to A 2 R . We will construct a

function s 2 R�½0;1Þ such that

Z 1

0

s ¼
X1
k¼1

ak ¼ A:
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Indeed, we define s xð Þ :¼ ak for x 2 k � 1; k½ Þ, k 2 N . It is clear that the restriction

of s to every subinterval [0, g] is a step function, and therefore belongs to R� 0; g½ �.
Moreover, if g 2 n; nþ 1½ Þ, thenZ g

0

s ¼ a1 þ � � � þ an þ rg ;

where rg
�� �� � anþ1j j. But since the series is convergent, then rg ! 0 and so Hake’s

Theorem 10.3.2 implies that

lim
g!1

Z g

0

s ¼ lim
n!1

Xn
k¼1

ak ¼ A:

(c) If the function s is defined as in (b), then sj j has the value akj j on the interval

k � 1; k½ Þ; k 2 N . Thus s belongs to L 0; 1½ Þ if and only if the series
X1
k¼1

akj j is convergent;
that is, if and only if

X1
k¼1

ak is absolutely convergent.

(d) Let D xð Þ :¼ ðsin xÞ=x for x 2 0; 1ð Þ and let D 0ð Þ :¼ 1. We will consider the

important Dirichlet integral:Z 1

0

D xð Þ dx ¼
Z 1

0

sin x

x
dx:

Since the restriction ofD to every interval 0; g½ � is continuous, this restriction belongs
toR� 0; g½ �. To see that R g

0
D xð Þdx has a limit as g ! 1, we let 0 < b < g. An integration

by parts shows thatZ g

0

D xð Þdx�
Z b

0

D xð Þdx ¼
Z g

b

sin x

x
dx

¼ � cos x

x

g

b
�
Z g

b

cos x

x2
dx:

����
But since cos xj j � 1, it is an exercise to show that the above terms approach 0 as b < g

tend to 1. Therefore the Cauchy Condition applies and Hake’s Theorem implies that

D 2 R� 0; 1½ Þ.
However, it will be seen in Exercise 13 that Dj j does not belong toR� 0; 1½ Þ. Thus the

function D does not belong to L 0; 1½ Þ. &

We close this discussion of integrals over a; 1½ Þ with a version of the Fundamental

Theorem (First Form).

10.3.5 Fundamental Theorem Suppose that E is a countable subset of a; 1½ Þ and that
f, F : a; 1½ Þ ! R are such that:

(a) F is continuous on a; 1½ Þ and lim
x!1 F xð Þ exists.

(b) F0 xð Þ ¼ f xð Þ for all x 2 a; 1ð Þ; x =2 E.

Then f belongs to R� a; 1½ Þ and

ð7Þ
Z 1

a

f ¼ lim
x!1F xð Þ � F að Þ:

Proof. If g is any number in a; 1ð Þ, we can apply the Fundamental Theorem 10.1.9 to the

interval [a, g] to conclude that f belongs to R�½a; g� andZ g

a

f ¼ F gð Þ � F að Þ:
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Letting g ! 1, we conclude from Hake’s Theorem that f 2 R� a; 1½ Þ and that equation

(7) holds. Q.E.D.

Integrals over �1; bð �
We now discuss integration over closed intervals that are unbounded below.

Let b 2 R and g : �1; bð � ! R be a function that is to be integrated over the infinite

interval �1; bð �. By a gauge on �1; b½ �we mean an ordered pair consisting of a number

d� > 0 and a strictly positive function d on �1; bð Þ. We say that a tagged subpartition
_P :¼ x0; x1½ �; t1ð Þ; x1; x2½ �; t2ð Þ; . . . ; xn�1; b½ �; tnð Þf g of �1; bð Þ is d�; dð Þ-fine in the

case that

�1; bð � ¼ �1; x0ð � [
[n
i¼1

xi�1; xi½ �;

that

xi�1; xi½ � � ti � d tið Þ; ti þ d tið Þ½ � for i ¼ 1; . . . ; n;

and that

�1; x0ð � � �1;�1=d�ð �
or, equivalently, that

x0 � �1=d�:

Note Ordinarily we consider a gauge on �1; b½ � to be a strictly positive function d with
domain �1; b½ � :¼ �1f g [ 1; bð � where d �1ð Þ :¼ d�.

Here the Riemann sum of g for _P is S g; _P� � ¼Pn
i¼1

g tið Þ xi � xi�1ð Þ.
Finally, we say that g : �1; bð � ! R is generalized Riemann integrable if there

exists B 2 R such that for every e > 0 there exists a gauge de on �1; bð � such that if _P is

any de-fine subpartition of �1; bð �, then S g; _P� �� B
�� �� � e. In this case we write g 2

R� �1; bð � and
Z b

�1
g ¼ B:

Similarly, a function g : �1; bð � ! R is said to be Lebesgue integrable if both g and gj j
belong to R� �1; bð �. In this case we will write g 2 L �1; bð �.

The theorems valid for the integral over a; 1½ � are obtained in this case as well. Their
formulation will be left to the reader.

Integrals over �1;1ð Þ
Let h : �1; 1ð Þ ! R be a function that we wish to integrate over the infinite interval

�1;1ð Þ. By a gaugeon �1;1ð Þwemean a triple consisting of a strictly positive function

d on �1;1ð Þ and two strictly positive numbers d�; d�. We say that a tagged subpartition
_P :¼ x0; x1½ �; t1ð Þ; x1; x2½ �; t2ð Þ; . . . ; xn�1; xn½ �; tnð Þf g is d�; d; d�ð Þ-fine in the case that

�1; 1ð Þ ¼ �1; x0ð � [
[n
i¼1

xi�1; xi½ � [ xn;1½ Þ;
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that

xi�1; xi½ � � ti � d tið Þ; ti þ d tið Þ½ � for i ¼ 1; . . . ; n;

and that

�1; x0ð � � �1; � 1=d�ð � and xn;1½ Þ � 1=d�; 1½ Þ
or, equivalently, that

x0 � �1=d� and 1=d� � xn:

Note Ordinarily we consider a gauge on [�1, 1] to be a strictly positive function

d with domain �1; 1½ � :¼ �1f g [ �1; 1ð Þ [ 1f g where d �1ð Þ :¼ d� and d 1ð Þ
:¼ d�.

Here the Riemann sum of h for _P is S h; _P� � ¼Pn
i¼1

h tið Þ xi � xi�1ð Þ.

Finally, we say that h : ð�1; 1Þ ! R is generalized Riemann integrable if there
exists C 2 R such that for every e> 0 there exists a gauge de on [�1,1] such that if _P is

any de-fine subpartition of (�1, 1), then S h; _P� �� C
�� �� � e. In this case we write h 2

R� �1; 1ð Þ and Z 1

�1
h ¼ C:

Similarly, a function h : ð�1; 1Þ ! R is said to beLebesgue integrable if both h and hj j
belong to R� �1; 1ð Þ. In this case we write h 2 L �1; 1ð Þ.

In view of its importance, we will state the version of Hake’s Theorem that is valid for

the integral over (�1, 1).

10.3.6 Hake’s Theorem If h : ð�1; 1Þ ! R , then h 2 R� �1; 1ð Þ if and only if for
every b < g in (�1, 1), the restriction of h to [b, g] is in R� b; g½ � and

lim
b!�1
g!þ1

Z g

b

h ¼ C 2 R :

In this case

Z 1

�1
h ¼ C.

As before, most of the theorems valid for the finite interval [a, b] remain true. They

are proved as before, or by using Hake’s Theorem. We also state the first form of the

Fundamental Theorem for this case.

10.3.7 Fundamental Theorem Suppose that E is a countable subset of (�1, 1) and

that h, H : �1; 1ð Þ ! R satisfy:

(a) H is continuous on (�1, 1) and the limits lim
x!�1

HðxÞ exist.
(b) H0(x) ¼ h(x) for all x 2 ð�1; 1Þ; x =2 E.

Then h belongs to R� �1; 1ð Þ and

ð8Þ
Z 1

�1
h ¼ lim

x!1H xð Þ � lim
y!�1H yð Þ:
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10.3.8 Examples (a) Let hðxÞ :¼ 1=ðx2 þ 1Þ for x 2 ð�1;1Þ. If we let

HðxÞ :¼ Arctan x, thenH0ðxÞ ¼ hðxÞ for all x 2 ð�1;1Þ. Further, we have lim
x!1HðxÞ ¼

1
2
p and lim

x!�1HðxÞ ¼ � 1
2
p. Therefore it follows that

Z 1

�1

1

x2 þ 1
dx ¼ 1

2
p� � 1

2
p

� � ¼ p:

(b) Let kðxÞ :¼ jxje�x2 for x 2 ð�1;1Þ. If we let KðxÞ :¼ 1
2
ð1� e�x2Þ for x � 0 and

KðxÞ :¼ � 1
2
ð1� e�x2Þ for x < 0, then it is seen that K is continuous on ð�1;1Þ and that

K 0ðxÞ ¼ kðxÞ for x 6¼ 0. Further, lim
x!1KðxÞ ¼ 1

2
and lim

x!�1KðxÞ ¼ � 1
2
. Therefore it

follows that

Z 1

�1
jxje�x2dx ¼ 1

2
� � 1

2

� � ¼ 1: &

Exercises for Section 10.3

1. Let d be a gauge on [a, 1]. From Theorem 5.5.5, every bounded subinterval [a, b] has a d-fine

partition. Now show that [a, 1] has a d-fine partition.

2. Let f 2 R�½a; g� for all g � a. Show that f 2 R�½a;1Þ if and only if for every e > 0 there exists

KðeÞ � a such that if q > p � KðeÞ, then j R q
p
f j < e.

3. Let f and j f j belong to R�½a; g� for all g � a. Show that f 2 L½a;1Þ if and only if for every

e > 0 there exists KðeÞ � a such that if q > p > KðeÞ then R q
p
j f j < e.

4. Let f and j f j belong to R�½a; g� for every g � a. Show that f 2 L½a;1Þ if and only if the set

V :¼ R x
a
j f j : x � a

	 

is bounded in R .

5. If f ; g 2 L½a;1Þ, show that f þ g 2 L½a;1Þ. Moreover, if hj jj j :¼ R1
a

jhj for any h 2 L½a;1Þ,
show that f þ gj jj j � fj jj j þ gj jj j.

6. If f ðxÞ :¼ 1=x for x 2 ½1;1Þ, show that f =2 R�½1;1Þ.
7. If f is continuous on ½1;1Þ and if j f ðxÞj � K=x2 for x 2 ½1;1Þ, show that f 2 L½1;1Þ.
8. Let f ðxÞ :¼ cos x for x 2 ½0;1Þ. Show that f =2 R�½0;1Þ.
9. If s > 0, let gðxÞ :¼ e�sx for x 2 ½0;1Þ.

(a) Use Hake’s Theorem to show that g 2 L½0;1Þ and R1
0

e�sxdx ¼ 1=s.
(b) Use the Fundamental Theorem 10.3.5.

10. (a) Use Integration by Parts and Hake’s Theorem to show that
R1
0

xe�sxdx ¼ 1=s2 for s > 0.

(b) Use the Fundamental Theorem 10.3.5.

11. Show that if n 2 N ; s > 0, then
R1
0

xne�sxdx ¼ n!=snþ1.

12. (a) Show that the integral
R1
1

x�1 ln x dx does not converge.

(b) Show that if a > 1, then
R1
1

x�a ln x dx ¼ 1=ða� 1Þ2.
13. (a) Show that

R ðnþ1Þp
np

jx�1sin xjdx > 1=4ðnþ 1Þ:
(b) Show that jDj =2 R�½0;1Þ, where D is as in Example 10.3.4(d).

14. Show that the integral
R1
0
ð1= ffiffiffi

x
p Þsin x dx converges. [Hint: Integrate by Parts.]

15. Establish the convergence of Fresnel’s integral
R1
0

sinðx2Þdx. [Hint: Use the Substitution

Theorem 10.1.12.]
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16. Establish the convergence or the divergence of the following integrals:

(a)

Z 1

0

ln x dx

x2 þ 1
, (b)

Z 1

0

ln x dxffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p ,

(c)

Z 1

0

dx

xðxþ 1Þ, (d)

Z 1

0

x dx

ðxþ 1Þ3,

(e)

Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x33

p , (f)

Z 1

0

Arctan x dx

x3=2 þ 1
.

17. Let f ;w : ½a;1Þ ! R . Abel’s Test asserts that if f 2 R�½a;1Þ and w is bounded and monotone

on ½a;1Þ, then fw 2 R�½a;1Þ.
(a) Show that Abel’s Test does not apply to establish the convergence of

R1
0
ð1=xÞsin x dx by

taking wðxÞ :¼ 1=x. However, it does apply if we take wðxÞ :¼ 1=
ffiffiffi
x

p
and use Exercise 14.

(b) Use Abel’s Test and Exercise 15 to show the convergence of
R1
0
ðx=ðxþ 1ÞÞ sinðx2Þ dx.

(c) Use Abel’s Test and Exercise 14 to show the convergence of
R1
0

x�3=2ðxþ 1Þ sin x dx.

(d) Use Abel’s Test to obtain the convergence of Exercise 16(f).

18. With the notation as in Exercise 17, the Chartier-Dirichlet Test asserts that if f 2 R�½a; g� for
all g � a, if FðxÞ :¼ R x

a
f is bounded on ½a;1Þ, and if w is monotone and lim

x!1wðxÞ ¼ 0, then

fw 2 R�½a;1�.
(a) Show that the integral

R1
0
ð1=xÞ sin x dx converges.

(b) Show that
R1
2
ð1=ln xÞ sin x dx converges.

(c) Show that
R1
0
ð1= ffiffiffi

x
p Þ cos x dx converges.

(d) Show that the Chartier-Dirichlet Test does not apply to establish the convergence ofR1
0
ðx=ðxþ 1ÞÞ sinðx2Þdx by taking f ðxÞ :¼ sinðx2Þ.

19. Show that the integral
R1
0

ffiffiffi
x

p � sinðx2Þdx is convergent, even though the integrand is not

bounded as x ! 1. [Hint: Make a substitution.]

20. Establish the convergence of the following integrals:

(a)

Z 1

�1
e�jxjdx, (b)

Z 1

�1
ðx� 2Þe�jxjdx,

(c)

Z 1

�1
e�x2dx, (d)

Z 1

�1

2x dx

ex � e�x
.

Section 10.4 Convergence Theorems

We will conclude our discussion of the generalized Riemann integral with an indication of

the convergence theorems that are available for it. It will be seen that the results are much

stronger than those presented in Section 8.2 for the (ordinary) Riemann integral. Finally,

we will introduce a ‘‘measurable’’ function on ½a; b� as the almost everywhere limit of a

sequence of step functions. We will show that every integrable function is measurable, and

that a measurable function on [a, b] is generalized Riemann integrable if and only if it

satisfies a two-sided boundedness condition.

We proved in Example 8.2.1(c) that if ð f kÞ is a sequence in R½a; b� that converges on
[a, b] to a function f 2 R½a; b�, then it need not happen that

ð1Þ
Z b

a

f ¼ lim
k!1

Z b

a

f k:

However, in Theorem 8.2.4 we saw that uniform convergence of the sequence is sufficient

to guarantee that this equality holds. In fact, we will now show that this is even true for a

sequence of generalized Riemann integrable functions.
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10.4.1 UniformConvergence Theorem Let ð f kÞ be a sequence inR�½a; b� and suppose
that ð f kÞ converges uniformly on [a, b] to f. Then f 2 R�½a; b� and (1) holds.

Proof. Given e > 0, there exists KðeÞ such that if k � KðeÞ and x 2 ½a; b�, then we have

j f kðxÞ � f ðxÞj < e. Consequently, if h; k � KðeÞ, then
�2e < f kðxÞ � f hðxÞ < 2e for x 2 ½a; b�:

Theorem 10.1.5 implies that

�2eðb� aÞ <
Z b

a

f k �
Z b

a

f h < 2eðb� aÞ:

Since e > 0 is arbitrary, the sequence ðR b
a
f kÞ is a Cauchy sequence in R and therefore

converges to some number, say A 2 R. We will now show that f 2 R�½a; b�with integral A.
For, if e > 0 is given, let KðeÞ be as above. If _P :¼ fð½xi�1; xi�; tiÞgni¼1 is any tagged

partition of [a, b] and if k � KðeÞ, then

Sð f k; �PÞ � Sð f ; �PÞ�� �� ¼ Xn
i¼1

f f kðtiÞ � f ðtiÞgðxi � xi�1Þ
�����

�����
�
Xn
i¼1

f kðtiÞ � f ðtiÞj jðxi � xi�1Þ

<
Xn
i¼1

eðxi � xi�1Þ ¼ eðb� aÞ:

Now fix r � KðeÞ such that j R b
a
f r � Aj < e and let dr;e be a gauge on [a, b] such that

j R b
a
f r � Sð f r; _PÞj < e whenever _P is dr;e-fine. Then we have

Sð f ; �PÞ � A
�� �� � Sð f ; �PÞ � Sð f r; �PÞ

�� ��þ Sð f r; �PÞ �
Z b

a

f r

����
����þ

Z b

a

f r � A

����
����

< eðb� aÞ þ eþ e ¼ eðb� aþ 2Þ:
But since e > 0 is arbitrary, it follows that f 2 R�½a; b� and R b

a
f ¼ A. Q.E.D.

It will be seen in Example 10.4.6(a) that the conclusion of 10.4.1 is false for an infinite

interval.

Equi-integrability

The hypothesis of uniform convergence in Theorem 10.4.1 is a very stringent one and

restricts the utility of this result. Consequently, we now show that another type of

uniformity condition can be used to obtain the desired limit. This notion is due to Jaroslav

Kurzweil, as is Theorem 10.4.3.

10.4.2 Definition A sequence ð f kÞ in R�ðIÞ is said to be equi-integrable if for every

e > 0 there exists a gauge de on I such that if _P is any de-fine partition of I and k 2 N , then

Sð f k; _PÞ�
R
I
f k

�� �� < e.

10.4.3 Equi-integrability Theorem If ð f kÞ 2 R�ðIÞ is equi-integrable on I and if

f ðxÞ ¼ lim f kðxÞ for all x 2 I, then f 2 R�ðIÞ and

ð2Þ
Z
I

f ¼ lim
k!1

Z
I

f k:
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Proof. We will treat the case I ¼ ½a; b�; the general case can be found in [MTI].

Given e > 0, by the equi-integrability hypothesis, there exists a gauge de on I such that

if _P :¼ fð½xi�1; xi�; tiÞgni¼1 is a de-fine partition of I, then we have Sð f k; _PÞ �
R
I
f k

�� �� < e for

all k 2 N . Since _P has only a finite number of tags and since f kðtÞ ! f ðtÞ for t 2 ½a; b�,
there exists a Ke such that if h; k � Ke, then

ð3Þ Sð f k; �PÞ � Sð f h; �PÞ
�� �� �Xn

i¼1

f kðtiÞ � f hðtiÞj jðxi � xi�1Þ � eðb� aÞ:

If we let h ! 1 in (3), we have

ð4Þ Sð f k; �PÞ � Sð f ; �PÞ�� �� � eðb� aÞ for k � Ke:

Moreover, if h; k � Ke, then the equi-integrability hypothesis and (3) giveZ
I

f k �
Z
I

f h

����
���� �

Z
I

f k � Sð f k; �PÞ
����

����þ Sð f k; �PÞ � Sð f h; �PÞ
�� ��

þ Sð f h; �PÞ �
Z
I

f h

����
���� � eþ eðb� aÞ þ e ¼ eð2þ b� aÞ:

Since e > 0 is arbitrary, then ð R
I
f kÞ is a Cauchy sequence and converges to some A 2 R . If

we let h ! 1 in this last inequality, we obtain

ð5Þ
Z
I

f k � A

����
���� � eð2þ b� aÞ for k � Ke:

We now show that f 2 R�ðIÞ with integral A. Indeed, given e > 0, if _P is a de-fine

partition of I and k � Ke, then

Sð f ; �PÞ � A
�� �� � Sð f ; �PÞ � Sð f k; �PÞ

�� ��þ Sð f k; �PÞ �
Z
I

f k

����
����þ

Z
I

f k � A

����
����

� eðb� aÞ þ eþ eð2þ b� aÞ ¼ eð3þ 2b� 2aÞ;
where we used (4) for the first term, the equi-integrability for the second, and (5) for the

third. Since e > 0 is arbitrary, f 2 R�ðIÞ with integral A. Q.E.D.

The Monotone and Dominated Convergence Theorems

Although the Equi-integrability Theorem is interesting, it is difficult to apply because it is

not easy to construct the gauges de. We now state two very important theorems summariz-

ing the most important convergence theorems for the integral that are often useful. McLeod

[pp. 96–101] has shown that both of these theorems can be proved by using the Equi-

integrability Theorem. However, those proofs require a delicate construction of the gauge

functions. Direct proofs of these results are given in [MTI], but these proofs also use results

not given here; therefore we will omit the proofs of these results.

We say that a sequence of functions on an interval I � R ismonotone increasing if it

satisfies f 1ðxÞ � f 2ðxÞ � � � � � f kðxÞ � f kþ1ðxÞ � � � � for all k 2 N ; x 2 I. It is said to be

monotone decreasing if it satisfies the opposite string of inequalities, and to bemonotone

if it is either monotone increasing or decreasing.

10.4.4 Monotone Convergence Theorem Let ð f kÞ be a monotone sequence of func-

tions in R�ðIÞ such that f ðxÞ ¼ lim f kðxÞ almost everywhere on I. Then f 2 R�ðIÞ if and
only if the sequence of integrals

R
I
f k

� �
is bounded in R , in which case

ð6Þ
Z
I

f ¼ lim
k!1

Z
I

f k:

10.4 CONVERGENCE THEOREMS 317



C10 12/09/2010 15:0:30 Page 318

The next result is the most important theorem concerning the convergence of

integrable functions. It is an extension of the celebrated ‘‘Lebesgue Dominated Conver-

gence Theorem’’ from which it can also be proved.

10.4.5 Dominated Convergence Theorem Let ð f nÞ be a sequence in R�ðIÞ and let

f ðxÞ ¼ lim f kðxÞ almost everywhere on I. If there exist functions a;v in R�ðIÞ such that

ð7Þ aðxÞ � f kðxÞ � vðxÞ for almost every x 2 I;

then f 2 R�ðIÞ and

ð8Þ
Z
I

f ¼ lim
k!1

Z
I

f k:

Moreover, if a and v belong to LðIÞ, then f k and f belong to LðIÞ and

ð9Þ f k � fj jj j ¼
Z
I

f k � fj j ! 0:

Note If a andv belong toLðIÞ, and we put w :¼ maxfjaj; jvjg, then w 2 LðIÞ and we can
replace the condition (7) by the condition

ð70Þ f kðxÞj j � wðxÞ for almost every x 2 I:

Some Examples

10.4.6 Examples (a) If k 2 N , let f kðxÞ :¼ 1=k for x 2 ½0; k� and f kðxÞ :¼ 0 else-

where in ½0;1Þ.
Then the sequence converges uniformly on ð0;1Þ to the 0-function. However,R1

0
f k ¼ 1 for all k 2 N , while the integral of the 0-function equals 0. It is an exercise

to show that the function supf f kðxÞ : k 2 Ng does not belong to R�½0;1Þ, so the

domination condition (7) is not satisfied.

(b) We have lim
k!1

Z 1

0

xk þ 1

xk þ 3
dx ¼ 1

3
:

For, if gkðxÞ :¼ ðxk þ 1Þ=ðxk þ 3Þ, then 0 � gkðxÞ � 1 and gkðxÞ ! 1=3 for

x 2 ½0; 1Þ. Thus the Dominated Convergence Theorem 10.4.5 applies.

(c) We have lim
k!1

Z k

0

1þ x

k

� �k
e�axdx ¼ 1

a� 1
if a > 1.

Let hkðxÞ :¼ ð1þ x=kÞke�ax for x 2 ½0; k� and hkðxÞ :¼ 0 elsewhere on ð0;1Þ. The
argument in Example 3.3.6 shows that ðhkÞ is an increasing sequence and converges to

exe�ax ¼ eð1�aÞx on ½0;1Þ. If a > 1 this limit function belongs to L½0;1Þ. Moreover, if

FðxÞ :¼ eð1�aÞx=ð1� aÞ, then F0ðxÞ ¼ eð1�aÞx so that the Monotone Convergence Theo-

rem 10.4.4 and the Fundamental Theorem 10.3.5 imply that

lim
k!1

Z 1

0

hk ¼
Z 1

0

eð1�aÞxdx ¼ FðxÞ
����
1

0

¼ 1

a� 1
:

(d) If f is bounded and continuous on ½0;1Þ and if a > 0, then the function defined by

LðtÞ :¼ R1
0

e�txf ðxÞdx is continuous for t 2 Ja :¼ ða;1Þ.
Since e�txf ðxÞj j � Me�ax for t 2 Ja, if ðtkÞ is any sequence in Ja converging to

t0 2 Ja, the Dominated Convergence Theorem implies that LðtkÞ ! Lðt0Þ. But since the

sequence ðtkÞ ! t0 is arbitrary, then L is continuous at t0.
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(e) The integral in (d) is differentiable for t > a and

ð10Þ L0ðtÞ ¼
Z 1

0

ð�xÞe�txf ðxÞdx;

which is the result obtained by ‘‘differentiating under the integral sign’’ with respect to t.

Fix a number t0 2 Ja. If t 2 Ja, then by the Mean Value Theorem applied to the

function t 7! e�tx, there exists a point tx between t0 and t such that we have

e�tx � e�t0x ¼ �xe�txxðt� t0Þ, whence
e�tx � e�t0x

t� t0

����
���� � xe�txx � xe�ax:

Since vðxÞ :¼ xe�axf ðxÞ belongs to L½0;1Þ, then for any sequence ðtkÞ in Ja with

t0 6¼ tk ! t0, the Dominated Convergence Theorem implies that

lim
k!1

LðtkÞ � Lðt0Þ
tk � t0


 �
¼
Z 1

0

lim
k!1

e�tkx � e�t0x

tk � t0


 �
f ðxÞ dx

¼
Z 1

0

ð�xÞe�t0xf ðxÞ dx:

Since ðtkÞ is an arbitrary sequence, then L0ðt0Þ exists and (10) is proved.

(f) Let DkðtÞ :¼
Z k

0

e�tx sin x

x

� �
dx for k 2 N ; t � 0:

Since jðe�txsin xÞ=xj � e�tx � 1 for t � 0; x � 0, the integral defining Dk exists. In

particular, we have

Dkð0Þ ¼
Z k

0

sin x

x
dx:

We want to show that Dkð0Þ ! 1
2
p as k ! 1. By Example 10.3.4(d), this will show thatR1

0
ðsin xÞ=x dx ¼ 1

2
p. The argument is rather complex, and uses the Dominated Conver-

gence Theorem several times.

Since the partial derivative satisfies
@

@t

e�txsin x

x

� �����
���� ¼ �e�txsin xj j � 1 for t � 0,

x � 0, an argument as in (e) and the Dominated Convergence Theorem imply that

D0
kðtÞ ¼ �

Z k

0

e�txsin x dx for k 2 N ; t � 0:

Since a routine calculation shows that
@

@x

e�txðt sin xþ cos xÞ
t2 þ 1

� �
¼ �e�txsin x, then an

application of the Fundamental Theorem gives

D0
kðtÞ ¼ e�tkðt sin k þ cos kÞ

t2 þ 1
� 1

t2 þ 1
:

If we put gkðtÞ :¼
e�tkðt sin k þ cos kÞ

t2 þ 1
for 0� t� k and gk (t) :¼ 0 for t> k, then another

application of the Fundamental Theorem gives

ð11Þ DkðkÞ � Dkð0Þ ¼
Z k

0
D0

kðtÞdt ¼
Z k

0
gkðtÞdt�

Z k

0

dt

t2 þ 1

¼
Z 1

0
gkðtÞdt� Arctan k:
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If we note that gk(t) ! 0 for t > 0 as k ! 1 and that (since k � 1)

gkðtÞj j � e�tkðtþ 1Þ
t2 þ 1

� 2e�1 for t � 0;

then the Dominated Convergence Theorem gives
R1
0

gkðtÞdt ! 0.

In addition, since j(sin x)=xj � 1, we have

DkðkÞj j ¼
Z k

0

e�kx sin x

x
dx

����
���� �

Z k

0

e�kxdx ¼ e�kx

�k

����
x¼k

x¼0

¼ 1� e�k2

k
� 1

k
! 0:

Therefore, as k ! 1, formula (11) becomes

0� lim
k!1

Dkð0Þ ¼ 0� lim
k!1

Arctan k ¼ � 1
2
p:

As we have noted before, this gives an evaluation of Dirichlet’s Integral:

ð12Þ
Z 1

0

sinx

x
dx ¼ 1

2
p:

&

Measurable Functions

Wewish to characterize the collection of functions inR�ðIÞ. In order to bypass a few minor

details,wewill limit our discussion to the case I :¼ [a, b].We need to introduce the notion of a

‘‘measurable function’’; this class of functions contains all the functions the reader is ever

likely to encounter. Measurable functions are often defined in terms of the notion of a

‘‘measurable set.’’ However, the approach we will use is somewhat simpler and does not

require a theory of measurable sets to have been developed first. (In fact, the theory of

measure can be derived from properties of the integral; see Exercises 15 and 16.)

We recall from Definition 5.4.9 that a function s : ½a; b� ! R is a step function if it has

only a finite number of values, each value being assumed on a finite number of subintervals

of [a, b].

10.4.7 Definition A function f : ½a; b� ! R is said to be (Lebesgue) measurable if there

exists a sequence (sk) of step functions on [a, b] such that

ð13Þ f ðxÞ ¼ lim
k!1

skðxÞ for almost every x 2 ½a; b�:

We denote the collection of all measurable functions on [a, b] by M½a; b�.

We can reformulate the definition as: A function f is inM½a; b� if there exists a null set
Z 	 [a, b] and a sequence (sk) of step functions such that

ð14Þ f ðxÞ ¼ lim
k!1

skðxÞ for all x 2 ½a; b�nZ:

It is trivial that every step function on [a, b] is ameasurable function.ByTheorem5.4.10,

a continuous function on [a, b] is a uniform limit of a sequence of step functions; therefore,

every continuous function on an interval [a, b] is measurable. Similarly, every monotone

function on [a, b] is a uniform limit of step functions (see the proof of Theorem 7.2.8);

therefore, every monotone function on an interval is measurable.
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At first glance, it might seem that the collection of measurable functions might not be

so very large. However, the requirement that the limit (13) is required to hold only almost

everywhere (and not everywhere), enables one to obtain much more general functions. We

now give a few examples.

10.4.8 Examples (a) The Dirichlet function, f (x) :¼ 1 for x 2 [0, 1] rational and

f (x) :¼ 0 for x 2 [0, 1] irrational, is a measurable function.

Since Q \ ½0; 1� is a null set, we can take each sk to be the 0-function. We then obtain

sk(x) ! f (x) for x 2 ½0; 1�nQ .
(b) Thomae’s function h (see Examples 5.1.6(h) and 7.1.7) is a measurable function.

Again, take sk to be the 0-function. Then sk(x) ! h(x) for x 2 ½0; 1�nQ .
(c) The function g(x) :¼ 1=x for x 2 (0, 1] and g(0) :¼ 0 is a measurable function.

This can be seen by taking a step function sk(x) :¼ 0 for x2 [0,1=k) and (using 5.4.10)
such that jsk(x) � 1=xj < 1=k for x 2 [1=k, 1]. Then sk(x) ! g(x) for all x 2 [0, 1].

(d) If f 2 M½a; b� and if c : ½a; b� ! R is such that cðxÞ ¼ f ðxÞ a.e., then c 2 M½a; b�.
For, if f (x)¼ lim sk(x) for x 2 [a, b]nZ1 and if c(x)¼ f (x) for all x 2 [a, b]nZ2, then

c(x)¼ lim sk(x) for all x 2 [a, b]n(Z1 [ Z2). Since Z1 [ Z2 is a null set when Z1 and Z2 are,

the conclusion follows. &

The next result shows that elementary combinations of measurable functions lead to

measurable functions.

10.4.9 Theorem Let f and g belong to M½a; b� and let c 2 R .

(a) Then the functions cf, j f j, f þ g, f � g, and f � g also belong to M½a; b�.
(b) If w : R ! R is continuous, then the composition w 
 f 2 M½a; b�.
(c) If ( fn) is a sequence in M½a; b� and f (x) ¼ lim fn (x) almost everywhere on I, then

f 2 M½a; b�.

Proof. (a) We will prove that j f j is measurable. Let Z	 [a, b] be a null set such that (14)

holds. Since jskj is a step function, the Triangle Inequality implies that

0 � f ðxÞj j � skðxÞj jj j � f ðxÞ � skðxÞj j ! 0

for all x 2 [a, b]nZ. Therefore j f j 2 M½a; b�.
The other assertions in (a) follow from the basic properties of limits.

(b) If sk is a step function on [a, b], it is easily seen that w 
 sk is also a step function on
[a, b]. Since w is continuous on R and f (x) ¼ lim sk(x) for all x 2 [a, b]nZ, it follows that
ðw 
 f ÞðxÞ ¼ wð f ðxÞÞ ¼ limwðskðxÞÞ ¼ limðw 
 skÞðxÞ for all x 2 [a, b]nZ. Therefore w 

f is measurable.

(c) This conclusion is not obvious; a proof is outlined in Exercise 14. Q.E.D.

The next result is that we can replace the step functions in Definition 10.4.7 by

continuous functions. Since we will use only one part of this result, we content ourselves

with a sketch of the proof of the other part.

10.4.10 Theorem A function f : ½a; b� ! R is in M½a; b� if and only if there exists a

sequence (gk) of continuous functions such that

ð15Þ f ðxÞ ¼ lim
k!1

gðxÞ f or almost every x 2 ½a; b�:

10.4 CONVERGENCE THEOREMS 321



C10 12/09/2010 15:0:33 Page 322

Proof. (() Let Z 	 [a, b] be a null set and (gk) be a sequence of continuous functions

such that f (x) ¼ lim gk(x) for x 2 [a, b]nZ. Since gk is continuous, by 5.4.10 there exists a
step function sk such that

gkðxÞ � skðxÞj j � 1=k for all x 2 ½a; b�:
Therefore we have

0 � f ðxÞ � skðxÞj j � f ðxÞ � gkðxÞj j þ gkðxÞ � skðxÞj j
� f ðxÞ � gkðxÞj j þ 1=k;

whence it follows that f (x) ¼ lim gk(x) for all x 2 [a, b]nZ.
Sketch of ()) Let Z be a null set and (sk) be a sequence of step functions such that

f (x)¼ lim sk(x) for all x 2 [a, b]nZ. Without loss of generality, we may assume that each

sk is continuous at the endpoints a, b. Since sk is discontinuous at only a finite number of

points in (a, b), which can be enclosed in a finite union Jk of intervals with total length �
1=k, we can construct a piecewise linear and continuous function gk that coincides with

sk on [a, b]nJk. It can be shown that gk(x) ! f (x) a.e. on I. (See [MTI] for the details.)

Q.E.D.

Functions inR�½a; b� are Measurable

We now show that a generalized Riemann integrable function is measurable.

10.4.11 Measurability Theorem If f 2 R�½a; b�, then f 2 M½a; b�.

Proof. Let F : ½a; bþ 1� ! R be the indefinite integral

FðxÞ :¼
Z x

a

f if x 2 ½a; b�;

and let F(x) :¼ F(b) for x 2 (b, bþ 1]. It follows from the Fundamental Theorem

(Second Form) 10.1.11(a) that F is continuous on [a, b]. From 10.1.11(c), there exists a

null set Z such that the derivative F 0(x) ¼ f (x) exists for x 2 [a, b]nZ. Therefore, if we
introduce the difference quotient functions

gkðxÞ :¼
Fðxþ 1=kÞ � FðxÞ

1=k
for x 2 a; bÞ; k 2 N ;½

then gk(x)! f (x) for all x 2 [a, b]nZ. Since the gk are continuous, it follows from the part

of Theorem 10.4.10 we have proved that f 2 M½a; b�. Q.E.D.

Are Measurable Functions Integrable?

Not every measurable function is generalized Riemann integrable. For example, the

function g(x) :¼ 1=x for x 2 (0,1] and g(0) :¼ 0 was seen in Example 10.4.8(c) to be

measurable; however, it is not inR�½a; b� because it is ‘‘too large’’ (as x! 0þ). However,

if the graph of a measurable function on [a, b] lies between two functions inR�½a; b�, then it
also belongs to R�½a; b�.
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10.4.12 Integrability Theorem Let f 2 M½a; b�. Then f 2 R�½a; b� if and only if there

exist functions a;v 2 R�½a; b� such that

ð16Þ aðxÞ � f ðxÞ � vðxÞ f or almost every x 2 ½a; b�:
Moreover, if either a or v belongs to L½a; b�, then f 2 L½a; b�:

Proof. ()) This implication is trivial, since one can take a ¼ v ¼ f .

(() Since f 2 M½a; b�, there exists a sequence (sk) of step functions on [a, b] such that
(13) holds. We define �sk :¼ midfa; sk;vg for k 2 N, so that �skðxÞ is the middle of the

numbers a(x), sk(x), and v(x) for each x 2 [a, b]. It follows from Theorem 10.2.8 and the

facts

midfa; b; cg ¼ minfmaxfa; bg; maxfb; cg; maxfc; agg;
minfa0; b0; c0g ¼ minfminfa0; b0g; c0g;

that �sk 2 R�½a; b� and that a � �sk � v. Since f ¼ lim sk ¼ lim�sk a.e., the Dominated

Convergence Theorem now implies that f 2 R�½a; b�.
If either a or v belongs toL½a; b�, then we can apply Theorem 10.2.6 to conclude that f

belongs to L½a; b�. Q.E.D.

A Final Word

In this chapterwehavemade frequent reference toLebesgue integrable functions on an interval

I, whichwe have introduced as functions inR�ðIÞwhose absolute value also belongs toR�ðIÞ.
While there is no single ‘‘standard approach’’ to the Lebesgue integral, our approach is very

different fromany that are customary.A criticmight say that our approach is not useful because

our definition of a function in LðIÞ is not standard, but that would be wrong.

After all, one seldom uses the definition to confirm that a specific function is Lebesgue

integrable. Instead, one uses the fact that certain simpler functions (such as step functions,

polynomials, continuous functions, bounded measurable functions) belong to LðIÞ, and
that more complicated functions belong to LðIÞ by taking algebraic combinations or

various limiting operations (e.g., Hake’s Theorem or the Dominated Convergence Theo-

rem). A famous analyst once said, ‘‘No one ever calculates a Lebesgue integral; instead,

one calculates Riemann integrals and takes limits.’’

It is the same as with real numbers: we listed certain properties as axioms for R and

then derived consequences of these properties that enable us to work quite effectively with

the real numbers, often by taking limits.

Exercises for Section 10.4

1. Consider the following sequences of functions with the indicated domains. Does the sequence

converge? If so, to what? Is the convergence uniform? Is it bounded? If not bounded, is it

dominated? Is it monotone? Evaluate the limit of the sequence of integrals.

(a)
kx

1þ kx
0; 1½ �, (b)

xk

1þ xk
0; 2½ �,

(c)
1

1þ xk
0; 1½ �, (d)

1

1þ xk
0; 2½ �.

2. Answer the questions posed in Exercise 1 for the following sequences (when properly defined):

(a)
kx

1þ k
ffiffiffi
x

p 0; 1½ �, (b)
1ffiffiffi

x
p ð1þ xkÞ 0; 1½ �,

(c)
1ffiffiffi

x
p ð1þ xkÞ 1; 2½ �, (d)

1ffiffiffi
x

p ð2� xkÞ 0; 1½ �.
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3. Discuss the following sequences of functions and their integrals on [0, 1]. Evaluate the limit of

the integrals, when possible.

(a) e�kx, (b) e�kx=x,

(c) kxe�kx, (d) k2xe�kx,

(e) kxe�k2x2 , (f) kxe�kx2 .

4. (a) Show that lim
k!1

Z 1

0

xkdx

ð1þ xÞ2 ¼ 0. (b) Show that lim
k!1

Z 1

0

kxkdx

1þ x
¼ 1

2
.

5. If fk(x) :¼ k for x 2 [1=k, 2=k] and fk(x) :¼ 0 elsewhere on [0, 2], show that fk(x)! 0 but thatR 2
0
f k ¼ 1.

6. Let ( fk) be a sequence on [a, b] such that each fk is differentiable on [a, b] and f 0kðxÞ ! gðxÞ
with f 0kðxÞ

�� �� � K for all x 2 [a, b]. Show that the sequence ( fk(x)) either converges for all x 2
[a, b] or it diverges for all x 2 [a, b].

7. If fk are the functions in Example 10.4.6(a), show that sup{ fk} does not belong to R�½0;1Þ.
8. Show directly that

R1
0

e�txdx ¼ 1=t and
R1
0

xe�txdx ¼ 1=t2 for t > 0, thus confirming the

results in Examples 10.4.6(d, e) when f (x) :¼ 1.

9. Use the differentiation formula in 10.4.6(f) to obtain
R1
0

e�tx sinx dx ¼ 1=ðt2 þ 1Þ.
10. If t > 0, define EðtÞ :¼ R1

0
½ðe�txsin xÞ=x�dx.

(a) Show that E exists and is continuous for t > a > 0. Moreover, E(t) ! 0 as t ! 1.

(b) Since
@

@t

e�txsinx

x

� �����
���� � e�ax for t � a > 0, show that E0ðtÞ ¼ �1

t2 þ 1
for t > 0.

(c) Deduce that EðtÞ ¼ 1
2
p� Arctan t for t > 0.

(d) Explain why we cannot use the formula in (c) to obtain equation (12).

11. In this exercise we will establish the important formula:

ð17Þ
Z 1

0

e�x2dx ¼ 1
2

ffiffiffi
p

p
:

(a) Let GðtÞ :¼ R 1
0
½e�t2ðx2þ1Þ=ðx2 þ 1Þ�dx for t � 0. Since the integrand is dominated by

1=(x2þ 1) for t� 0, thenG is continuous on [0,1). Moreover,Gð0Þ ¼ Arctan 1 ¼ 1
4
p and

it follows from the Dominated Convergence Theorem that G(t) ! 0 as t ! 1.

(b) The partial derivative of the integrand with respect to t is bounded for t � 0, x 2 [0,1], so

G0ðtÞ ¼ �2te�t2
R 1
0
e�t2x2dx ¼ �2e�t2

R t
0
e�u2du.

(c) If we set FðtÞ :¼ R t
0
e�x2dx

h i2
, then the Fundamental Theorem 10.1.11 yields F0ðtÞ ¼

2e�t2
R t
0
e�x2dx for t� 0, from which F0(t)þG0(t)¼ 0 for all t� 0. Therefore, F(t)þG(t)

¼ C for all t � 0.

(d) Using F(0) ¼ 0, Gð0Þ ¼ 1
4
p and limt!1GðtÞ ¼ 0, we conclude that limt!1FðtÞ ¼ 1

4
p, so

that formula (17) holds.

12. Suppose I�R is a closed interval and that f : ½a; b� 
 I ! R is such that @f=@t exists on [a, b]

I, and for each t 2 [a, b] the function x 7! f ðt; xÞ is inR�ðIÞ and there exist a;v 2 R�ðIÞ such
that the partial derivative satisfies a(x) � @f(t, x)=@t � v (x) for a.e. x 2 I. If

FðtÞ :¼ R
I
f ðt; xÞdx, show that F is differentiable on [a, b] and that F0ðtÞ ¼ R

I
@ f ðt; xÞ=@t dx.

13. (a) If f, g 2 M½a; b�, show that max{ f, g} and min{ f, g} belong to M½a; b�.
(b) If f, g; h 2 M½a; b�, show that midf f ; g; hg 2 M½a; b�.

14. (a) If ( fk) is a bounded sequence inM½a; b� and fk ! f a.e., show that f 2 M½a; b�. [Hint: Use
the Dominated Convergence Theorem.]

(b) If (gk) is any sequence in M½a; b� and if f k :¼ Arctan 
 gk, show that ( fk) is a bounded

sequence in M½a; b�.
(c) If (gk) is a sequence in M½a; b� and if gk ! g a.e., show that g 2 M½a; b�.
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15. A set E in [a, b] is said to be (Lebesgue)measurable if its characteristic function 1E (defined by

1E(x) :¼ 1 if x 2 E and 1E(x) :¼ 0 if x 2 [a, b]nE) belongs to M½a; b�. We will denote the

collection of measurable sets in [a, b] by M ½a; b�. In this exercise, we develop a number of

properties of M ½a; b�.
(a) Show that E 2 M ½a; b� if and only if 1E belongs to R�½a; b�.
(b) Show that ; 2 M ½a; b� and that if [c, d]� [a, b], then the intervals [c, d ], [c, d ), (c, d ], and

(c, d ) are in M ½a; b�.
(c) Show that E 2 M ½a; b� if and only if E 0:¼ [a, b]nE is in M ½a; b�.
(d) If E and F are in M ½a; b�, then E [ F, E \ F and EnF are also in M ½a; b�. [Hint: Show that

1E[F ¼ max{1E, 1F}, etc.]

(e) If (Ek) is an increasing sequence in M ½a; b�, show that E :¼ [1
k¼1Ek is in M ½a; b�. Also, if

(Fk) is a decreasing sequence inM ½a; b�, show that F :¼ \1
k¼1Fk is inM ½a; b�. [Hint: Apply

Theorem 10.4.9(c).]

(f) If (Ek) is any sequence in M ½a; b�, show that [1
k¼1Ek and \1

k¼1Ek are in M ½a; b�.
16. If E 2 M ½a; b�, we define the (Lebesgue)measure of E to be the numbermðEÞ :¼ R b

a
1E. In this

exercise, we develop a number of properties of the measure function m : M ½a; b� ! R .

(a) Show that m(;) ¼ 0 and 0 � m(E) � b � a.

(b) Show that m([c, d]) ¼ m([c, d )) ¼ m((c, d ]) ¼ m((c, d )) ¼ d � c.

(c) Show that m(E0) ¼ (b � a) � m(E).

(d) Show that m(E [ F) þ m(E \ F) ¼ m(E) þ m(F).

(e) If E \ F ¼ ;, show that m(E [ F) ¼ m(E) þ m(F). (This is the additivity property of the

measure function.)

(f) If (Ek) is an increasing sequence in M ½a; b�, show thatm [1
k¼1Ek

� � ¼ limkðEkÞ. [Hint: Use
the Monotone Convergence Theorem.]

(g) If (Ck) is a sequence in M ½a; b� that is pairwise disjoint (in the sense that Cj \ Ck ¼ ;
whenever j 6¼ k), show that

ð18Þ m
[1
k¼1

Ck

 !
¼
X1
k¼1

mðCkÞ:

(This is the countable additivity property of the measure function.)
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CHAPTER 11

A GLIMPSE INTO TOPOLOGY

For the most part, we have considered only functions that were defined on intervals. Indeed,

for certain important results on continuous functions, the intervals were also assumed to be

closed and bounded. We shall now examine functions defined on more general types of

sets, with the goal of establishing certain important properties of continuous functions

in a more general setting. For example, we proved in Section 5.3 that a function that is

continuous on a closed and bounded interval attains a maximum value. However, we will

see that the hypothesis that the set is an interval is not essential, and in the proper context it

can be dropped.

In Section 11.1 we define the notions of an open set and a closed set. The study of open

sets and the concepts that can be defined in terms of open sets is the study of point-set

topology, so we are in fact discussing certain aspects of the topology of R . (The

mathematical area called ‘‘topology’’ is very abstract and goes far beyond the study of

the real line, but the key ideas are to be found in real analysis. In fact, it is the study of

continuous functions on R that motivated many of the concepts developed in topology.)

The notion of compact set is defined in Section 11.2 in terms of open coverings. In

advanced analysis, compactness is a powerful and widely used concept. The compact

subsets of R are fully characterized by the Heine-Borel Theorem, so the full strength of the

idea is not as apparent as it would be in more general settings. Nevertheless, as we establish

the basic properties of continuous functions on compact sets in Section 11.3, the reader

should begin to appreciate how compactness arguments are used.

In Section 11.4 we take the essential features of distance on the real line and introduce

a generalization of distance called a ‘‘metric.’’ The much-used triangle inequality is the key

property in this general concept of distance. We present examples and show how theorems

on the real line can be extended to the context of a metric space.

The ideas in this chapter are somewhat more abstract than those in earlier chapters;

however, abstraction can often lead to a deeper and more refined understanding. In this

case, it leads to a more general setting for the study of analysis.

Section 11.1 Open and Closed Sets in R

There are special types of sets that play a distinguished role in analysis—these are the open

and closed sets in R . To expedite the discussion, it is convenient to have an extended notion

of a neighborhood of a point.

11.1.1 Definition A neighborhood of a point x 2 R is any set V that contains an

e-neighborhood V e xð Þ :¼ x� e; xþ eð Þ of x for some e > 0.

While an e-neighborhood of a point is required to be ‘‘symmetric about the point,’’ the

idea of a (general) neighborhood relaxes this particular feature, but often serves the same

purpose.
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11.1.2 Definition (i) A subset G of R is open in R if for each x 2 G there exists a

neighborhood V of x such that V � G.

(ii) A subset F of R is closed in R if the complement C Fð Þ :¼ RnF is open in R .

To show that a set G � R is open, it suffices to show that each point in G has an

e-neighborhood contained inG. In fact, G is open if and only if for each x 2 G, there exists

ex > 0 such that x� ex; xþ exð Þ is contained in G.

To show that a set F � R is closed, it suffices to show that each point y =2 F has an

e-neighborhood disjoint from F. In fact, F is closed if and only if for each y =2 F there

exists ey > 0 such that F \ y� ey; yþ ey
� � ¼ ;.

11.1.3 Examples (a) The entire set R ¼ �1;1ð Þ is open.
For any x 2 R, we may take e :¼ 1.

(b) The set G :¼ x 2 R : 0 < x < 1f g is open.

For any x 2 G we may take ex to be the smaller of the numbers x; 1� x. We leave it

to the reader to show that if u� xj j < ex then u 2 G.

(c) Any open interval I :¼ a; bð Þ is an open set.

In fact, if x 2 I, we can take ex to be the smaller of the numbers x� a; b� x. The

reader can then show that x� ex; xþ exð Þ � I. Similarly, the intervals �1; bð Þ and a;1ð Þ
are open sets.

(d) The set I :¼ 0; 1½ � is not open.
This follows since every neighborhood of 0 2 I contains points not in I.

(e) The set I :¼ 0; 1½ � is closed.
To see this let y =2 I; then either y< 0 or y> 1. If y< 0, we take ey :¼ yj j, and if y> 1

we take ey :¼ y� 1. We leave it to the reader to show that in either case we have

I \ y� ey; yþ ey
� � ¼ ;.

(f) The set H :¼ x : 0 � x < 1f g is neither open nor closed. (Why?)

(g) The empty set ; is open in R .

In fact, the empty set contains no points at all, so the requirement in Definition 11.1.2(i) is

vacuously satisfied. The empty set is also closed since its complementR is open, aswas seen in

part (a). &

In ordinary parlance, when applied to doors, windows, and minds, the words ‘‘open’’

and ‘‘closed’’ are antonyms. However, when applied to subsets of R , these words are not

antonyms. For example, we noted above that the sets ;, R are both open and closed in R .

(The reader will probably be relieved to learn that there are no other subsets of R that have

both properties.) In addition, there are many subsets of R that are neither open nor closed;

in fact, most subsets of R have this neutral character.

The following basic result describes the manner in which open sets relate to the

operations of the union and intersection of sets in R .

11.1.4 Open Set Properties (a) The union of an arbitrary collection of open subsets

in R is open.

(b) The intersection of any finite collection of open sets in R is open.

Proof. (a) Let Gl : l 2 Lf g be a family of sets in R that are open, and let G be their

union. Consider an element x 2 G; by the definition of union, x must belong to Gl0 for
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some l0 2 L. Since Gl0 is open, there exists a neighborhood V of x such that V � Gl0 .

But Gl0 � G, so that V � G. Since x is an arbitrary element of G, we conclude that G is

open in R .

(b) Suppose G1 and G2 are open and let G :¼ G1 \ G2. To show that G is open,

we consider any x 2 G; then x 2 G1 and x 2 G2. SinceG1 is open, there exists e1 > 0 such

that x� e1; xþ e1ð Þ is contained in G1. Similarly, since G2 is open, there exists e2 > 0

such that x� e2; xþ e2ð Þ is contained in G2. If we now take e to be the smaller of e1 and e2,
then the e-neighborhood U :¼ x� e; xþ eð Þ satisfies both U � G1 and U � G2. Thus,

x 2 U � G. Since x is an arbitrary element of G, we conclude that G is open in R .

It now follows by an Induction argument (which we leave to the reader to write out)

that the intersection of any finite collection of open sets is open. Q.E.D.

The corresponding properties for closed sets will be established by using the general

De Morgan identities for sets and their components. (See Theorem 1.1.4.)

11.1.5 Closed Set Properties (a) The intersection of an arbitrary collection of closed

sets in R is closed.

(b) The union of any finite collection of closed sets in R is closed.

Proof. (a) If Fl : l 2 Lf g is a family of closed sets in R and F :¼ T
l2L

Fl, then C Fð Þ ¼
S
l2L

C Flð Þ is the union of open sets. Hence, C Fð Þ is open by Theorem 11.1.4(a), and

consequently, F is closed.

(b) Suppose F1; F2; . . . ;Fn are closed in R and let F :¼ F1 [ F2 [ � � � [ Fn. By the

De Morgan identity the complement of F is given by

C Fð Þ ¼ C F1ð Þ \ � � � \ C Fnð Þ:
Since each set C Fið Þ is open, it follows from Theorem 11.1.4(b) that C Fð Þ is open. Hence F
is closed. Q.E.D.

The finiteness restrictions in 11.1.4(b) and 11.1.5(b) cannot be removed. Consider the

following examples:

11.1.6 Examples (a) Let Gn :¼ 0; 1þ 1=nð Þ for n 2 N. Then Gn is open for each

n 2 N , by Example 11.1.3(c). However, the intersection G :¼ T1
n¼1

Gn is the interval (0, 1],

which is not open. Thus, the intersection of infinitely many open sets inR need not be open.

(b) Let Fn :¼ 1=n; 1½ � for n 2 N. Each Fn is closed, but the union F :¼ S1
n¼1

Fn is the set

(0, 1] which is not closed. Thus, the union of infinitely many closed sets in R need not be

closed. &

The Characterization of Closed Sets

We shall now give a characterization of closed subsets of R in terms of sequences. As we

shall see, closed sets are precisely those sets F that contain the limits of all convergent

sequences whose elements are taken from F.

11.1.7 Characterization of Closed Sets Let F � R ; then the following assertions are

equivalent.
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(i) F is a closed subset of R .

(ii) If X ¼ xnð Þ is any convergent sequence of elements in F, then lim X belongs to F.

Proof. (i) ) (ii) Let X ¼ xnð Þ be a sequence of elements in F and let x :¼ lim X; we

wish to show that x 2 F. Suppose, on the contrary, that x =2 F; that is, that x 2 C Fð Þ the
complement of F. Since C Fð Þ is open and x 2 C Fð Þ, it follows that there exists an

e-neighborhood V e of x such that Ve is contained in C Fð Þ. Since x ¼ lim xnð Þ, it follows that
there exists a natural number K ¼ K eð Þ such that xK 2 Ve. Therefore we must have

xK 2 C Fð Þ; but this contradicts the assumption that xn 2 F for all n 2 N . Therefore, we

conclude that x 2 F.

(ii)) (i) Suppose, on the contrary, that F is not closed, so that G :¼ C Fð Þ is not open.
Then there exists a point y0 2 G such that for each n 2 N , there is a number yn 2 C Gð Þ ¼ F

such that yn � y0j j < 1=n. It follows that y0 :¼ lim ynð Þ, and since yn 2 F for all n 2 N , the

hypothesis (ii) implies that y0 2 F, contrary to the assumption y0 2 G ¼ C Fð Þ. Thus the
hypothesis that F is not closed implies that (ii) is not true. Consequently (ii) implies (i), as

asserted.
Q.E.D.

The next result is closely related to the preceding theorem. It states that a set F is

closed if and only if it contains all of its cluster points. Recall from Section 4.1 that a point x

is a cluster point of a set F if every e-neighborhood of x contains a point of F different from

x. Since by Theorem 4.1.2 each cluster point of a set F is the limit of a sequence of points in

F, the result follows immediately from Theorem 11.1.7 above. We provide a second proof

that uses only the relevant definitions.

11.1.8 Theorem A subset of R is closed if and only if it contains all of its cluster points.

Proof. Let F be a closed set in R and let x be a cluster point of F; wewill show that x 2 F.

If not, then x belongs to the open set C Fð Þ. Therefore there exists an e-neighborhood Ve of x

such that V e � C Fð Þ. Consequently Ve \ F ¼ ;, which contradicts the assumption that x is

a cluster point of F.

Conversely, let F be a subset of R that contains all of its cluster points; we will show

that C Fð Þ is open. For if y 2 C Fð Þ, then y is not a cluster point of F. It follows that there

exists an e-neighborhood Ve of y that does not contain a point of F (except possibly y). But

since y 2 C Fð Þ, it follows that Ve � C Fð Þ. Since y is an arbitrary element of C Fð Þ, we
deduce that for every point in C Fð Þ there is an e-neighborhood that is entirely contained in
C Fð Þ. But this means that C Fð Þ is open in R . Therefore F is closed in R . Q.E.D.

The Characterization of Open Sets

The idea of an open set in R is a generalization of the notion of an open interval. That this

generalization does not lead to extremely exotic sets that are open is revealed by the next

result.

11.1.9 Theorem A subset of R is open if and only if it is the union of countably many

disjoint open intervals in R .

Proof. Suppose that G 6¼ ; is an open set in R . For each x 2 G, let Ax :¼ a 2 R :f
a; xð � � G} and let Bx :¼ b 2 R : x; b½ Þ � Gf g. SinceG is open, it follows that Ax and Bx
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are not empty. (Why?) If the set Ax is bounded below, we set ax :¼ inf Ax; if Ax is not

bounded below, we set ax :¼ �1. Note that in either case ax =2 G. If the set Bx is bounded

above, we set bx :¼ sup Bx; if Bx is not bounded above, we set bx :¼ 1. Note that in either

case bx =2 G.

We now define Ix :¼ ax; bxð Þ; clearly Ix is an open interval containing x. We claim

that Ix � G. To see this, let y 2 Ix and suppose that y< x. It follows from the definition of

ax that there exists a0 2 Ax with a0 < y, whence y 2 a0; xð � � G. Similarly, if y 2 Ix and

x< y, there exists b0 2 Bx with y < b0, whence it follows that y 2 x; b0½ Þ � G. Since y 2 Ix
is arbitrary, we have that Ix � G.

Since x 2 G is arbitrary, we conclude that
S
x2G

Ix � G. On the other hand, since for each

x 2 G there is an open interval Ix with x 2 Ix � G, we also have G � S
x2G

Ix. Therefore we

conclude that G ¼ S
x2G

Ix.

We claim that if x; y 2 G and x 6¼ y, then either Ix ¼ Iy or Ix \ Iy ¼ ;. To prove this

suppose that z 2 Ix \ Iy, whence it follows that ax < z < by and ay < z < bx. (Why?) We

will show that ax ¼ ay. If not, it follows from the Trichotomy Property that either

(i) ax < ay, or (ii) ay < ax. In case (i), then ay 2 Ix ¼ ax; bxð Þ � G, which contradicts

the fact that ay =2 G. Similarly, in case (ii), then ax 2 Iy ¼ ay; by
� � � G, which contradicts

the fact that ax =2 G. Therefore we must have ax ¼ ay and a similar argument implies that

bx ¼ by. Therefore, we conclude that if Ix \ Iy 6¼ ;, then Ix ¼ Iy.

It remains to show that the collection of distinct intervals Ix : x 2 Gf g is countable. To
do this, we enumerate the set Q of rational numbers Q ¼ r1; r2; . . . ; rn; . . .f g (see Theorem
1.3.11). It follows from the Density Theorem 2.4.8 that each interval Ix contains rational

numbers; we select the rational number in Ix that has the smallest index n in this enumeration

of Q . That is, we choose rn xð Þ 2 Q such that Irn xð Þ ¼ Ix and n(x) is the smallest index n

such that Irn ¼ Ix. Thus the set of distinct intervals Ix; x 2 G, is put into correspondencewith

a subset of N . Hence this set of distinct intervals is countable. Q.E.D.

It is left as an exercise to show that the representation of G as a disjoint union of open

intervals is uniquely determined.

It does not follow from the preceding theorem that a subset of R is closed if and only if

it is the intersection of a countable collection of closed intervals (why not?). In fact, there

are closed sets in R that cannot be expressed as the intersection of a countable collection of

closed intervals in R . A set consisting of two points is one example. (Why?) We will now

describe the construction of a much more interesting example called the Cantor set.

The Cantor Set

The Cantor set, which we will denote by F, is a very interesting example of a (somewhat

complicated) set that is unlike any set we have seen up to this point. It reveals how

inadequate our intuition can sometimes be in trying to picture subsets of R .

The Cantor set F can be described by removing a sequence of open intervals from the

closed unit interval I :¼ 0; 1½ �. We first remove the open middle third 1
3
; 2

3

� �
of [0, 1] to

obtain the set

F1 :¼ 0; 1

3

h i
[ 2

3
; 1

h i
:

We next remove the open middle third of each of the two closed intervals in F1 to obtain

the set

F2 :¼ 0; 1

9

h i
[ 2

9
; 1

3

h i
[ 2

3
; 7

9

h i
[ 8

9
; 1

h i
:
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We see that F2 is the union of 22 ¼ 4 closed intervals, each of which is of the form

k=32; k þ 1ð Þ=32� �
. We next remove the open middle thirds of each of these sets to get F3,

which is the union of 23 ¼ 8 closed intervals. We continue in this way. In general, if Fn has

been constructed and consists of the union of 2n intervals of the form k=3n; k þ 1ð Þ=3n½ �,
then we obtain the set Fnþ1 by removing the open middle third of each of these intervals.

The Cantor set F is what remains after this process has been carried out for every n 2 N.

(See Figure 11.1.1.)

11.1.10 Definition The Cantor set F is the intersection of the sets Fn; n 2 N , obtained

by successive removal of open middle thirds, starting with [0, 1].

Since it is the intersection of closed sets, F is itself a closed set by 11.1.5(a). We now

list some of the properties of F that make it such an interesting set.

(1) The total length of the removed intervals is 1.

We note that the first middle third has length 1=3, the next two middle thirds have

lengths that add up to 2/32, the next four middle thirds have lengths that add up to 22=33,
and so on. The total length L of the removed intervals is given by

L ¼ 1

3
þ 2

32
þ � � � þ 2n

3nþ1
þ � � � ¼ 1

3

X1
n¼0

2

3

� �n

:

Using the formula for the sum of a geometric series, we obtain

L ¼ 1

3
� 1

1� 2=3ð Þ ¼ 1:

Thus F is a subset of the unit interval [0, 1] whose complement in [0, 1] has total length 1.

Note also that the total length of the intervals that make up Fn is (2/3)
n, which has limit

0 as n ! 1. Since F � Fn for all n 2 N , we see that if F can be said to have ‘‘length,’’ it

must have length 0.

(2) The set F contains no nonempty open interval as a subset.

Indeed, if F contains a nonempty open interval J :¼ a; bð Þ, then since J � Fn for all

n 2 N , we must have 0 < b� a � 2=3ð Þn for all n 2 N . Therefore b � a ¼ 0, whence J is

empty, a contradiction.

(3) The Cantor set F has infinitely (even uncountably) many points.

The Cantor set contains all of the endpoints of the removed open intervals, and these

are all points of the form 2k/3n where k ¼ 0; 1; . . . ; n for each n 2 N . There are infinitely

many points of this form.

The Cantor set actually contains many more points than those of the form 2k=3n;
in fact, F is an uncountable set. We give an outline of the argument. We note that each

Figure 11.1.1 Construction of the Cantor set
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x 2 0; 1½ � can be written in a ternary (base 3) expansion

x ¼
X1
n¼1

an

3n
¼ :a1a2 � � � an � � �ð Þ3

where each an is either 0 or 1 or 2. (See the discussion at the end of Section 2.5.) Indeed,

each x that lies in one of the removed open intervals has an ¼ 1 for some n; for example,

each point in 1
3
; 2

3

� �
has a1 ¼ 1. The endpoints of the removed intervals have two possible

ternary expansions, one having no 1s; for example, 3 ¼ :100 � � �ð Þ3 ¼ :022 � � �ð Þ3. If we
choose the expansion without 1s for these points, then F consists of all x 2 0; 1½ � that have
ternary expansions with no 1s; that is, an is 0 or 2 for all n 2 N . We now define a mapping w
of F onto [0, 1] as follows:

w
X1
n¼1

an

3n

 !
:¼
X1
n¼1

an=2ð Þ
2n

for x 2 F:

That is, w :a1a2 � � �ð Þ3
� � ¼ :b1b2 � � �ð Þ2 where bn ¼ an=2 for all n 2 N and :b1b2 � � �ð Þ2

denotes the binary representation of a number. Thus w is a surjection of F onto [0, 1].

Assuming that F is countable, Theorem 1.3.10 implies that there exists a surjection c of N

onto F, so that w � c is a surjection of N onto [0, 1]. Another application of Theorem

1.3.10 implies that [0, 1] is a countable set, which contradicts Theorem 2.5.5. Therefore F

is an uncountable set.

Exercises for Section 11.1

1. If x 2 0; 1ð Þ, let ex be as in Example 11.1.3(b). Show that if u� xj j < ex, then u 2 0; 1ð Þ.
2. Show that the intervals a; 1ð Þ and �1; að Þ are open sets, and that the intervals b;1½ Þ and

�1; bð � are closed sets.

3. Write out the Induction argument in the proof of part (b) of the Open Set Properties 11.1.4.

4. Prove that 0; 1ð � ¼ T1
n¼1 0; 1þ 1=nð Þ, as asserted in Example 11.1.6(a).

5. Show that the set N of natural numbers is a closed set in R .

6. Show that A ¼ 1=n : n 2 Nf g is not a closed set, but that A [ 0f g is a closed set.

7. Show that the set Q of rational numbers is neither open nor closed.

8. Show that if G is an open set and F is a closed set, then GnF is an open set and FnG is a

closed set.

9. A point x 2 R is said to be an interior point of A � R in case there is a neighborhood V of x

such that V � A. Show that a set A � R is open if and only if every point of A is an interior

point of A.

10. A point x 2 R is said to be a boundary point of A � R in case every neighborhood V of x

contains points in A and points in C Að Þ. Show that a set A and its complement C Að Þ have exactly
the same boundary points.

11. Show that a set G � R is open if and only if it does not contain any of its boundary points.

12. Show that a set F � R is closed if and only if it contains all of its boundary points.

13. If A � R , let A� be the union of all open sets that are contained in A; the set A� is called the

interior of A. Show that A� is an open set, that it is the largest open set contained in A, and that a
point z belongs to A� if and only if z is an interior point of A.
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14. Using the notation of the preceding exercise, let A, B be sets in R . Show that A� � A; A�ð Þ� ¼
A�, and that A \ Bð Þ� ¼ A� \ B�. Show also that A� [ B� � A [ Bð Þ�, and give an example to

show that the inclusion may be proper.

15. If A � R , let A� be the intersection of all closed sets containing A; the set A� is called the

closure of A. Show that A� is a closed set, that it is the smallest closed set containing A, and that

a point w belongs to A� if and only if w is either an interior point or a boundary point of A.

16. Using the notation of the preceding exercise, let A, B be sets in R . Show that we have A �
A�; A�ð Þ� ¼ A�, and that A [ Bð Þ� ¼ A� [ B�. Show that A \ Bð Þ� � A� \ B�, and give an

example to show that the inclusion may be proper.

17. Give an example of a set A � R such that A� ¼ ; and A� ¼ R .

18. Show that if F � R is a closed nonempty set that is bounded above, then sup F belongs to F.

19. If G is open and x 2 G, show that the sets Ax and Bx in the proof of Theorem 11.1.9 are not

empty.

20. If the set Ax in the proof of Theorem 11.1.9 is bounded below, show that ax :¼ inf Ax does not

belong to G.

21. If in the notation used in the proof of Theorem 11.1.9, we have ax < y < x, show that y 2 G.

22. If in the notation used in the proof of Theorem 11.1.9, we have Ix \ Iy 6¼ ;, show that bx ¼ by.

23. Show that each point of the Cantor set F is a cluster point of F.

24. Show that each point of the Cantor set F is a cluster point of C Fð Þ.

Section 11.2 Compact Sets

In advanced analysis and topology, the notion of a ‘‘compact’’ set is of enormous

importance. This is less true in R because the Heine-Borel Theorem gives a very simple

characterization of compact sets in R . Nevertheless, the definition and the techniques

used in connection with compactness are very important, and the real line provides an

appropriate place to see the idea of compactness for the first time.

The definition of compactness uses the notion of an open cover, which we now define.

11.2.1 Definition Let A be a subset ofR . An open cover of A is a collection G ¼ Gaf g of
open sets in R whose union contains A; that is,

A �
[
a

Ga:

If G0 is a subcollection of sets from G such that the union of the sets in G0 also contains A,

then G0 is called a subcover of G. If G0 consists of finitely many sets, then we call G0 a finite
subcover of G.

There can be many different open covers for a given set. For example, if A :¼ 1;1½ Þ,
then the reader can verify that the following collections of sets are all open covers of A:

G0 :¼ 0;1ð Þf g;
G1 :¼ r� 1; rþ 1ð Þ : r 2 Q ; r > 0f g;
G2 :¼ n� 1; nþ 1ð Þ : n 2 Nf g;
G3 :¼ 0; nð Þ : n 2 Nf g;
G4 :¼ 0; nð Þ : n 2 N ; n � 23f g:
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We note that G2 is a subcover of G1, and that G4 is a subcover of G3. Of course, many other

open covers of A can be described.

11.2.2 Definition A subset K of R is said to be compact if every open cover of K has a

finite subcover.

In other words, a set K is compact if, whenever it is contained in the union of a

collection G ¼ Gaf g of open sets in R , then it is contained in the union of some finite

number of sets in G.

It is very important to note that, in order to apply the definition to prove that a set K is

compact, we must examine an arbitrary collection of open sets whose union contains K,

and show that K is contained in the union of some finite number of sets in the given

collection. That is, it must be shown that any open cover of K has a finite subcover. On the

other hand, to prove that a set H is not compact, it is sufficient to exhibit one specific

collection G of open sets whose union contains H, but such that the union of any finite

number of sets in G fails to contain H. That is, H is not compact if there exists some open

cover of H that has no finite subcover.

11.2.3 Examples (a) Let K :¼ x1; x2; . . . ; xnf g be a finite subset of R . If G ¼ Gaf g is
an open cover ofK, then each xi is contained in some setGai in G. Then the union of the sets
in the collection Ga1 ; Ga2 ; . . . ;Gan

f g contains K, so that it is a finite subcover of G. Since G
was arbitrary, it follows that the finite set K is compact.

(b) Let H :¼ 0;1½ Þ. To prove that H is not compact, we will exhibit an open cover that

has no finite subcover. If we let Gn :¼ �1; nð Þ for each n 2 N , then H � S1
n¼1

Gn, so that

G :¼ Gn : n 2 Nf g is an open cover of H. However, if Gn1 ;Gn2 ; . . . ;Gnkf g is any finite

subcollection of G, and if we let m :¼ sup n1; n2; . . . ; nkf g, then
Gn1 [ Gn2 [ � � � [ Gnk ¼ Gm ¼ �1;mð Þ:

Evidently, this union fails to contain H ¼ 0;1½ Þ. Thus no finite subcollection of G will

have its union contain H, and therefore H is not compact.

(c) Let J :¼ 0; 1ð Þ. If we let Gn :¼ 1=n; 1ð Þ for each n 2 N , then it is readily seen that

J ¼ S1
n¼1

Gn. Thus G :¼ Gn : n 2 Nf g is an open cover of J. If Gn1 ;Gn2 ; . . . ;Gnrf g is any

finite subcollection of G, and if we set s :¼ sup n1; n2; . . . ; nrf g then

Gn1 [ Gn2 [ � � � [ Gnr ¼ Gs ¼ 1=s; 1ð Þ:

Since 1=s is in J but not in Gs, we see that the union does not contain J. Therefore, J is

not compact. &

We now wish to describe all compact subsets of R . First we will establish by rather

straightforward arguments that any compact set in R must be both closed and bounded.

Then we will show that these properties in fact characterize the compact sets in R . This is

the content of the Heine-Borel Theorem.

11.2.4 Theorem If K is a compact subset of R , then K is closed and bounded.
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Proof. We will first show that K is bounded. For each m 2 N , let Hm :¼ �m; mð Þ. Since
eachHm is open and sinceK � S1

m¼1

Hm ¼ R , we see that the collection Hm : m 2 Nf g is an
open cover of K. Since K is compact, this collection has a finite subcover, so there exists

M 2 N such that

K �
[M
m¼1

Hm ¼ Hm ¼ �M;Mð Þ:

Therefore K is bounded, since it is contained in the bounded interval �M; Mð Þ.
We now show that K is closed, by showing that its complement C Kð Þ is open. To do so,

let u 2 C Kð Þ be arbitrary and for each n 2 N , we letGn :¼ y 2 R : y� uj j > 1=nf g. It is an
exercise to show that each set Gn is open and that Rn uf g ¼ S1

n¼1

Gn. Since u =2 K, we have

K � S1
n¼1

Gn. Since K is compact, there exists m 2 N such that

K �
[m
n¼1

Gn ¼ Gm:

Now it follows from this that K \ u� 1=m; uþ 1=mð Þ ¼ ;, so that the interval u� 1=m;ð
uþ 1=m � C Kð Þ. But since u was an arbitrary point in C Kð Þ, we infer that C Kð Þ
is open. Q.E.D.

We now prove that the conditions of Theorem 11.2.4 are both necessary and sufficient

for a subset of R to be compact.

11.2.5 Heine-Borel Theorem A subset K of R is compact if and only if it is closed and

bounded.

Proof. We have shown in Theorem 11.2.4 that a compact set in R must be closed and

bounded. To establish the converse, suppose that K is closed and bounded, and let G ¼
Gaf g be an open cover ofK. Wewish to show thatKmust be contained in the union of some

finite subcollection from G. The proof will be by contradiction. We assume that:

ð1Þ K is not contained in the union of any finite number of sets inG:
By hypothesis, K is bounded, so there exists r > 0 such that K � �r; r½ �. We let I1 :¼
�r; r½ � and bisect I1 into two closed subintervals I01 :¼ �r; 0½ � and I001 :¼ 0; r½ �. At least one
of the two subsets K \ I01 and K \ I001 must be nonvoid and have the property that it is not

contained in the union of any finite number of sets in G. [For if both of the sets K \ I01 and
K \ I001 are contained in the union of some finite number of sets in G, then K ¼ K \ I01

� � [
K \ I001
� �

is contained in the union of some finite number of sets in G, contrary to the

assumption (1).] If K \ I01 is not contained in the union of some finite number of sets in G,
we let I2 :¼ I01; otherwise K \ I001 has this property and we let I2 :¼ I001.

We now bisect I2 into two closed subintervals I
0
2 and I

00
2. If K \ I02 is nonvoid and is not

contained in the union of some finite number of sets in G, we let I3 :¼ I02; otherwise K \ I002
has this property and we let I3 :¼ I002.

Continuing this process, we obtain a nested sequence of intervals (In). By the Nested

Intervals Property 2.5.2, there is a point z that belongs to all of the In; n 2 N . Since each

interval In contains infinitely many points in K (why?), the point z is a cluster point of K.

Moreover, since K is assumed to be closed, it follows from Theorem 11.1.8 that z 2 K.
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Therefore there exists a set Gl in G with z 2 Gl. Since Gl is open, there exists e > 0 such

that

z� e; zþ eð Þ � Gl:

On the other hand, since the intervals In are obtained by repeated bisections of I1 ¼ �r; r½ �,
the length of In is r=2n�2. It follows that if n is so large that r=2n�2 < e, then

In � z� e; zþ eð Þ � Gl. But this means that if n is such that r=2n�2 < e, then K \ In
is contained in the single set Gl in G, contrary to our construction of In. This contradiction
shows that the assumption (1) that the closed bounded set K requires an infinite number

of sets in G to cover it is untenable. We conclude that K is compact. Q.E.D.

Remark It was seen in Example 11.2.3(b) that the closed set H :¼ 0;1½ Þ is not

compact; note that H is not bounded. It was also seen in Example 11.2.3(c) that the

bounded set J :¼ 0; 1ð Þ is not compact; note that J is not closed. Thus, we cannot drop

either hypothesis of the Heine-Borel Theorem.

We can combine the Heine-Borel Theorem with the Bolzano-Weierstrass Theorem

3.4.8 to obtain a sequential characterization of the compact subsets of R .

11.2.6 Theorem A subset K of R is compact if and only if every sequence in K has a

subsequence that converges to a point in K.

Proof. Suppose thatK is compact and let (xn) be a sequencewith xn 2 K for all n 2 N . By

the Heine-Borel Theorem, the set K is bounded so that the sequence (xn) is bounded; by the

Bolzano-Weierstrass Theorem 3.4.8, there exists a subsequence xnkð Þ that converges. Since
K is closed (by Theorem 11.2.4), the limit x :¼ lim xnkð Þ is in K. Thus every sequence in K
has a subsequence that converges to a point of K.

To establish the converse, we will show that if K is either not closed or not bounded,

then there must exist a sequence in K that has no subsequence converging to a point of K.

First, if K is not closed, then there is a cluster point c of K that does not belong to K. Since c

is a cluster point of K, there is a sequence (xn) with xn 2 K and xn 6¼ c for all n 2 N such

that lim xnð Þ ¼ c. Then every subsequence of (xn) also converges to c, and since c =2 K,

there is no subsequence that converges to a point of K.

Second, if K is not bounded, then there exists a sequence (xn) in K such that xnj j > n

for all n 2 N . (Why?) Then every subsequence of (xn) is unbounded, so that no subsequence

of it can converge to a point of K. Q.E.D.

Remark The reader has probably noticed that there is a similarity between the com-

pactness of the interval [a, b] and the existence of d-fine partitions for [a, b]. In fact, these

properties are equivalent, each being deducible from the other. However, compactness

applies to sets that are more general than intervals.

Exercises for Section 11.2

1. Exhibit an open cover of the interval (1, 2] that has no finite subcover.

2. Exhibit an open cover of N that has no finite subcover.

3. Exhibit an open cover of the set 1=n : n 2 Nf g that has no finite subcover.
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4. Prove, using Definition 11.2.2, that if F is a closed subset of a compact set K in R , then F is

compact.

5. Prove, using Definition 11.2.2, that if K1 and K2 are compact sets in R , then their union K1 [ K2

is compact.

6. Use the Heine-Borel Theorem to prove the following version of the Bolzano-Weierstrass

Theorem: Every bounded infinite subset of R has a cluster point in R . (Note that if a set has no

cluster points, then it is closed by Theorem 11.1.8.)

7. Find an infinite collection Kn : n 2 Nf g of compact sets in R such that the union
S1
n¼1

Kn is not

compact.

8. Prove that the intersection of an arbitrary collection of compact sets in R is compact.

9. Let Kn : n 2 Nð Þ be a sequence of nonempty compact sets in R such that K1 	 K2 	 � � � 	
Kn 	 � � �. Prove that there exists at least one point x 2 R such that x 2 Kn for all n 2 N; that

is, the intersection
T1
n¼1

Kn is not empty.

10. Let K 6¼ ; be a compact set in R . Show that inf K and sup K exist and belong to K.

11. Let K 6¼ ; be compact in R and let c 2 R . Prove that there exists a point a in K such that

c� aj j ¼ inf c� xj j : x 2 Kf g.
12. Let K 6¼ ; be compact in R and let c 2 R . Prove that there exists a point b in K such that

c� bj j ¼ sup c� xj j : x 2 Kf g.
13. Use the notion of compactness to give an alternative proof of Exercise 5.3.18.

14. If K1 and K2 are disjoint nonempty compact sets, show that there exist ki 2 Ki such that

0 < k1 � k2j j ¼ inf x1 � x2j j : xi 2 Kif g.
15. Give an example of disjoint closed sets F1, F2 such that 0 ¼ inf x1 � x2j j : xi 2 Fif g.

Section 11.3 Continuous Functions

In this section we will examine the way in which the concept of continuity of functions

can be related to the topological ideas of open sets and compact sets. Some of the

fundamental properties of continuous functions on intervals presented in Section 5.3

will be established in this context. Among other things, these new arguments will

show that the concept of continuity and many of its important properties can be

carried to a greater level of abstraction. This will be discussed briefly in the next

section on metric spaces.

Continuity

In Section 5.1 we were concerned with continuity at a point, that is, with the ‘‘local’’

continuity of functions. We will now be mainly concerned with ‘‘global’’ continuity in the

sense that we will assume that the functions are continuous on their entire domains.

The continuity of a function f : A ! R at a point c 2 A was defined in Section 5.1.

Theorem 5.1.2 stated that f is continuous at c if and only if for every e-neighbornood
V e f cð Þð Þ of f cð Þ there exists a d-neighborhood Vd cð Þ of c such that if x 2 Vd cð Þ \ A, then

f xð Þ 2 V e f cð Þð Þ. We wish to restate this condition for continuity at a point in terms of

general neighborhoods. (Recall from 11.1.1 that a neighborhood of a point c is any set U

that contains an e-neighborhood of c for some e > 0.)
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11.3.1 Lemma A function f : A ! R is continuous at the point c in A if and only if for

every neighborhood U of f (c), there exists a neighborhood V of c such that if x 2 V \ A,

then f xð Þ 2 U.

Proof. Suppose f satisfies the stated condition. Then given e > 0, we let U ¼ V e f cð Þð Þ
and then obtain a neighborhood V for which x 2 V \ A implies f xð Þ 2 U. If we choose

d > 0 such that Vd cð Þ � V , then x 2 Vd cð Þ \ A implies f xð Þ 2 U; therefore f is continuous

at c according to Theorem 5.1.2.

Conversely, if f is continuous at c in the sense of Theorem 5.1.2, then since any

neighborhood U of f cð Þ contains an e-neighborhood V e f cð Þð Þ, it follows that taking the

d-neighborhood V ¼ Vd cð Þ of c of Theorem 5.1.2 satisfies the condition of the lemma.

Q.E.D.

We note that the statement that x 2 V \ A implies f xð Þ 2 U is equivalent to the

statement that f V \ Að Þ � U; that is, that the direct image of V \ A is contained in U. Also

from the definition of inverse image, this is the same as V \ A � f�1 Uð Þ. (See Definition
1.1.7 for the definitions of direct and inverse images.) Using this observation, we now

obtain a condition for a function to be continuous on its domain in terms of open sets. In

more advanced courses in topology, part (b) of the next result is often taken as the definition

of (global) continuity.

11.3.2 Global Continuity Theorem Let A � R and let f : A ! R be a function with

domain A. Then the following are equivalent:

(a) f is continuous at every point of A.

(b) For every open set G in R , there exists an open set H in R such that H \ A ¼ f�1 Gð Þ.

Proof. (a) ) (b). Assume that f is continuous at every point of A, and let G be a given

open set in R . If c belongs to f�1 Gð Þ, then f cð Þ 2 G, and since G is open, G is a

neighborhood of f cð Þ. Therefore, by the preceding lemma, it follows from the continuity of

f that there is an open set V cð Þ such that x 2 V cð Þ implies that f xð Þ 2 G; that is, V cð Þ is
contained in the inverse image f�1 Gð Þ. Select V cð Þ for each c in f�1 Gð Þ, and let H be the

union of all these sets V cð Þ. By the Open Set Properties 11.1.4, the set H is open, and we

have H \ A ¼ f�1 Gð Þ. Hence (a) implies (b).

(b) ) (a). Let c be any point A, and let G be an open neighborhood of f cð Þ. Then
condition (b) implies that there exists an open set H in R such that H \ A ¼ f�1 Gð Þ. Since
f cð Þ 2 G, it follows that c 2 H, so H is a neighborhood of c. If x 2 H \ A, then f cð Þ 2 G,

and therefore f is continuous at c. Thus (b) implies (a). Q.E.D.

In the case that A ¼ R , the preceding result simplifies to some extent.

11.3.3 Corollary A function f : R ! R is continuous if and only if f�1 Gð Þ is open in

R whenever G is open.

It must be emphasized that the Global Continuity Theorem 11.3.2 does not say that if f

is a continuous function, then the direct image f (G) of an open set is necessarily open. In

general, a continuous function will not send open sets to open sets. For example, consider

the continuous function f : R ! R defined by

f xð Þ :¼ x2 þ 1 for x 2 R :
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If G is the open set G :¼ �1; 1ð Þ, then the direct image under f is f Gð Þ ¼ 1; 2½ Þ, which is

not open in R . See the exercises for additional examples.

Preservation of Compactness

In Section 5.3 we proved that a continuous function takes a closed, bounded interval a; b½ �
onto a closed, bounded interval m; M½ �, where m and M are the minimum and maximum

values of f on a; b½ �, respectively. By the Heine-Borel Theorem, these are compact subsets

of R , so that Theorem 5.3.9 is a special case of the following theorem.

11.3.4 Preservation of Compactness If K is a compact subset of R and if f : K ! R is

continuous on K, then f (K) is compact.

Proof. Let G ¼ Glf g be an open cover of the set f (K). We must show that G has a finite

subcover. Since f Kð Þ � SGl, it follows that K � S f�1 Glð Þ. By Theorem 11.3.2, for

each Gl there is an open set Hl such that Hl \ K ¼ f�1 Glð Þ. Then the collection Hlf g is
an open cover of the set K. Since K is compact, this open cover of K contains a finite

subcover Hl1 ;Hl2 ; . . . ;Hlnf g. Then we have

[n
i¼1

f�1
�
Gli

� ¼[n
i¼1

Hli \ K 	 K:

From this it follows that
Sn
i¼1

Gli 	 f Kð Þ. Hence we have found a finite subcover of G. Since
G was an arbitrary open cover of f (K ), we conclude that f (K ) is compact. Q.E.D.

11.3.5 Some Applications We will now show how to apply the notion of compactness

(and the Heine-Borel Theorem) to obtain alternative proofs of some important results that

we have proved earlier by using the Bolzano-Weierstrass Theorem. In fact, these theorems

remain true if the intervals are replaced by arbitrary nonempty compact sets in R .

(1) The Boundedness Theorem 5.3.2 is an immediate consequence of Theorem 11.3.4 and

the Heine-Borel Theorem 11.2.5. Indeed, if K � R is compact and if f : K ! R is

continuous on K, then f (K) is compact and hence bounded.

(2) The Maximum-Minimum Theorem 5.3.4 is also an easy consequence of Theorem

11.3.4 and the Heine-Borel Theorem. As before, we find that f Kð Þ is compact and hence

bounded in R , so that s
 :¼ sup f Kð Þ exists. If f Kð Þ is a finite set, then s
 2 f Kð Þ. If f Kð Þ is
an infinite set, then s
 is a cluster point of f Kð Þ [see Exercise 11.2.6]. Since f Kð Þ is a closed
set, by the Heine-Borel Theorem, it follows from Theorem 11.1.8 that s
 2 f Kð Þ. We

conclude that s
 ¼ f x
ð Þ for some x
 2 K.

(3) We can also give a proof of the Uniform Continuity Theorem 5.4.3 based on the notion

of compactness. To do so, let K � R be compact and let f : K ! R be continuous on K.

Then given e > 0 and u 2 K, there is a number du :¼ d 1
2
e; u

� �
> 0 such that if x 2 K and

x� uj j < du then f xð Þ � f uð Þj j < 1
2
e. For each u 2 K, letGu :¼ u� 1

2
du; uþ 1

2
du

� �
so that

Gu is open; we consider the collection G ¼ Gu : u 2 Kf g. Since u 2 Gu for u 2 K, it is

trivial that K � S
u2K

Gu. Since K is compact, there are a finite number of sets, say

Gu1 ; . . . ;GuM , whose union contains K. We now define

d eð Þ :¼ 1
2
inf du1 ; . . . ; duMf g;
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so that d eð Þ > 0. Now if x; u 2 K and x� uj j < d eð Þ, then there exists some uk with

k ¼ 1; . . . ;M such that x 2 Guk ; therefore x� ukj j < 1
2
duk . Since we have d eð Þ � 1

2
duk , it

follows that

u� ukj j � u� xj j þ x� ukj j < duk :

But since duk ¼ d 1
2
e; uk

� �
it follows that both

f xð Þ � f ukð Þj j < 1
2
e and f uð Þ � f ukð Þj j < 1

2
e:

Therefore we have f xð Þ � f uð Þj j < e.
We have shown that if e > 0, then there exists d eð Þ > 0 such that if x; u are any points

in K with x� uj j < d eð Þ, then f xð Þ � f uð Þj j < e. Since e > 0 is arbitrary, this shows that f

is uniformly continuous on K, as asserted. &

We conclude this section by extending the Continuous Inverse Theorem 5.6.5 to

functions whose domains are compact subsets of R , rather than intervals in R .

11.3.6 Theorem If K is a compact subset of R and f : K ! R is injective and

continuous, then f�1 is continuous on f (K).

Proof. Since K is compact, then Theorem 11.3.4 implies that the image f (K) is compact.

Since f is injective by hypothesis, the inverse function f�1 is defined on f Kð Þ to K. Let ynð Þ
be any convergent sequence in f Kð Þ, and let y0 ¼ lim ynð Þ. To establish the continuity of

f�1, we will show that the sequence f�1 ynð Þ� �
converges to f�1 y0ð Þ.

Let xn :¼ f�1 ynð Þ and, by way of contradiction, assume that xnð Þ does not converge to
x0 :¼ f�1 y0ð Þ. Then there exists an e > 0 and a subsequence xk

0ð Þ such that x0k � x0
�� �� � e

for all k. Since K is compact, we conclude from Theorem 11.2.6 that there is a subsequence

x00r
� �

of the sequence x0k
� �

that converges to a point x
 of K. Since x
 � x0j j � e, we have
x
 6¼ x0. Now since f is continuous, we have lim f x00r

� �� � ¼ f x
ð Þ. Also, since the

subsequence y00n
� �

of ynð Þ that corresponds to the subsequence x00n
� �

of xnð Þ must converge

to the same limit as ynð Þ does, we have

lim f x00r
� �� � ¼ lim y00n

� � ¼ y0 ¼ f x0ð Þ:
Therefore we conclude that f x
ð Þ ¼ f x0ð Þ. However, since f is injective, this implies that

x
 ¼ x0, which is a contradiction. Thus we conclude that f�1 takes convergent sequences

in f Kð Þ to convergent sequences in K, and hence f�1 is continuous. Q.E.D.

Exercises for Section 11.3

1. Let f : R ! R be defined by f xð Þ ¼ x2 for x 2 R.

(a) Show that the inverse image f�1 Ið Þ of an open interval I :¼ a; bð Þ is either an open interval,
the union of two open intervals, or empty, depending on a and b.

(b) Show that if I is an open interval containing 0, then the direct image f Ið Þ is not open.
2. Let f : R ! R be defined by f xð Þ :¼ 1= 1þ x2ð Þ for x 2 R.

(a) Find an open interval (a, b) whose direct image under f is not open.

(b) Show that the direct image of the closed interval 0;1½ Þ is not closed.
3. Let I :¼ 1;1½ Þ and let f xð Þ :¼ ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

for x 2 I. For each e-neighborhood G ¼ �e;þeð Þ of 0,
exhibit an open set H such that H \ I ¼ f�1 Gð Þ.
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4. Let h : R ! R be defined by h xð Þ :¼ 1 if 0 � x � 1; h xð Þ :¼ 0 otherwise. Find an open set G

such that h�1 Gð Þ is not open, and a closed set F such that h�1 Fð Þ is not closed.
5. Show that if f : R ! R is continuous, then the set x 2 R : f xð Þ < af g is open in R for each

a 2 R .

6. Show that if f : R ! R is continuous, then the set x 2 R : f xð Þ � af g is closed in R for each

a 2 R .

7. Show that if f : R ! R is continuous, then the set x 2 R : f xð Þ ¼ kf g is closed in R for each

k 2 R .

8. Give an example of a function f : R ! R such that the set x 2 R : f xð Þ ¼ 1f g is neither open

nor closed in R .

9. Prove that f : R ! R is continuous if and only if for each closed set F in R , the inverse image

f�1 Fð Þ is closed.
10. Let I :¼ a; b½ � and let f : I ! R and g : I ! R be continuous functions on I. Show that the

set x 2 I : f xð Þ ¼ g xð Þf g is closed in R .

Section 11.4 Metric Spaces

This book has been devoted to a careful study of the real number system and a number of

different limiting processes that can be defined for functions of a real variable. A central

topic was the study of continuous functions. At this point, with a strong understanding of

analysis on the real line, the study of more general spaces and the related limit concepts can

begin. It is possible to generalize the fundamental concepts of real analysis in several

different ways, but one of the most fruitful is in the context of metric spaces, where a metric

is an abstraction of a distance function.

In this section, wewill introduce the idea of metric space and then indicate how certain

areas of the theory developed in this book can be extended to this new setting. We will

discuss the concepts of neighborhood of a point, open and closed sets, convergence of

sequences, and continuity of functions defined on metric spaces. Our purpose in this brief

discussion is not to develop the theory of metric spaces to any great extent, but to reveal

how the key ideas and techniques of real analysis can be put into a more abstract and

general framework. The reader should note how the basic results of analysis on the real line

serve to motivate and guide the study of analysis in more general contexts.

Generalization can serve two important purposes. One purpose is that theorems

derived in general settings can often be applied in many particular cases without the need of

a separate proof for each special case. A second purpose is that by removing the

nonessential (and sometimes distracting) features of special situations, it is often possible

to understand the real significance of a concept or theorem.

Metrics

On the real line, basic limit concepts were defined in terms of the distance x� yj j
between two points x, y in R , and many theorems were proved using the absolute value

function. Actually, a careful study reveals that only a few key properties of the absolute

value were required to prove many fundamental results, and it happens that these

properties can be extracted and used to define more general distance functions called

‘‘metrics.’’
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11.4.1 Definition A metric on a set S is a function d : S� S ! R that satisfies the

following properties:

(a) d x; yð Þ � 0 for all x; y 2 S positivityð Þ;
(b) d x; yð Þ ¼ 0 if and only if x ¼ y def initenessð Þ;
(c) d x; yð Þ ¼ d y; xð Þ for all x; y 2 S symmetryð Þ;
(d) d x; yð Þ � d x; zð Þ þ d z; yð Þ for all x; y; z 2 S triangle inequalityð Þ:
A metric space S; dð Þ is a set S together with a metric d on S.

We consider several examples of metric spaces.

11.4.2 Examples (a) The familiar metric on R is defined by

d x; yð Þ :¼ x� yj j for x; y 2 R :

Property 11.4.1(d) for d follows from the Triangle Inequality for absolute value because

we have

d x; yð Þ ¼ x� yj j ¼ x� zð Þ þ z� yð Þj j
� x� zj j þ z� yj j ¼ d x; zð Þ þ d z; yð Þ;

for all x; y; z 2 R .

(b) The distance function in the plane obtained from the Pythagorean Theorem provides

one example of a metric in R
2. That is, we define the metric d on R

2 as follows: if

P1 :¼ x1; y1ð Þ and P2 :¼ x2; y2ð Þ are points in R
2, then

d P1;P2ð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2

q
:

(c) It is possible to define several different metrics on the same set. On R
2, we can also

define the metric d1 as follows:

d1 P1;P2ð Þ :¼ x1 � x2j j þ y1 � y2j j:

Still another metric on R
2 is d1 defined by

d1 P1;P2ð Þ :¼ sup x1 � x2j j; y1 � y2j jf g:

The verifications that d1 and d1 satisfy the properties of a metric are left as exercises.

(d) Let C 0; 1½ � denote the set of all continuous functions on the interval [0, 1] toR . For f ; g
in C 0; 1½ �, we define

d1 f ; gð Þ :¼ sup f xð Þ � g xð Þj j : x 2 0; 1½ �f g:
Then it can be verified that d1 is a metric on C 0; 1½ �. This metric is the uniform norm of

f � g on [0, 1] as defined in Section 8.1; that is, d1 f ; gð Þ ¼ jj f � gjj, where jj f jj denotes
the uniform norm of f on the set [0, 1].

(e) We again consider C 0; 1½ �, but we now define a different metric d1 by

d1 f ; gð Þ :¼
Z 1

0

f � gj j for f; g 2 C 0; 1½ �:

The properties of the integral can be used to show that this is indeed a metric onC 0; 1½ �. The
details are left as an exercise.
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(f) Let S be any nonempty set. For s; t 2 S, we define

d s; tð Þ :¼ 0 if s ¼ t;
1 if s 6¼ t:




It is an exercise to show that d is a metric on S. This metric is called the discrete metric

on the set S. &

We note that if S; dð Þ is a metric space, and if T � S, then d 0 defined by d 0 x; yð Þ :¼
d x; yð Þ for all x; y 2 T gives a metric on T, which we generally denote by d. With this

understanding, we say that T ; dð Þ is also a metric space. For example, the metric d on R

defined by the absolute value is a metric on the setQ of rational numbers, and thus Q ; dð Þ is
also a metric space.

Neighborhoods and Convergence

The basic notion needed for the introduction of limit concepts is that of neighborhood, and

this is defined in metric spaces as follows.

11.4.3 Definition Let (S, d) be a metric space. Then for e > 0, the e-neighborhood of a

point x0 in S is the set

V e x0ð Þ :¼ x 2 S : d x0; xð Þ < ef g:
A neighborhood of x0 is any set U that contains an e-neighborhood of x0 for some e > 0.

Any notion defined in terms of neighborhoods can now be defined and discussed in the

context of metric spaces by modifying the language appropriately. We first consider the

convergence of sequences.

A sequence in a metric space S; dð Þ is a function X : N ! S with domain N and range

in S, and the usual notations for sequence are used; we write X ¼ xnð Þ, but now xn 2 S for

all n 2 N . When we replace the absolute value by a metric in the definition of sequential

convergence, we get the notion of convergence in a metric space.

11.4.4 Definition Let (xn) be a sequence in the metric space S; dð Þ. The sequence (xn) is
said to converge to x in S if for any e > 0 there exists K 2 N such that xn 2 V e xð Þ for all
n � K.

Note that since xn 2 Ve xð Þ if and only if d xn; xð Þ < e, a sequence xnð Þ converges to x
if and only if for any e > 0 there exists K such that d xn; xð Þ < e for all n � K. In other

words, a sequence xnð Þ in S; dð Þ converges to x if and only if the sequence of real numbers

d xn; xð Þð Þ converges to 0.

11.4.5 Examples (a) Consider R2 with the metric d defined in Example 11.4.2(b). If

Pn ¼ xn; ynð Þ 2 R
2 for each n 2 N , then we claim that the sequence (Pn) converges to

P ¼ x; yð Þ with respect to this metric if and only if the sequences of real numbers (xn) and

(yn) converge to x and y, respectively.

First, we note that the inequality xn � xj j � d Pn; Pð Þ implies that if (Pn) converges to

P with respect to the metric d, then the sequence (xn) converges to x; the convergence of

(yn) follows in a similar way. The converse follows from the inequality d Pn;Pð Þ �
xn � xj j þ yn � yj j, which is readily verified. The details are left to the reader.
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(b) Let d1 be the metric on C[0, 1] defined in Example 11.4.2(d). Then a sequence f nð Þ
in C[0, 1] converges to f with respect to this metric if and only if f nð Þ converges to f

uniformly on the set [0, 1], This is established in Lemma 8.1.8 in the discussion of the

uniform norm. &

Cauchy Sequences

The notion of Cauchy sequence is a significant concept in metric spaces. The definition is

formulated as expected, with the metric replacing the absolute value.

11.4.6 Definition Let (S, d ) be a metric space. A sequence (xn) in S is said to be a

Cauchy sequence if for each e > 0, there exists H 2 N such that d xn; xmð Þ < e for all
n; m � H.

The Cauchy Convergence Theorem 3.5.5 for sequences in R states that a sequence in

R is a Cauchy sequence if and only if it converges to a point of R . This theorem is not true

for metric spaces in general, as the examples that follow will reveal. Those metric spaces

for which Cauchy sequences are convergent have special importance.

11.4.7 Definition A metric space (S, d ) is said to be complete if each Cauchy sequence
in S converges to a point of S.

In Section 2.3 the Completeness Property of R is stated in terms of the order properties

by requiring that every nonempty subset of R that is bounded above has a supremum in R .

The convergence of Cauchy sequences is deduced as a theorem. In fact, it is possible to

reverse the roles of these fundamental properties of R : the Completeness Property of R can

be stated in terms of Cauchy sequences as in 11.4.7, and the Supremum Property can then

be deduced as a theorem. Since many metric spaces do not have an appropriate order

structure, a concept of completeness must be described in terms of the metric, and Cauchy

sequences provide the natural vehicle for this.

11.4.8 Examples (a) The metric space Q ; dð Þ of rational numbers with the metric

defined by the absolute value function is not complete.

For example, if (xn) is a sequence of rational numbers that converges to
ffiffiffi
2

p
, then it is

Cauchy in Q , but it does not converge to a point of Q . Therefore Q ; dð Þ is not a complete

metric space.

(b) The space C[0, 1] with the metric d1 defined in 11.4.2(d) is complete.

To prove this, suppose that ( fn) is a Cauchy sequence in C[0, 1] with respect to the

metric d1. Then, given e > 0, there exists H such that

ð1Þ f n xð Þ � f m xð Þj j < e

for all x 2 0; 1½ � and all n;m � H. Thus for each x, the sequence f n xð Þð Þ is Cauchy in R ,

and therefore converges in R . We define f to be the pointwise limit of the sequence; that is,

f xð Þ :¼ lim f n xð Þð Þ for each x 2 0; 1½ �. It follows from (1) that for each x 2 0; 1½ � and each
n � H, we have f n xð Þ � f xð Þj j � e. Consequently the sequence f nð Þ converges uniformly

to f on [0, 1]. Since the uniform limit of continuous functions is also continuous (by 8.2.2),

the function f is in C 0; 1½ �. Therefore the metric space C 0; 1½ �; d1ð Þ is complete.

(c) If d1 is the metric on C[0, 1] defined in 11.4.2(e), then the metric space C 0; 1½ �; d1ð Þ is
not complete.
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a

limit in the space. We define the sequence ( fn) for n � 3 as follows (see Figure 11.4.1):

f n xð Þ :¼
1 for 0 � x � 1=2;

1þ n=2� nx for 1=2 < x � 1=2þ 1=n;

0 for 1=2þ 1=n < x � 1:

8><
>:

Note that the sequence ( fn) converges pointwise to the discontinuous function f xð Þ :¼ 1 for

0 � x � 1=2 and f xð Þ :¼ 0 for 1=2 < x � 1. Hence f =2 C 0; 1½ �; in fact, there is no

function g 2 C 0; 1½ � such that d1 f n; gð Þ ! 0. &

Open Sets and Continuity

With the notion of neighborhood defined, the definitions of open set and closed set read the

same as for sets in R .

11.4.9 Definition Let (S, d ) be a metric space. A subsetG of S is said to be an open set in

S if for every point x 2 S there is a neighborhoodU of x such thatU � G. A subset F of S is

said to be a closed set in S if the complement SnF is an open set in S.

Theorems 11.1.4 and 11.1.5 concerning the unions and intersections of open sets and

closed sets can be extended to metric spaces without difficulty. In fact, the proofs of those

theorems carry over to metric spaces with very little change: simply replace the

e-neighborhoods x� e; xþ eð Þ in R by e-neighborhoods V e xð Þ in S.

We now can examine the concept of continuity for functions that map one metric space

(S1, d1) into another metric space (S2, d2). Note that we modify the property in 5.1.2 of

continuity for functions on R by replacing neighborhoods in R by neighborhoods in the

metric spaces.

11.4.10 Definition Let (S1, d1) and (S2, d2) be metric spaces, and let f : S1 ! S2 be a

function from S1 to S2. The function f is said to be continuous at the point c in S1 if for

every e-neighborhood V e f cð Þð Þ of f cð Þ there exists a d-neighborhood Vd cð Þ of c such that if
x 2 Vd cð Þ, then f xð Þ 2 Ve f cð Þð Þ:

The e-d formulation of continuity can be stated as follows: f : S1 ! S2 is continuous at

c if and only if for each e > 0 there exists d > 0 such that d1 x; cð Þ < d implies that

d2 f xð Þ; f cð Þð Þ < e.

Figure 11.4.1 The sequence ( fn)
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The Global Continuity Theorem can be established for metric spaces by appropriately

modifying the argument for functions on R .

11.4.11 Global Continuity Theorem If (S1, d1) and (S2, d2) are metric spaces, then a

function f : S1 ! S2 is continuous on S1 if and only if f�1 Gð Þ is open in S1 whenever G is

open in S2.

The notion of compactness extends immediately to metric spaces. A metric space

(S, d ) is said to be compact if each open cover of S has a finite subcover. Then by

modifying the proof of 11.3.4, we obtain the following result.

11.4.12 Preservation of Compactness If (S, d ) is a compact metric space and if the

function f : S ! R is continuous, then f (S) is compact in R .

The important properties of continuous functions given in 11.3.5 then follow immedi-

ately. The Boundedness Theorem, the Maximum-Minimum Theorem, and the Uniform

Continuity Theorem for real-valued continuous functions on a compact metric space are all

established by appropriately modifying the language of the proofs given in 11.3.5.

Semimetrics

11.4.13 Definition A semimetric on a set S is a function d : S� S ! R that satisfies all

of the conditions in Definition 11.4.1, except that condition (b) is replaced by the weaker

condition

(b0) d x; yð Þ ¼ 0 if x ¼ y:

A semimetric space (S, d ) is a set S together with a semimetric d on S.

Thus every metric is a semimetric, and every metric space is a semimetric space.

However, the converse is not true. For example, if P1 :¼ x1; y1ð Þ and P2 :¼ x2; y2ð Þ are

points in the space R
2, the function d1 defined by

d1 P1; P2ð Þ :¼ x1 � x2j j;
is easily seen to be a semimetric, but it is not a metric since any two points with the same

first coordinate have ‘‘d1-distance’’ equal to 0.

Somewhat more interestingly, if f, g are any functions in L a; b½ �, we have defined (in

Definition 10.2.9) the distance function:

dist f ; gð Þ :¼
Z b

a

f � gj j:

Here it is clear that any two functions that are equal except at a countable set of points will

have distance equal to 0 from each other (in fact, this is also true when the functions are

equal almost everywhere).

The reader can retrace the discussion in the present section and see that most of what

we have done remains true for semimetrics and semimetric spaces. The main difference is

that a sequence in a semimetric space does not necessarily converge to a unique limit.

While this seems to be rather unusual, it is actually not a very serious problem and one can

learn to adjust to this situation. The other alternative is to ‘‘identify’’ points that have
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distance 0 from each other. This identification procedure is often invoked, but it means one

is dealing with ‘‘equivalence classes’’ rather than individual points. Often this cure is worse

than the malady.

Exercises for Section 11.4

1. Show that the functions d1 and d1 defined in 11.4.2(c) are metrics on R
2.

2. Show that the functions d1 and d1 defined in 11.4.2(d, e) are metrics on C 0; 1½ �.
3. Verify that the discrete metric on a set S as defined in 11.4.2(f) is a metric.

4. If Pn :¼ xn; ynð Þ 2 R
2 and d1 is the metric in 11.4.2(c), show that Pnð Þ converges to P :¼ x; yð Þ

with respect to this metric if and only if xnð Þ and ynð Þ converge to x and y, respectively.

5. Verify the conclusion of Exercise 4 if d1 is replaced by d1.

6. Let S be a nonempty set and let d be the discrete metric defined in 11.4.2(f). Show that in the

metric space S; dð Þ, a sequence xnð Þ in S converges to x if and only if there is a K 2 N such that

xn ¼ x for all n � K.

7. Show that if d is the discrete metric on a set S, then every subset of S is both open and closed

in (S, d ).

8. Let P :¼ x; yð Þ and O :¼ 0; 0ð Þ in R
2. Draw the following sets in the plane:

(a) P 2 R
2 : d1 O; Pð Þ � 1

� �
,

(b) P 2 R
2 : d1 O;Pð Þ � 1

� �
.

9. Prove that in any metric space, an e-neighborhood of a point is an open set.

10. Prove Theorem 11.4.11.

11. Prove Theorem 11.4.12.

12. If (S, d ) is a metric space, a subset A � S is said to be bounded if there exists x0 2 S and a

number B > 0 such that A � x 2 S : d x; x0ð Þ � Bf g. Show that if A is a compact subset of S,

then A is closed and bounded.
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APPENDIX A

LOGIC AND PROOFS

Natural science is concerned with collecting facts and organizing these facts into a

coherent body of knowledge so that one can understand nature. Originally much of

science was concerned with observation, the collection of information, and its classifica-

tion. This classification gradually led to the formation of various ‘‘theories’’ that helped the

investigators to remember the individual facts and to be able to explain and sometimes

predict natural phenomena. The ultimate aim of most scientists is to be able to organize

their science into a coherent collection of general principles and theories so that these prin-

ciples will enable them both to understand nature and to make predictions of the outcome

of future experiments. Thus they want to be able to develop a system of general principles

(or axioms) for their science that will enable them to deduce the individual facts and

consequences from these general laws.

Mathematics is different from the other sciences; by its very nature, it is a deductive

science. That is not to say that mathematicians do not collect facts and make observations

concerning their investigations. In fact, manymathematicians spend a large amount of time

performing calculations of special instances of the phenomena they are studying in the

hopes that they will discover ‘‘unifying principles.’’ (The great Gauss did a vast amount of

calculation and studied much numerical data before he was able to formulate a conjecture

concerning the distribution of prime numbers.) However, even after these principles and

conjectures are formulated, the work is far from over, for mathematicians are not satisfied

until conjectures have been derived (i.e., proved) from the axioms of mathematics, from the

definitions of the terms, and from results (or theorems) that have previously been proved.

Thus, a mathematical statement is not a theorem until it has been carefully derived from

axioms, definitions, and previously proved theorems.

A few words about the axioms (i.e., postulates, assumptions, etc.) of mathematics are

in order. There are a few axioms that apply to all of mathematics—the ‘‘axioms of set

theory’’—and there are specific axioms within different areas of mathematics. Sometimes

these axioms are stated formally, and sometimes they are built into definitions. For

example, we list properties in Chapter 2 that we assume the real number system possesses;

they are really a set of axioms. As another example, the definition of a ‘‘group’’ in abstract

algebra is basically a set of axioms that we assume a set of elements to possess, and the

study of group theory is an investigation of the consequences of these axioms.

Students studying real analysis for the first time usually do not have much experience

in understanding (not to mention constructing) proofs. In fact, one of the main purposes of

this course (and this book) is to help the reader gain experience in the type of critical

thought that is used in this deductive process. The purpose of this appendix is to help the

reader gain insight about the techniques of proof.

Statements and Their Combinations

All mathematical proofs and arguments are based on statements, which are declarative

sentences or meaningful strings of symbols that can be classified as being true or false. It is
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not necessary that we know whether a given statement is actually true or false, but it must

be one or the other, and it cannot be both. (This is the Principle of the Excluded Middle.)

For example, the sentence ‘‘Chickens are pretty’’ is a matter of opinion and not a statement

in the sense of logic. Consider the following sentences:

� It rained in Kuala Lumpur on June 2, 1988.

� Thomas Jefferson was shorter than John Adams.

� There are infinitely many twin primes.

� This sentence is false.

The first three are statements: the first is true, the second is false, and the third is either true

or false, but we are not sure which at this time. The fourth sentence is not a statement; it can

be neither true nor false since it leads to contradictory conclusions.

Some statements (such as ‘‘1 þ 1 ¼ 2’’) are always true; they are called tautologies.

Some statements (such as ‘‘2 ¼ 3’’) are always false; they are called contradictions or

falsities. Some statements (such as ‘‘x2 ¼ 1’’) are sometimes true and sometimes false

(e.g., true when x¼ 1 and false when x¼ 3). Or course, for the statement to be completely

clear, it is necessary that the proper context has been established and the meaning of the

symbols has been properly defined (e.g., we need to know that we are referring to integer

arithmetic in the preceding examples).

Two statements P andQ are said to be logically equivalent if P is true exactly whenQ

is true (and hence P is false exactly whenQ is false). In this case we often write P�Q. For

example, we write

ðx is Abraham LincolnÞ � ðx is the 16th president of the United StatesÞ:
There are several different ways of forming new statements from given ones by using

logical connectives.

If P is a statement, then its negation is the statement denoted by

not P;

which is true when P is false, and is false when P is true. (A common notation for the

negation of P is : P.) A little thought shows that

P � notðnot PÞ:
This is the Principle of Double Negation.

If P and Q are statements, then their conjunction is the statement denoted by

P andQ;

which is true when both P and Q are true, and is false otherwise. (A standard notation for

the conjunction of P and Q is P ^ Q.) It is evident that

ðP andQÞ � ðQ and PÞ:
Similarly, the disjunction of P and Q is the statement denoted by

P orQ

which is truewhen at least one of P andQ is true, and false only when they are both false. In

legal documents ‘‘or’’ is often denoted by ‘‘and/or’’ to make it clear that this disjunction is

also true when both P and Q are true. (A standard notation for the disjunction of P and Q is

P _ Q.) It is also evident that

ðP orQÞ � ðQ or PÞ:
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To contrast disjunctive and conjunctive statements, note that the statement ‘‘2 <
ffiffiffi
2

p
andffiffiffi

2
p

< 3’’ is false, but the statement ‘‘2 <
ffiffiffi
2

p
or

ffiffiffi
2

p
< 3’’ is true (since

ffiffiffi
2

p
is approxi-

mately equal to 1.4142 . . . ).

Some thought shows that negation, conjunction, and disjunction are related by

De Morgan’s Laws:

not ðP andQÞ � ðnot PÞ or ðnotQÞ;
not ðP orQÞ � ðnot PÞ and ðnotQÞ:

The first of these equivalencies can be illustrated by considering the statements

P : x ¼ 2; Q : y 2 A:

The statement (P and Q) is true when both (x¼ 2) and (y 2 A) are true, and it is false when

at least one of (x¼ 2) and (y 2 A) is false; that is, the statement not(P andQ) is true when at

least one of the statements (x 6¼ 2) and (y =2 A) holds.

Implications

A very important way of forming a new statement from given ones is the implication (or

conditional) statement, denoted by

ðP ) QÞ; ðif P thenQÞ; or ðP impliesQÞ:
Here P is called the hypothesis, and Q is called the conclusion of the implication. To help

understand the truth values of the implication, consider the statement

If I win the lottery today; then I’ll buy Sam a car:

Clearly this statement is false if I win the lottery and don’t buy Sam a car. What if I don’t

win the lottery today? Under this circumstance, I haven’t made any promise about buying

anyone a car, and since the condition of winning the lottery did not materialize, my failing

to buy Sam a car should not be considered as breaking a promise. Thus the implication is

regarded as true when the hypothesis is not satisfied.

In mathematical arguments, we are very much interested in implications when the

hypothesis is true, but not much interested in them when the hypothesis is false. The

accepted procedure is to take the statement P) Q to be false only when P is true and Q is

false; in all other cases the statement P ) Q is true. (Consequently, if P is false, then we

agree to take the statement P ) Q to be true whether or not Q is true or false. That may

seem strange to the reader, but it turns out to be convenient in practice and consistent with

the other rules of logic.)

We observe that the definition of P ) Q is logically equivalent to

not ðP and ðnotQÞÞ;
because this statement is false only when P is true and Q is false, and it is true in all other

cases. It also follows from the first De Morgan Law and the Principle of Double Negation

that P ) Q is logically equivalent to the statement

ðnot PÞ orQ;
since this statement is true unless both (not P) andQ are false; that is, unless P is true andQ

is false.
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Contrapositive and Converse

As an exercise, the reader should show that the implication P)Q is logically equivalent to

the implication

ðnotQÞ ) ðnot PÞ;
which is called the contrapositive of the implication P) Q. For example, if P) Q is the

implication

If I am in Chicago; then I am in Illinois;

then the contrapositive (not Q) ) (not P) is the implication

If I am not in Illinois; then I am not in Chicago:

The equivalence of these two statements is apparent after a bit of thought. In attempting to

establish an implication, it is sometimes easier to establish the contrapositive, which is

logically equivalent to it. (This will be discussed in more detail later.)

If an implication P ) Q is given, then one can also form the statement

Q ) P;

which is called the converse of P ) Q. The reader must guard against confusing the

converse of an implication with its contrapositive, since they are quite different statements.

While the contrapositive is logically equivalent to the given implication, the converse is

not. For example, the converse of the statement

If I am in Chicago; then I am in Illinois;

is the statement

If I am in Illinois; then I am in Chicago:

Since it is possible to be in Illinois but not in Chicago, these two statements are evidently

not logically equivalent.

There is one final way of forming statements that we will mention. It is the double

implication (or the biconditional) statement, which is denoted by

P()Q or P if and only if Q;

and which is defined by

ðP ) QÞ and ðQ ) PÞ:
It is a straightforward exercise to show that P () Q is true precisely when P and Q are

both true, or both false.

Context and Quantifiers

In any form of communication, it is important that the individuals have an appropriate

context in mind. Statements such as ‘‘I saw Mary today’’ may not be particularly

informative if the hearer knows several persons named Mary. Similarly, if one goes

into the middle of a mathematical lecture and sees the equation x2¼ 1 on the blackboard, it

is useful for the viewer to know what the writer means by the letter x and the symbol 1. Is x

an integer? A function? A matrix? A subgroup of a given group? Does 1 denote a natural

number? The identity function? The identity matrix? The trivial subgroup of a group?

Often the context is well understood by the conversants, but it is always a good idea to

establish it at the start of a discussion. For example, many mathematical statements involve
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one or more variables whose values usually affect the truth or the falsity of the statement, so

we should always make clear what the possible values of the variables are.

Very often mathematical statements involve expressions such as ‘‘for all,’’ ‘‘for every,’’

‘‘for some,’’ ‘‘there exists,’’ ‘‘there are,’’ and so on. For example, wemay have the statements

For any integer x; x2 ¼ 1

and

There exists an integer x such that x2 ¼ 1:

Clearly the first statement is false, as is seen by taking x¼ 3; however, the second statement

is true since we can take either x ¼ 1 or x ¼ �1.

If the context has been established that we are talking about integers, then the above

statements can safely be abbreviated as

For any x; x2 ¼ 1

and

There exists an x such that x2 ¼ 1:

The first statement involves the universal quantifier ‘‘for every,’’ and is making a

statement (here false) about all integers. The second statement involves the existential

quantifier ‘‘there exists,’’ and is making a statement (here true) about at least one integer.

These two quantifiers occur so often that mathematicians often use the symbol 8 to

stand for the universal quantifier, and the symbol 9 to stand for the existential quantifier.

That is,

8 denotes ‘‘for every; ’’
9 denotes ‘‘there exists:’’

While we do not use these symbols in this book, it is important for the reader to know how

to read formulas in which they appear. For example, the statement

ðiÞ 8xð Þ 9 yð Þ xþ y ¼ 0ð Þ
(understood for integers) can be read

For every integer x; there exists

an integer y such that xþ y ¼ 0:

Similarly, the statement

ðiiÞ 9 yð Þ 8xð Þ xþ y ¼ 0ð Þ
can be read

There exists an integer y; such that

for every integer x; then xþ y ¼ 0:

These two statements are very different; for example, the first one is true and the second

one is false. The moral is that the order of the appearance of the two different types of

quantifiers is very important. It must also be stressed that if several variables appear in a

mathematical expression with quantifiers, the values of the later variables should be

assumed to depend on all of the values of the variables that are mentioned earlier. Thus in

the (true) statement (i) above, the value of y depends on that of x; here if x¼ 2, then y¼�2,

while if x ¼ 3, then y ¼ �3.
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It is important that the reader understand how to negate a statement that involves

quantifiers. In principle, the method is simple.

(a) To show that it is false that every element x in some set possesses a certain propertyP,
it is enough to produce a single counter-example (that is, a particular element in the

set that does not possess this property); and

(b) To show that it is false that there exists an element y in some set that satisfies a certain

property P, we need to show that every element y in the set fails to have that property.

Therefore, in the process of forming a negation,

not 8xð ÞP becomes 9 xð Þ notP
and similarly,

not 9 yð ÞP becomes 8yð Þ notP:
When several quantifiers are involved, these changes are repeatedly used. Thus the nega-

tion of the (true) statement (i) given previously becomes in succession

not 8 xð Þ 9 yð Þ xþ y ¼ 0ð Þ;
9 xð Þ not 9 yð Þ xþ y ¼ 0ð Þ;
9 xð Þ 8 yð Þ not xþ y ¼ 0ð Þ;
9 xð Þ 8 yð Þ xþ y 6¼ 0ð Þ:

The last statement can be rendered in words as:

There exists an integer x; such that

for every integer y; then xþ y 6¼ 0:

(This statement is, of course, false.)

Similarly, the negation of the (false) statement (ii) given previously becomes in

succession

not 9 yð Þ 8 xð Þ xþ y ¼ 0ð Þ;
8 yð Þ not 8 xð Þ xþ y ¼ 0ð Þ;
8 yð Þ 9 xð Þ not xþ y ¼ 0ð Þ;
8 yð Þ 9 xð Þ xþ y 6¼ 0ð Þ:

The last statement is rendered in words as

For every integer y; there exists

an integer x such that xþ y 6¼ 0:

Note that this statement is true, and that the value (or values) of x that make x þ y 6¼ 0

depends on y, in general.

Similarly, the statement

For every d > 0; the interval ð�d; dÞ
contains a point belonging to the set A;

can be seen to have the negation

There exists d > 0 such that the interval

ð�d; dÞ does not contain any point in A:
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The first statement can be symbolized

8d > 0ð Þ 9 y 2 Að Þ y 2 ð�d; dÞð Þ;

and its negation can be symbolized by

9 d > 0ð Þ 8 y 2 Að Þ y =2 ð�d; dÞð Þ;

or by

9 d > 0ð Þ A \ ð�d; dÞ ¼ ;ð Þ:

It is the strong opinion of the authors that, while the use of this type of symbolism is

often convenient, it is not a substitute for thought. Indeed, the readers should ordinarily

reason for themselves what the negation of a statement is and not rely slavishly on

symbolism. While good notation and symbolism can often be a useful aid to thought, it can

never be an adequate replacement for thought and understanding.

Direct Proofs

Let P and Q be statements. The assertion that the hypothesis P of the implication P ) Q

implies the conclusion Q (or that P ) Q is a theorem) is the assertion that whenever the

hypothesis P is true, then Q is true.

The construction of a direct proof of P ) Q involves the construction of a string of

statements R1, R2, . . . , Rn such that

P ) R1; R1 ) R2; . . . ; Rn ) Q:

(The Law of the Syllogism states that if R1)R2 and R2)R3 are true, then R1)R3 is true.)

This construction is usually not an easy task; it may take insight, intuition, and considerable

effort. Often it also requires experience and luck.

In constructing a direct proof, one often works forward from P and backward from Q.

We are interested in logical consequences of P; that is, statements Q1, � � � ,Qk such that

P ) Qi. And we might also examine statements P1, . . . , Pr such that Pj ) Q. If we can

work forward from P and backward from Q so the string ‘‘connects’’ somewhere in the

middle, then we have a proof. Often in the process of trying to establish P ) Q one finds

that one must strengthen the hypothesis (i.e., add assumptions to P) or weaken the

conclusion (that is, replace Q by a nonequivalent consequence of Q).

Most students are familiar with ‘‘direct’’ proofs of the type described above, but we

will give one elementary example here. Let us prove the following theorem.

A.1 Theorem The square of an odd integer is also an odd integer.

If we let n stand for an integer, then the hypothesis is:

P : n is an odd integer:

The conclusion of the theorem is:

Q : n2 is an odd integer:

We need the definition of odd integer, so we introduce the statement

R1 : n ¼ 2k � 1 for some integer k:

354 APPENDIX A LOGIC AND PROOFS



BAPP01 12/08/2010 15:56:20 Page 355

Then we have P ) R1. We want to deduce the statement n2 ¼ 2m� 1 for some integerm,

since this would imply Q. We can obtain this statement by using algebra:

R2 : n
2 ¼ 2k � 1ð Þ2 ¼ 4k2 � 4k þ 1;

R3 : n
2 ¼ 4k2 � 4k þ 2

� �� 1;

R4 : n
2 ¼ 2 2k2 � 2k þ 1

� �� 1:

If we let m ¼ 2k2 � 2k þ 1, then m is an integer (why?), and we have deduced the

statement

R5 : n
2 ¼ 2m� 1:

Thus we have P ) R1 ) R2 ) R3 ) R4 ) R5 ) Q, and the theorem is proved.

Of course, this is a clumsy way to present a proof. Normally, the formal logic is

suppressed and the argument is given in a more conversational style with complete English

sentences. We can rewrite the preceding proof as follows.

Proof of A.1 Theorem. If n is an odd integer, then n ¼ 2k � 1 for some integer k.

Then the square of n is given by n2 ¼ 4k2 � 4k þ 1 ¼ 2 2k2 � 2k þ 1
� �� 1. If we let

m ¼ 2k2 � 2k þ 1, then m is an integer (why?) and n2 ¼ 2m � 1. Therefore, n2 is an odd

integer. Q.E.D.

At this stage, we see that we may want to make a preliminary argument to prove that

2k2 � 2k þ 1 is an integer whenever k is an integer. In this case, we could state and prove

this fact as a Lemma, which is ordinarily a preliminary result that is needed to prove a

theorem, but has little interest by itself.

Incidentally, the letters Q.E.D. stand for quod erat demonstrandum, which is Latin for

‘‘which was to be demonstrated.’’

Indirect Proofs

There are basically two types of indirect proofs: (i) contrapositive proofs, and (ii) proofs by

contradiction. Both types start with the assumption that the conclusion Q is false, in other

words, that the statement ‘‘not Q’’ is true.

(i) Contrapositive proofs. Instead of proving P ) Q, we may prove its logically

equivalent contrapositive: notQ ) not P.

Consider the following theorem.

A.2 Theorem If n is an integer and n2 is even, then n is even.

The negation of ‘‘Q : n is even’’ is the statement ‘‘not Q : n is odd.’’ The hypothesis

‘‘P : n2 is even’’ has a similar negation, so that the contrapositive is the implication: If n is

odd, then n2 is odd. But this is exactly Theorem A.1, which was proved above. Therefore

this provides a proof of Theorem A.2.

The contrapositive proof is often convenient when the universal quantifier is involved,

for the contrapositive form will then involve the existential quantifier. The following

theorem is an example of this situation.

A.3 Theorem Let a� 0 be a real number. If, for every e> 0,we have 0� a< e, then a¼ 0.
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Proof. If a ¼ 0 is false, then since a � 0, we must have a > 0. In this case, if we choose

e0 ¼ 1
2
a, then we have e0 > 0 and e0 < a, so that the hypothesis 0 � a < e for all e > 0 is

false. Q.E.D.

Here is one more example of a contrapositive proof.

A.4 Theorem If m, n are natural numbers such that m þ n � 20, then either m � 10 or

n � 10.

Proof. If the conclusion is false, then we have both m < 10 and n < 10. (Recall

De Morgan’s Law.) Then addition gives us m þ n < 10 þ 10 ¼ 20, so that the hypothesis

is false. Q.E.D.

Proof by contradiction. This method of proof employs the fact that if C is a contradiction

(i.e., a statement that is always false, such as ‘‘1 ¼ 0’’), then the two statements

P and ðnotQÞð Þ ) C; P ) Q

are logically equivalent. Thus we establish P ) Q by showing that the statement (P and

(not Q)) implies a contradiction. Q.E.D.

A.5 Theorem Let a > 0 be a real number. If a > 0, then 1/a > 0.

Proof. We suppose that the statement a> 0 is true and that the statement 1/a> 0 is false.

Therefore, 1/a � 0. But since a > 0 is true, it follows from the order properties of R that

að1=aÞ � 0. Since 1 ¼ að1=aÞ, we deduce that 1� 0. However, this conclusion contradicts

the known result that 1 > 0. Q.E.D.

There are several classic proofs by contradiction (also known as reductio ad

absurdum) in the mathematical literature. One is the proof that there is no rational number

r that satisfies r2 ¼ 2. (This is Theorem 2.1.4 in the text.) Another is the proof of the

infinitude of primes, found in Euclid’s Elements. Recall that a natural number p is prime if

its only integer divisors are 1 and p itself. We will assume the basic results that each prime

number is greater than 1 and each natural number greater than 1 is either prime or divisible

by a prime.

A.6 Theorem (Euclid’s Elements, Book IX, Proposition 20.) There are infinitely many

prime numbers.

Proof. If we suppose by way of contradiction that there are finitely many prime numbers,

then we may assume that S ¼ p1; . . .; pnf g is the set of all prime numbers. We let

m ¼ p1 � � � pn, the product of all the primes, and we let q ¼ mþ 1. Since q > pi for

all i, we see that q is not in S, and therefore q is not prime. Then there exists a prime p that is

a divisor of q. Since p is prime, then p ¼ pj for some j, so that p is a divisor of m. But if p

divides both m and q ¼ m þ 1, then p divides the difference q � m ¼ 1. However, this is

impossible, so we have obtained a contradiction. Q.E.D.
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APPENDIX B

FINITE AND COUNTABLE SETS

We will establish the results that were stated in Section 1.3 without proof. The reader

should refer to that section for the definitions.

The first result is sometimes called the ‘‘Pigeonhole Principle.’’ It may be interpreted

as saying that if m pigeons are put into n pigeonholes and if m > n, then at least two

pigeons must share one of the pigeonholes. This is a frequently used result in combinatorial

analysis. It yields many useful consequences.

B.1 Theorem Let m; n 2 N with m > n. Then there does not exist an injection from Nm

into Nn.

Proof. We will prove this by induction on n.

If n ¼ 1 and if g is any map of Nmðm > 1Þ into N1, then it is clear that gð1Þ ¼ � � � ¼
gðmÞ ¼ 1, so that g is not injective.

Assume that k > 1 is such that if m > k, there is no injection from Nm into Nk. We

will show that if m > k þ 1, there is no function h : Nm ! Nkþ1 that is an injection.

Case 1: If the range hðNmÞ � Nk � Nkþ1, then the induction hypothesis implies that h is

not an injection of Nm into Nk, and therefore into Nkþ1.

Case 2: Suppose that hðNmÞ is not contained in Nk. If more than one element in Nm

is mapped into k þ 1, then h is not an injection. Therefore, we may assume that a single

p 2 Nm is mapped into k þ 1 by h. We now define h1 : Nm�1 ! Nk by

h1ðqÞ :¼ hðqÞ if q ¼ 1; . . . ; p� 1;
hðqþ 1Þ if q ¼ p; . . . ;m� 1:

�

Since the induction hypothesis implies that h1 is not an injection into Nk, it is easily seen

that h is not an injection into Nkþ1. Q.E.D.

We now show that a finite set determines a unique number in N .

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a

unique number in N .

Proof. If the set S hasm elements, there exists a bijection f 1 of Nm onto S. If S also has n

elements, there exists a bijection f 2 of Nn onto S. If m > n, then (by Exercise 21

of Section 1.1) f�1
2 � f 1, is a bijection of Nm onto Nn, which contradicts Theorem B.1.

If n > m, then f�1
1 � f 2 is a bijection of Nn onto Nm, which contradicts Theorem B.1.

Therefore we have m ¼ n. Q.E.D.

B.2 Theorem If n 2 N , there does not exist an injection from N into Nn.

Proof. Assume that f : N ! Nn is an injection, and letm :¼ nþ 1. Then the restriction of

f to Nm � N is also an injection into Nn. But this contradicts Theorem B.1. Q.E.D.
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1.3.3 Theorem The set N of natural numbers is an infinite set.

Proof. If N is a finite set, there exists some n 2 N and a bijection f of Nn onto N . In this

case the inverse function f�1 is a bijection (and hence an injection) of N onto Nn. But this

contradicts Theorem B.2. Q.E.D.

We will next establish Theorem 1.3.8. In connection with the array displayed in

Figure 1.3.1, the function h was defined by hðm; nÞ ¼ cðmþ n� 2Þ þm, where

cðkÞ ¼ 1þ 2þ � � � þ k ¼ 1
2
kðk þ 1Þ. We now prove that the function h is a bijection.

1.3.8 Theorem The set N � N is denumerable.

Proof. We will show that the function h is a bijection.

(a) We first show that h is injective. If ðm; nÞ 6¼ ðm0; n0Þ, then either (i) mþ n 6¼
m0 þ n0, or (ii) mþ n ¼ m0 þ n0 and m 6¼ m0.

In case (i), we may supposemþ n < m0 þ n0. Then, using formula (1), the fact that c

is increasing, and m0 > 0, we have

hðm; nÞ ¼ c ðmþ n� 2Þ þm � c ðmþ n� 2Þ þ ðmþ n� 1Þ
¼ c ðmþ n� 1Þ � c ðm0 þ n0 � 2Þ
< c ðm0 þ n0 � 2Þ þm0 ¼ hðm0; n0Þ:

In case (ii), if mþ n ¼ m0 þ n0 and m 6¼ m0, then

hðm; nÞ �m ¼ cðmþ n� 2Þ ¼ cðm0 þ n0 � 2Þ ¼ hðm0; n0Þ �m0;

whence hðm; nÞ 6¼ hðm0; n0Þ.
(b) Next we show that h is surjective.

Clearly hð1; 1Þ ¼ 1. If p 2 N with p 	 2, we will find a pair ðmp; npÞ 2 N � N with

hðmp; npÞ ¼ p. Since p < c ðpÞ, then the set Ep :¼ fk 2 N : p � c ðkÞg is nonempty.

Using theWell-Ordering Property 1.2.1, we let kp > 1 be the least element in Ep. (This

means that p lies in the kpth diagonal.) Since p 	 2, it follows from equation (1) that

c ðkp � 1Þ < p � c ðkpÞ ¼ c ðkp � 1Þ þ kp:

Let mp :¼ p� c ðkp � 1Þ so that 1 � mp � kp, and let np :¼ kp �mp þ 1 so that 1 �
np � kp and mp þ np � 1 ¼ kn. Therefore,

hðmp; npÞ ¼ cðmp þ np � 2Þ þmp ¼ c ðkp � 1Þ þmp ¼ p:

Thus h is a bijection and N � N is denumerable. Q.E.D.

The next result is crucial in proving Theorems 1.3.9 and 1.3.10.

B.3 Theorem If A � N and A is infinite, there exists a function w : N ! A such that

wðnþ 1Þ > wðnÞ 	 n for all n 2 N . Moreover, w is a bijection of N onto A.

Proof. Since A is infinite, it is not empty. Wewill use the Well-Ordering Property 1.2.1 of

N to give a recursive definition of w.

Since A 6¼ 0, there is a least element of A, which we define to be wð1Þ; therefore,
wð1Þ 	 1.

Since A is infinite, the set A1 :¼ Anfwð1Þg is not empty, and we define wð2Þ to be least
element of A1. Therefore wð2Þ > wð1Þ 	 1, so that wð2Þ 	 2.
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Suppose that w has been defined to satisfy wðnþ 1Þ > wðnÞ 	 n for n ¼ 1; . . . ; k � 1,

whence wðkÞ > wðk � 1Þ 	 k � 1 so that wðkÞ 	 k. Since the set A is infinite, the set

Ak :¼ Anfwð1Þ; . . . ;wðkÞg
is not empty and we define wðk þ 1Þ to be the least element in Ak. Therefore wðk þ 1Þ >
wðkÞ, and since wðkÞ 	 k, we also have wðk þ 1Þ 	 k þ 1. Therefore, w is defined on all

of N .

We claim that w is an injection. If m > n, then m ¼ nþ r for some r 2 N . If

r ¼ 1, then wðmÞ ¼ wðnþ 1Þ > wðnÞ. Suppose that wðnþ kÞ > wðnÞ; we will show that

wðnþ ðk þ 1ÞÞ > wðnÞ. Indeed, this follows from the fact that wðnþ ðk þ 1ÞÞ ¼ wððnþ
kÞ þ 1Þ > wðnþ kÞ > wðnÞ. Since wðmÞ > wðnÞ whenever m > n, it follows that w is an

injection.

We claim that w is a surjection of N onto A. If not, the set ~A :¼ AnwðNÞ is not empty,

and we let p be the least element in ~A. We claim that p belongs to the set fwð1Þ; . . . ;wðpÞg.
Indeed, if this is not true, then

p 2 Anfwð1Þ; . . . ;wðpÞg ¼ Ap;

so that wðpþ 1Þ, being the least element in Ap, must satisfy wðpþ 1Þ � p. But this

contradicts the fact that wðpþ 1Þ > wðpÞ 	 p. Therefore ~A is empty and w is a surjection

onto A. Q.E.D.

B.4 Theorem If A � N , then A is countable.

Proof. If A is finite, then it is countable, so it suffices to consider the case that A is infinite.

In this case, Theorem B.3 implies that there exists a bijection w of N onto A, so that A is

denumerable and, therefore, countable. Q.E.D.

1.3.9 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a countable set, then T is a countable set.

(b) If T is an uncountable set, then S is an uncountable set.

Proof. (a) If S is a finite set, it follows from Theorem 1.3.5(a) that T is finite, and

therefore countable. If S is denumerable, then there exists a bijection c of S onto N . Since

cðSÞ � N , Theorem B.4 implies that cðSÞ is countable. Since the restriction of c to T is a

bijection onto cðTÞ and cðTÞ � N is countable, it follows that T is also countable.

(b) This assertion is the contrapositive of the assertion in (a). Q.E.D.
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APPENDIX C

THE RIEMANNAND
LEBESGUE CRITERIA

We will give here proofs of the Riemann and Lebesgue Criteria for a function to be

Riemann integrable. First we will give the Riemann Criterion, which is interesting in itself,

and also leads to the more incisive Lebesgue Criterion.

C.1 Riemann Integrability Criterion Let f : ½a; b� ! R be bounded. Then the follow-

ing assertions are equivalent:

(a) f 2 R ½a; b�:
(b) For every e > 0 there exists a partition Pe such that if _P1; _P2 are any tagged

partitions having the same subintervals as Pe, then

ð1Þ Sð f ; _P1Þ � Sð f ; _P2Þ
�� �� < e:

(c) For every e > 0 there exists a partition Pe ¼ fIigni¼1 ¼ f½xi�1; xi�gni¼1 such that if

mi :¼ infff ðxÞ : x 2 Iig and Mi :¼ supff ðxÞ : x 2 Iig then

ð2Þ
Xn
i¼1

ðMi �miÞðxi � xi�1Þ < 2e:

Proof. ðaÞ ) ðbÞ Given e > 0, let he > 0 be as in the Cauchy Criterion 7.2.1, and let Pe

be any partition with Pej jj j < he. Then if _P1; _P2 are any tagged partitions with the same

subintervals as Pe, then jj _P1jj < he and jj _P2jj < he and so (1) holds.

ðbÞ ) ðcÞ Given e > 0, let Pe ¼ fIigni¼1 be a partition as in (b) and let mi andMi be

as in the statement of (c). Sincemi is an infimum andMi is a supremum, there exist points ui
and vi in Ii with

f ðuiÞ < mi þ e
2ðb� aÞ and Mi � e

2ðb� aÞ < f ðviÞ;
so that we have

Mi �mi < f ðviÞ � f ðuiÞ þ e
ðb� aÞ for i ¼ 1; . . . ; n:

If we multiply these inequalities by ðxi � xi�1Þ and sum, we obtain

Xn
i¼1

ðMi �miÞðxi � xi�1Þ <
Xn
i¼1

ð f ðviÞ � f ðuiÞÞðxi � xi�1Þ þ e:

We let _Q1 :¼ fðIi; uiÞgni¼1 and
_Q2 :¼ fðIi; viÞgni¼1, so that these tagged partitions have the

same subintervals as Pe does. Also, the sum on the right side equals Sð f ; _Q2Þ � Sð f ; _Q1Þ.
Hence it follows from (1) that inequality (2) holds.

ðcÞ ) ðaÞ Define the step functions ae and ve on [a, b] by

aeðxÞ :¼ mi and veðxÞ :¼ Mi for x 2 ðxi�1; xiÞ;
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and aeðxiÞ :¼ f ðxiÞ ¼: veðxiÞ for i ¼ 0; 1; . . . ; n; then aeðxÞ � f ðxÞ � veðxÞ for x 2 ½a; b�.
Since ae and ve are step functions, they are Riemann integrable and

Z b

a

ae ¼
Xn
i¼1

miðxi � xi�1Þ and

Z b

a

ve ¼
Xn
i¼1

Miðxi � xi�1Þ:

Therefore it follows that

Z b

a

ðve � aeÞ ¼
Xn
i¼1

ðMi �miÞðxi � xi�1Þ:

If we apply (2), we have that

Z b

a

ðve � aeÞ < 2e:

Since e > 0 is arbitrary, the Squeeze Theorem implies that f 2 R½a; b�. Q.E.D.

We have already seen that every continuous function on [a, b] is Riemann integrable.

We also saw in Example 7.1.7 that Thomae’s function is Riemann integrable. Since

Thomae’s function has a countable set of points of discontinuity, it is evident that

continuity is not a necessary condition for Riemann integrability. Indeed, it is reasonable

to ask ‘‘how discontinuous’’ a function may be, yet still be Riemann integrable. The

Riemann Criterion throws some light on that question in showing that sums of the form

(2) must be arbitrarily small. Since the terms ðMi �miÞðxi � xi�1Þ in this sum are all� 0, it

follows that each of these terms must be small. Such a term will be small if (i) the difference

Mi �mi is small (whichwill be the case if the function is continuous on the interval ½xi�1; xi�)
or if (ii) an interval where the difference Mi �mi is not small has small length.

The Lebesgue Criterion, which we will discuss next, makes these ideas more precise.

But first it is convenient to have the notion of the oscillation of a function.

C.2 Definition Let f : A ! R be a bounded function. If S � A � R , we define the

oscillation of f on S to be

ð3Þ Wð f ; SÞ :¼ supfj f ðxÞ � f ðyÞj : x; y 2 Sg:
It is easily seen that we can also write

Wð f ; SÞ ¼ supf f ðxÞ � f ðyÞ : x; y 2 Sg
¼ supf f ðxÞ : x 2 Sg � inff f ðxÞ : x 2 Sg:

It is also trivial that if S � T � A, then

0 � Wð f ; SÞ � Wð f ; TÞ � 2 � supfj f ðxÞj : x 2 Ag:
If r > 0, we recall that the r-neighborhood of c 2 A is the set

VrðcÞ :¼ fx 2 A : jx� cj < rg:

C.3 Definition If c 2 A, we define the oscillation of f at c by

ð4Þ wð f ; cÞ :¼ inffWð f ;VrðcÞÞ : r > 0g ¼ lim
r!0þ

Wð f ;VrðcÞÞ:

Since r 7!Wð f ;VrðcÞÞ is an increasing function for r > 0, this right-hand limit exists and

equals the indicated infimum.
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C.4 Lemma If f : A ! R is bounded and c 2 A, then f is continuous at c if and only if

the oscillation wð f ; cÞ ¼ 0.

Proof. ð)Þ If f is continuous at c, given e > 0 there exists d > 0 such that if x 2 VrðcÞ,
then j f ðxÞ � f ðcÞj < e=2. Therefore, if x; y 2 VrðcÞ, we have j f ðxÞ � f ðyÞj < e, whence
0 � wð f ; cÞ � Wð f ;VrðcÞÞ � e. Since e > 0 is arbitrary, this implies that wð f ; cÞ ¼ 0.

ð(Þ Ifwð f ; cÞ ¼ 0 and e > 0, there exists s > 0withWð f ;VsðcÞÞ < e. Thus, if jx� cj
< s then j f ðxÞ � f ðcÞj < e, and f is continuous at c. Q.E.D.

We will now give the details of the proof of the Lebesgue Integrability Criterion. First

we recall the statement of the theorem.

Lebesgue’s Integrability Criterion A bounded function f : ½a; b� ! R is Riemann

integrable if and only if it is continuous almost everywhere on [a, b].

Proof. ð)Þ Let e > 0 be given and, for each k 2 N , let Hk :¼ fx 2 ½a; b� : wð f ; xÞ >
1=2kg.Wewill show thatHk is contained in the union of a finite number of intervals having total

length < e=2k.
By the Riemann Criterion, there is a partition Pk ¼ f½xki�1; x

k
i �g

nðkÞ
i¼1 such that if mk

i

(respectively,Mk
i ) is the infimum (respectively, supremum) of f on the interval ½xki�1; x

k
i �, then

XnðkÞ
i¼1

ðMk
i �mk

i Þðxki � xki�1Þ < e=4k:

If x 2 Hk \ ðxki�1; x
k
i Þ, there exists r > 0 such that VrðxÞ � ðxki�1; x

k
i Þ, whence

1=2k � wð f ; xÞ � Wð f ;VrðxÞÞ � Mk
i �mk

i :

If we denote a summation over those i with Hk \ ðxki�1; x
k
i Þ 6¼ ; by

P0
, then

ð1=2kÞ
X 0ðxki � xki�1Þ �

XnðkÞ
i¼1

ðMk
i �mk

i Þðxki � xki�1Þ � e=4k;

whence it follows that X0ðxki � xki�1Þ � e=2k:

Since Hk differs from the union of sets Hk \ ðxki � xki�1Þ by at most a finite number of the

partition points, we conclude thatHk is contained in the union of a finite number of intervals

with total length < e=2k.
Finally, since D :¼ fx 2 ½a; b� : wð f ; xÞ > 0g ¼ S1

k¼1 Hk, it follows that the set D of

points of discontinuity of f 2 R½a; b� is a null set.

(() Let j f ðxÞj � M for x 2 ½a; b� and suppose that the set D of points of dis-

continuity of f is a null set. Then, given e > 0 there exists a countable set fJkg1k¼1 of open

intervals with D � S1
k¼1 Jk and

P1
k¼1 lðJkÞ < e=2M. Following R. A. Gordon, we will

define a gauge on [a, b] that will be useful.

(i) If t =2 D, then f is continuous at t and there exists dðtÞ > 0 such that if x 2 VdðtÞðtÞ
then j f ðxÞ � f ðtÞj < e=2, whence

0 � Mt �mt :¼ supf f ðxÞ : x 2 VdðtÞðtÞg � inff f ðxÞ : x 2 VdðtÞðtÞg � e:

(ii) If t 2 D, we choose dðtÞ > 0 such that VdðtÞðtÞ � Jk for some k. For these values of t,

we have 0 � Mt �mt � 2M.
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Thus we have defined a gauge d on [a, b]. If _P ¼ fð½xi�1; xi�; tiÞgni¼1 is a d-fine partition

of [a, b], we divide the indices i into two disjoint sets

Sc :¼ fi : ti =2 Dg and Sd :¼ fi : ti 2 Dg:
If _P is d-fine, we have ½xi�1; xi� � VdðtiÞðtiÞ, whence it follows that Mi �mi � Mti �mti .

Consequently, if i 2 Sc then Mi �mi � e, while if i 2 Sd we have Mi �mi � 2M.

However, the collection of intervals ½xi�1; xi� with i 2 Sd are contained in the union of

the intervals fJkg whose total length is < e=2M. Therefore

Xn
i¼1

ðMi �miÞðxi � xi�1Þ

¼
X
i2Sc

ðMi �miÞðxi � xi�1Þ þ
X
i2Sd

ðMi �miÞðxi � xi�1Þ

�
X
i2Sc

eðxi � xi�1Þ þ
X
i2Sd

2Mðxi � xi�1Þ

� eðb� aÞ þ 2M � ðe=2MÞ � eðb� aþ 1Þ:
Since e > 0 is arbitrary, we conclude that f 2 R½a; b�. Q.E.D.
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APPENDIX D

APPROXIMATE INTEGRATION

We will supply here the proofs of Theorems 7.5.3, 7.5.6, and 7.5.8. We will not repeat the

statement of these results, and we will use the notations introduced in Section 7.5 and refer

to numbered equations there. It will be seen that some important results from Chapters 5

and 6 are used in these proofs.

Proof of Theorem 7.5.3. If k¼ 1, 2, . . . , n, let ak :¼ aþ (k� 1)h and let wk : ½0; h� ! R

be defined by

wkðtÞ :¼ 1
2
t f ðakÞ þ f ðak þ tÞ½ � �

Z akþt

ak

f ðxÞdx

for t 2 ½0; h�. Note that wkð0Þ ¼ 0 and that (by Theorem 7.3.6)

w0
kðtÞ ¼ 1

2
f ðakÞ þ f ðak þ tÞ½ � þ 1

2
tf 0ðak þ tÞ � f ðak þ tÞ

¼ 1
2
f ðakÞ � f ðak þ tÞ½ � þ 1

2
tf 0ðak þ tÞ:

Consequently w0
kð0Þ ¼ 0 and

w00
kðtÞ ¼ � 1

2
f 0ðak þ tÞ þ 1

2
f 0ðak þ tÞ þ 1

2
tf 00ðak þ tÞ

¼ 1
2
tf 00ðak þ tÞ:

Now let A, B be defined by

A :¼ inff f 00ðxÞ : x 2 ½a; b�g; B :¼ supf f 00ðxÞ : x 2 ½a; b�g
so that we have 1

2
At � w00

kðtÞ � 1
2
Bt for t 2 0; h½ �; k ¼ 1; 2; . . . ; n. Integrating and applying

Theorem 7.3.1, we obtain (since w0
kð0Þ ¼ 0) that 1

4
At2 � w0

kðtÞ � 1
4
Bt2 for t 2 ½0; h�;

k ¼ 1; 2; . . . ; n. Integrating again and taking t ¼ h, we obtain (since wkð0Þ ¼ 0) that

1
12
Ah3 � wkðhÞ � 1

12
Bh3

for k ¼ 1, 2, . . . , n. If we add these inequalities and note that

Xn
k¼1

wkðhÞ ¼ Tkð f Þ �
Z b

a

f ðxÞdx;

we conclude that 1
12
Ah3n � Tnð f Þ �

Z b

a

f ðxÞdx � 1
12
Bh3n: Since h ¼ ðb� aÞ=n, we

have

1
12
Aðb� aÞh2 � Tnð f Þ �

Z b

a

f ðxÞdx � 1
12
Bðb� aÞh2:

Since f 00 is continuous on [a, b], it follows from the definitions of A and B and Bolzano’s

Intermediate Value Theorem 5.3.7 that there exists a point c in [a, b] such that equation (4)

in Section 7.5 holds. Q.E.D.
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Proof of Theorem 7.5.6. If k¼ 1, 2, . . . , n, let ck :¼ aþ ðk � 1
2
Þh, and ck : 0; 1

2
h

� � ! R

be defined by

ckðtÞ :¼
Z ckþt

ck�t

f ðxÞdx� f ðckÞ2t

for t 2 0; 1
2
h

� �
. Note that ckð0Þ ¼ 0 and that since

ckðtÞ :¼
Z ckþt

ck

f ðxÞdx�
Z ck�t

ck

f ðxÞdx� f ðckÞ2t;

we have

c0
kðtÞ ¼ f ðck þ tÞ � f ðck � tÞð�1Þ � 2f ðckÞ

¼ ½ f ðck þ tÞ þ f ðck � tÞ� � 2f ðckÞ:
Consequently c0

kð0Þ ¼ 0 and

c00
kðtÞ ¼ f 0ðck þ tÞ þ f 0ðck � tÞð�1Þ

¼ f 0ðck þ tÞ � f 0ðck � tÞ:
By the Mean Value Theorem 6.2.4, there exists a point ck,t with jck � ck;tj < t such that

c00
kðtÞ ¼ 2tf 00ðck;tÞ. If we let A and B be as in the proof of Theorem 7.5.3, we have 2tA �

c00
kðtÞ � 2tB for t 2 ½0; h=2�; k ¼ 1; 2; . . . ; n. It follows as before that

1
3
At3 � ckðtÞ � 1

3
Bt3

for all t 2 0; 1
2
h

� �
; k ¼ 1; 2; . . . ; n. If we put t ¼ 1

2
h, we get

1

24
Ah3 � ckð12 hÞ �

1

24
Bh3:

If we add these inequalities and note that

Xn
k¼1

ckð12 hÞ ¼
Z b

a

f ðxÞdx�Mnð f Þ;

we conclude that

1

24
Ah3n �

Z b

a

f ðxÞdx�Mnð f Þ � 1

24
Bh3n:

If we use the fact that h¼ (b� a)=n and apply Bolzano’s Intermediate Value Theorem 5.3.7

to f 00 on [a, b] we conclude that there exists a point g 2 ½a; b� such that (7) in Section 7.5

holds. Q.E.D.

Proof of Theorem 7.5.8. If k ¼ 0; 1; 2; . . . ; 1
2
n� 1, let ck :¼ aþ ð2k þ 1Þh, and let wk :

½0; h� ! R be defined by

wkðtÞ :¼ 1
3
t f ðck � tÞ þ 4 f ðckÞ þ f ðck þ tÞ½ � �

Z ckþt

ck�t

f ðxÞdx:

Evidently wkð0Þ ¼ 0 and

w0
kðtÞ ¼ 1

3
t �f 0ðck � tÞ þ f 0ðck þ tÞ½ � � 2

3
f ðck � tÞ � 2f ðckÞ þ f ðck þ tÞ½ �;
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so that w0
kð0Þ ¼ 0 and

w00
kðtÞ ¼ 1

3
t f 00ðck � tÞ þ f 00ðck þ tÞ½ � � 1

3
�f 0ðck � tÞ þ f 0ðck þ tÞ½ �;

so that w00
kð0Þ ¼ 0 and

w000
k ðtÞ ¼ 1

3
t f 000ðck þ tÞ � f 000ðck � tÞ½ �:

Hence it follows from theMean Value Theorem 6.2.4 that there is a gk;t with jck � gk;tj � t

such that w000
k ðtÞ ¼ 2

3
t2f ð4Þðgk;tÞ. If we let A and B be defined by

A :¼ inff f ð4ÞðxÞ : x 2 ½a; b�g and B :¼ supf f ð4ÞðxÞ : x 2 ½a; b�g;
then we have

2
3
At2 � w000

k ðtÞ � 2
3
Bt2

for t 2 0; h½ �; k ¼ 0; 1; . . . ; 1
2
n� 1. After three integrations, this inequality becomes

1

90
At5 � wkðtÞ �

1

90
Bt5

for all t 2 0; h½ �; k ¼ 0; 1; . . . ; 1
2
n� 1. If we put t ¼ h, we get

1

90
Ah5 � wkðhÞ �

1

90
Bh5

for k ¼ 0; 1; . . . ; 1
2
n� 1. If we add these 1

2
n inequalities and note that

X12 n�1

k¼0

wkðhÞ ¼ Snð f Þ �
Z b

a

f ðxÞdx;

we conclude that

1

90
Ah5

n

2
� Snð f Þ �

Z b

a

f ðxÞdx � 1

90
Bh5

n

2
:

Since h ¼ (b � a)=n, it follows from Bolzano’s Intermediate Value Theorem 5.3.7

(applied to f ð4Þ) that there exists a point c 2 ½a; b� such that the relation (10) in Section 7.5

holds. Q.E.D.
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APPENDIX E

TWO EXAMPLES

In this appendix wewill give an example of a continuous function that has a derivative at no

point and of a continuous curve in R
2 whose range contains the entire unit square of R2.

Both proofs use the Weierstrass M-Test 9.4.6.

A Continuous Nowhere Differentiable Function

The example we will give is a modification of one due to B. L. van der Waerden in 1930.

Let f 0 : R ! R be defined by f 0ðxÞ :¼ dist x; Zð Þ ¼ inf x� kj : k 2 Zj gf , so that f0 is a

continuous ‘‘sawtooth’’ function whose graph consists of lines with slope �1 on the

intervals k=2; k þ 1ð Þ=2½ �, k 2 Z. For eachm 2 N , let f m xð Þ :¼ 1=4mð Þ f 0 4mxð Þ, so that fm
is also a continuous sawtooth function whose graph consists of lines with slope �1 and

with 0 � f m xð Þ � 1= 2 � 4mð Þ. (See Figure E.1.)

We now define g : R ! R by g xð Þ :¼
X1
m¼0

f m xð Þ. The WeierstrassM-Test implies that

the series is uniformly convergent onR ; hence g is continuous on R . Wewill now show that

g is not differentiable at any point of R .

Fix x 2 R . For each n 2 N , let hn :¼ �1=4nþ1, with the sign chosen so that both 4nx

and 4n xþ hnð Þ lie in the same interval [k/2, (k þ 1)/2]. Since f0 has slope �1 on this

interval, then

en :¼ f n xþ hnð Þ � f n xð Þ
hn

¼ f 0 4nxþ 4nhnð Þ � f 0 4nxð Þ
4nhn

¼ �1:

In fact ifm< n, then the graph of fm also has slope�1 on the interval between x and xþ hn
and so

em :¼ f m xþ hnð Þ � f m xð Þ
hn

¼ �1 for m < n :

Figure E.1 Graphs of f0, f1, and f2.
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On the other hand, if m > n, then 4m xþ hnð Þ � 4mx ¼ �4m�n�1 is an integer, and since f0
has period equal to 1, it follows that

f m xþ hnð Þ � f m xð Þ ¼ 0:

Consequently, we have

g xþ hnð Þ � g xð Þ
hn

¼
Xn
m¼0

f m xþ hnð Þ � f m xð Þ
hn

¼
Xn
m¼0

em;

whence the difference quotient (g(x þ hn) � g(x))=hn is an odd integer if n is even, and an
even integer if n is odd. Therefore, the limit

lim
h!0

g xþ hð Þ � g xð Þ
h

does not exist, so g is not differentiable at the arbitrary point x 2 R .

A Space-Filling Curve

Wewill now give an example of a space-filling curve thatwas constructed by I. J. Schoenberg

in 1938. Let w : R ! R be the continuous, even function with period 2 given by

w tð Þ :¼
0 for 0 � t � 1=3;

3t� 1 for 1=3 < t < 2=3;

1 for 2=3 � t � 1:

8><
>:

(See Figure E.2.) For t 2 0; 1½ �, we define the functions

f tð Þ :¼
X1
k¼0

w 32kt
� �
2kþ1

and g tð Þ :¼
X1
k¼0

w 32kþ1t
� �
2kþ1

:

Since 0 � w xð Þ � 1 and is continuous, the Weierstrass M-Test implies that f and g are

continuous on [0, 1]; moreover, 0 � f tð Þ � 1 and 0 � g tð Þ � 1. We will now show that an

arbitrary point (x0, y0) in [0, 1] � [0, 1] is the image under ( f, g) of some point t0 2 [0, 1].

Indeed, let x0 and y0 have the binary (¼ base 2) expansions:

x0 ¼ a0

2
þ a2

22
þ a4

23
þ � � � and y0 ¼

a1

2
þ a3

22
þ a5

23
þ � � � ;

where each ak equals 0 or 1. It will be shown that x0¼ f (t0) and y0¼ g(t0), where t0 has the

ternary (¼ base 3) expansion

t0 ¼
X1
k¼0

2ak

3kþ1
¼ 2a0

3
þ 2a1

32
þ 2a2

33
þ 2a3

34
þ � � � :

Figure E.2 Graph of w
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First, we note that the above formula does yield a number in [0, 1].We also note that ifa0¼ 0,

then 0 � t0 � 1=3 so that w t0ð Þ ¼ 0, and if a0 ¼ 1, then 2/3 � t0 � 1 so that w t0ð Þ ¼ 1;

therefore, in both cases w a0ð Þ ¼ a0. Similarly, it is seen that for each n 2 N there exists

mn 2 N such that

3nt0 ¼ 2mn þ 2an

3
þ 2anþ1

32
þ � � � ;

whence it follows from the fact that w has period 2 that w 3nt0ð Þ ¼ an. Finally, we conclude

that

f t0ð Þ ¼
X1
k¼0

w 32kt0
� �
2kþ1

¼
X1
k¼0

a2k

2kþ1
¼ x0;

and

g t0ð Þ ¼
X1
k¼0

w 32kþ1t0
� �
2kþ1

¼
X1
k¼0

a2kþ1

2kþ1
¼ y0:

Therefore x0 ¼ f (t0) and y0 ¼ g(t0) as claimed.
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HINTS FOR SELECTED EXERCISES

Reader: Do not look at these hints unless you are stymied. However, after putting a

considerable amount of thought into a problem, sometimes just a little hint is all that is

needed. Many of the exercises call for proofs, and there is usually no single approach that is

correct, so even if you have a totally different argument, yours may be correct. Very few of

the following hints give much detail, and some may seem downright cryptic at first.

Somewhat more detail is presented for the earlier material.

Section 1.1

1. (a) {5, 11, 17}

3. Show that if A � B, then A ¼ A \ B. Next show that if A ¼ A \ B, then A � B.

4. Show that if x 2 An B \ Cð Þ, then x 2 AnBð Þ [ AnCð Þ. Next show that if y 2 AnBð Þ [ AnCð Þ,
then y 2 An B \ Cð Þ. Since the sets An B \ Cð Þ and An B \ Cð Þ contain the same elements, they

are equal.

7. (a) A1 \ A2 ¼ 6; 12; 18; 24; . . .f g ¼ 6k : k 2 Nf g ¼ A5:
(b) [An ¼ Nn 1f g and \ An ¼ ;:

9. No. For example, both (0, 1) and (0, �1) belong to C.

11. (a) f Eð Þ ¼ 2; 3½ �; so h Eð Þ ¼ g f Eð Þð Þ ¼ g 2; 3½ �ð Þ ¼ 4; 9½ �:
(b) g�1 Gð Þ ¼ �2; 2½ �; so h�1 Gð Þ ¼ �4; 0½ �:

15. If x 2 f�1 Gð Þ \ f�1 Hð Þ, then x 2 f�1 Gð Þ and x 2 f�1 Hð Þ, so that f xð Þ 2 G and f xð Þ 2 H. Then

f xð Þ 2 G \ H, and hence x 2 f�1 G \ Hð Þ. This shows that f�1 Gð Þ \ f�1 Hð Þ � f�1 G \ Hð Þ:
17. One possibility is f xð Þ :¼ x� að Þ= b� að Þ.
21. If g f x1ð Þð Þ ¼ g f x2ð Þð Þ, then f x1ð Þ ¼ f x2ð Þ, so that x1 ¼ x2, which implies that g � f is

injective. If w 2 C, there exists y 2 B such that g yð Þ ¼ w, and there exists x 2 A such that

f xð Þ ¼ y. Then g f xð Þð Þ ¼ w, so that g � f is surjective. Thus g � f is a bijection.

22. (a) If f x1ð Þ ¼ f x2ð Þ, then g f x1ð Þð Þ ¼ g f x2ð Þð Þ, which implies x1 ¼ x2, since g � f is injective.
Thus f is injective.

Section 1.2

1. Note that 1= 1 � 2ð Þ ¼ 1= 1þ 1ð Þ. Also k= k þ 1ð Þ þ 1= k þ 1ð Þ k þ 2ð Þ½ � ¼ k þ 1ð Þ= k þ 2ð Þ:
2. 1

2
k k þ 1ð Þ� �2 þ k þ 1ð Þ3 ¼ 1

2
k þ 1ð Þ k þ 2ð Þ� �2

:

4. 1
3
4k3 � k
� �þ 2k þ 1ð Þ2 ¼ 1

3

�
4 k þ 1ð Þ3 � k þ 1ð Þ�:

6. k þ 1ð Þ3 þ 5 k þ 1ð Þ ¼ k3 þ 5k
� �þ 3k k þ 1ð Þ þ 6 and k k þ 1ð Þ is always even:

8. 5kþ1 � 4 k þ 1ð Þ � 1 ¼ 5 � 5k � 4k � 5 ¼ 5k � 4k � 1
� �þ 4 5k � 1

� �
:

13. If k < 2k, then k þ 1 < 2k þ 1 < 2k þ 2k ¼ 2 2k
� � ¼ 2kþ1:

16. It is true for n ¼ 1 and n � 5, but false for n ¼ 2; 3; 4.

18.
ffiffiffi
k

p þ 1=
ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p ¼ ffiffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p þ 1
� �

=
ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
> k þ 1ð Þ= ffiffiffiffiffiffiffiffiffiffiffi

k þ 1
p ¼ ffiffiffiffiffiffiffiffiffiffiffi

k þ 1
p

:
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Section 1.3

1. Use Exercise 1.1.21 (¼ Exercise 21 of Section 1.1).

2. Part (b) Let f be a bijection of Nm onto A and let C ¼ f kð Þf g for some k 2 Nm. Define g on

Nm�1 by g ið Þ :¼ f ið Þ for i ¼ 1; . . . ; k � 1, and g ið Þ :¼ f i þ 1ð Þ for i ¼ k; . . . ;m� 1. Then g is a

bijection of Nm�1 onto AnC.
3. (a) There are 6 ¼ 3 � 2 � 1 different injections of S into T.

(b) There are 3 surjections that map a into 1, and there are 3 other surjections that map a

into 2.

7. If T1 is denumerable, take T2 ¼ N . If f is a bijection of T1 onto T2, and if g is a bijection of T2

onto N , then (by Exercise 1.1.21) g � f is a bijection of T1 onto N , so that T1 is denumerable.

9. If S \ T ¼ ; and f : N ! S; g : N ! T are bijections onto S and T, respectively, let h nð Þ :¼
f nþ 1ð Þ=2ð Þ if n is odd and h nð Þ :¼ g n=2ð Þ if n is even.

11. (a) P 1; 2f gð Þ ¼ ;; 1f g; 2f g; 1; 2f gf g has 22 ¼ 4 elements.

(c) P 1; 2; 3; 4f gð Þ has 24 ¼ 16 elements.

12. Let Snþ1 :¼ x1; . . . ; xn; xnþ1f g ¼ Sn [ xnþ1f g have nþ 1 elements. Then a subset of Snþ1

either (i) contains xnþ1, or (ii) does not contain xnþ1. There are a total of 2
n þ 2n ¼ 2 � 2n ¼ 2nþ1

subsets of Snþ1.

13. For each m 2 N , the collection of all subsets of Nm is finite. Note that F Nð Þ ¼ S1
m¼1 P Nmð Þ.

Section 2.1

1. (a) Justify the steps in: b ¼ 0þ b ¼ �aþ að Þ þ b ¼ �aþ aþ bð Þ ¼ �aþ 0 ¼ �a:
(c) Apply (a) to the equation aþ �1ð Þa ¼ a 1þ �1ð Þð Þ ¼ a � 0 ¼ 0:

2. (a) � aþ bð Þ ¼ �1ð Þ aþ bð Þ ¼ �1ð Þaþ �1ð Þb ¼ �að Þ þ �bð Þ:
(c) Note that �að Þ � 1=að Þð Þ ¼ a 1=að Þ ¼ 1:

3. (a) 3=2 (b) 0, 2

(c) 2, �2 (d) 1, �2

6. Note that if q 2 Z and if 3q2 is even, then q2 is even, so that q is even.

7. If p 2 N , then there are three possibilities: for some m 2 N [ 0f g; ið Þ p ¼ 3m, (ii) p ¼ 3mþ 1;
or (iii) p ¼ 3mþ 2.

10. (a) If c ¼ d, then 2.1.7(b) implies aþ c < bþ d. If c < d, then aþ c < bþ c < bþ d.

13. If a 6¼ 0, then 2.1.8(a) implies that a2 > 0; since b2 � 0, it follows that a2 þ b2 > 0.

15. (a) If 0 < a < b, then 2.1.7(c) implies that 0 < a2 < ab < b2. Then by Example 2.1.13(a), we

infer that a ¼
ffiffiffiffiffi
a2

p
<

ffiffiffiffiffi
ab

p
<

ffiffiffiffiffi
b2

p
¼ b.

16. (a) x : x > 4 or x < �1f g. (b) x : 1 < x < 2 or � 2 < x < �1f g:
(c) x : �1 < x < 0 or x > 1f g. (d) x : x < 0 or x > 1f g.

19. The inequality is equivalent to 0 � a2 � 2abþ b2 ¼ a� bð Þ2:
20. (a) Use 2.1.7(c).

21. (a) Let S :¼ n 2 N : 0 < n < 1f g. If S is not empty, the Well-Ordering Property of N implies

there is a least element m in S. However, 0 < m < 1 implies that 0 < m2 < m, and since

m2 is also in S, this is a contradiction of the fact that m is the least element of S.

22. (a) Let x :¼ c� 1 > 0 and apply Bernoulli’s Inequality 2.1.13(c).

24. (a) If m > n, then k :¼ m� n 2 N , and ck � c > 1, which implies that cm > cn. Conversely,

the hypotheses that cm > cn and m � n lead to a contradiction.
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25. Let b :¼ c1=mn and show that b > 1. Exercise 24(a) implies that c1=n ¼ bm > bn ¼ c1=m if and

only if m > n.

26. Fix m 2 N and use Mathematical Induction to prove that amþn ¼ aman and amð Þn ¼ amn for all

n 2 N . Then, for a given n 2 N , prove that the equalities are valid for all m 2 N .

Section 2.2

1. (a) If a � 0, then jaj ¼ a ¼
ffiffiffiffiffi
a2

p
; if a < 0, then jaj ¼ �a ¼

ffiffiffiffiffi
a2

p
.

(b) It suffices to show that 1=bj j ¼ 1= bj j for b 6¼ 0 (why?). Consider the cases b > 0 and

b < 0.

3. If x � y � z, then x� yj j þ y� zj j ¼ y� xð Þ þ z� yð Þ ¼ z� x ¼ z� xj j. To establish the

converse, show that y < x and y > z are impossible. For example, if y < x � z, it follows from

what we have shown and the given relationship that x� yj j ¼ 0, so that y ¼ x, a contradiction.

6. (a) �2 � x � 9=2 (b) �2 � x � 2:

7. x ¼ 4 or x ¼ �3:

10. (a) x < 0 (b) �3=2 < x < 1=2:

12. x : �3 < x < �5=2 or 3=2 < x < 2f g:
13. x : 1 < x < 4f g:
14. (a) x; yð Þ : y ¼ 	xf g: (c) The hyperbolas y ¼ 2=x and y ¼ �2=x.

15. (a) If y � 0, then �y � x � y and we get the region in the upper half-plane on or between the

lines y ¼ x and y ¼ �x.

18. (a) Suppose that a � b.

19. If a � b � c, then mid a; b; cf g ¼ b ¼ min b; c; cf g ¼ min max a; bf g; max b; cf g;f max

c; af gg: The other cases are similar.

Section 2.3

1. Since 0 � x for all x 2 S1, then u ¼ 0 is a lower bound of S1. If v > 0, then v is not a lower

bound of S1 because v=2 2 S1 and v=2 < v. Therefore inf S1 ¼ 0.

3. Since 1=n � 1 for all n 2 N , then 1 is an upper bound for S3.

4. sup S4 ¼ 2 and inf S4 ¼ 1=2.

7. Let u 2 S be an upper bound of S. If v is another upper bound of S, then u � v. Hence u ¼ sup S.

10. Let u :¼ sup A; v :¼ sup B; and w :¼ sup u; vf g. Then w is an upper bound of A [ B, because if

x 2 A, then x � u � w, and if x 2 B, then x � v � w. If z is any upper bound of A [ B, then z is

an upper bound of A and of B, so that u � z and v � z. Hence w � z. Therefore,

w ¼ sup A [ Bð Þ.
12. Consider two cases: u � s
 and u < s
:

Section 2.4

1. Since 1� 1=n < 1 for all n 2 N , 1 is an upper bound. To show that 1 is the supremum, it must be

shown that for each e > 0 there exists n 2 N such that 1� 1=n > 1� e, which is equivalent to

1=n < e. Apply the Archimedean Property 2.4.3 or 2.4.5.

2. inf S ¼ �1 and sup S ¼ 1.

4. (a) Let u :¼ sup S and a > 0. Then x � u for all x 2 S, whence ax � au for all x 2 S, whence

it follows that au is an upper bound of aS. If v is another upper bound of aS, then ax � v for
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all x 2 S, whence x � v=a for all x 2 S, showing that v=a is an upper bound for S so that

u � v=a, from which we conclude that au � v. Therefore au ¼ sup aSð Þ.
6. Let u :¼ sup f Xð Þ. Then f xð Þ � u for all x 2 X, so that aþ f xð Þ � aþ u for all x 2 X, whence

sup aþ f xð Þ : x 2 Xf g � aþ u. If w < aþ u, then w� a < u, so that there exists xw 2 X

with w� a < f xwð Þ, whence w < aþ f xwð Þ, and thus w is not an upper bound for

aþ f xð Þ : x 2 Xf g.
8. If u :¼ sup f Xð Þ and v :¼ sup g Xð Þ, then f xð Þ � u and g xð Þ � v for all x 2 X, whence f xð Þ þ

g xð Þ � uþ v for all x 2 X.

10. (a) f xð Þ ¼ 1 for x 2 X. (b) g yð Þ ¼ 0 for y 2 Y:

12. Let S :¼ h x; yð Þ : x 2 X; y 2 Yf g. We have h x; yð Þ � F xð Þ for all x 2 X; y 2 Y so that

sup S � sup F xð Þ : x 2 Xf g. If w < sup F xð Þ : x 2 Xf g, then there exists x0 2 X with w <
F x0ð Þ ¼ sup h x0; yð Þ : y 2 Yf g, whence there exists y0 2 Y withw < h x0; y0ð Þ. Thus w is not an

upper bound of S, and so w < sup S. Since this is true for any w such that

w < sup F xð Þ : x 2 Xf g, we conclude that sup F xð Þ : x 2 Xf g � sup S.

14. Note that n < 2n (whence 1=2n < 1=n) for any n 2 N.

15. Let S3 :¼ s 2 R : 0 � s; s2 < 3
� �

. Show that S3 is nonempty and bounded by 3 and let

y :¼ sup S3. If y2 < 3 and 1=n < 3� y2ð Þ= 2yþ 1ð Þ show that yþ 1=n 2 S3. If y2 > 3 and

1=m < y2 � 3ð Þ=2y show that y� 1=m 2 S3. Therefore y2 ¼ 3.

18. If x < 0 < y, then we can take r ¼ 0. If x < y < 0, we apply 2.4.8 to obtain a rational number

between �y and �x.

Section 2.5

2. S has an upper bound b and a lower bound a if and only if S is contained in the interval a; b½ �.
4. Because z is neither a lower bound nor an upper bound of S.

5. If z 2 R , then z is not a lower bound of S so there exists xz 2 S such that xz � z. Similarly, there

exists yz 2 S such that z � yz.

8. If x > 0, then there exists n 2 N with 1=n < x, so that x =2 Jn. If y � 0, then y =2 J1.

10. Let h :¼ inf bn : n 2 Nf g; we claim that an � h for all n. Fix n 2 N; we will show that an is a

lower bound for the set bk : k 2 Nf g. We consider two cases. (i) If n � k, then since In � Ik, we

have an � ak � bk. (ii) If k < n, then since Ik � In, we have an � bn � bk. Therefore an � bk
for all k 2 N , so that an is a lower bound for bk : k 2 Nf g and so an � h. In particular, this

shows that h 2 an; bn½ � for all n, so that h 2 \ In.

12. 3
8
¼ :011000 . . .ð Þ2 ¼ :010111 . . .ð Þ2: 7

16
¼ :0111000 . . .ð Þ2 ¼ :0110111 . . .ð Þ2:

13. (a) 1
3
� :0101ð Þ2: (b) 1

3
¼ :010101 . . .ð Þ2, the block 01 repeats.

16. 1
7
¼ :142 857 . . ., the block repeats. 2

19
¼ :105 263 157 894 736 842 . . . ; the block repeats.

17. 1:25 137 . . . 137 . . . ¼ 31253=24975; 35:14653 . . . 653 . . . ¼ 3511139=99900:

Section 3.1

1. (a) 0, 2, 0, 2, 0 (c) 1=2, 1=6, 1=12, 1=20, 1=30

3. (a) 1, 4, 13, 40, 121 (c) 1, 2, 3, 5, 4.

5. (a) We have 0 < n= n2 þ 1ð Þ < n=n2 ¼ 1=n. Given e > 0, let K eð Þ � 1=e.
(c) We have 3nþ 1ð Þ= 2nþ 5ð Þ � 3=2j j ¼ 13= 4nþ 10ð Þ < 13=4n. Given e > 0, let

K eð Þ � 13=4e.

6. (a) 1=
ffiffiffiffiffiffiffiffiffiffiffi
nþ 7

p
< 1=

ffiffiffi
n

p
(b) 2n= nþ 2ð Þ � 2j j ¼ 4= nþ 2ð Þ < 4=n

(c)
ffiffiffi
n

p
= nþ 1ð Þ < 1=

ffiffiffi
n

p
(d) �1ð Þnn= n2 þ 1ð Þ		 		 � 1=n:
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9. 0 <
ffiffiffiffiffi
xn

p
< e() 0 < xn < e2:

11. 1=n� 1= nþ 1ð Þj j ¼ 1=n nþ 1ð Þ < 1=n2 � 1=n:

14. Let b :¼ 1= 1þ að Þ where a > 0. Since 1þ að Þn > 1
2
n n� 1ð Þa2, we have that

0 < nbn � n= 1
2
n n� 1ð Þa2� � � 2= n� 1ð Þa2½ �. Thus lim nbnð Þ ¼ 0.

16. If n > 4; then 0 < n2=n! < n= n� 2ð Þ n� 1ð Þ < 1= n� 3ð Þ.
Section 3.2

1. (a) lim xnð Þ ¼ 1 (c) xn � n=2, so the sequence diverges.

3. Y ¼ ðX þ YÞ � X:

6. (a) 4 (b) 0 (c) 1 (d) 0.

8. In (3) the exponent k is fixed, but in 1þ 1=nð Þn the exponent varies.

9. lim ynð Þ ¼ 0 and lim
ffiffiffi
n

p
ynð Þ ¼ 1

2
:

12. b.

14. (a) 1 (b) 1

16. (a) L ¼ a (b) L ¼ b=2 (c) L ¼ 1=b (d) L ¼ 8=9:

19. (a) Converges to 0 (c) Converges to 0.

21. (a) (1) (b) (n).

22. Yes. (Why?)

23. From Exercise 2.2.18, un ¼ 1
2
xn þ yn þ xn � ynj jð Þ:

24. Use Exercises 2.2.18(b), 2.2.19, and the preceding exercise.

Section 3.3

1. xnð Þ is a bounded decreasing sequence. The limit is 4.

2. The limit is 1.

3. The limit is 2.

4. The limit is 2.

5. ynð Þ is increasing. The limit is y ¼ 1
2
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p
pð Þ:

7. xnð Þ is increasing.
10. Note yn ¼ 1= nþ 1ð Þ þ 1= nþ 2ð Þ þ � � � þ 1=2n < 1= nþ 1ð Þ þ 1= nþ 1ð Þ þ � � � þ 1= nþ 1ð Þ

¼ n= nþ 1ð Þ < 1:

12. (a) e (b) e2 (c) e (d) 1=e.

13. Note that if n � 2, then 0 � sn �
ffiffiffi
2

p � s2n � 2.

14. Note that 0 � sn �
ffiffiffi
5

p � s2n � 5
� �

=
ffiffiffi
5

p � s2n � 5
� �

=2.

15. e2 ¼ 2:25; e4 ¼ 2:441 406; e8 ¼ 2:565 785; e16 ¼ 2:637 928:

16. e50 ¼ 2:691 588; e100 ¼ 2:704 814; e1000 ¼ 2:716 924:

Section 3.4

1. For example x2n�1 :¼ 2n� 1 and x2n :¼ 1=2n:

3. L ¼ 1
2
1þ ffiffiffi

5
p� �

:

7. (a) e (b) e1=2 (c) e2 (d) e2.

8. (a) 1 (b) e3=2.
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12. Choose n1 � 1 so that xn1j j > 1, then choose n2 > n1, so that xn2j j > 2, and, in general, choose

nk > nk�1 so that xnkj j > k.

13. x2n�1ð Þ ¼ �1;�1=3;�1=5; . . .ð Þ:
14. Choose n1 � 1 so that xn1 � s� 1, then choose n2 > n1 so that xn2 > s� 1=2, and, in general,

choose nk > nk�1 so that xnk > s� 1=k.

Section 3.5

1. For example, �1ð Þnð Þ.
3. (a) Note that �1ð Þn � �1ð Þnþ1

		 		 ¼ 2 for all n 2 N .

(c) Take m ¼ 2n, so xm � xn ¼ x2n � xn ¼ ln 2n� ln n ¼ ln 2 for all n.

5. lim
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p� � ¼ 0. But, if m ¼ 4n, then
ffiffiffiffiffi
4n

p � ffiffiffi
n

p ¼ ffiffiffi
n

p
for all n.

8. Let u :¼ sup xn : n 2 Nf g. If e > 0, let H be such that u� e < xH � u. If m � n � H, then

u� e < xn � xm � u so that xm � xnj j < e.

10. lim xnð Þ ¼ 1=3ð Þx1 þ 2=3ð Þx2: 12. The limit is
ffiffiffi
2

p � 1.

13. The limit is 1þ ffiffiffi
2

p
.

14. Four iterations give r ¼ 0:201 64 to 5 places:

Section 3.6

1. If xn : n 2 Nf g is not bounded above, choose nkþ1 > nk such that xnk � k for k 2 N.

3. Note that xn � 0j j < e if and only if 1=xn > 1=e.

4. (a)
ffiffiffi
n

p
> a½ �() n > a2½ � (c)

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � ffiffiffiffiffiffiffiffi
n=2

p
when n � 2.

8. (a) n < n2 þ 2ð Þ1=2:
(c) Since n < n2 þ 1ð Þ1=2, then n1=2 < n2 þ 1ð Þ1=2=n1=2:

9. (a) Since xn=yn ! 1, there exists K1 such that if n � K1, then xn � yn. Now apply Theorem

3.6.4(a).

Section 3.7

1. The partial sums of
P

bn are a subsequence of the partial sums of
P

an.

3. (a) Since 1= nþ 1ð Þ nþ 2ð Þ ¼ 1= nþ 1ð Þ � 1= nþ 2ð Þ, the series is telescoping.

6. (a) 4=35.

9. (a) The sequence (cos n) does not converge to 0.

(b) Since cos nð Þ=n2		 		 � 1=n2, the convergence of
P

cos nð Þ=n2 follows from Example 3.7.6

(c) and Theorem 3.7.7.

10. The ‘‘even’’ sequence s2nð Þ is decreasing, the ‘‘odd’’ sequence s2nþ1ð Þ is increasing, and

�1 � sn � 0. Also 0 � s2n � s2nþ1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
:

12.
P

1=n2 is convergent, but
P

1=n is not.

14. Show that bk � a1=k for k 2 N, whence b1 þ � � � þ bn � a1 1þ � � � þ 1=nð Þ.
15. Evidently 2a 4ð Þ � a 3ð Þ þ a 4ð Þ and 22a 8ð Þ � a 5ð Þ þ � � � þ a 8ð Þ, etc. Also a 2ð Þ þ a 3ð Þ � 2a 2ð Þ

and a 4ð Þ þ � � � þ a 7ð Þ � 22a 22
� �

, etc. The stated inequality follows by addition. Now apply the

Comparison Test 3.7.7.

17. (a) The terms are decreasing and 2n=2n ln 2nð Þ ¼ 1= n ln 2ð Þ. Since P
1=n diverges, so doesP

1= n ln nð Þ.
18. (a) The terms are decreasing and 2n=2n ln 2nð Þc ¼ 1=ncð Þ � 1=ln 2ð Þc. Now use the fact thatP

1=ncð Þ converges when c > 1.
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Section 4.1

1. (a–c) If x� 1j j � 1, then xþ 1j j � 3 so that x2 � 1
		 		 � 3 x� 1j j. Thus, x� 1j j < 1=6

assures that x2 � 1
		 		 < 1=2, etc.

(d) If x� 1j j < 1, then x3 � 1
		 		 � 7 x� 1j j.

2. (a) Since
ffiffiffi
x

p � 2j j ¼ x� 4j j= ffiffiffi
x

p þ 2ð Þ � 1
2
x� 4j j, then x� 4j j < 1 implies that we haveffiffiffi

x
p � 2j j < 1

2
.

(b) If x� 4j j < 2
 10�2 ¼ :02, then
ffiffiffi
x

p � 2j j < :01.

5. If 0 < x < a, then 0 < xþ c < aþ c < 2a, so that x2 � c2
		 		 ¼ xþ cj j x� cj j � 2a x� cj j.

Given e > 0, take d :¼ e=2a.

8. If c 6¼ 0, show that
ffiffiffi
x

p � ffiffiffi
c

pj j � 1=
ffiffiffi
c

pð Þ x� cj j, so we can take d :¼ e
ffiffiffi
c

p
. If c ¼ 0, we can take

d :¼ e2.

9. (a) If x� 2j j < 1=2 show that 1= 1� xð Þ þ 1j j ¼ x� 2ð Þ= x� 1ð Þj j � 2 x� 2j j. Thus we can
take d :¼ inf 1=2; e=2f g.

(c) If x 6¼ 0, then x2= xj j � 0
		 		 ¼ xj j. Take d :¼ e.

10. (a) If x� 2j j < 1, then x2 þ 4x� 12
		 		 ¼ xþ 6j j x� 2j j < 9 x� 2j j. We may take d :¼

inf 1; e=9f g.
(b) If xþ 1j j < 1=4, then xþ 5ð Þ= 3xþ 2ð Þ � 4j j ¼ 7 xþ 1j j= 2xþ 3j j < 14 xþ 1j j, and we

may take d :¼ inf 1=4; e=14f g.
12. (a) Let xn :¼ 1=n. (c) Let xn :¼ 1=n and yn :¼ �1=n.

14. (b) If f xð Þ :¼ sgn xð Þ, then lim
x!0

f xð Þð Þ2 ¼ 1, but lim
x!0

f xð Þ does not exist.
15. (a) Since f xð Þ � 0j j � xj j, we have lim

x!0
f xð Þ ¼ 0.

(b) If c 6¼ 0 is rational, let xnð Þ be a sequence of irrational numbers that converges to c; then

f cð Þ ¼ c 6¼ 0 ¼ lim f xnð Þð Þ. What if c is irrational?

17. The restriction of sgn to [0, 1] has a limit at 0.

Section 4.2

1. (a) 10 (b) �3 (c) 1/12 (d) 1/2.

2. (a) 1 (b) 4 (c) 2 (d) 1/2.

3. Multiply the numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x

p
.

4. Consider xn :¼ 1=2p n and cos 1=xnð Þ ¼ 1. Use the Squeeze Theorem 4.2.7.

8. If xj j � 1; k 2 N , then jxkj ¼ jxjk � 1, whence �x2 � xkþ2 � x2.

11. (a) No limit (b) 0 (c) No limit (d) 0.

Section 4.3

2. Let f xð Þ :¼ sin 1=xð Þ for x < 0 and f xð Þ :¼ 0 for x > 0.

3. Given a > 0, if 0 < x < 1=a2, then
ffiffiffi
x

p
< 1=a, and so f xð Þ > a.

5. (a) If a > 1 and 1 < x < a= a� 1ð Þ, then a < x= x� 1ð Þ, hence we have

lim
x!1þ

x= x� 1ð Þ ¼ 1.

(c) Since xþ 2ð Þ= ffiffiffi
x

p
> 2=

ffiffiffi
x

p
, the limit is 1.

(e) If x > 0, then 1=
ffiffiffi
x

p
<

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p� �
=x, so the right-hand limit is 1.

(g) 1 (h) �1.

8. Note that f xð Þ � Lj j < e for x > K if and only if f 1=zð Þ � Lj j < e for 0 < z < 1=K.

9. There exists a > 0 such that x f xð Þ � Lj j < 1 whenever x > a. Hence f xð Þj j < Lj j þ 1ð Þ=x
for x > a.
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12. No. If h xð Þ :¼ f xð Þ � g xð Þ, then lim
x!1 h xð Þ ¼ 0 and we have

f xð Þ=g xð Þ ¼ 1þ h xð Þ=g xð Þ ! 1.

13. Suppose that f xð Þ � Lj j < e for x > K, and that g yð Þ > K for y > H. Then

f � g yð Þ � Lj j < e for y > H.

Section 5.1

4. (a) Continuous if x 6¼ 0; 	 1; 	 2; . . . (b) Continuous if x 6¼ 	1; 	 2; . . .
(c) Continuous if sin x 6¼ 0; 1 (d) Continuous if x 6¼ 0;	1; 	 1=2; . . . :

7. Let e :¼ f cð Þ=2, and let d > 0 be such that if x� cj j < d, then f xð Þ � f cð Þj j < e, which implies

that f xð Þ > f cð Þ � e ¼ f cð Þ=2 > 0.

8. Since f is continuous at x, we have f xð Þ ¼ lim f xnð Þð Þ ¼ 0. Thus x 2 S.

10. Note that
			 xj j � cj j

			 � x� cj j:
13. Since g xð Þ � 6j j � sup 2x� 6j j; x� 3j jf g ¼ 2 x� 3j j, g is continuous at x ¼ 3. If c 6¼ 3, let

xnð Þ be a sequence of rational numbers converging to c and let ynð Þ be a sequence of irrational
numbers converging to c. Then lim g xnð Þð Þ 6¼ lim g ynð Þð Þ.

Section 5.2

1. (a) Continuous on R (c) Continuous for x 6¼ 0.

2. Use 5.2.1(a) and Induction, or use 5.2.7 with g xð Þ :¼ xn.

4. Continuous at every noninteger.

7. Let f xð Þ :¼ 1 if x is rational, and f xð Þ :¼ �1 if x is irrational.

12. First show that f 0ð Þ ¼ 0 and f �xð Þ ¼ �f xð Þ for all x 2 R ; then note that f x� x0ð Þ ¼
f xð Þ � f x0ð Þ. Consequently f is continuous at the point x0 if and only if it is continuous at

0. Thus, if f is continuous at x0, then it is continuous at 0, and hence everywhere.

13. First show that f 0ð Þ ¼ 0 and (by Induction) that f xð Þ ¼ cx for x 2 N, and hence also for x 2 Z.

Next show that f xð Þ ¼ cx for x 2 Q . Finally, if x =2 Q , let x ¼ lim rnð Þ for some sequence in Q .

15. If f xð Þ � g xð Þ, then both expressions give h xð Þ ¼ f xð Þ; and if f xð Þ � g xð Þ, then h xð Þ ¼ g xð Þ in
both cases.

Section 5.3

1. Apply either the Boundedness Theorem 5.3.2 to 1=f , or theMaximum-MinimumTheorem 5.3.4

to conclude that inf f Ið Þ > 0.

3. Choose a sequence xnð Þ such that f xnþ1ð Þj j � 1
2
f xnð Þj j � 1

2

� �n
f x1ð Þj j. Apply the Bolzano-

Weierstrass Theorem to obtain a convergent subsequence.

4. Suppose that p has odd degree n and that the coefficient an of xn is positive. By 4.3.16,

lim
x!1 p xð Þ ¼ 1 and lim

x!�1 p xð Þ ¼ �1.

5. In the intervals 1:035; 1:040½ � and �7:026;�7:025½ �.
7. In the interval [0.7390, 0.7391].

8. In the interval [1.4687, 1.4765].

9. (a) 1 (b) 6.

10. 1=2n < 10�5 implies that n > 5 ln 10ð Þ=ln 2 � 16:61. Take n ¼ 17.

11. If f wð Þ < 0, then it follows from Theorem 4.2.9 that there exists a d -neighborhood Vd wð Þ such
that f xð Þ < 0 for all x 2 Vd wð Þ.
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14. Apply Theorem 4.2.9 to b� f xð Þ.
15. If 0 < a < b � 1, then f a; bð Þð Þ ¼ a2; b2

� �
; if �1 � a < b < 0, then f a; bð Þð Þ ¼ b2; a2

� �
.

If a < 0 < b, then f a; bð Þð Þ is not an open interval, but equals 0; c½ Þ where c :¼ sup a2; b2
� �

.

Images of closed intervals are treated similarly.

16. For example, if a < 0 < b and c :¼ inf 1= a2 þ 1ð Þ; 1= b2 þ 1
� �� �

, then g a; bð Þð Þ ¼ c; 1ð �. If
0 < a < b, then g a; bð Þð Þ ¼ 1= b2 þ 1

� �
; 1= a2 þ 1ð Þ� �

. Also g �1; 1½ �ð Þ ¼ 1=2; 1½ �. If a < b,

then h a; bð Þð Þ ¼ a3; b3
� �

and h a; bð �ð Þ ¼ a3; b3
� �

.

17. Yes. Use the Density Theorem 2.4.8.

19. Consider g xð Þ :¼ 1=x for x 2 J :¼ 0; 1ð Þ.

Section 5.4

1. Since 1=x� 1=u ¼ u� xð Þ=xu, it follows that 1=x� 1=uj j � 1=a2ð Þ x� uj j for x; u 2 a; 1½ Þ.
3. (a) Let xn :¼ nþ 1=n; un :¼ n.

(b) Let xn :¼ 1=2np; un :¼ 1= 2npþ p=2ð Þ.
6. If M is a bound for both f and g on A, show that f xð Þg xð Þ � f uð Þg uð Þj j � M f xð Þ�j f uð Þj þ

M g xð Þ � g uð Þj j for all x; u 2 A.

8. Given e > 0 there exists df > 0 such that y� vj j < df implies f yð Þ � f vð Þj j < e. Now choose

dg > 0 so that x� uj j < dg implies g xð Þ � g uð Þj j < df .

11. If g xð Þ � g 0ð Þj j � K x� 0j j for all x 2 0; 1½ �, then ffiffiffi
x

p � Kx for x 2 0; 1½ �. But if xn :¼ 1=n2,
then K must satisfy n � K for all n 2 N , which is impossible.

14. Since f is bounded on [0, p], it follows that it is bounded on R . Since f is continuous on

J :¼ �1; pþ 1½ �, it is uniformly continuous on J. Now show that this implies that f is uniformly

continuous on R .

Section 5.5

1. (a) The d-intervals are � 1
4
; 1
4

� �
; 1

4
; 3
4

� �
, and 3

8
; 9
8

� �
.

(b) The third d-interval does not contain 1
2
; 1

� �
.

2. (a) Yes. (b) Yes.

3. No. The first d2-interval is � 1
10
; 1
10

� �
and does not contain 0; 1

4

� �
.

4. (b) If t 2 1
2
; 1

� �
then t� d tð Þ; tþ d tð Þ½ � ¼ � 1

2
þ 3

2
t; 1

2
þ 1

2
t

� � � 1
4
; 1

� �
.

6. We could have two subintervals having c as a tag with one of them not contained in the

d-interval around c.

7. If _P :¼ a; x1½ �; t1ð Þ; . . . xk�1; c½ �; tkð Þ; c; xkþ1½ �; tkþ1ð Þ; . . . ; xn; b½ �; tnð Þf g is d
-fine, then _P0
:¼

a; x1½ �; t1ð Þ; . . . ; xk�1; c½ �; tkð Þf g is a d0-fine partition of [a, c] and _P00
:¼ c; xkþ1½ �; tkþ1ð Þ; . . . ;f

xn; b½ �; tnð Þg is a d00-fine partition of [c, b].

9. The hypothesis that f is locally bounded presents us with a gauge d. If xi�1; xi½ �; tið Þf gni¼1 is a

d-fine partition of a; b½ � andMi is a bound for fj j on xi�1; xi½ � letM :¼ sup Mi : i ¼ 1; . . . ; nf g.

Section 5.6

1. If x 2 a; b½ �, then f að Þ � f xð Þ.
4. If 0 � f x1ð Þ � f x2ð Þ and 0 � g x1ð Þ � g x2ð Þ, then f x1ð Þg x1ð Þ � f x2ð Þg x1ð Þ � f x2ð Þg x2ð Þ.
6. If f is continuous at c, then lim f xnð Þð Þ ¼ f cð Þ, since c ¼ lim xnð Þ. Conversely, since

0 � jf cð Þ � f x2nð Þ � f x2nþ1ð Þ, it follows that jf cð Þ ¼ 0, so f is continuous at c.
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7. Apply Exercises 2.4.4, 2.4.5, and the Principle of the Iterated Infima (analogous to the result in

Exercise 2.4.12).

8. Let x1 2 I be such that y ¼ f x1ð Þ and x2 2 I be such that y ¼ g x2ð Þ. If x2 � x1, then

y ¼ g y2ð Þ < f x2ð Þ � f x1ð Þ ¼ y, a contradiction.

11. Note that f�1 is continuous at every point of its domain 0; 1½ � [ 2; 3ð �.
14. Let y :¼ x1=n and z :¼ x1=q so that yn ¼ x ¼ zq, whence (by Exercise 2.1.26) ynp ¼ xp ¼ zqp.

Since np ¼ mq, show that x1=n
� �m ¼ x1=q

� �p
or xm/n ¼ xp/q. Now consider the case where

m; p 2 Z.

15. Use the preceding exercise and Exercise 2.1.26.

Section 6.1

1. (a) f 0 xð Þ ¼ lim
h!0

½ xþ hð Þ3 � x3�=h ¼ lim
h!0

3x2 þ 3xhþ h2
� � ¼ 3x2;

(c) h0 xð Þ ¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p � ffiffiffi
x

p
h

¼ lim
h!0

1ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p þ ffiffiffi
x

p ¼ 1

2
ffiffiffi
x

p :

4. Note that f xð Þ=xj j � xj j for x 2 R .

5. (a) f 0 xð Þ ¼ 1� x2ð Þ= 1þ x2ð Þ2 (b) g0 xð Þ ¼ x� 1ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2xþ x2

p

(c) h0 xð Þ ¼ mkxk�1 cos xk
� �

sin xk
� �m�1

(d) k0 xð Þ ¼ 2x sec2 x2ð Þ:
6. The function f 0 is continuous for n � 2 and is differentiable for n � 3.

8. (a) f 0 xð Þ ¼ 2 for x > 0; f 0 xð Þ ¼ 0 for � 1 < x < 0; and f 0 xð Þ ¼ �2 for x < �1,

(c) h0 xð Þ ¼ 2 xj j for all x 2 R .

10. If x 6¼ 0, then g0 xð Þ ¼ 2x sin 1=x2ð Þ � 2=xð Þ cos 1=x2ð Þ. Moreover,

g0 0ð Þ ¼ lim
h!0

sin 1=h2
� � ¼ 0. Consider xn :¼ 1=

ffiffiffiffiffiffiffiffi
2np

p
.

11. (a) f 0 xð Þ ¼ 2= 2xþ 3ð Þ (b) g0 xð Þ ¼ 6 L x2ð Þð Þ2=x
(c) h0 xð Þ ¼ 1=x (d) k0 xð Þ ¼ 1= xL xð Þð Þ:

14. 1=h0 0ð Þ ¼ 1=2; 1=h0 1ð Þ ¼ 1=5; and 1=h0 �1ð Þ ¼ 1=5.

16. D Arctan y½ � ¼ 1=D tan x½ � ¼ 1=sec2x ¼ 1= 1þ y2ð Þ.

Section 6.2

1. (a) Increasing on 3=2;1½ Þ, decreasing on �1; 3=2ð �,
(c) Increasing on �1; � 1ð � and 1; 1½ Þ.

2. (a) Relative minimum at x ¼ 1; relative maximum at x ¼ �1,

(c) Relative maximum at x ¼ 2=3.

3. (a) Relative minima at x ¼ 	1; relative maxima at x ¼ 0; 	 4,

(c) Relative minima at x ¼ �2; 3; relative maximum at x ¼ 2.

6. If x < y there exists c in x; yð Þ such that sin x� sin yj j ¼ cos cj j y� xj j.
9. f xð Þ ¼ x4 2þ sin 1=xð Þð Þ > 0 for x 6¼ 0, so f has an absolute minimum at x ¼ 0. Show that

f 0 1=2npð Þ < 0 for n � 2 and f 0 2= 4nþ 1ð Þpð Þ > 0 for n � 1.

10. g0 0ð Þ ¼ lim
x!0

1þ 2x sin 1=xð Þð Þ ¼ 1þ 0 ¼ 1, and if x 6¼ 0, then g0 xð Þ ¼ 1þ 4x sin 1=xð Þ�
2 cos 1=xð Þ. Now show that g0 1=2npð Þ < 0 and that we have g0 2= 4nþ 1ð Þpð Þ > 0 for n 2 N .

14. Apply Darboux’s Theorem 6.2.12.

17. Apply the Mean Value Theorem to the function g� f on [0, x].

20. (a, b) Apply the Mean Value Theorem.

(c) Apply Darboux’s Theorem to the results of (a) and (b).
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Section 6.3

1. A ¼ Bðlim
x!c

f xð Þ=g xð ÞÞ ¼ 0:

4. Note that f 0 0ð Þ ¼ 0, but that f 0 xð Þ does not exist if x 6¼ 0.

7. (a) 1 (b) 1 (c) 0 (d) 1/3.

8. (a) 1 (b) 1 (c) 0 (d) 0.

9. (a) 0 (b) 0 (c) 0 (d) 0.

10. (a) 1 (b) 1 (c) e3 (d) 0.

11. (a) 1 (b) 1 (c) 1 (d) 0.

Section 6.4

1. f 2n�1ð Þ xð Þ ¼ �1ð Þna2n�1 sin ax and f 2nð Þ xð Þ ¼ �1ð Þna2ncos ax for n 2 N .

4. Apply Taylor’s Theorem to f xð Þ :¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
at x0 :¼ 0 and note that R1 xð Þ < 0 and R2 xð Þ > 0

for x > 0.

5. 1:095 <
ffiffiffiffiffiffiffi
1:2

p
< 1:1 and 1:375 <

ffiffiffi
2

p
< 1:5:

6. R2 0:2ð Þ < 0:0005 and R2 1ð Þ < 0:0625:

11. With n ¼ 4, ln 1:5 ¼ 0:40; with n ¼ 7; ln 1:5 ¼ 0:405:

17. Apply Taylor’s Theorem to f at x0 ¼ c to show that f xð Þ � f cð Þ þ f 0 cð Þ x� cð Þ.
19. Since f 2ð Þ < 0 and f 2:2ð Þ > 0, there is a zero of f in [2.0, 2.2]. The value of x4 is approximately

2.094 551 5.

20. r1 � 1:452 626 88 and r2 � �1:164 035 14. 21. r � 1:324 717 96.

22. r1 � 0:158 594 34 and r2 � 3:146 193 22. 23. r1 � 0:5 and r2 � 0:809 016 99:

24. r � 0:739 085 13.

Section 7.1

1. (a) jjP1jj¼ 2 (b) jjP2jj ¼ 2 (c) jjP3jj ¼ 1:4 (d) jjP4jj ¼ 2.

2. (a) 02 � 1þ 12 � 1þ 22 � 2 ¼ 0þ 1þ 8 ¼ 9

(b) 37 (c) 13 (d) 33.

5. (a) If u 2 xi�1; xi½ �, then xi�1 � u so that c1 � ti � xi � xi�1 þ jj _Pjj whence c1 � jj _Pjj �
xi�1 � u. Also u � xi so that xi � jj _Pjj � xi�1 � ti � c2, whence u � xi � c2 þ jj _Pjj.

10. g is not bounded. Take rational tags.

12. Let Pn be the partition of [0, 1] into n equal parts. If _Pn is this partition with rational tags, then

S f ; _Pn

� � ¼ 1, while if _Qn is this partition with irrational tags, then S f ; _Qn

� � ¼ 0.

13. If jj _Pjj < de :¼ e=4a, then the union of the subintervals in _P with tags in [c, d] contains the

interval cþ de; d � de½ � and is contained in c� de; d þ de½ �. Therefore a d � c� 2deð Þ �
S w; _P� � � a d � cþ 2deð Þ, whence S w : _P� �� a d � cð Þ		 		 � 2ade < e.

14. (b) In fact, x2i þ xixi�1 þ x2i�1

� � � xi � xi�1ð Þ ¼ x3i � x3i�1.

(c) The terms in S Q : _Q� �
telescope.

15. Let _P ¼ xi�1; xi½ �; tið Þf gni¼1 be a tagged partition of [a, b] and let
_Q :¼ xi�1 þ c; xi þ c½ �; ti þ cð Þf gni¼1 so that _Q is a tagged partition of aþ c; bþ c½ � and

jj _Qjj ¼ jj _Pjj. Moreover, S g; _Q� � ¼ S f ; _P� �
so that S g; _Q� �� R b

a
f

			 			 ¼ S f ; _P� �� R b

a
f

			 			 < e

when jj _Qjj < de.

382 HINTS FOR SELECTED EXERCISES



BOTH02 12/08/2010 17:1:45 Page 383

Section 7.2

2. If the tags are all rational, then S h; _P� � � 1, while if the tags are all irrational, then

S h; _P� � ¼ 0.

3. Let _Pn be the partition of [0, 1] into n equal subintervals with t1 ¼ 1=n and _Qn be the same

subintervals tagged by irrational points.

5. If c1; . . . ; cn are the distinct values taken by w, then w�1 cj
� �

is the union of a finite collection

Jj1; . . . ; Jjrj
� �

of disjoint subintervals of [a, b]. We can write w ¼
Xn
j¼1

Xrj
k¼1

cjwJjk
.

6. Not necessarily.

8. If f cð Þ > 0 for some c 2 a; bð Þ, there exists d > 0 such that f xð Þ > 1
2
f cð Þ for x� cj j � d. ThenR b

a
f � R cþd

c�d
f � 2dð Þ 1

2
f cð Þ > 0. If c is an endpoint, a similar argument applies.

10. Use Bolzano’s Theorem 5.3.7.

12. Indeed, g xð Þj j � 1 and is continuous on every interval [c, 1] where 0 < c < 1. The preceding

exercise applies.

13. Let f xð Þ :¼ 1=x for x 2 0; 1ð � and f 0ð Þ :¼ 0.

16. Let m :¼ inf f xð Þ and M :¼ sup f . By Theorem 7.1.5(c), we have

m b� að Þ � R b

a
f � M b� að Þ. By Bolzano’s Theorem 5.3.7, there exists c 2 a; b½ � such that

f cð Þ ¼ ðR b

a
f Þ= b� að Þ.

19. (a) Let _Pn be a sequence of tagged partitions of [0, a] with jj _Pnjj ! 0 and let _P

n be the

corresponding ‘‘symmetric’’ partition of [�a, a]. Show that Sð f ; _P

nÞ ¼ 2S f ; _Pn

� � !
2
R a

0
f .

20. Note that x 7! f x2ð Þ is an even continuous function.

Section 7.3

1. Suppose that E :¼ a ¼ c0 < c1 < � � � < cm ¼ bf g contains the points in [a, b] where the

derivative F0 xð Þ either does not exist, or does not equal f xð Þ. Then f 2 R ci�1; ci½ � and

f cici�1
f ¼ F cið Þ � F ci�1ð Þ. Exercise 7.2.14 and Corollary 7.2.11 imply that f 2 R a; b½ � and

that
R b

a
f ¼

Xm
i¼1

F cið Þ � F ci�1ð Þð Þ ¼ F bð Þ � F að Þ.

2. E ¼ ;. 3. Let E :¼ �1; 1f g. If x =2 E; G0 xð Þ ¼ g xð Þ.
4. Indeed, B0 xð Þ ¼ xj j for all x. 6. Fc ¼ Fa �

R c

a
f .

7. Let h be Thomae’s function. There is no functionH : 0; 1½ � ! R such thatH0 xð Þ ¼ h xð Þ for x in
some nondegenerate open interval; otherwise Darboux’s Theorem 6.2.12 would be contradicted

on this interval.

9. (a) G xð Þ ¼ F xð Þ � F cð Þ, (b) H xð Þ ¼ F bð Þ � F xð Þ, (c) S xð Þ ¼ F sin xð Þ � F xð Þ.
10. Use Theorem 7.3.6 and the Chain Rule 6.1.6.

11. (a) F0 xð Þ ¼ 2x 1þ x6
� ��1

(b) F0 xð Þ ¼ 1þ x2ð Þ1=2 � 2x 1þ x4ð Þ1=2.
15. g0 xð Þ ¼ f xþ cð Þ � f x� cð Þ.
18. (a) Take w tð Þ ¼ 1þ t2 to get 1

3
23=2 � 1
� �

.

(b) Take w tð Þ ¼ 1þ t3 to get 4
3
:

(c) Take w tð Þ ¼ 1þ ffiffi
t

p
to get 4

3
33=2 � 23=2
� �

:

(d) Take w tð Þ ¼ t1=2 to get 2 sin 2� sin 1ð Þ.
19. In (a) – (c) w0 0ð Þ does not exist. For (a), integrate over c; 4½ � and let c ! 0þ. For (c), the

integrand is even so the integral equals 2
R 1

0
1þ tð Þ1=2dt.
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20. (b) [n Zn is contained in[n;kJ
n
k and the sum of the lengths of these intervals is�

X
n

e=2n ¼ e.

21. (a) The Product Theorem 7.3.16 applies.

(b) We have �2t
R b

a
f g � t2

R b

a
f 2 þ R b

a
g2:

(c) Let t ! 1 in bð Þ.
(d) If

R b

a
f 2 6¼ 0; let t ¼ R b

a
g2=

R b

a
f 2


 �1=2

in bð Þ:
22. Note that sgn � h is Dirichlet’s function, which is not Riemann integrable.

Section 7.4

2. Show that if P is any partition, then L f ; Pð Þ ¼ U f ; Pð Þ ¼ c b� að Þ.
4. If k � 0, then inf k f xð Þ : x 2 Ij

� � ¼ k inf f xð Þ : x 2 Ij
� �

:

6. Consider the partition Pe :¼ 0; 1� e=2; 1þ e=2; 2ð Þ.
9. See Exercise 2.4.8.

11. If f xð Þj j � M for x 2 a; b½ � and e > 0, let P be a partition such that the total length of the

subintervals that contain any of the given points is less than e=M. Then U f ; Pð Þ � L f ; Pð Þ < e
so that Theorem 7.4.8 applies. Also 0 � U f ; Pð Þ � e, so that U fð Þ ¼ 0.

Section 7.5

1. Use (4) with n ¼ 4, a ¼ 1, b ¼ 2, h ¼ 1=4. Here 1=4 � f 00 cð Þ � 2; so T4 � 0:697 02.

3. T4 � 0:782 79.

4. The index n must satisfy 2=12n2 < 10�6; hence n > 1000=
ffiffiffi
6

p � 408:25.

5. S4 � 0:785 39:

6. The index n must satisfy 96=180n4 < 10�6; hence n � 28.

12. The integral is equal to the area of one quarter of the unit circle. The derivatives of h are

unbounded on [0, 1]. Since h00 xð Þ � 0, the inequality is Tn hð Þ < p=4 < Mn hð Þ. See Exercise 8.
13. Interpret K as an area. Show that h00 xð Þ ¼ � 1� x2ð Þ3=2 and that

h 4ð Þ xð Þ ¼ �3 1þ 4x2ð Þ 1� x2ð Þ�7=2
. To eight decimal places, p ¼ 3:141 592 65.

14. Approximately 3.653 484 49. 15. Approximately 4.821 159 32.

16. Approximately 0.835 648 85. 17. Approximately 1.851 937 05.

18. 1. 19. Approximately 1.198 140 23.

20. Approximately 0.904 524 24.

Section 8.1

1. Note that 0 � f n xð Þ � x=n ! 0 as n ! 1.

3. If x > 0; then f n xð Þ � 1j j < 1= nxð Þ:
5. If x > 0 then f n xð Þj j � 1= nxð Þ ! 0:

7. If x > 0; then 0 < e�x < 1:

9. If x > 0, then 0 � x2e�nx ¼ x2 e�xð Þn ! 0, since 0 < e�x < 1.

10. If x 2 Z, the limit equals 1. If x =2 Z, the limit equals 0.

11. If x 2 0; a½ �, then f n xð Þj j � a=n. However, f n nð Þ ¼ 1=2.

14. If x 2 0; b½ �, then f n xð Þj j � bn. However, f n 2�1=n
� � ¼ 1=3.

15. If x 2 a; 1½ Þ, then f n xð Þj j � 1= nað Þ. However, f n 1=nð Þ ¼ 1
2
sin1 > 0.

18. The maximum of f n on 0; 1½ Þ is at x ¼ 1=n, so jj f njj 0; 1½ Þ ¼ 1= neð Þ.
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20. If n is sufficiently large, jj f njj a;1½ Þ ¼ n2a2=ena. However, jj f njj 0;1½ Þ ¼ 4=e2.

23. Let M be a bound for f n xð Þð Þ and gn xð Þð Þ on A, whence also f xð Þj j � M. The Triangle

Inequality gives f n xð Þgn xð Þ � f xð Þg xð Þj j � M f n xð Þ � f ðxÞj j þ gn xð Þ � g xð Þj jð Þ for x 2 A.

Section 8.2

1. The limit function is f xð Þ :¼ 0 for 0 � x < 1; f 1ð Þ :¼ 1=2, and f xð Þ :¼ 1 for 1 < x � 2.

4. If e > 0 is given, let K be such that if n � K, then jj f n � f jjI < e=2. Then

f n xnð Þ � f x0ð Þj j � f n xnð Þ � f xnð Þj j þ f xnð Þ � f x0ð Þj j � e=2þ f xnð Þ � f x0ð Þj j. Since f is

continuous (by Theorem 8.2.2) and xn ! x0, then f xnð Þ � f x0ð Þj j < e=2 for n � K 0, so that

f n xnð Þ � f x0ð Þj j < e for n � max K; K 0f g.
6. Here f 0ð Þ ¼ 1 and f xð Þ ¼ 0 for x 2 0; 1ð �. The convergence is not uniform on [0, 1].

7. Given e :¼ 1, there exists K > 0 such that if n � K and x 2 A, then f n xð Þ � f xð Þj j < 1, so that

f n xð Þj j � f K xð Þj j þ 1 for all x 2 A. Let M :¼ maxfjj f 1jjA; . . . ; jj f K�1jjA; jj f K jjA þ 1g.
8. f n 1=

ffiffiffi
n

pð Þ ¼ ffiffiffi
n

p
=2.

10. Here gnð Þ converges uniformly to the zero function. The sequence g0n
� �

does not converge

uniformly.

11. Use the Fundamental Theorem 7.3.1 and Theorem 8.2.4.

13. If a > 0, then jj f njj a;p½ � � 1= nað Þ and Theorem 8.2.4 applies.

15. Here jjgnjj 0; 1½ � � 1 for all n. Now apply Theorem 8.2.5.

20. Let f n xð Þ :¼ xn on 0; 1½ Þ.

Section 8.3

1. Let A :¼ x > 0 and let m ! 1 in (5). For the upper estimate on e, take x ¼ 1 and n ¼ 3 to

obtain e� 2 2
3

		 		 < 1=12; so e < 2 3
4
.

2. Note that if n � 9, then 2= nþ 1ð Þ! < 6
 10�7 < 5
 10�6. Hence e � 2:71828.

3. Evidently En xð Þ � ex for x � 0. To obtain the other inequality, apply Taylor’s Theorem 6.4.1 to

[0, a].

5. Note that 0 � tn= 1þ tð Þ � tn for t 2 0; x½ �.
6. ln 1:1 ’ 0:0953 and ln 1:4 � 0:3365. Take n > 19; 999.

7. ln 2 � 0:6931.

10. L0 1ð Þ ¼ lim L 1þ 1=nð Þ � L 1ð Þ½ �= 1=nð Þ ¼ lim L 1þ 1=nð Þnð Þ ¼ L lim 1þ 1=nð Þnð Þ ¼ L eð Þ ¼ 1:

11. (c) xyð Þa ¼ E aL xyð Þð Þ ¼ E aL xð Þ þ aL yð Þð Þ ¼ E aL xð Þð Þ � E aL yð Þð Þ ¼ xa � ya.
12. (b) xað Þb ¼ E bL xað Þð Þ ¼ E baL xð Þð Þ ¼ xab, and similarly for xbð Þa.
15. Use 8.3.14 and 8.3.9(vii).

17. Indeed, we have loga x ¼ ln xð Þ= ln að Þ ¼ ln xð Þ= ln bð Þ½ � � ln bð Þ= ln að Þ½ � if a 6¼ 1; b 6¼ 1. Now

take a ¼ 10; b ¼ e.

Section 8.4

1. If n > 2 xj j, then cos x� Cn xð Þj j � 16=15ð Þ xj j2n= 2nð Þ!, so cos 0:2ð Þ � 0:980 067, cos 1 �
0:549 302. Similarly, sin 0:2ð Þ � 0:198 669 and sin 1 � 0:841 471.

4. We integrate 8.4.8(x) twice on [0, x]. Note that the polynomial on the left has a zero in the

interval [1.56,1.57], so 1:56 � p=2.
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5. Exercise 8.4.4 shows that C4 xð Þ � cosx � C3 xð Þ for all x 2 R . Integrating several times, we

get S4 xð Þ � sinx � S5 xð Þ for all x > 0. Show that S4 3:05ð Þ > 0 and S5 3:15ð Þ < 0. (This

procedure can be sharpened.)

6. If xj j � A and m > n > 2A, then cm xð Þ � cn xð Þj j < 16=15ð ÞA2n= 2nð Þ!, whence the conver-

gence of cnð Þ to c is uniform on each interval �A; A½ �.
7. D½ c xð Þð Þ2 � s xð Þð Þ2� ¼ 0 for all x 2 R . For uniqueness, argue as in 8.4.4.

8. Letg xð Þ :¼ f 0ð Þc xð Þ þ f 0 0ð Þs xð Þ forx 2 R, so thatg00 xð Þ ¼ g xð Þ; g 0ð Þ ¼ f 0ð Þ andg0 0ð Þ ¼ f 0 0ð Þ.
Therefore h xð Þ :¼ f xð Þ � g xð Þ has the property that h00 xð Þ ¼ h xð Þ for all x 2 R and

h 0ð Þ ¼ 0; h0 0ð Þ ¼ 0. Thus g xð Þ ¼ f xð Þ for all x 2 R , so that f xð Þ ¼ f 0ð Þc xð Þ þ f 0 0ð Þs xð Þ.
9. If w xð Þ :¼ c �xð Þ, show that w00 xð Þ ¼ w xð Þ and w 0ð Þ ¼ 1; w0 0ð Þ ¼ 0, so that w xð Þ ¼ c xð Þ for all

x 2 R . Therefore c is even.

Section 9.1

1. Let sn be the nth partial sum of
X1
1

an, let tn be the nth partial sum of
X1
1

anj j, and suppose that
an � 0 for n > P. Ifm > n > P, show that tm � tn ¼ sm � sn. Now apply the Cauchy Criterion.

3. Take positive terms until the partial sum exceeds 1, then take negative terms until the partial sum

is less than 1, then take positive terms until the partial sum exceeds 2, etc.

5. Yes.

6. If n � 2, then sn ¼ �ln 2� ln nþ ln nþ 1ð Þ. Yes.
9. We have s2n � sn � na2n ¼ 1

2
2na2nð Þ, and s2nþ1 � sn � 1

2
2nþ 1ð Þa2nþ1. Consequently

lim nanð Þ ¼ 0.

11. Indeed, if n2an
		 		 � M for n, then anj j � M=n2.

13. (a) Rationalize to obtain
P

xn where xn :¼
ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p� �� ��1
and note that

xn � yn :¼ 1= 2nð Þ. Now apply the Limit Comparison Test 3.7.8.

(b) Rationalize and compare with
P

1=n3=2.

14. If
P

an is absolutely convergent, the partial sums of
P

anj j are bounded, say by M. Evidently

the absolute value of the partial sums of any subseries of an are also bounded by M.

Conversely, if every subseries of
P

an is convergent, then the subseries consisting of the

strictly positive (and strictly negative) terms are absolutely convergent, whence it follows thatP
an is absolutely convergent.

Section 9.2

1. (a) Convergent; compare with
P

1=n2. (c) Divergent; note that 21=n ! 1.

2. (a) Divergent; apply 9.2.1 with bn :¼ 1=n.

(c) Convergent; use 9.2.4 and note that n= nþ 1ð Þð Þn ! 1=e < 1.

3. (a) ln nð Þp < n for large n, by L’Hospital’s Rule.

(c) Convergent; note that ln nð Þln n > n2 for large n.

(e) Divergent; apply 9.2.6 or Exercise 3.7.15.

4. (a) Convergent (b) Divergent (c) Divergent

(d) Convergent; note that ln nð Þexp �n1=2
� �

< n exp �n1=2
� �

< 1=n2 for large n, by L’Hospital’s
Rule.

(e) Divergent (f) Divergent.

6. Apply the Integral Test 9.2.6.

7. (a, b) Convergent (c) Divergent (d) Convergent.

9. If m > n � K, then sm � snj j � xnþ1j j þ � � � þ xmj j < rnþ1= 1� rð Þ. Now let m ! 1.
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12. (a) A crude estimate of the remainder is given by s� s4 <
R1
5

x�2dx ¼ 1=5. Similarly

s� s10 < 1=11and s� sn < 1= nþ 1ð Þ, so that 999 terms suffice to get s� s999 < 1=1000.
(d) If n � 4, then xnþ1=xn � 5=8 so (by Exercise 10) s� s4j j � 5=12. If n � 10, then

xnþ1=xn � 11=20 so that s� s10j j � 10=210
� �

11=9ð Þ < 0:012. If n ¼ 14, then

s� s14j j < 0:000 99.

13. (b) Here
X1
nþ1

<

Z 1

n

x�3=2dx ¼ 2=
ffiffiffi
n

p
, so s� s10j j < 0:633 and s� snj j < 0:001

when n > 4
 106.

(c) If n � 4, then s� snj j � 0:694ð Þxn so that s� s4j j < 0:065. If n � 10, then s� snj j �
0:628ð Þxn so that s� s10j j < 0:000 023.

14. Note that s3nð Þ is not bounded.
16. Note that, for an integer with n digits, there are 9 ways of picking the first digit and 10 ways of

picking each of the other n� 1 digits. There is one value of mk from 1 to 9, there is one value

from 10 to 19, one from 20 to 29, etc.

18. Here lim n 1� xnþ1=xnð Þð Þ ¼ c� a� bð Þ þ 1, so the series is convergent if c > aþ b and is

divergent if c < aþ b.

Section 9.3

1. (a) Absolutely convergent (b) Conditionally convergent

(c) Divergent (d) Conditionally convergent.

2. Show by induction that s2 < s4 < s6 < � � � < s5 < s3 < s1. Hence the limit lies between sn and

snþ1 so that s� snj j < snþ1 � snj j ¼ znþ1.

5. Use Dirichlet’s Test with ynð Þ :¼ þ1;�1;�1;þ;þ1;�1;�1; . . .ð Þ. Or group the terms in pairs

(after the first) and use the Alternating Series Test

7. If f xð Þ :¼ ln xð Þp=xq, then f 0 xð Þ < 0 for x sufficiently large. L’Hospital’s Rule shows that the

terms in the alternating series approach 0.

8. (a) Convergent (b) Divergent (c) Divergent (d) Divergent.

11. Dirichlet’s Test does not apply (directly, at least), since the partial sums of the series generated

by 1;�1;�1; 1; 1; 1; . . .ð Þ are not bounded.

15. (a) Use Abel’s Test with xn :¼ 1=n.
(b) Use the Cauchy Inequality with xn :¼ ffiffiffiffiffi

an
p

; yn :¼ 1=n, to getP ffiffiffiffiffi
an

p
=n � P

anð Þ1=2 P
1=n2ð Þ1=2, establishing convergence.

(d) Let an :¼ ½n ln nð Þ2��1
, which converges by the Integral Test. However, bn :¼

ffiffiffi
n

p
ln n½ ��1

,

which diverges.

Section 9.4

1. (a) Take Mn :¼ 1=n2 in the Weierstrass M-Test.

(c) Since sin yj j � yj j, the series converges for all x. But it is not uniformly convergent onR . If

a > 0, the series is uniformly convergent for xj j � a.

(d) If 0 � x � 1, the series is divergent. If 1 < x < 1, the series is convergent. It is uniformly

convergent on a; 1½ Þ for a > 1. However, it is not uniformly convergent on 1; 1ð Þ.
4. If r ¼ 1, then the sequence

�
anj j1=n� is not bounded. Hence if x0j j > 0, then there are infinitely

many k 2 N with akj j1=k > 1= x0j j so that akx
k
0

		 		 > 1. Thus the series is not convergent when

x0 6¼ 0.

5. Suppose that L :¼ lim anj j= anþ1j jð Þ exists and that 0 < L < 1. It follows from the Ratio Test

that
P

anx
n converges for xj j < L and diverges for xj j > L. The Cauchy-Hadamard Theorem

implies that L ¼ R.
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6. (a) R ¼ 1 (b) R ¼ 1
(c) R ¼ 1=e (d) 1

(e) R ¼ 4 (f) R ¼ 1.

8. Use lim n1=n
� � ¼ 1.

10. By the Uniqueness Theorem 9.4.13, an ¼ �1ð Þnan for all n.

12. If n 2 N , there exists a polynomial Pn such that f nð Þ xð Þ ¼ e�1=x2Pn 1=xð Þ for x 6¼ 0.

13. Let g xð Þ :¼ 0 for x � 0 and g xð Þ :¼ e�1=x2 for x < 0. Show that g nð Þ 0ð Þ ¼ 0 for all n.

16. Substitute �y for x in Exercise 15 and integrate from y ¼ 0 to y ¼ x for xj j < 1, which is

justified by Theorem 9.4.11.

19.
R x

0
e�t2dt ¼

X1
n¼0

�1ð Þnx2nþ1=n! 2nþ 1ð Þ for x 2 R.

20. Apply Exercise 14 and
R p=2

0
sin xð Þ2ndx ¼ p

2
� 1 � 3 � 5 � � � 2n� 1ð Þ

2 � 4 � 6 � � � 2n :

Section 10.1

1. (a) Since ti � d tið Þ � xi�1 and xi � ti þ d tið Þ, then 0 � xi � xi�1 � 2d tið Þ.
(b) Apply (a) to each subinterval.

2. (b) Consider the tagged partition 0; 1½ �; 1ð Þ; 1; 2½ �; 1ð Þ; 2; 3½ �; 3ð Þ; 3; 4½ �; 3ð Þf g.
3. (a) If _P ¼ xi�1; xi½ �; tið Þf gni¼1 and if tk is a tag for both subintervals xk�1; xk½ � and xk; xkþ1½ �,

we must have tk ¼ xk. We replace these two subintervals by the subinterval xk�1; xkþ1½ �
with the tag tk, keeping the d-fineness property.

(b) No.

(c) If tk 2 xk�1; xkð Þ, then we replace xk�1; xk½ � by the two intervals xk�1; tk½ � and tk; xk½ �
both tagged by tk, keeping the d-fineness property.

4. If xk�1 � 1 � xk and if tk is the tag for xk�1; xk½ �, then we cannot have tk > 1, since then

tk � d tkð Þ ¼ 1
2
tk þ 1ð Þ > 1. Similarly, we cannot have tk < 1, since then tk þ d tkð Þ ¼

1
2
tk þ 1ð Þ < 1. Therefore tk ¼ 1.

5. (a) Let d tð Þ :¼ 1
2
min t� 1j j; t� 2j j; t� 3j jf g if t 6¼ 1; 2; 3 and d tð Þ :¼ 1 for t ¼ 1; 2; 3.

(b) Let d2 tð Þ :¼ min d tð Þ; d1 tð Þf g, where d is as in part (a).

7. (a) F1 xð Þ :¼ 2=3ð Þx3=2 þ 2x1=2;
(b) F2 xð Þ :¼ 2=3ð Þ 1� xð Þ3=2 � 2 1� xð Þ1=2;
(c) F3 xð Þ :¼ 2=3ð Þx3=2 ln x� 2=3ð Þ for x 2 0; 1ð � and F3 0ð Þ :¼ 0;
(d) F4 xð Þ :¼ 2x1=2 ln x� 2ð Þ for x 2 0; 1ð � and F4 0ð Þ :¼ 0,

(e) F5 xð Þ :¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
þ Arcsin x,

(f) F6 xð Þ :¼ Arcsin x� 1ð Þ.
8. The tagged partition _Pz need not be de-fine, since the value de zð Þ may be much smaller than

de xj
� �

.

9. If f were integrable, then
R 1

0
f � R 1

0
sn ¼ 1=2þ 1=3þ � � � þ 1= nþ 1ð Þ.

10. We enumerate the nonzero rational numbers as rk ¼ mk=nk and define de mk=nkð Þ :¼
e= nk2

kþ1
� �

and de xð Þ :¼ 1 otherwise.

12. The function M is not continuous on [�2, 2].

13. L1 is continuous and L01 xð Þ ¼ l1 xð Þ for x 6¼ 0, so Theorem 10.1.9 applies.

15. We have C0
1 xð Þ ¼ 3=2ð Þx1=2cos 1=xð Þ þ x�1=2sin 1=xð Þ for x > 0. Since the first term in C0

1 has

a continuous extension to [0, 1], it is integrable.

16. We have C0
2 xð Þ ¼ cos 1=xð Þ þ 1=xð Þ sin 1=xð Þ for x > 0. By the analogue of Exercise 7.2.12,

the first term belongs to R 0; 1½ �.
17. (a) Take w tð Þ :¼ t2 þ t� 2 so Ew ¼ ; to get 6.

(b) Take w tð Þ :¼ ffiffi
t

p
so Ew ¼ 0f g to get 2 2þ ln 3ð Þ.
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(c) Take w tð Þ :¼ ffiffiffiffiffiffiffiffiffiffi
t� 1

p
so Ew ¼ 1f g to get 2 Arctan 2.

(d) Take w tð Þ :¼ Arcsin t so Ew ¼ 1f g to get 1
4
p.

19. (a) In fact f xð Þ :¼ F0 xð Þ ¼ cos p=xð Þ þ p=xð Þ sin p=xð Þ for x > 0. We set f 0ð Þ :¼ 0,

F0 0ð Þ :¼ 0. Note that f is continuous on 0; 1ð �.
(b) F akð Þ ¼ 0 and F bkð Þ ¼ �1ð Þk=k. Apply Theorem 10.1.9.

(c) If fj j 2 R
 0; 1½ �, then
Xn
k¼1

1=k �
Xn
k¼1

Z bk

ak

fj j �
Z 1

0

fj j for all n 2 N .

20. Indeed, sgn f xð Þð Þ ¼ �1ð Þk ¼ m xð Þ on ak; bk½ � so m xð Þ � f xð Þ ¼ m xð Þ f xð Þj j for x 2 0; 1½ �.
Since the restrictions of m and mj j to every interval [c, 1] for 0 < c < 1 are step functions,

they belong to R c; 1½ �. By Exercise 7.2.11, m and mj j belong to R 0; 1½ � and

R 1

0
m ¼

X1
k¼1

�1ð Þk=k 2k þ 1ð Þ and
Z 1

0

mj j ¼
X1
k¼1

1=k 2k þ 1ð Þ.

21. Indeed, w xð Þ ¼ F0 xð Þ ¼ cos p=xð Þj j þ p=xð Þsin p=xð Þ � sgn cos p=xð Þð Þ for x =2 E by Example

6.1.7(c). Evidently w is not bounded near 0. If x 2 ak; bk½ �, then w xð Þ ¼ cos p=xð Þj j þ
p=xð Þ sin p=xð Þj j so that R bk

ak
wj j ¼ F bkð Þ �F akð Þ ¼ 1=k; whence wj j =2 R
 0; 1½ �.

22. Here c xð Þ ¼ C0 xð Þ ¼ 2x cos p=xð Þj j þ p sin p=xð Þ � sgn cos p=xð Þð Þ for x =2 0f g [ E1 by Exam-

ple 6.1.7(b). Since c is bounded, Exercise 7.2.11 applies. We cannot apply Theorem 7.3.1 to

evaluate
R b

0
c since E is not finite, but Theorem 10.1.9 applies andc 2 R 0; 1½ �. Corollary 7.3.15

implies that cj j 2 R 0; 1½ �.
23. If p � 0, then mp � f p � Mp, where m and M denote the infimum and the supremum of f on

[a, b], so that m
R b

a
p � R b

a
f p � M

R b

a
p. If

R b

a
p ¼ 0, the result is trivial; otherwise, the

conclusion follows from Bolzano’s Intermediate Value Theorem 5.3.7.

24. By the Multiplication Theorem 10.1.14, f g 2 R
 a; b½ �. If g is increasing, then g að Þf � f g �
g bð Þ f so that g að Þ R b

a
f � R b

a
f g � g bð Þ R b

a
f . Let K xð Þ :¼ g að Þ R x

a
f þ g bð Þ R b

x
f , so that K is

continuous and takes all values between K(b) and K(a).

Section 10.2

2. (a) If G xð Þ :¼ 3x1=3 for x 2 0; 1½ � then R 1

c
g ¼ G 1ð Þ � G cð Þ ! G 1ð Þ ¼ 3.

(b) We have
R 1

c
1=xð Þdx ¼ ln c, which does not have a limit in R as c ! 0.

3. Here
R c

0
1� xð Þ�1=2

dx ¼ 2� 2 1� cð Þ1=2 ! 2 as c ! 1�.

5. Because of continuity, g1 2 R
 c; 1½ � for all c 2 0; 1ð Þ. Ifv xð Þ :¼ x�1=2, then g1 xð Þj j � v xð Þ for
all x 2 0; 1½ �. The ‘‘left version’’ of the preceding exercise implies that g1 2 R
 0; 1½ � and the

above inequality and the Comparison Test 10.2.4 imply that g1 2 L 0; 1½ �.
6. (a) The function is bounded on [0, 1] (use l’Hospital) and continuous in (0, 1).

(c) If x 2 0; 1
2

� �
, the integrand is dominated by ln 1

2

� �
ln x

		 		. If x 2 1
2
; 1

� �
, the integrand is

dominated by ln 1
2

� �
ln 1� xð Þ		 		.

7. (a) Convergent (b, c) Divergent (d, e) Convergent (f) Divergent.

10. By the Multiplication Theorem 10.1.14, f g 2 R
 a; b½ �. Since f xð Þg xð Þj j � B f xð Þj j, then f g 2
L a; b½ � and jj f gjj � Bjj f jj.

11. (a) Let f xð Þ :¼ �1ð Þk2k=k for x 2 ck�1; ck½ Þ and f 1ð Þ :¼ 0, where the ck are as in Example

10.2.2(a). Then fþ :¼ max f ; 0f g =2 R
 0; 1½ �.
(b) Use the first formula in the proof of Theorem 10.2.7.

13. (ii) If f xð Þ ¼ g xð Þ for all x 2 a; b½ �, then dist f ; gð Þ ¼ R b

a
f � gj j ¼ 0.

(iii) dist f ; gð Þ ¼ R b

a
f � gj j ¼ R b

a
g� fj j ¼ dist g; fð Þ.

(iv) dist f ; hð Þ ¼ R b

a
f � hj j � R b

a
f � gj j þ R b

a
g� hj j ¼ dist f ; gð Þ þ dist g; hð Þ.

16. If f nð Þ converges to f inL ½a; b�, given e > 0 there exists K e=2ð Þ such that ifm; n � K e=2ð Þ then
jj f m � f jj < e=2 and jj f n � f jj < e=2. Therefore jj f m � f njj � jj f m � f jj þ jj f � f njj <
e=2þ e=2 ¼ e. Thus we may take H eð Þ :¼ K e=2ð Þ.
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18. If m > n, then jjgm � gnjj � 1=nþ 1=m ! 0. One can take g :¼ sgn.

19. No.

20. We can take k to be the 0-function.

Section 10.3

1. Let b � max a; 1=d 1ð Þf g. If _P is a d -fine partition of [a, b], show that _P is a d-fine subpartition

of a; 1½ Þ.
3. If f 2 L a; 1½ Þ, apply the preceding exercise to fj j. Conversely, if R q

p
fj j < e for q > p � K eð Þ,

then
R q

a
f � R p

a
f

		 		 � R q

p
fj j < e so both limg

R g

a
f and limg

R g

a
fj j exist; therefore f ; fj j 2

R
 a;1½ Þ and so f 2 L a;1½ Þ.
5. If f ; g 2 L a; 1½ Þ, then f ; fj j; g; and gj j belong toR
 a;1½ Þ, so Example 10.3.3(a) implies that

f þ g and fj j þ gj j belong to R
 a; 1½ Þ and that
R1
a

fj j þ gj jð Þ ¼ R1
a

fj j þ R1
a

gj j. Since
f þ gj j � fj j þ gj j, it follows that

R g

a
f þ gj j � R g

a
fj j þ R g

a
gj j � R1

a
fj j þ R1

a
gj j, whence

jj f þ gjj � jj f jj þ jjgjj.
6. Indeed,

R g

1
1=xð Þ dx ¼ ln g, which does not have a limit as g ! 1. Or, use Exercise 2 and the

fact that
R 2p

p
1=xð Þdx ¼ ln 2 > 0 for all p � 1.

8. If g > 0, then
R g

0
cos x dx ¼ sin g, which does not have a limit as g ! 1.

9. (a) We have
R g

0
e�sxdx ¼ 1=sð Þ 1� e�sgð Þ ! 1=s.

(b) Let G xð Þ :¼ � 1=sð Þe�sx for x 2 0; 1½ Þ, so G is continuous on 0;1½ Þ and G xð Þ ! 0 as

x ! 1. By the Fundamental Theorem 10.3.5, we have
R1
0

g ¼ �G 0ð Þ ¼ 1=s.

12. (a) If x � e, then ln xð Þ=x � 1=x.
(b) Integrate by parts on 1; g½ � and then let g ! 1.

13. (a) sin xj j � 1=
ffiffiffi
2

p
> 1=2 and 1=x > 1= nþ 1ð Þp for x 2 npþ p=4; npþ 3p=4ð Þ.

(b) If g > nþ 1ð Þp, then R g

0
Dj j � 1=4ð Þ 1=1þ 1=2þ � � � þ 1= nþ 1ð Þð Þ.

15. Let u ¼ w xð Þ ¼ x2. Now apply Exercise 14.

16. (a) Convergent (b, c) Divergent (d) Convergent (e) Divergent

(f) Convergent.

17. (a) If f 1 xð Þ :¼ sin x, then f 1 =2 R
 0;1½ Þ. In Exercise 14, take f 2 xð Þ :¼ x�1=2 sin x and

w2 xð Þ :¼ 1=
ffiffiffi
x

p
.

(c) Take f xð Þ :¼ x�1=2sin x, and w xð Þ :¼ xþ 1ð Þ=x.
18. (a) f xð Þ :¼ sin x is in R
 0; g½ �, and F xð Þ :¼ R x

0
sin t dt ¼ 1� cos x is bounded on 0; 1½ Þ,

and w xð Þ :¼ 1=x decreases monotonely to 0.

(c) F xð Þ :¼ R x

0
cos t dt ¼ sin x is bounded on 0; 1½ Þ and w xð Þ :¼ x�1=2 decreases monot-

onely to 0.

19. Let u ¼ w xð Þ :¼ x2.

20. (a) If g > 0, then
R g

0
e�xdx ¼ 1� e�g ! 1, so e�x 2 R
 0;1½ Þ. Similarly e� xj j ¼

ex 2 R
 �1; 0ð �.
(c) 0 � e�x2 � e�x for xj j � 1, so e�x2 2 R
 0;1½ Þ. Similarly on �1; 0ð �.

Section 10.4

1. (a) Converges to 0 at x ¼ 0, to 1 on (0, 1]. Not uniform. Bounded by 1. Increasing. Limit¼ 1.

(c) Converges to 1 on [0, l), to 1
2
at x ¼ 1. Not uniform. Bounded by 1. Increasing. Limit ¼ 1.

2. (a) Converges to
ffiffiffi
x

p
on [0, 1]. Uniform. Bounded by 1. Increasing. Limit ¼ 2=3.

(c) Converges to 1
2
at x ¼ 1, to 0 on (1, 2]. Not uniform. Bounded by 1. Decreasing.

Limit ¼ 0.
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3. (a) Converges to 1 at x ¼ 0, to 0 on (0, 1]. Not uniform. Bounded by 1. Decreasing.

Limit ¼ 0.

(c) Converges to 0. Not uniform. Bounded by 1/e. Not monotone. Limit ¼ 0.

(e) Converges to 0. Not uniform. Bounded by 1=
ffiffiffiffiffi
2e

p
. Not monotone. Limit ¼ 0.

4. (a) The Dominated Convergence Theorem applies.

(b) f k xð Þ ! 0 for x 2 0; 1½ Þ, but f k 1ð Þð Þ is not bounded. No obvious dominating function.

Integrate by parts and use (a). The result shows that the Dominated Convergence Theorem

does not apply.

6. Suppose that f k cð Þð Þ converges for some c 2 a; b½ �. By the Fundamental Theorem,

f k xð Þ � f k cð Þ ¼ R x

c
f 0k. By the Dominated Convergence Theorem,

R x

c
f 0k ! R x

c
g, whence

f x xð Þð Þ converges for all x 2 a; b½ �. Note that if f k xð Þ :¼ �1ð Þk, then f k xð Þð Þ does not

converge for any x 2 a; b½ �.
7. Indeed, g xð Þ :¼ sup f k xð Þ : k 2 Nf g equals 1=k on (k � 1, k], so that

R n

0
g ¼ 1þ 1

2
þ � � � þ 1

n
:

Hence g =2 R
 0;1½ Þ.
10. (a) If a > 0, then e�txsin xð Þ=xj j � e�ax for t 2 Ja :¼ a; 1ð Þ. If tk 2 Ja and tk ! t0 2 Ja,

then the argument in 10.4.6(d) shows that E is continuous at t0. Also, if tk � 1, then

e�tkxsin xð Þ=xj j � e�x and the Dominated Convergence Theorem implies that E tkð Þ ! 0.

Thus E tð Þ ! 0 as t ! 1.

(b) It follows as in 10.4.6(e) that E0 t0ð Þ ¼ � R1
0

e�t0x sin x dx ¼ �1= t20 þ 1
� �

.

(c) By 10.1.9, E sð Þ � E tð Þ ¼ R s

t
E0 tð Þdt ¼ � R s

t
t2 þ 1ð Þ�1

dt ¼ Arctan t� Arctan s for

s; t > 0. But E sð Þ ! 0 and Arctan s ! p=2 as s ! 1.

(d) We do not know that E is continuous as t ! 0þ.

12. Fix x 2 I. As in 10.4.6(e), if t; t0 2 a; b½ �, there exists tx between t; t0 such that f t; xð Þ�
f t0; xð Þ ¼ t� t0ð Þ @f@t tx; xð Þ. Therefore a xð Þ � f t; xð Þ � f t0; xð Þ½ �= t� t0ð Þ � v xð Þ when

t 6¼ t0. Now argue as before and use the Dominated Convergence Theorem 10.4.5.

13. (a) If skð Þ is a sequence of step functions converging to f a.e., and tkð Þ is a sequence of step
functions converging to g a.e., Theorem 10.4.9(a) and Exercise 2.2.18 imply that

max sk; tkf gð Þ is a sequence of step functions that converges to max f ; gf g a.e. Similarly,

for min f ; gf g.
14. (a) Since f k 2 M a; b½ � is bounded, it belongs to R
 a; b½ �. The Dominated Convergence

Theorem implies that f 2 R
 a; b½ �. The Measurability Theorem 10.4.11 now implies that

f 2 M a; b½ �.
(b) Since t 7!Arctan t is continuous, Theorem 10.4.9(b) implies that f k :¼ Arctan � gk 2

M a; b½ �. Further, f k xð Þj j � 1
2
p for x 2 a; b½ �.

(c) If gk ! g a.e., it follows from the continuity of Arctan that f k ! f a.e. Parts (a, b)

imply that f 2 M a; b½ � and Theorem 10.4.9(b) applied to w ¼ tan implies that

g ¼ tan � f 2 M a; b½ �.
15. (a) Since 1E is bounded, it is in R
 a; b½ � if and only if it is in M a; b½ �.

(c) 1E0 ¼ 1� 1E.

(d) 1E[F xð Þ ¼ max 1E xð Þ; 1F xð Þf g and 1E\F xð Þ ¼ min 1E xð Þ; 1F xð Þf g. Further, EnF ¼
E \ F0.

(e) If Ekð Þ is an increasing sequence in M a; b½ �, then 1Ek
ð Þ is an increasing sequence in

M a; b½ �with 1E xð Þ ¼ lim 1Ek
xð Þ, and we can apply Theorem 10.4.9(c). Similarly, 1Fk

ð Þ is
a decreasing sequence in M a; b½ � and 1F xð Þ ¼ lim 1Fk

xð Þ.
(f) Let An :¼ [n

k¼1Ek, so that Anð Þ is an increasing sequence in M a; b½ � with [1
n¼1An ¼ E, so

(e) applies. Similarly, if Bn :¼ \n
k¼1Fk, then Bnð Þ is a decreasing sequence in M a; b½ �

with \1
n¼1Bn ¼ F.

16. (a) m ;ð Þ ¼ R b

a
0 ¼ 0 and 0 � 1E � 1 implies 0 � m Eð Þ ¼ R b

a
1E � b� a.

(b) Since 1 c; d½ � is a step function, then m c; d½ �ð Þ ¼ d � c.

(c) Since 1E0 ¼ 1� 1E, we have m E0ð Þ ¼ R b

a
1� 1Eð Þ ¼ b� að Þ �m Eð Þ.

(d) Note that 1E[F þ 1E\F ¼ 1E þ 1F :
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(f) If Ekð Þ is increasing in M a; b½ � to E, then 1Ek
ð Þ is increasing in M a; b½ � to 1E. The

Monotone Convergence Theorem 10.4.4 applies.

(g) If Ckð Þ is pairwise disjoint and En :¼
Sn

k¼1 Ck for n 2 N, then m Enð Þ ¼ m C1ð Þ
þ � � � þm Cnð Þ. Since

S1
k¼1 Ck ¼ S1

n¼1 En and Enð Þ is increasing, (f) implies that

m
S1

k¼1 Ck

� � ¼ limnm Enð Þ ¼ limn

Xn
k¼1

m Ckð Þ ¼
X1
n¼1

m Ckð Þ.

Section 11.1

1. If x� uj j < inf x; 1� xf g, then u < xþ 1� xð Þ ¼ 1 and u > x� x ¼ 0, so that 0 < u < 1.

3. Since the union of two open sets is open, then G1 [ � � � [ Gk [ Gkþ1 ¼ G1 [ � � � [ Gkð Þ [
Gkþ1 is open.

5. The complement of N is the union �1; 1ð Þ [ 1; 2ð Þ [ � � � of open intervals.

7. Corollary 2.4.9 implies that every neighborhood of x in Q contains a point not in Q .

10. x is a boundary point of A() every neighborhood V of x contains points in A and points in

C að Þ()x is a boundary point of C að Þ.
12. The sets F and C(F) have the same boundary points. Therefore F contains all of its boundary

points ()C Fð Þ does not contain any of its boundary points ()C Fð Þ is open.
13. x 2 A� ()x belongs to an open set V � A()x is an interior point of A.

15. Since A� is the intersection of all closed sets containing A, then by 11.1.5(a) it is a closed set

containing A. Since C A�ð Þ is open, then z 2 C A�ð Þ() z has a neighborhood V e zð Þ in

C A�ð Þ() z is neither an interior point nor a boundary point of A.

19. If G 6¼ ; is open and x 2 G, then there exists e > 0 such that V e xð Þ � G, whence it follows that

a :¼ x� e is in Ax.

21. If ax < y < x then since ax :¼ inf Ax there exists a0 2 Ax such that ax < a0 � y. Therefore

y; xð � � a0; xð � � G and y 2 G.

23. If x 2 F and n 2 N , the interval In in Fn containing x has length 1=3
n. Let yn be an endpoint of In

with yn 6¼ x. Then yn 2 F (why?) and yn ! x.

24. As in the preceding exercise, take zn to be the midpoint of In. Then zn =2 F (why?) and zn ! x.

Section 11.2

1. Let Gn :¼ 1þ 1=n; 3ð Þ for n 2 N .

3. Let Gn :¼ 1=2n; 2ð Þ for n 2 N .

5. If G1 is an open cover of K1 and G2 is an open cover of K2, then G1 [ G2 is an open cover of

K1 [ K2.

7. Let Kn :¼ 0; n½ � for n 2 N .

10. SinceK 6¼ ; is bounded, it follows that inf K exists inR . If Kn :¼ k 2 K : k � inf Kð Þ þ 1=nf g,
then Kn is closed and bounded, hence compact. By the preceding exercise \Kn 6¼ ;, but if
x0 2 \Kn, then x0 2 K and it is readily seen that x0 ¼ inf K. [Alternatively, use Theorem11.2.6.]

12. Let ; 6¼ K � R be compact and let c 2 R . If n 2 N , there exists xn 2 K such that

sup c� xj j : x 2 Kf g � 1=n < c� xnj j. Now apply the Bolzano-Weierstrass Theorem.

15. Let F1 :¼ n : n 2 Nf g and F2 :¼ nþ 1=n : n 2 N ; n � 2f g.

Section 11.3

1. (a) If a < b � 0, then f�1 Ið Þ ¼ ;. If a < 0 < b, then f�1 Ið Þ ¼ � ffiffiffi
b

p
;

ffiffiffi
b

p� �
. If 0 � a < b then

f�1 Ið Þ ¼ � ffiffiffi
b

p
;� ffiffiffi

a
p� � [ ffiffiffi

a
p

;
ffiffiffi
b

p� �
.
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3. f�1 Gð Þ ¼ f�1 0; e½ Þð Þ ¼ 1; 1þ e2½ Þ ¼ 0; 1þ e2ð Þ \ I:

4. Let G :¼ 1=2; 3=2ð Þ. Let F :¼ �1=2; 1=2½ �.
8. Let f be the Dirichlet Discontinuous Function.

9. First note that if A � R and x 2 R , then we have x 2 f�1
RnAð Þ () f xð Þ 2 RnA() f xð Þ =2

A() x =2 f�1 Að Þ()x 2 Rnf�1 Að Þ; therefore, f�1
RnAð Þ ¼ Rn f�1 Að Þ. Now use the fact that a

set F � R is closed if and only if RnF is open, together with Corollary 11.3.3.

Section 11.4

1. If Pi :¼ xi; yið Þ for i ¼ 1; 2; 3, then d1 P1; P2ð Þ � x1 � x3j jþð x3 � x2j jÞþ y1 � y3j jþð
y3 � y2j jÞ ¼ d1 P1; P3ð Þ þ d1 P3; P2ð Þ. Thus d1 satisfies the Triangle Inequality.

2. Since f xð Þ � g xð Þj j � f xð Þ � h xð Þj j þ h xð Þ � g xð Þj j � d1 f ; hð Þ þ d1 h; gð Þ for all x 2 0; 1½ �,
it follows that d1 f ; gð Þ � d1 f ; hð Þ þ d1 h; gð Þ and d1 satisfies the Triangle Inequality.

3. We have s 6¼ t if and only if d s; tð Þ ¼ 1. If s 6¼ t, the value of d s; uð Þ þ d u; tð Þ is either 1 or 2

depending on whether u equals s or t, or neither.

4. Since d1 Pn;Pð Þ ¼ sup xn � xj j; yn � yj jf g, if d1 Pn;Pð Þ ! 0 then it follows that both

xn � xj j ! 0 and yn � yj j ! 0, whence xn ! x and yn ! y. Conversely, if xn ! x and

yn ! y, then xn � xj j ! 0 and yn � yj j ! 0, whence d1 Pn;Pð Þ ! 0.

6. If a sequence xnð Þ in S converges to x relative to the discrete metric d, then d xn; xð Þ ! 0, which

implies that xn ¼ x for all sufficiently large n. The converse is trivial.

7. Show that a set consisting of a single point is open. Then it follows that every set is an open set,

so that every set is also a closed set. (Why?)

10. Let G � S2 be open in S2; d2ð Þ and let x 2 f�1 Gð Þ so that f xð Þ 2 G. Then there exists an

e-neighborhood V e f xð Þð Þ � G. Since f is continuous at x, there exists a d-neighborhood Vd(x)

such that f (Vd(x))�Ve( f(x)). Since x 2 f�1 Gð Þ is arbitrary, we conclude that f�1 Gð Þ is open in
S1; d1ð Þ. The proof of the converse is similar.

11. Let G ¼ Gaf g be a cover of f Sð Þ � R by open sets in R . It follows from 11.4.11 that each set

f�1 Gað Þ is open in S; dð Þ. Therefore, the collection f�1 Gað Þ� �
is an open cover of S. Since

S; dð Þ is compact, a finite subcollection f�1 Ga1ð Þ; . . . ; f�1 GaNð Þ� �
covers S, whence it follows

that the sets Ga1 ; . . . ;GaNf g must form a finite subcover of G for f (S). Since G was an arbitrary

open cover of f (S), we conclude that f (S) is compact.
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INDEX

A

Abel’s Lemma, 279

Test, 279, 315

Absolute:

convergence, 267 ff.

maximum, 135

minimum, 135

value, 32

Absurdum, see Reductio, 356

Additive function, 116, 134, 156

Additivity Theorem, 213, 294

Algebraic properties of R , 23 ff.

Almost everywhere, 221

Alternating series, 98, 278 ff.

And/or, 2, 349

Antiderivative, 216

Antipodal points, 140

Approximate integration, 233 ff.,

364 ff.

Approximation theorems, 145 ff.

Archimedean Property, 42

Arithmetic Mean, 29, 260

Axiom, 348

B

Base, 13, 259

Basepoint, 218, 224

Bernoulli, Johann, 180

Bernoulli’s Inequality, 30, 177

Bessel functions, 176

Biconditional, 351

Bijection, 8

Binary representation, 49 ff.

Binomial expansion, 287

Bisection method, 137

Bolzano, Bernhard, 124

Bolzano Intermediate Value Theorem,

138

Bolzano-Weierstrass Theorem:

for infinite sets, 337

for sequences, 81, 322

Bound:

lower, 37

upper, 37

Boundary point, 332

Bounded Convergence Theorem, 251

function, 41, 111, 134, 151

sequence, 63

set, 37

Boundedness Theorem, 135

Bridge, 13

C

Canis lupus, 174

Cantor, Georg, 21, 52

set F, 331

Theorem of, 21, 49, 52

Carath�eodory’s Theorem, 165

Cartesian Product, 4

Cauchy, A.-L., 54

Condensation Test, 101

Convergence Criterion, 246, 282

Inequality, 225

Mean Value Theorem, 182

Root Test, 271

sequence, 85, 344

Cauchy-Hadamard Theorem, 283

Chain Rule, 166

Change of Variable Theorem, 220, 224,

297

Chartier-Dirichlet Test, 315

Closed interval, 46

set, 327, 345

Closed Set Properties, 328

Closure of a set, 333

Cluster point, 125, 329

Compact set, 334 ff.

Compactness, Preservation of, 339,

346

Comparison Tests, 98 ff., 304

Complement of a set, 3

Complete metric space, 334
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Completeness Property of R , 36 ff.

esp. 39

Theorem, 307

Composition of functions, 9, 133

Composition Theorem, 222

Conclusion, 350

Conditional, 350

Conditional convergence, 267

Conjunction, 349

Consistency Theorem, 291

Continuity, 125 ff., 345

absolute, 149

global, 324, 346

uniform, 142

Continuous Extension Theorem,

145

function, 125 ff., 337 ff.

Inverse Theorem, 156, 340

Contractive sequence, 88

Contradiction, 349

proof by, 356

Contrapositive, 351

proof by, 355

Convergence:

absolute, 267

of integrals, 315 ff.

interval of, 283

in a metric space, 343

pointwise, 241

radius of, 283

of a sequence, 56

of a sequence of functions,

281

of a series, 94

of a series of functions, 281

uniform, 281

Converse, 351

Convex function, 192 ff.

Cosine function, 263

Countability:

of N � N , 18, 358

of Q , 19

of Z, 18

Countable:

additivity, 325

set, 17 ff.

Counter-example, 353

Cover, 333

Curve, space-filling, 368

Cyclops, 76

D

D’Alembert’s Ratio Test, 272

Darboux, Gaston, 225

Darboux Intermediate Value Theorem,

178

Integral, 228 ff.

Decimal representation, 51

periodic, 51

Decreasing function, 153, 174

sequence, 71

DeMorgan’s Laws, 3, 350

Density Theorem, 44

Denumerable set (see also countable set),

17

Derivative, 162 ff.

higher order, 188

second, 188

Descartes, Ren�e, 161
Difference:

symmetric, 11

of two functions, 111

of two sequences, 61

Differentiable function, 162

uniformly, 180

Differentiation Theorem, 285

Dini, Ulisse, 252

Dini’s Theorem, 252

Direct image, 6

proof, 354

Dirichlet discontinuous function, 127, 207,

209, 221, 291, 321

integral, 311, 320

test, 279

Discontinuity Criterion, 126

Discrete metric, 343

Disjoint sets, 3

Disjunction, 349

Distance, 34, 306

Divergence:

of a function, 105, 108

of a sequence, 56, 80, 91 ff.

Division, in R , 25

Domain of a function, 5

Dominated Convergence Theorem, 318

Double implication, 351

negation, 349

E

Element, of a set, 1

Elliptic integral, 287
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Empty set ;, 3
Endpoints of intervals, 46

Equi-integrability, 316

Equivalence, logical, 349

Euler, Leonhard, 76

Euler’s constant, 276

number e, 75, 255

Even function, 171, 216

number, 2

Excluded middle, 349

Existential quantifier 9, 352
Exponential function, 253 ff.

Exponents, 25

Extension of a function, 144 ff.

Extremum, absolute, 135

relative, 172, 175, 191

F

F (¼ Cantor set), 331

Falsity, 349

Fermat, Pierre de, 161, 198

Fibonacci sequence, 56, 89

Field, 24

d-Fine partition, 149, 289

Finite set, 16 ff.

First Derivative Test, 175

Fluxions, 161

Fresnel Integral, 314

Function(s), 5

additive, 116, 134, 156

Bessel, 173

bijective, 8

bounded, 41, 111, 134

composition of, 9, 133

continuous, 125 ff., 337 ff.

convex, 192 ff.

decreasing, 153, 174

derivative of, 162

difference of, 111

differentiable, 162

direct image of, 6

Dirichlet, 127, 207, 209, 221, 279, 291,

321

discontinuous, 125

domain of, 5

even, 171, 216

exponential, 255 ff.

gauge, 149

graph of, 5

greatest integer, 129

hyperbolic, 266

image of, 5

increasing, 153, 174

injective, 7

integrable, 201, 290

inverse, 7, 156, 168

inverse cosine, 10

inverse image of, 7

inverse sine, 10

jump of, 155

limit of, 104 ff.

Lipschitz, 143

logarithm, 257 ff.

measurable, 320

metric, 342

monotone, 153

multiple of, 111

nondifferentiable, 163, 367

nth root, 157

odd, 171, 216

one-one, 7

onto, 7

oscillation, 361

periodic, 148

piecewise linear, 147

polynomial, 113, 131, 148

power, 159, 258

product of, 111

quotient of, 111

range of, 5

rational, 131

rational power, 159

restriction of, 10

sequence of, 241 ff.

series of, 281 ff.

signum, 109, 127

square root, 10, 43

step, 145, 210

sum of, 111

surjective, 7

Thomae’s, 128, 206, 222

Translate, 207

trigonometric, 131, 260 ff.

values of, 5

Fundamental Theorems of Calculus,

216 ff., 295, 297

G

Gallus gallus, 349

Gauge, 149 ff., 252, 289 ff.
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Generalized Riemann integral, 290 ff.

Geometric Mean, 29, 260

series, 95

Global Continuity Theorem, 338, 346

Graph, 5

Greatest integer function, 129, 224

lower bound (= infimum), 37

H

Hadamard-Cauchy Theorem, 283

Hake’s Theorem, 302, 309

Half-closed interval, 46

Half-open interval, 46

Harmonic series, 88, 96, 267

Heine-Borel Theorem, 335

Henstock, Ralph, 289

Higher order derivatives, 188

Horizontal Line Tests, 8

Hyperbolic functions, 266

Hypergeometric series, 277

Hypothesis, 350

induction, 13

I

Image, 6

Implication, 350

Improper integrals, 272, 302 ff.

Increasing function, 153, 174

sequence, 71

Indefinite integral, 218

Indeterminate forms, 181

Indirect proofs, 355

Induction, Mathematical, 12 ff.

Inequality:

Arithmetic-Geometric, 29

Bernoulli, 30, 177

Schwarz, 225

Triangle, 32, 342

Infimum, 37

Infinite limits, 119

series, 94 ff., 267 ff.

set, 16 ff.

Injection, 7

Injective function, 7

Integers, 2

Integral:

Darboux, 228 ff.

Dirichlet, 311, 320

elliptic, 287

Fresnel, 314

generalized Riemann, 290 ff.

improper, 272, 302 ff.

indefinite, 218

Lebesgue, 289, 304, 362

lower, 227

Riemann, 201 ff.

Test, for series, 273

upper, 227

Integration by parts, 222, 299

Interchange Theorems:

relating to continuity, 248

relating to differentiation, 249

relating to integration, 250, 315 ff.

relating to sequences, 247 ff.

relating to series, 282

Interior Extremum Theorem, 172

of a set, 332

point, 332

Intermediate Value Theorems:

Bolzano’s, 138

Darboux’s, 178

Intersection of sets, 3

Interval(s), 46 ff.

characterization of, 47

of convergence, 283

length of, 46

nested, 47 ff.

partition of, 149, 199

Preservation of, 139

Inverse function, 8, 156, 169

image, 7

Irrational number, 25

Iterated sums, 270

suprema, 46

J
Jump, of a function, 155

K

K(e)-game, 58

Kuala Lumpur, 349

Kurzweil, Jaroslav, 289

L
Lagrange, J.-L., 188

form of remainder, 190

Least upper bound (= supremum), 37

Lebesgue, Henri, 198, 220, 288, 362

Dominated Convergence Theorem,

318
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Integrability Theorem, 221, 362

integral, 198, 289, 304

measure, 325

Leibniz, Gottfried, 103, 161, 198

Alternating Series Test, 278

Rule, 196

Lemma, 355

Length, of an interval, 46

L’Hospital, G. F., 180

Rules, 182 ff.

Limit:

Comparison Test, 99, 271

of a function, 104 ff.

inferior, 82 ff.

infinite, 120

one-sided, 117

of a sequence, 56

of a series, 94

superior, 83 ff., 283

Line tests, 8

Lipschitz condition, 143

Location of Roots Theorem, 137

Logarithm, 257 ff.

Logical equivalence, 349

Lower bound, 37

Integral, 227

Sum, 226

M

M (¼ collection of measurable sets), 325

M-Test, of Weierstrass, 282

Mapping, see Function

Mathematical Induction, 12 ff.

Maximum, absolute, 135

relative, 172

Maximum-Minimum Theorem, 136,

152, 339

Mean Value Theorem:

Cauchy form, 182

for derivatives, 173 ff.

for integrals, 215, 301

Measurability Theorem, 322

Measurable function, 320

set, 325

Measure, Lebesgue, 320

zero, see Null set

Meat grinder, 6

Member of a set, 1

Mesh (= norm) of a partition, 200

Metric function, 342

space, 341 ff.

Middle, excluded, 349

Midpoint Rule, 237

Minimum, absolute, 135

relative, 172

Monotone Convergence Theorem,

71, 317

function, 153

sequence, 71

Subsequence Theorem, 80

Multiple of a sequence, 63

Multiplication Theorem, 299

N

N (= collection of natural numbers),

2

Natural numbers, 2

Negation, 349

Negative numbers, 26

Neighborhood, 35, 326, 343

Nested Intervals Property, 48, 85

Newton, Isaac, 102, 161, 198

Newton-Leibniz Formula, 288

Newton’s Method, 193 ff.

Nondifferentiable functions, 163,

367

Norm of a function, 244

of a partition, 200

Null set, 220

Number(s):

even, 2, 26

irrational, 25

natural, 2

odd, 2, 26

rational, 25

real, 2, 23 ff.

O

Odd function, 171, 216

number, 2, 26

One-one function, 7

One-sided limit, 117

Onto, 7

Open cover, 333

interval, 46

set, 327, 345

Set Properties, 327, 345

Order Properties of R , 26 ff.

Ordered pair, 4

Oscillation, 361

INDEX 399



BINDEX 12/10/2010 11:57:26 Page 400

P

P (¼ positive class), 26

Partial sum, 94, 281

summation formula, 278

Partition, 149, 199

d-fine, 149, 289

mesh of, 200

norm of, 200

tagged, 149, 200

Peak, 80

Periodic decimal, 51

function, 148

Piecewise linear function, 147

Pigeonhole Principle, 357

Point:

boundary, 332

cluster, 125, 329

interior, 332

Pointwise convergence, 241

Polynomial:

functions, 131

Taylor, 189

Positive class P, 26

Power, of a real number, 159,

258

functions, 258

series, 282 ff.

Preservation:

of Compactness, 339, 346

of Intervals, 139

Primitive of a function, 216

Principle of Mathematical Induction,

12 ff.

Product:

Cartesian, 4

of functions, 111

of sequences, 63

of sets, 4

Rule, 164

Theorem, 222

Proof:

by contradiction, 356

by contrapositive, 355

direct, 354

indirect, 355

Proper subset, 2

Properly divergent sequence,

92 ff.

Property, 2

p-series, 97, 98

Q

Q (¼ collection of rational numbers), 2

Q.E.D., 355

Quantifiers, 352

Quod erat demonstratum, 355

Quotient:

of functions, 111

of sequences, 63

Rule, 164

R

R(= collection of real numbers), 2, 23 ff.

Raabe’s Test, 274

Radius of convergence, 283

Range, of a function, 5

Rational numbers Q , 2, 25, 51

function, 131

power, 159

Ratio Test, 69, 272

Real numbers R , 2, 23 ff.

power of, 159, 258

Rearrangement Theorem, 269

Reciprocal, 24

Reductio ad absurdum, 356

Remainder in Taylor’s Theorem:

integral form, 223, 299

Lagrange form, 190

Repeating decimals, 51

Restriction, of a function, 10

Riemann, Bernhard, 198, 288

Integrability Criterion, 360

integral, 201 ff.

sum, 200

Riesz-Fischer Theorem, 307

Rolle’s Theorem, 172

Root(s):

existence of, 43, 157 ff.

functions, 10, 43

Location of, 137

Newton’s Method, 193 ff.

Test, 271

S

Schoenberg, I. J., 368

Schwarz inequality, 225

Second Derivative Test, 191

Semimetric, 346

Seminorm, 306

Sequence(s), 55 ff.

bounded, 63

400 INDEX



BINDEX 12/10/2010 11:57:27 Page 401

Cauchy, 85, 344

constant, 55

contractive, 88

convergent, 56

difference of, 63

divergent, 56

Fibonacci, 56, 89

of functions, 241 ff.

inductive, 55

limit of, 56

monotone, 70 ff.

multiple of, 63

product of, 63

properly divergent, 92

quotient of, 63

recursive, 55

shuffled, 80

subsequence of, 78

sum of, 63

tail of, 59

term of, 55

unbounded, 63

uniform convergence of, 243

Series, 94 ff., 267 ff.

absolutely convergent, 267

alternating, 278

alternating harmonic, 98, 267

conditionally convergent,

267

convergent, 94

of functions, 281 ff.

geometric, 95

grouping of, 268

harmonic, 88, 96, 267

hypergeometric, 277

power, 282 ff.

p-series, 97, 98

rearrangements of, 269

sixless, 277

Taylor, 285 ff.

2-series, 97

uniformly convergent, 281 ff.

Set(s):

boundary point of, 332

bounded, 37, 347

Cantor F, 330

Cartesian product of, 4

closed, 327, 345

closure of, 333

cluster point of, 125, 329

compact, 334

complement of, 3

contains/contained in, 1

countable, 17, 357 ff.

denumerable, 17

disjoint, 3

empty, 3, 16

equality of, 2

finite, 16 ff., 357 ff.

inclusion of, 1

infimum of, 37

infinite, 16 ff.

interior of, 332

interior point of, 332

intersection of, 3

intervals, 46 ff.

measurable, 325

null, 220

open, 327, 345

relative complement of, 3

supremum of, 37

symmetric difference, 11

unbounded, 37

uncountable, 17

union of, 3

void, see Empty set

Shuffled sequence, 80

Signum function, 109, 127

Simpson’s Rule, 238, 365

Sine function, 263

Sixless series, 277

Space-filling curve, 368

Square root of 2:

calculation of, 75

existence of, 41

irrationality of, 26

Square root function, 10, 43

Squaring function, 10

Squeeze Theorem, 66, 114, 209,

294

Statement, 348

Step function, 145 ff., 210

Straddle Lemma, 171

Strong Induction, 15

Subcover, 333

Subsequence, 78

Subset, 1

Substitution Theorems, 220, 224,

297

Subtraction in R , 25
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Sum:

iterated, 270

lower, 226

of functions, 111

partial, 94, 281

Riemann, 200

of sequences, 63

of a series, 94

upper, 226

Supremum, 37

iterated, 46

Property, 39

Surjection, 7

Surjective function, 7

Syllogism, Law of, 354

Symmetric difference, 11

T

Tagged partition, 149, 200

Tail, of a sequence, 59

Tautology, 349

Taylor, Brook, 188

polynomial, 189

series, 285 ff.

Taylor’s Theorem, 189, 223, 299

Terminating decimal, 51

Test:

first derivative, 175

for absolute convergence, 270 ff.

for convergence of series, 96 ff., 257 ff.

nth derivative, 191

nth Term, 96

Thomae’s function, 128, 206

Translate, 207

Trapezoidal Rule, 235 ff., 364

Triangle Inequality, 32

Trichotomy Property, 26

Trigonometric functions, 260 ff.

U

Ultimately, 59

Uncountable, 17

Uncountability of R , 49, 52

Uniform continuity, 142 ff., 152

Uniform convergence:

of a sequence, 246 ff., 316

of a series, 281 ff.

Uniform differentiability, 180

Uniform norm, 244

Union of sets, 3

Uniqueness Theorem:

for finite sets, 16, 357

for integrals, 201, 290

for power series, 285

Universal quantifier 8, 352
Upper bound, 37

integral, 227

sum, 226

V

Value, of a function, 5

van der Waerden, B. L., 367

Vertical Line Test, 5

Void set, see Empty set

W

Well-ordering Property of N , 12

Weierstrass, Karl, 102, 124, 163

Approximation Theorem, 148

M-Test, 282, 367

nondifferentiable function, 163,

367

Z

Z (= collection of integers), 2

Zero element, 24

Zero measure, see Null set

402 INDEX


	Cover
	Title Page
	Copyright
	Contents
	Preface
	CHAPTER 1 PRELIMINARIES
	1.1 Sets and Functions
	1.1.1 Definition
	1.1.2 Examples
	1.1.3 Definition
	1.1.4 Theorem
	1.1.5 Definition
	1.1.6 Definition
	1.1.7 Definition
	1.1.8 Examples
	1.1.9 Definition
	1.1.11 Definition
	1.1.12 Definition
	1.1.13 Examples
	1.1.14 Theorem
	Exercises for Section 1.1

	1.2 Mathematical Induction
	1.2.1 Well-Ordering Property of N
	1.2.2 Principle of Mathematical Induction
	1.2.3 Principle of Mathematical Induction (second version)
	1.2.4 Examples
	1.2.5 Principle of Strong Induction
	Exercises for Section 1.2

	1.3 Finite and Infinite Sets
	1.3.1 Definition
	1.3.2 Uniqueness Theorem
	1.3.3 Theorem
	1.3.4 Theorem
	1.3.5 Theorem
	1.3.6 Definition
	1.3.7 Examples
	1.3.8 Theorem
	1.3.9 Theorem
	1.3.10 Theorem
	1.3.11 Theorem
	1.3.12 Theorem
	1.3.13 Cantor's Theorem
	Exercises for Section 1.3


	CHAPTER 2 THE REAL NUMBERS
	2.1 The Algebraic and Order Properties of R
	2.1.1 Algebraic Properties of R
	2.1.2 Theorem
	2.1.3 Theorem
	2.1.4 Theorem
	2.1.5 The Order Properties of R
	2.1.6 Definition
	2.1.7 Theorem
	2.1.8 Theorem
	2.1.9 Theorem
	2.1.10 Theorem
	2.1.11 Corollary
	2.1.12 Examples
	2.1.13 Examples
	Exercises for Section 2.1

	2.2 Absolute Value and the Real Line
	2.2.1 Definition The absolute value
	2.2.2 Theorem
	2.2.3 Triangle Inequality
	2.2.4 Corollary
	2.2.5 Corollary
	2.2.6 Examples
	2.2.7 Definition
	2.2.8 Theorem
	2.2.9 Examples
	Exercises for Section 2.2

	2.3 The Completeness Property of R
	2.3.1 Definition
	2.3.2 Definition
	2.3.3 Lemma
	2.3.4 Lemma
	2.3.5 Examples
	2.3.6 The Completeness Property of R
	Exercises for Section 2.3

	2.4 Applications of the Supremum Property
	2.4.1 Examples
	2.4.2 Examples
	2.4.3 Archimedean Property
	2.4.4 Corollary
	2.4.5 Corollary
	2.4.6 Corollary
	2.4.7 Theorem
	2.4.8 The Density Theorem
	2.4.9 Corollary
	Exercises for Section 2.4

	2.5 Intervals
	2.5.1 Characterization Theorem
	2.5.2 Nested Intervals Property
	2.5.3 Theorem
	2.5.4 Theorem
	2.5.5 Theorem
	Exercises for Section 2.5


	CHAPTER 3 SEQUENCES AND SERIES
	3.1 Sequences and Their Limits
	3.1.1 Definition
	3.1.2 Examples
	3.1.3 Definition
	3.1.4 Uniqueness of Limits
	3.1.5 Theorem
	3.1.6 Examples
	3.1.7 Example
	3.1.8 Definition
	3.1.9 Theorem
	3.1.10 Theorem
	3.1.11 Examples
	Exercises for Section 3.1

	3.2 Limit Theorems
	3.2.1 Definition
	3.2.2 Theorem
	3.2.3 Theorem
	3.2.4 Theorem
	3.2.5 Theorem
	3.2.6 Theorem
	3.2.7 Squeeze Theorem
	3.2.8 Examples
	3.2.9 Theorem
	3.2.10 Theorem
	3.2.11 Theorem
	Exercises for Section 3.2

	3.3 Monotone Sequences
	3.3.1 Definition
	3.3.2 Monotone Convergence Theorem
	3.3.3 Examples
	3.3.4 Examples
	3.3.5 Example
	3.3.6 Example
	Exercises for Section 3.3

	3.4 Subsequences and the Bolzano-Weierstrass Theorem
	3.4.1 Definition
	3.4.2 Theorem
	3.4.3 Examples
	3.4.4 Theorem
	3.4.5 Divergence Criteria
	3.4.6 Examples
	3.4.7 Monotone Subsequence Theorem
	3.4.8 The Bolzano-Weierstrass Theorem
	3.4.9 Theorem
	3.4.10 Definition
	3.4.11 Theorem
	3.4.12 Theorem
	Exercises for Section 3.4

	3.5 The Cauchy Criterion
	3.5.1 Definition
	3.5.2 Examples
	3.5.3 Lemma
	3.5.4 Lemma
	3.5.5 Cauchy Convergence Criterion
	3.5.6 Examples
	3.5.7 Definition
	3.5.8 Theorem
	3.5.9 Example
	3.5.10 Corollary
	3.5.11 Example
	Exercises for Section 3.5

	3.6 Properly Divergent Sequences
	3.6.1 Definition
	3.6.2 Examples
	3.6.3 Theorem
	3.6.4 Theorem
	3.6.5 Theorem
	Exercises for Section 3.6

	3.7 Introduction to Infinite Series
	3.7.1 Definition
	3.7.2 Examples
	3.7.3 The nth Term Test
	3.7.4 Cauchy Criterion for Series
	3.7.5 Theorem
	3.7.6 Examples
	3.7.7 Comparison Test
	3.7.8 Limit Comparison Test
	3.7.9 Examples
	Exercises for Section 3.7


	CHAPTER 4 LIMITS
	4.1 Limits of Functions
	4.1.1 Definition
	4.1.2 Theorem
	4.1.3 Examples
	4.1.4 Definition
	4.1.5 Theorem
	4.1.6 Theorem
	4.1.7 Examples
	4.1.8 Theorem
	4.1.9 Divergence Criteria
	4.1.10 Examples
	Exercises for Section 4.1

	4.2 Limit Theorems
	4.2.1 Definition
	4.2.2 Theorem
	4.2.3 Definition
	4.2.4 Theorem
	4.2.5 Examples
	4.2.6 Theorem
	4.2.7 Squeeze Theorem
	4.2.8 Examples
	4.2.9 Theorem
	Exercises for Section 4.2

	4.3 Some Extensions of the Limit Concept
	4.3.1 Definition
	4.3.2 Theorem
	4.3.3 Theorem
	4.3.4 Examples
	4.3.5 Definition
	4.3.6 Examples
	4.3.7 Theorem
	4.3.8 Definition
	4.3.9 Examples
	4.3.10 Definition
	4.3.11 Theorem
	4.3.12 Examples
	4.3.13 Definition
	4.3.14 Theorem
	4.3.15 Theorem
	4.3.16 Examples
	Exercises for Section 4.3


	CHAPTER 5 CONTINUOUS FUNCTIONS
	5.1 Continuous Functions
	5.1.1 Definition
	5.1.2 Theorem
	5.1.3 Sequential Criterion for Continuity
	5.1.4 Discontinuity Criterion
	5.1.5 Definition
	5.1.6 Examples
	5.1.7 Remarks
	5.1.8 Examples
	Exercises for Section 5.1

	5.2 Combinations of Continuous Functions
	5.2.1 Theorem
	5.2.2 Theorem
	5.2.3 Examples
	5.2.4 Theorem
	5.2.5 Theorem
	5.2.6 Theorem
	5.2.7 Theorem
	5.2.8 Examples
	Exercises for Section 5.2

	5.3 Continuous Functions on Intervals
	5.3.1 Definition
	5.3.2 Boundedness Theorem
	5.3.3 Definition
	5.3.4 Maximum-Minimum Theorem
	5.3.5 Location of Roots Theorem
	5.3.6 Example
	5.3.7 Bolzano's Intermediate Value Theorem
	5.3.8 Corollary
	5.3.9 Theorem
	5.3.10 Preservation of Intervals Theorem
	Exercises for Section 5.3

	5.4 Uniform Continuity
	5.4.1 Definition
	5.4.2 Nonuniform Continuity Criteria
	5.4.3 Uniform Continuity Theorem
	5.4.4 Definition
	5.4.5 Theorem
	5.4.6 Examples
	5.4.7 Theorem
	5.4.8 Continuous Extension Theorem
	5.4.9 Definition
	5.4.10 Theorem
	5.4.11 Corollary
	5.4.12 Definition
	5.4.13 Theorem
	5.4.14 Weierstrass Approximation Theorem
	Exercises for Section 5.4

	5.5 Continuity and Gauges
	5.5.1 Definition
	5.5.2 Definition
	5.5.3 Lemma
	5.5.4 Examples
	5.5.5 Theorem
	Exercises for Section 5.5

	5.6 Monotone and Inverse Functions
	5.6.1 Theorem
	5.6.2 Corollary
	5.6.3 Theorem
	5.6.4 Theorem
	5.6.5 Continuous Inverse Theorem
	5.6.6 Definition
	5.6.7 Theorem
	Exercises for Section 5.6


	CHAPTER 6 DIFFERENTIATION
	6.1 The Derivative
	6.1.1 Definition
	6.1.2 Theorem
	6.1.3 Theorem
	6.1.4 Corollary
	6.1.5 Carathéodory's Theorem
	6.1.6 Chain Rule
	6.1.7 Examples
	6.1.8 Theorem
	6.1.9 Theorem
	6.1.10 Examples
	Exercises for Section 6.1

	6.2 The Mean Value Theorem
	6.2.1 Interior Extremum Theorem
	6.2.2 Corollary
	6.2.3 Rolle's Theorem
	6.2.4 Mean Value Theorem
	6.2.5 Theorem
	6.2.6 Corollary
	6.2.7 Theorem
	6.2.8 First Derivative Test for Extrema
	6.2.9 Examples
	6.2.10 Examples
	6.2.11 Lemma
	6.2.12 Darboux's Theorem
	6.2.13 Example
	Exercises for Section 6.2

	6.3 L'Hospital's Rules
	6.3.1 Theorem
	6.3.2 Cauchy Mean Value Theorem
	6.3.3 L'Hospital's Rule, I
	6.3.4 Examples
	6.3.5 L'Hospital's Rule, II
	6.3.6 Examples
	6.3.7 Examples
	Exercises for Section 6.3

	6.4 Taylor's Theorem
	6.4.1 Taylor's Theorem
	6.4.2 Examples
	6.4.3 Examples
	6.4.4 Theorem
	6.4.5 Definition
	6.4.6 Theorem
	6.4.7 Newton's Method
	6.4.8 Example
	Exercises for Section 6.4


	CHAPTER 7 THE RIEMANN INTEGRAL
	7.1 Riemann Integral
	7.1.1 Definition
	7.1.2 Theorem
	7.1.3 Theorem
	7.1.4 Examples
	7.1.5 Theorem
	7.1.6 Theorem
	7.1.7 Example
	Exercises for Section 7.1

	7.2 Riemann Integrable Functions
	7.2.1 Cauchy Criterion
	7.2.2 Examples
	7.2.3 Squeeze Theorem
	7.2.4 Lemma
	7.2.5 Theorem
	7.2.6 Examples
	7.2.7 Theorem
	7.2.8 Theorem
	7.2.9 Additivity Theorem
	7.2.10 Corollary
	7.2.11 Corollary
	7.2.12 Definition
	7.2.13 Theorem
	Exercises for Section 7.2

	7.3 The Fundamental Theorem
	7.3.1 Fundamental Theorem of Calculus (First Form)
	7.3.2 Examples
	7.3.3 Definition
	7.3.4 Theorem
	7.3.5 Fundamental Theorem of Calculus (Second Form)
	7.3.6 Theorem
	7.3.7 Examples
	7.3.8 Substitution Theorem
	7.3.9 Examples
	7.3.10 Definition
	7.3.11 Example
	7.3.12 Lebesgue's Integrability Criterion
	7.3.13 Examples
	7.3.14 Composition Theorem
	7.3.15 Corollary
	7.3.16 The Product Theorem
	7.3.17 Integration by Parts
	7.3.18 Taylor's Theorem with the Remainder
	Exercises for Section 7.3

	7.4 The Darboux Integral
	7.4.1 Lemma
	7.4.2 Lemma
	7.4.3 Lemma
	7.4.4 Definition
	7.4.5 Theorem
	7.4.6 Definition
	7.4.7 Examples
	7.4.8 Integrability Criterion
	7.4.9 Corollary
	7.4.10 Theorem
	7.4.11 Equivalence Theorem
	Exercises for Section 7.4

	7.5 Approximate Integration
	7.5.1 Theorem
	7.5.2 Example
	7.5.3 Theorem
	7.5.4 Corollary
	7.5.5 Example
	7.5.6 Theorem
	7.5.7 Corollary
	7.5.8 Theorem
	7.5.9 Corollary
	7.5.10 Example
	Exercises for Section 7.5


	CHAPTER 8 SEQUENCES OF FUNCTIONS
	8.1 Pointwise and Uniform Convergence
	8.1.1 Definition
	8.1.2 Examples
	8.1.3 Lemma
	8.1.4 Definition
	8.1.5 Lemma
	8.1.6 Examples
	8.1.7 Definition
	8.1.8 Lemma
	8.1.9 Examples
	8.1.10 Cauchy Criterion for Uniform Convergence
	Exercises for Section 8.1

	8.2 Interchange of Limits
	8.2.1 Examples
	8.2.2 Theorem
	8.2.3 Theorem
	8.2.4 Theorem
	8.2.5 Bounded Convergence Theorem
	8.2.6 Dini's Theorem
	Exercises for Section 8.2

	8.3 The Exponential and Logarithmic Functions
	8.3.1 Theorem
	8.3.2 Corollary
	8.3.3 Corollary
	8.3.4 Theorem
	8.3.5 Definition
	8.3.6 Theorem
	8.3.7 Theorem
	8.3.8 Definition
	8.3.9 Theorem
	8.3.10 Definition
	8.3.11 Theorem
	8.3.12 Theorem
	8.3.13 Theorem
	8.3.14 Definition
	Exercises for Section 8.3

	Section 8.4 The Trigonometric Functions
	8.4.1 Theorem
	8.4.2 Corollary
	8.4.3 Corollary
	8.4.4 Theorem
	8.4.5 Definition
	8.4.6 Theorem
	8.4.7 Theorem
	8.4.8 Theorem
	8.4.9 Lemma
	8.4.10 Definition
	8.4.11 Theorem
	Exercises for Section 8.4


	CHAPTER 9 INFINITE SERIES
	9.1 Absolute Convergence
	9.1.1 Definition
	9.1.2 Theorem
	9.1.3 Theorem
	9.1.4 Definition
	9.1.5 Rearrangement Theorem
	Exercises for Section 9.1

	9.2 Tests for Absolute Convergence
	9.2.1 Limit Comparison Test, II
	9.2.2 Root Test
	9.2.3 Corollary
	9.2.4 Ratio Test
	9.2.5 Corollary
	9.2.6 Integral Test
	9.2.7 Examples
	9.2.8 Raabe's Test
	9.2.9 Corollary
	9.2.10 Examples
	Exercises for Section 9.2

	9.3 Tests for Nonabsolute Convergence
	9.3.1 Definition
	9.3.2 Alternating Series Test
	9.3.3 Abel's Lemma
	9.3.4 Dirichlet's Test
	9.3.5 Abel's Test
	9.3.6 Examples
	Exercises for Section 9.3

	9.4 Series of Functions
	9.4.1 Definition
	9.4.2 Theorem
	9.4.3 Theorem
	9.4.4 Theorem
	9.4.5 Cauchy Criterion
	9.4.6 Weierstrass M-Test
	9.4.7 Definition
	9.4.8 Definition
	9.4.9 Cauchy-Hadamard Theorem
	9.4.10 Theorem
	9.4.11 Theorem
	9.4.12 Differentiation Theorem
	9.4.13 Uniqueness Theorem
	9.4.14 Examples
	Exercises for Section 9.4


	CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL
	10.1 Definition and Main Properties
	10.1.1 Definition
	10.1.2 Uniqueness Theorem
	10.1.3 Consistency Theorem
	10.1.4 Examples
	10.1.5 Theorem
	10.1.6 Cauchy Criterion
	10.1.7 Squeeze Theorem
	10.1.8 Additivity Theorem
	10.1.9 The Fundamental Theorem of Calculus (First Form)
	10.1.10 Examples
	10.1.11 Fundamental Theorem of Calculus (Second Form)
	10.1.12 Substitution Theorem
	10.1.13 Examples
	10.1.14 Multiplication Theorem
	10.1.15 Integration by Parts Theorem
	10.1.16 Taylor's Theorem
	Exercises for Section 10.1

	10.2 Improper and Lebesgue Integrals
	10.2.1 Hake's Theorem
	10.2.2 Example
	10.2.3 Definition
	10.2.4 Comparison Test
	10.2.5 Theorem
	10.2.6 Theorem
	10.2.7 Theorem
	10.2.8 Theorem
	10.2.9 Definition
	10.2.10 Theorem
	10.2.11 Theorem
	10.2.12 Completeness Theorem
	Exercises for Section 10.2

	10.3 Infinite Intervals
	10.3.1 Definition
	10.3.2 Hake's Theorem
	10.3.3 Examples
	10.3.4 Examples
	10.3.5 Fundamental Theorem
	10.3.6 Hake's Theorem
	10.3.7 Fundamental Theorem
	10.3.8 Examples
	Exercises for Section 10.3

	10.4 Convergence Theorems
	10.4.1 UniformConvergence Theorem
	10.4.2 Definition
	10.4.3 Equi-integrability Theorem
	10.4.4 Monotone Convergence Theorem
	10.4.5 Dominated Convergence Theorem
	10.4.6 Examples
	10.4.7 Definition
	10.4.8 Examples
	10.4.9 Theorem
	10.4.10 Theorem
	10.4.11 Measurability Theorem
	10.4.12 Integrability Theorem
	Exercises for Section 10.4


	CHAPTER 11 A GLIMPSE INTO TOPOLOGY
	11.1 Open and Closed Sets in R
	11.1.1 Definition
	11.1.2 Definition
	11.1.3 Examples
	11.1.4 Open Set Properties
	11.1.5 Closed Set Properties
	11.1.6 Examples
	11.1.7 Characterization of Closed Sets
	11.1.8 Theorem
	11.1.9 Theorem
	11.1.10 Definition
	Exercises for Section 11.1

	11.2 Compact Sets
	11.2.1 Definition
	11.2.2 Definition
	11.2.3 Examples
	11.2.4 Theorem
	11.2.5 Heine-Borel Theorem
	11.2.6 Theorem
	Exercises for Section 11.2

	11.3 Continuous Functions
	11.3.1 Lemma
	11.3.2 Global Continuity Theorem
	11.3.3 Corollary
	11.3.4 Preservation of Compactness
	11.3.5 Some Applications
	11.3.6 Theorem
	Exercises for Section 11.3

	11.4 Metric Spaces
	11.4.1 Definition
	11.4.2 Examples
	11.4.3 Definition
	11.4.4 Definition
	11.4.5 Examples
	11.4.6 Definition
	11.4.7 Definition
	11.4.8 Examples
	11.4.9 Definition
	11.4.10 Definition
	11.4.11 Global Continuity Theorem
	11.4.12 Preservation of Compactness
	11.4.13 Definition
	Exercises for Section 11.4


	APPENDIX A: LOGIC AND PROOFS
	APPENDIX B: FINITE AND COUNTABLE SETS
	APPENDIX C: THE RIEMANN AND LEBESGUE CRITERIA
	APPENDIX D: APPROXIMATE INTEGRATION
	APPENDIX E: TWO EXAMPLES
	REFERENCES
	PHOTO CREDITS
	HINTS FOR SELECTED EXERCISES
	INDEX



