الفصد الثاني العمليات المجبرية

تلخيص المحاضرة الرابعة

اللوغاريتمات:

. $x=y^n$ بالنسبة لمجهول عند المحاولة للإيجاد مجهول المحاولة المجهول المحاولة المحهول

x وهو x عدد حقیقی و هو $y \neq 1$ فأنه یوجد عدد حقیقی و هو x و کانت کل من x عدد موجب بحیث $x = y^n$ بحیث $x = y^n$ و یکتب علی العدد $x = y^n$ الصورة :

$$\log_{y}^{x} = n$$

وباختصار يمكن تسهيلها بالمعادلة التالية لتحصل ع الجواب ولفهمها ابسط:

الطريقة الأسية
$$x = y^n$$
 الطريقة الأسية $x = y^n$ الطريقة الأسية y^n الطوغارة مية اللوغارة مية المعارة مية المعارة مية المعارة مية المعارة مية المعارفة المعارفة

بشرط
$$X, y > 0$$
 $y \neq 1$

امثلة

س/ اكتب كل من المقادير التالية على الصورة الأسية ::

$$1 - \log_{y}^{1000} = 3^{n} = 1000 = 10^{3}$$

$$2 - \log_3^9 = 2 = 9 = 3^2$$

والعكس صحيح لتحويل من الطريقة الأسية الى الطريقة اللوغاريتمية:

$$\frac{1^{n}}{2} \times 1 - (81) = 9^{x}$$

$$= \log 9 = \frac{1}{2}$$

$$2 - (5)^{3} = 125$$

$$= \log 125 = 3$$

طريقة ايجاد قيمة n في المسائل اللو غاريتمية .!

الطريقة هي تحويل المعادلة اللوغاريتمية الى الطريقة الأسية.

$$log1000 = n$$

$$10$$

$$10$$

$$10^{n=?}$$

$$10 = 1000$$

$$10 = 1000$$

$$10 = 1000$$

$$10 = 1000$$
اذاً الجواب

بشكل عام يوجد اساسان لهما الأهمية الكبرى في التطبيقات المختلفة .:

- الأساس للعدد 10 ويسمى اللوغاريتم العشري وعادة في هذا اللوغاريتم لا يكتب الاساس 10 اسفل اللوغاريتم.
 - الأساس للعدد e (e) عدد ثابت مقداره 2.718) ويسمى باللوغاريتم الطبيعي ويرمز له برمز (log e (ln)

خواص اللوغاريتمات

- لو غاريتم 1 لأي اساس دائما يساوي صفر (قاعدة ثابته).
- دائما اذا تساوى اللوغاريتم مع الاساس دائما يساوي واحد (قاعدة ثابته)

قواعد لمسائل اللوغاريتمات

يجب حفضها و فهما لمعرفة حل المسائل وتطبيق بعض المسائل عليها

$$1 - \log 1 = 0$$

$$2 - \log x = 1$$

$$3 - \log x^{n} = n \log x$$

$$4 - \log (x y) = \log x + \log y$$

$$5 - \log(x/y) = \log x^{1} - \log y$$

$$6 - \log 1/x = \log x = - \log x$$

$$y$$

$$7 - \log \sqrt{x} = \log x = 1/n \log x$$

كثيرات الحدود

🚣 مثال على كثيرات الحدود ::

$$\frac{1/5}{x-2x+3x+x-1}$$
 هذا ليس كثيرات حدود لوجود عدد كسري يجب ان يكون عدد صحيح $n \ge 0$

العمليات المجبرية على المقادير المجبرية

- → تعريف: المقدار الجبري هو عبارة عن تركيبة من الرموز و الأعداد المرتبطة في ما بينها عن طريق العمليات الجبرية الأساسية (+-*/).
 - امثلة على بعض العمليات .:

$$x^{2} + 1$$

مقدار جبري مكون من حدين

$$5x^{2} - 2x + 10^{3}$$

مقدار جبري مكون من ثلاث حدود

العمليات البجبرية على المقادير البجبرية

- ♣ في حالة الجمع او الطرح: فأننا نجمع او نطرح المعاملات العددية للمتغيرات المتشابهة بعد ترتيبها اما بالطريقة الأفقية او العمودية.
 - ❖ مثال .: اوجد ناتج الطرح بين المقدارين :

$$(3x^2 - 2x - 5) - (10 - 2x^2 + 5x)$$

اولا نرتب الأعداد ثانيا نطرح او نجمع اذا كان السؤال جمع

$$3x^2 - 2x - 5$$

$$-2$$
 $-2x + 5x + 10$

$$5x - 7x - 15$$

العمليات البجبرية على المقادير البجبرية

- → في حالة الضرب: للإيجاد حاصل ضرب مقدار جبري في اخر فأننا نستخدم عملية التوزيع و قوانين الأسس مع قاعدة الإشارات ثم نجمع الحدود المتشابهة ان وجدت.
 - ♦ مثال :: اوجد ناتج ما يلي :

$$5x(-2x-10x)$$
= -10x - 50 x

$$(x-1)(x^2+2x)$$
 هنا نفس الخطوات الأول في الاول و الثاني _ والعدد الثاني في الاول و الثاني $=x^3+2x^2-x^2-2x$ $=x^3+x^2-2x$

العمليات البجبرية على المقادير البجبرية

- ♣ في حالة القسمة: لإيجاد حاصل القسمة سنستخدم (قوانين الأسس , قوانين الكسور , قاعدة الإشارات) وهناك نوعين من قسمة المقادير الجبرية هما:
- قسمة مقدار جبري مكون من حد واحد على مقدار جبري اخر مكون من حد واحد .

مثال ::

=3x

العبليات البجبرية على المقادير البجبرية

- قسمة مقدار جبري مكون من اكثر من حد على مقدار جبري مكون من حد واحد
 - ❖ مثال : اوجد ناتج ما يلي :

$$\frac{25x^{3} + 5x^{2} - 15x}{5x}$$

$$= \frac{25x}{5x} + \frac{5x}{5x} - \frac{15x}{5x}$$

$$= \frac{2}{5x} + x - 3$$

يفضل ترتيب الحدود البسط ثم توزيع المقام