الفصد الثاني العمليات المجبرية

تلخيص المحاضرة الرابعة

اللوغاريتمات:

. $x=y^n$ بالنسبة لمجهول عند المحاولة للإيجاد مجهول المحاولة للإيجاد مجهول

وهو \mathbf{x} عدد حقیقی وهو \mathbf{y} فأنه یوجد عدد حقیقی وهو \mathbf{x} فإذا كانت كل من \mathbf{x} عدد موجب بحیث \mathbf{x} عدد موجب بحیث \mathbf{x} المس \mathbf{y} ویکتب علی الصورة بحیث \mathbf{x}

$$\log_{y}^{x} = n$$

وباختصار يمكن تسهيلها بالمعادلة التالية لتحصل ع الجواب ولفهمها ابسط:

الطريقة الأسية
$$x = y^n$$
 الطريقة الأسية $x = y^n$ الطريقة الأسية y^n الطوغارة مية

امثلة

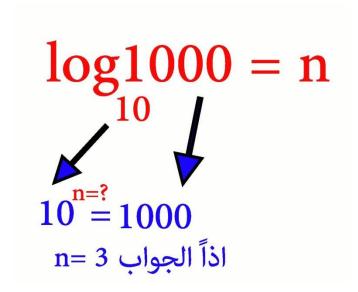
س/ اكتب كل من المقادير التالية على الصورة الأسية ::

نطبق القاعدة

$$\begin{array}{ccc}
1 - \log^{1000} & n \\
10 & & \\
y & & \\
\end{array} = 1000 = 10$$

$$2 - \log_3^9 = 2 = 9 = 3^2$$

3-
$$\log_{25} 5 = \frac{1}{2} = 25^{1/2} = 5 = \sqrt{25}$$


5=5

والعكس صحيح لتحويل من الطريقة الأسية الى الطريقة اللوغاريتمية:

$$\frac{1}{2}^{n}$$
1- (81) = 9
$$= \log 9 = \frac{1}{2}$$
2- (5)³= 125
$$= \log 125 = 3$$

$$3-(1/4)^2=1/16=\log_4 1/16=2$$
.

طريقة ايجاد قيمة n في المسائل اللوغاريتمية .! الطريقة هي تحويل المعادلة اللوغاريتمية الى الطريقة الأسية .

بشكل عام يوجد اساسان لهما الأهمية الكبرى في التطبيقات المختلفة ...

- الأساس للعدد 10 ويسمى اللوغاريتم العشري وعادة في هذا اللوغاريتم لا يكتب الاساس 10 اسفل اللوغاريتم.
 - الأساس للعدد e (e) و عدد ثابت مقداره 2.718) ويسمى باللو غاريتم الطبيعي ويرمز له برمز (log e (ln)

خواص اللونحاريتمات

- لوغاريتم 1 لأي اساس دائما يساوي صفر (قاعدة ثابته).
- دائما اذا تساوى اللوغاريتم مع الاساس دائما يساوي واحد (قاعدة ثابته)

قواعد لمسائل اللوغاريتمات

يجب حفضها و فهما لمعرفة حل المسائل وتطبيق بعض المسائل عليها

1-log 1 = 0
2-log x = 1
3-log xⁿ = n log x
4-log (xy) = log x + log y
5-log (x/y) = log x¹-log y
6-log 1/x = log x = -log x
7-log
$$\sqrt{x}$$
 = log x = 1/n log x
log₅ 1 = 0,log_e 1 = ln 1 = 0 - 1 : log₁₀ 10 = 1 - 2
log₂₅ 25 = 1
log₅ 5 × = x log₅ 5 = x . 1 = x . - 3
log₁₀ 1000 = log₁₀ 10³ = 3 log₁₀ 10 = 3x1 = 3
log₅ (125 × 10) = log₅ 125 + log₅ 10 - 4
= log₅ 5³ + log₅ (5 × 2)
= 3 log₅ 5 + log₅ 5 + log₅ 2
= 3 + 1 + log₅ 2
= 4 + log₅ 2
log 100/200 = log 100 - log 200 - 5

$$= \log 10^{2} - \log(2 \times 100)$$

$$= 2\log 10 - [\log 2 + \log 10^{2}]$$

$$= 2 - [\log 2 + 2]$$

$$= 2 - \log 2 - 2 = \log 2$$

$$\log \frac{100}{200} = \log \frac{1}{2} \qquad : 6$$

$$= \log 2^{-1}$$

$$= -\log 2$$

$$\log \frac{1}{1000} = \log(1000)^{1} \qquad -6$$

$$= -\log 10^{3} = -3\log 10$$

$$= -3 \times 1 = -3$$

$$\log \frac{1}{5} = \log_{5} 5^{-1} = -\log_{5} 5 = -1 \times 1 = -1$$

$$\log 3\sqrt[3]{27} = \log_{3}(27)\sqrt[3]{3} = 1/3\log_{3} 27 \qquad -7$$

$$= 1/3\log_{3} 3$$

$$= 1/3 \times 3\log_{3} 3$$

🚣 مثال على كثيرات الحدود ::

$$\frac{1}{5}$$
 $\frac{4}{5}$ $\frac{2}{5}$ $\frac{2$

العمليات المجبرية على المقادير المجبرية

♣ تعريف : المقدار الجبري هو عبارة عن تركيبة من الرموز و الأعداد المرتبطة في ما بينها عن طريق العمليات الجبرية الأساسية (+ - * /).

امثلة على بعض العمليات .:

$$x^{2} + 1$$

مقدار جبري مكون من حدين

$$\frac{2}{5x}$$
 - $2x + \frac{3}{10}$

مقدار جبري مكون من ثلاث حدود

العمليات المجبرية على المقادير المجبرية

لله الجمع او الطرح: فأننا نجمع او نطرح المعاملات العددية للمتغيرات المتشابهة بعد ترتيبها اما بالطريقة الأفقية او العمودية.

♦ مثال :: اوجد ناتج الطرح بين المقدارين :

$$(3x^2 - 2x - 5) - (10 - 2x^2 + 5x)$$

اولا نرتب الأعداد ثانيا نطرح او نجمع اذا كان السؤال جمع

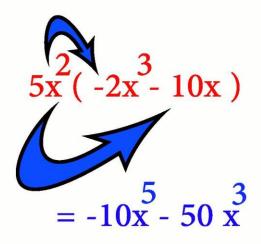
$$3x - 2x - 5$$

$$-2$$
 $-2x + 5x + 10$

$$5x^{2} - 7x - 15$$

اوجد ناتج جمع المقدارين:

$$(3x^2 - 2x - 5) + (10 - 2x^2 + 5x).$$


الحل: نعيد ترتيب المقدار الثاني ونجمع المعاملات المتشابهة:

$$3x^{2}-2x-5 \\
+ -2x^{2}+5x+10 \\
x^{2}+3x+5$$

العمليات المجبرية على المقادير المجبرية

+ في حالة الضرب: للإيجاد حاصل ضرب مقدار جبري في اخر فأننا نستخدم عملية التوزيع و قوانين الأسس مع قاعدة الإشارات ثم نجمع الحدود المتشابهة ان وجدت.

♦ مثال :: اوجد ناتج ما يلي :

$$(x-1)(x^2+2x)$$
 هنا نفس الخطوات الأول في الاول و الثاني _ والعدد الثاني في الاول و الثاني $=x^3+2x^2-x^2-2x$ $=x^3+x^2-2x$

العمليات البجبرية على المقادير البجبرية

- لله القسمة : لإيجاد حاصل القسمة سنستخدم (قوانين الأسس , قوانين الكسور , قاعدة الإشارات) وهناك نوعين من قسمة المقادير الجبرية هما :
- قسمة مقدار جبري مكون من حد واحد على مقدار جبري اخر مكون من حد واحد .

مثال ::

$$\frac{27x}{9x^2}$$

$$=3x$$

$$2 - \frac{24x^3y^2}{6x y^2} = 4x^2 y^2 y^2$$
$$= 4x^2 y^4$$

العمليات البجبرية على المقادير البجبرية

• قسمة مقدار جبري مكون من اكثر من حد على مقدار جبري مكون من حد واحد

♦ مثال :: اوجد ناتج ما يلي :

$$\frac{25x^{3} + 5x^{2} - 15x}{5x}$$

$$= \frac{25x}{5x} + \frac{5x}{5x} - \frac{15x}{5x}$$

$$= 5x + x - 3$$

يفضل ترتيب الحدود البسط ثم توزيع المقام تمارین و مسائل: اوجد ناتج مایلی:

1)
$$\log_5 \sqrt{125}$$
 2) $\log_3(\frac{1}{2})^3$.

2)
$$\log_3(\frac{1}{3})^3$$

2)
$$(x^2y - xy - 5x) - (xy - 3x^2y - 10x)$$
.

3)
$$(6 \times y) (2x^2 y - 3 \times y^2)$$
.

4)
$$\frac{-24x^2y^2-8x^3y^3}{-4x^3y^2}$$

مجهود شخصى من اخوكم / lostx7x

مراجعة وتدقيق: ... انا

بالتوفيق لكم جميعاً

ملاحظة (ارجو التنبيه إذا كان هناك خطأ)