أهم ماتم ذكره في المحاضرة المباشرة الأولى لـ مقرر مبادئ الرياضيات (١)

المحاضرة المباشرة الأولى

```
1/ عرض الدكتور لنماذج وطريقة الأسئلة للاختبارات النهائية .
```

2/ أوضح بان المعادلات بالشرائح ممكن أن تكون نفسها أو تتغير الأرقام ..

3/ سمح باستخدام الاله في الاختبارات والمنهج (أي نوع منها) ..

4/ في الشريحة (6) بالمباشرة الجواب الصحيح (د) وليس (ج)

5/ شرح شر سريع لبعض المسائل ..

المعادلات التي ذكرت بالمباشرة: -

1/ إذا كانت المجموعة $A = \{8, 15, 90, 15, 90\}$ والمجموعة $B = \{k, f, r\}$ ففي هذه الحالة فإن العلاقة بين كل من الأشكال التالية :

$$B \subset A /_{z}$$
 $A \subset B /_{\overline{z}}$ $A = B /_{\overline{i}}$

$$A \subset B$$
 فإن $A \subset B$ فإن $A \subset B$ تساوى : $A = \{4,6,9,15\}$

$$A-B$$
 فإن $A-B$ قبان $A-B=\{2,4,5,7\}$ و $A=\{4,7,9,11\}$

2- اناوي:
$$A = \{a, -2, -1, 0, 1, 2, 3\}$$
 انات المجموعة الكلية $A = \{a, -2, -1, 0, 1, 2, 3\}$ تساوي: $A = \{a, -2, -1, 0, 1, 2, 3\}$

$$\{0,1,2,3\}$$
/s $\{-3,-2,-1,0\}$ /z $\{1,2,3\}$ /أ

5/ إذا كانت المجموعة الكلية
$$B=\{\ 3\ ,\ 4\ ,\ 5\ ,\ x\ ,\ w\ \}$$
 والمجموعة الكلية $A=\{\ 1\ ,\ 2\ ,\ 3\ ,\ x\ ,\ y\ \}$

$$\{1,2,3,4,5,w,x,y\}/s$$
 $\{1,2,4,5,w,y,z\}/z$ Q/ φ $\{z\}/s$

$$B - A$$
 و $B - A$ فإن $A - B = [1.3]$ تساوي $A - B$ تساوي $A - B$

$$[3,4]/s$$
 $[-2,1)/z$ $[-2,4]/y$ $[1,3)/i$

ج انت المجموعة $S = \{2, 5, 8\}$ فإن مجموعة المجموعات تساوي:

$$P(s) = \{ \{2\}, \{5\}, \{8\} \} / i$$

$$P(s) = \{ \{2, 5\}, \{2, 8\}, \{5, 8\} \} / \downarrow$$

$$P(s)=\{\{2\},\{5\},\{8\},\{2,5\},\{2,8\},\{5,8\}\}\}$$

$$P(s)=\{\{2\},\{5\},\{8\},\{2,5\},\{2.8\},\{5,8\},\{2,5,8\},Q\}\}$$

الاقترانات

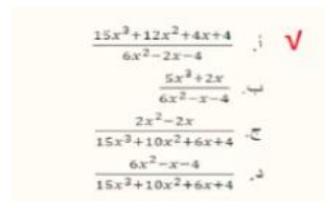
: يساوي
$$f(x) \times h(x)$$
 فإن $f(x) \times h(x) = 2x^2 + 3x$ يساوي $f(x) \times h(x) \times h(x)$

$$10x^3 - x^2 - 24x$$
 /i

$$x^5 - 3x^4 + 10x^2 - x^2 + 24x$$

$$2x^4 + 3x^3 - 10x^2 - x^2 - 24x /_{2}$$

$$2x^5 + 3x^4 + 10x^3 - x^2 - 24x / 3$$


يساوي :
$$f(x) \div h(x) \div h(x) = x^2 - 4$$
 و $f(x) = x^4 - 3x^2 + 5$ يساوي :

$$x-1 / x - \frac{x^2 + 1}{2} / x + 1 / y - x^2 - 1 / i$$

بنا كانت
$$\frac{-x2+1}{x^2-9}$$
 فإن مجال هذا الاقتران هو :

$$\mathbb{R} \setminus \{-3,3\}/2$$
 $\mathbb{R} \setminus \{-3,3\}/2$ $\mathbb{R} \setminus [-3,3]/2$ $\mathbb{R} \setminus [-3,3]/2$

: يساوي
$$f(x) + h(x)$$
 فإن $h(x) = \frac{5x^2 + 2}{2x - 2}$ و $f(x) = \frac{X}{3x + 2}$ يساوي /11

12/ إذا كانت المعادلة 243 = 3^{x+1} فإن x يساوي :

$$e^{6\sqrt[4]{e^{14}}}$$
 القدار القدار القدار القدار القدار القدار القدار القدار $e^{10\sqrt[4]{e^{10}}}$ القدار $e^{10\sqrt[4]{e}}$ القدار $e^{10\sqrt[4]{e}}$ القدار $e^{10\sqrt[4]{e}}$ القدار القدار $e^{10\sqrt[4]{e}}$ القدار القدار

: فإن $X^2 + 2x - 3 = 0$ إذا كانت المعادلة $X^2 + 2x - 3 = 0$

اً/
$$x_1 = -3, x_2 = 1$$
 د/ لا يوجد حل حقيقي للمعادلة $x_1 = -3, x_2 = 1$ المعادلة $x_1 = 3, x_2 = -1$

د/ 3

15/ إذا كان النظام التالي:

$$2x + 3y = 7$$
 (1)

$$3x + 2y = 8$$
 (2)

فإن حل النظام يساوي:

$$x = 2$$
, $y = 1$ /₅ $x = -1$, $y = -2$ /₇ $x = -2$, $y = -2$ /¹ $x = 1$, $y = 2$ /¹

يدا كانت المتباينة x^2 -5x فإن مجموعة الحل للمتباينة هي :

$$\mathsf{R}\setminus [2,3]$$
. (-\infty,2] \cap [3,\infty) /\frac{1}{2} \quad \left(-\infty,2] \cup [3,\infty] \quad \qq \quad \quad \quad \quad \quad \quad \quad \quad \qq \quad \quad \qq

بشكل عام هذا نوعية الأسئلة التي يمكن أن تطرح بالاختبار النهائي