في جدول التالي يوجد الرتب التي حصل عليها مجموعة من الطلاب في دبلومات الإحصاء والمحاسبة:.

<table>
<thead>
<tr>
<th>الطالب</th>
<th>رتب ص</th>
<th>رتب س</th>
</tr>
</thead>
<tbody>
<tr>
<td>أحمد</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>محمد</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>محمود</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>عمر</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>عبد الله</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

المطلوب:

1. قيمة معامل الارتباط بين كل من درجات الإحصاء والمحاسبة يساوي:
 - (أ) 0.8
 - (ب) 0.2
 - (ج) 0.8
 - (د) لا شيء مما سبق

ما هو اتجاه العلاقة بين الظاهرة?
 - (أ) عكسية
 - (ب) خطية
 - (ج) طردية
 - (د) لا شيء مما سبق

2. قيمة معامل التحديد بين كل من درجات الإحصاء والمحاسبة يساوي:
 - (أ) 0.04
 - (ب) 0.04
 - (ج) 0.04
 - (د) لا شيء مما سبق

في الجدول التالى يوجد رتب كل من الطلاب والتي حصل عليها ونجح في مجموعات من مجموعات برابرة (صفر) ثم نطبق معامل الارتباط لسبيerman

<table>
<thead>
<tr>
<th>d^2</th>
<th>d</th>
<th>رتب ص</th>
<th>رتب س</th>
<th>الطالب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>أحمد</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>محمد</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>محمود</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>عمر</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>عبد الله</td>
</tr>
</tbody>
</table>

$\text{طرحنا الرتب من بعضها ونحتاج (}d\text{) ثم نرجع العمود (}d^2\text{) نتج عنه العمود (}d^2\text{) ثم نطبق قانون معامل الارتباط لسبيerman}$

$$r = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

شامبو
أجب عن الفقرات 4، 5، 6 باستخدام المعلومات التالية:

لدراسة العلاقة بين درجات مجموعه من الطلاب في كل من مادتي المحاسبة (x) و الاقتصاد (y) تم تجميع عينة مكونة من 10 طلاب و المعلومات التالية توضح ملخص نتائج الدراسة:

\[
\begin{align*}
n &= 10 \\
\sum x &= 715 \\
\sum y &= 828 \\
\sum xy &= 59599 \\
\sum x^2 &= 52581 \\
\sum y^2 &= 69724
\end{align*}
\]

المطلوب:

قيمة معامل الارتباط بين كل من درجات الاقتصاد و المحاسبة يساوي:

(4) (أ) 0.77 + (ب) 0.66 + (ج) 0.80 + (د) لا شيء مما سبق

ما هو اتجاه العلاقة بين الظاهرةين:

(5) (أ) عكسية (ب) خطية (ج) طردية (د) لا شيء مما سبق

قيمة معامل التحديد بين كل من درجات الاقتصاد و المحاسبة يساوي:

(6) (أ) 69% (ب) 65% (ج) 64% (د) لا شيء مما سبق
طلب معامل الارتباط بيرسون

\[
\frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)}}
\]

بالتعويض المباشر في القانون

\[
\frac{10(59599) - (715)(828)}{\sqrt{(10(52581) - (715)^2)(10(69724) - (828)^2)}} = \frac{(3970)}{(14585)(11656)} = 0.30448
\]

جـ ٤ لاشبي مما سبق

جـ ٥ العلاقة طردية

معامل التحديد هو تربيع معامل الارتباط 0.93 = ٣٠٤٤٨(٤٨)

جـ ٦ لاشبي مما سبق

(matrix)

البيانات التالية توضح توزيع مجموعة من الطلاب تبعاً لدرجاتهم في مادة الإحصاء:

<table>
<thead>
<tr>
<th>درجات</th>
<th>فئات</th>
<th>عدد الطلاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>٧٠</td>
<td>٠٢٠</td>
<td>١٥</td>
</tr>
<tr>
<td>٦٠</td>
<td>٠٤٠</td>
<td>٢٥</td>
</tr>
<tr>
<td>٥٠</td>
<td>٠٦٠</td>
<td>٣٥</td>
</tr>
<tr>
<td>٤٠</td>
<td>٠٨٠</td>
<td>١٧٥</td>
</tr>
<tr>
<td>٣٠</td>
<td>١٠٠</td>
<td>١٠٠</td>
</tr>
</tbody>
</table>

المطلوب حساب المؤشرات التالية مقرباً النتائج إلى أقرب رقمين بعد العلامة العشرية إذا لزم الأمر ذلك:

النسبة النسبية:

(1) ٠٦٠٠ ٠٥٠٠ ٠٣٠٠ ٠١٠٠ ٠٠٠٠
(2) ٠٥٠٠ ٠٤٠٠ ٠٣٠٠ ٠٢٠٠ ٠١٠٠
(3) ٠٤٠٠ ٠٣٠٠ ٠٢٠٠ ٠١٠٠ ٠٠٠٠
(4) ٠٣٠٠ ٠٢٠٠ ٠١٠٠ ٠٠٠٠ ٠٠٠٠

جـ ٧ لا شيء مما سبق

المعادلة الحسابية:

(7) ٠٦٠٠ ٠٥٠٠ ٠٤٠٠ ٠٣٠٠ ٠٢٠٠ ٠١٠٠ ٠٠٠٠

جـ ٨ لا شيء مما سبق
لا بد من إنشاء جدول تكراري للجدول المعطى في السؤال:

<table>
<thead>
<tr>
<th>الفئة</th>
<th>عدد الطلاب</th>
<th>X</th>
<th>fx</th>
<th>fX²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>100</td>
<td>10</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>20-40</td>
<td>175</td>
<td>30</td>
<td>5250</td>
<td>157500</td>
</tr>
<tr>
<td>40-60</td>
<td>350</td>
<td>50</td>
<td>17500</td>
<td>875000</td>
</tr>
<tr>
<td>60-80</td>
<td>250</td>
<td>70</td>
<td>17500</td>
<td>1225000</td>
</tr>
<tr>
<td>80-100</td>
<td>125</td>
<td>90</td>
<td>11250</td>
<td>1012500</td>
</tr>
<tr>
<td>المجموع</td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>3280000</td>
</tr>
</tbody>
</table>

الوسط الحسابي:

\[\bar{x} = \frac{\sum fx}{\sum f} = \frac{52500}{1000} = 52.5 \]

السؤال الثامن طلب معامل الاختلاف المعياري وهنا لا بد من خطوتين قبل معامل الاختلاف المعياري وهي استخراج التباين ثم الانحراف المعياري نأتي للتتبان اولاً وقانونه كالتالي:

\[\sigma^2 = \frac{\sum fX^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2 = \frac{3280000}{1000} - \left(\frac{52500}{1000} \right)^2 = 523.75 \]

ثانياً: نأتي بالانحراف المعياري وهو جذر التباين وقانونه

\[\sqrt{\sigma^2} = \sqrt{523.75} = 22.89 \]

الآن الإجابة على السؤال المطلوب وهو معامل الاختلاف المعياري وقانونه

\[C.v = \frac{\sigma}{\bar{x}} \times 100 = \frac{22.89}{52.5} \times 100 = 43.6 \]

ليس مما سبق

المطلوب حساب المؤشرات التاليةً مقرباً النتائج إلى أقرب رقمين بعد العلامة العشرية إذا لزم الأمر ذلك:

<table>
<thead>
<tr>
<th>عدد الطلاب</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>المجموع</td>
<td>125</td>
<td>350</td>
<td>165</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
الان لابد من انشاء جدول تكراري متجمع صاعد (مهم ان نعرف الفرق بين هذا الجدول والجدول السابق)
حتى نعرف الوسيط والربيع العللى والادنى ونوع التوزيع.

<table>
<thead>
<tr>
<th>الحد الادنى للفئة</th>
<th>التكرار المتجمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>أقل من 0</td>
<td>0</td>
</tr>
<tr>
<td>أقل من 20</td>
<td>100</td>
</tr>
<tr>
<td>أقل من 40</td>
<td>275</td>
</tr>
<tr>
<td>أقل من 60</td>
<td>625</td>
</tr>
<tr>
<td>أقل من 80</td>
<td>875</td>
</tr>
<tr>
<td>اقل من 100</td>
<td>1000</td>
</tr>
</tbody>
</table>

لكي نستخرج الوسيط لابد من معرفة رتبته بالقانون التالي:

$$
\frac{\sum f}{2} = \frac{1000}{2} = 500
$$

بعد تحديد موقع الوسيط في الجدول نطبق قانون الوسيط:

$$
\text{ترتيب الوسيط - الترتيب السابق \times طول الفئة الوسيطية} + \text{الحد الادنى للفئة الوسيطية}
$$

المراجع
الان نحدد موقع الربيع الادنى بعد تحديد رتبته بالقانون

الان نطبق قانون الربيع الادنى

الحد الادنى للفئة الربيع الادنى

الحل نطبق قانون الربيع الاعلى

الان نحدد موقع الربيع الاعلى

طلب في السؤال 11 نوع التوزيع ويتم تحديد نوع التوزيع من خلال معامل الالتواء الربيعي وقائمه

معامل الالتواء الربيعي =

حسب كلام الدكتور ناخذ بالرقم الذي قبل و بعد العلامة مباشرة وهنا الرقم 0.0 يعني التوزيع متماثل وطبيعي.

ملاحظة: بالإمكان معرفة نوع التوزيع بقانون اخر وهو معامل الالتواء المعياري

شماذ
معامل الالتواء المعياري = \(\frac{3(\text{الوسيط}-\text{الحسابي})}{(\text{المعياري} \text{انحراف})} \)

\[\frac{3(52.5-52.68)}{22.89} = 0.047 \]

نلاحظ هنا التوزيع متماثل وطبيعي نفس السابق بغض النظر عن الاشارة لأن النتيجة صفر.

<table>
<thead>
<tr>
<th>(y^2)</th>
<th>(x^2)</th>
<th>(xy)</th>
<th>الانفاق</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>129600</td>
<td>250000</td>
<td>180000</td>
<td>360</td>
<td>500</td>
</tr>
<tr>
<td>176400</td>
<td>360000</td>
<td>252000</td>
<td>420</td>
<td>600</td>
</tr>
<tr>
<td>115600</td>
<td>202500</td>
<td>153000</td>
<td>340</td>
<td>450</td>
</tr>
<tr>
<td>193600</td>
<td>422500</td>
<td>286000</td>
<td>440</td>
<td>650</td>
</tr>
<tr>
<td>313600</td>
<td>640000</td>
<td>448000</td>
<td>560</td>
<td>800</td>
</tr>
<tr>
<td>389376</td>
<td>810000</td>
<td>561600</td>
<td>624</td>
<td>900</td>
</tr>
<tr>
<td>518400</td>
<td>1000000</td>
<td>720000</td>
<td>720</td>
<td>1000</td>
</tr>
<tr>
<td>577600</td>
<td>1562500</td>
<td>950000</td>
<td>760</td>
<td>1250</td>
</tr>
<tr>
<td>608400</td>
<td>1822500</td>
<td>1053000</td>
<td>780</td>
<td>1350</td>
</tr>
<tr>
<td>705600</td>
<td>2402500</td>
<td>1302000</td>
<td>840</td>
<td>1550</td>
</tr>
<tr>
<td>3728176</td>
<td>9472500</td>
<td>5905600</td>
<td>5844</td>
<td>9050</td>
</tr>
</tbody>
</table>

المجموع:

<table>
<thead>
<tr>
<th>(y^2)</th>
<th>(x^2)</th>
<th>(xy)</th>
<th>الانفاق</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ال قيمة معدل التزايد أو التناقص (b)

\[b = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \]

\[b = \frac{10(5905600) - (9050)(5844)}{10(9472500) - (9050)^2} = 48 \]

ملاحظة: (b) هي من تحدد العلاقة متزايدة أو متناقصة حسب الإشارة سالب أو موجب .

الآن مطلوب قيمة (a) في معادلة الانحدار والقانون كالتالي:

\[a = \frac{\sum y - b \sum x}{n} \]

\[a = \frac{5844 - 48(9050)}{10} = 150 \]

الآن يطلب حجم الإنفاق المتوقع عند دخل (2000)

\[\bar{Y} = a + bx \]

\[= 150 + 48(2000) \]

\[= 1110 \]
المجموعات المتكافئة هي المتشابهة في عدد العناصر فقط بغض النظر عن نوعها
المجموعات المتساوية هي المتشابهة في عدد العناصر ونوعها

إذا كانت المجموعة {10,20,30} وكانت المجموعة الكلية {100,80,60,70,90} فإن المجموعة {20,40,60,80,100}

إذا كانت المجموعة {20,40,60,80,100} والمجموعة {4,6,8,b,h} فان المجموعة A-B هي:

لا شيء مما سبق

{4,8,b}
ج 20

هنا طلب B×A لو طلب A×B يصير الجواب (ب)

حل السؤال هذا كالتالي

\[x + 3 = 5 \]
\[x = 5 - 3 \]
\[x = \frac{2}{1} \]
\[x = 2 \]

\[y - 2 = 6 \]
\[y = 6 + 2 \]
\[y = \frac{8}{1} \]
\[y = 8 \]

\[X = 2, \ y = 8 \]

ج 21

لكي تكون دالة لا بد من خروج سهم فقط من كل عنصر من المجال إلى المجال المقابل
هنا لكل عنصر من المجال صورة في المجال المقابل بغض النظر عن تكرار الصور بالإضافة إلى خروج سهم واحد فقط من كل عنصر من المجال

:**f1**

هنا تعويض مباشر بـ 3

6x+30 30

ميل الخط المستقيم الواصل بين النقطتين (6,2) و A(6,14) هو:

\[
\frac{y_2 - y_1}{x_2 - x_1} = \frac{14 - (-6)}{6 - 2} = 5
\]
هنا لابد اولاً من إعادة المعادلة الى وضعها القياسي وهذا شرط مع مراعاة الاشارات

\[-3x - 2y + 5 = 0 \]

الآن نطبق القانون

\[\frac{-a}{b} \]

\[\frac{-(-3)}{-2} = \frac{3}{2} \]

ج22 ميل الخط المستقيم هو \(- \frac{3}{2} \)

إذا كانت \(g(x) \) و \(h(x) = 10 \)

فإن \(\frac{\lim_{x \to 3} (g(x) - h(x))}{x - 3} \)

تساوي: \(\lim_{x \to 3} (g(x) - h(x)) = -3 - 10 = -13 \).

ج27

\[\lim_{x \to 3} (3x^3 + 2x^2) - 10 = 35 \]

ج28
طلب نهاية الدالة عند (3) هنا نحدد أي دالة نعوض فيها الأولى أو الثانية طبعاً 3 أكبر من 2 لذا نعوض في الدالة الثانية $e^3 + 5 = 25, 1$

لا شيء مما سبق

ان طلب نهاية الدالة عند $\frac{1}{2}$ طبعاً نعوض في الدالة الأولى لان $\frac{1}{2}$ أصغر من 2

$8\left(\frac{1}{2}\right)^2 + 10 = 12$

لا شيء مما سبق

لا شيء مما سبق

لا شيء مما سبق
نعوض في الدالة الأولى بـ 10

\[(10)^2 = 4000 \]

نعوض في الدالة الثانية بـ 10

\[3850 + 15(10) = 4000 \]

ظهر نفس الناتج إذا الدالة متصلة عند 10

\[x = 10 \]

ج 1) الدالة متصلة عند 10
طلب الإيراد الحدي يعنى نشتق دالة الإيراد الكلي \(R \) ونمضغ عن \(x \) بـ 10

\[
3x^3 + 4x^2 + 6x + 10
\]

\[
9x^2 + 8x + 6
\]
لابد من اشتقاق التكلفة الكلية ونوعر عن $x = 20$

$C = 5x^2 + 12x + 18$

$10x + 12$

$10(20) + 12 = 212$

الآن يطلب دالة الربح الكلي P ويمكننا الحصول عليها من خلال طرح دالة التكاليف الكلية C من دالة الايراد الكلي R كالتالي:

$R = 3x^3 + 4x^2 + 6x + 10$

$C = 5x^2 + 12x + 18$

$P = 3x^3 - x^2 - 6x - 8$

ملاحظة: البعض يخطئ في عملية الطرح فيه طريقة سهلة فلم بتحويل اشارات الدالة الثانية كاملة ثم اجر العملية بشكل عادي كذا أسهل واسرع

$3x^3 - x^2 - 6x - 8 - 2(15) = 1989$

نطبق القانون التالي:

المرونة = تفاضل دالة الطلب × السعر / الكميات المطلوبة

اولا تفاضل دالة الطلب $x = 15$

لمزيد من المعلومات قد تراجع إلى صفحة 16 من 42
الآن نطبق قانون المرونة 25، \(- \frac{80}{320} \times 1\) =

36 قليل المرونة

نقوم باشتقاق الدالة المعطاة في السؤال

\[P = 200 - 0.5x^2 - 6x + x \]

بما أن الناتج بالسالب (1-) يعني يوجد نهاية عظمى.

37 عظمى
أجب عن الفقرات 28، 29، 30، 41، 42

إذا علمت أن دالة الربح الحدي لإحدى الشركات تأخذ الشكل التالي:

\[R' = 18x^2 + 10x - 15 \]

و دالة التكلفة الحدية تأخذ الشكل:

\[C' = 12x + 20 \]

حجم الربح الكلي \(R \) عند إنتاج و بيع 10 وحدات يساوي:

\[\frac{18}{3} x^3 + \frac{10}{2} x^2 - 15x \]

\[6x^3 + 5x^2 - 15x \]

\[6(10) - 15x10 \]

\[\frac{12}{2} x + 20x \]

\[6(20) + 20(20) \]

\[(39) \]

حجم التكاليف الكلية \(C \) عند إنتاج و بيع 20 وحدة يساوي:

\[6350 \]

\[6250 \]

\[1885 \]

(6) لا شيء مما سبق

(7) لا شيء مما سبق

(8) لا شيء مما سبق

(9) لا شيء مما سبق

أي من الدوال التالية تعبر عن الربح الكلي \(P \):

\[6x^3 - x^2 - 35x \]

\[18x^2 - 2x - 35 \]

\[6x^2 - 2x - 35 \]

(6) لا شيء مما سبق

(7) لا شيء مما سبق

(8) لا شيء مما سبق

(9) لا شيء مما سبق

حجم الربح الحدي \(R' \) عند إنتاج و بيع 5 وحدات يساوي:

\[550 \]

\[504 \]

\[405 \]

(6) لا شيء مما سبق

(7) لا شيء مما سبق

(8) لا شيء مما سبق

(9) لا شيء مما سبق

طلب الربح الكلي \(R \) يعني تكامل دالة الربح الحدي \(R' \) ونوعح عن \(x \) بـ 10
طلب حجم التكاليف الكلية C وذلك بتكامل دالة التكاليف الحدية C' ونوعاً عن x بـ 20

$12x + 20$

$6x^2 + 20x$

$6(20)^2 + 20(20) = 2800$

طلب دالة الربح الكلي P ونستطيع الوصول إليها من خلال طرح دالة التكاليف الكلية C من دالة الاليراد الكلي R

$\hat{P} = 18x^2 + 10x - 15$

$\hat{C} = 12x + 20$

الآن طلب حجم الربح الحدي \hat{P} عند انتاج وبيع 5 وحدات وهنا لابد من طرح دالة التكاليف الحدية \hat{C} من دالة الاليراد الحدي \hat{R} ثم التعويض عن x بـ 5 في دالة الربح الحدي \hat{P}

$\hat{R} = 18x^2 + 10x - 15$

$\hat{C} = 12x + 20$

$6(10)^3 + 5(10)^2 - 15(10) = 6350$

$\hat{C} = 12x + 20$

$6x^3 + 5x^2 - 15x$

$6x^2 + 20x$

$6(20)^2 + 20(20) = 2800$
\[
P = 18x^2 - 2x - 35
\]
\[
18(5)^2 - 2(5) - 35 = 405
\]

أجب عن الفقرات ٢، ٣، ٤، ٥، ٦ حسب استخدام المعلومات التالية:
إذا علمت أن ٠.٧٥ و ٠.٤٥ و ٠.٧٥=٠.٣٣٧٥ و أن كل من الحددين A و B A حداث مستقلة
تساوي
٠.٣٣٧٥
٠.٣٣٧٥
٠.٣٣٧٥
لا شيء مما سبق
تساوي
٠.٣٣٧٥
٠.٣٣٧٥
٠.٣٣٧٥
لا شيء مما سبق

\[
A \cap B = P(A) \times P(B)
\]

\[
A \cap B = 0.75 \times 0.45 = 0.3375
\]

\[
A \cup B = P(A) + P(B) - A \cap B
\]
\[A \cup B = 0.75 + 0.45 - 0.3375 = 0.8625 \]

\[A | B = \frac{A \cap B}{P(B)} = \]

\[A | B = \frac{0.3375}{0.45} = 0.75 \]
أجب عن الفقرات 5، 43، 42، 41 باستخدام المعلومات التالية:

الجدول التالي يمثل جدول توزيع احتمالي لإحدى الظواهر الطبيعية:

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>المجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(x)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>?</td>
<td>1</td>
</tr>
</tbody>
</table>

من خلال الجدول السابق أجب عن الأسئلة التالية:

(5) قيمة التوقع الرياضي أو القيمة المتوقعة (المتوسط) لهذا التوزيع يساوي:

\[E(x) = x \cdot P(x) = 0 \cdot 0.2 + 1 \cdot 0.3 + 2 \cdot 0.4 + 3 \cdot ? = 1 \]

(6) قيمة الانحراف المعياري \(\sigma \) لهذا التوزيع يساوي:

\[\sigma = \sqrt{\sum (x - E(x))^2} \]

الاحتمال

التوقع

التباين

الانحراف

الصف الأول × الصف الثاني = التوقع الرياضي (المتوسط)

المجموع الصف الرابع – مربع التوقع = التباين

\[E(x^2) = (1.4)^2 + (1.5)^2 + 2.8 = 8.4 \]

\[\sigma = \sqrt{8.4} = 2.92 \]
الانحراف = جذر التباين

جي34 قيمة التوقع (المتوسط) = 1.4

جي92 طلب الانحراف المعياري وهو ناتج عن جذر التباين 84 = √

جي66 لا شيء مما سبق

طلب (1 > X) يعني قيمة X أكبر من 1 وفي الجدول x2,x3 هي التي أكبر من x1 اذا نقوم بجمع قيمة كل من x2,x3 وهي على التوالي 0.1+0.4=0.5

جي74 0.5

أجب عن الفقرات 48 ، 49 ، 50 باستخدام المعلومات التالية:

في دراسة لتخصصات 50 طالب وطالبة تم الحصول على النتائج التالية:

<table>
<thead>
<tr>
<th>المجموع</th>
<th>طالب علمي</th>
<th>طالب أدبي</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>23</td>
<td>27</td>
</tr>
</tbody>
</table>

فإذا تم اختيار أحد الأشخاص عشوائياً فاحسب الاحتمالات التالية:

(48) احتمال أن يكون طالب أو علمي:

\[
\frac{27}{50} + \frac{20}{50} - \frac{15}{5} = 0.30 \\
\frac{12}{50} = 0.24 \\
\frac{64}{50} = 0.64 \\
\]

لا شيء مما سبق

(49) احتمال أن تكون طالبة و أدبي:

\[
\frac{0.10}{0.46} = 0.22 \\
\frac{0.36}{0.46} = 0.61 \\
\]

لا شيء مما سبق

شأوي

صفحة 13 من 24
إذا علمت أن الشخص المختار طالبة فما هو احتمال أن يكون تخصصها أدبي:

\[
\frac{18}{23}
\]

(أ)

(ب)

(ج)

(د) لا شيء مما سبق

أقدم اعتذاري عن أي خطأ غير مقصود وأتمنى من الله العلي القدير أن تُحقق الفائدة بهذه المراجعة لأسئلة الاختبار وهذا ما أتمناه ككُنا محتاج

لدعائكم فلا تنسونى (الخوف يضعف) (التي تحتوي على اسم ذِرف شخص مقررًا لدكتور ملقي)

شامور