(۱) مدخل الندم Minimax (Regret) يعتمد على تقويم البدائل تمهيدا:

- (أ) لاختيار البديل الذي يتضمن أفضل العوائد الممكنة في ظل الحالات المتشائمة.
 - (ب) لاختيار البديل الذي يحتوى على اكبر قيمة نقدية متوقعة.
 - (ج) لاختيار البديل الذي يتضمن أفضل العوائد الممكنة في ظل الحالات المتفائلة.
- (د) لاختيار البديل الذي ينطوي على اقل الفريص الضائعة. ** المحاضرة ٩+ اختبار الترم الماضي

(۲) مصطلح Decision Tree يعنى:

- (أ) قرار المخاطر
- (ب) شجرة القرارات **المحاضرة التاسعة
 - (ج) تحليل القرارات
 - (د) غابة القرارات

(۳) مصطلح Earliest Finish یعنی:

- البداية المبكرة (i)
- (ب) النهاية المبكرة ** من المصطلحات الشبكات
 - (ج) النهاية المتأخر
 - الز من الفائض (7)

"الحد الأعلى الذي ينفقه صانع القرار نظير حصوله على المعلومات "هو:

- (أ) تحليل الحساسية
- (ب) قيمة المعلومات الجيدة ** المحاضرة التاسعة + اختبار الترم الماضي
 - (ج) القيمة النقدية المتوقعة
 - (د) االقرار في حالة عدم التأكد

(٥) اذا وجدنا قيمة سالبة واحدة فقط في صف دالة الهدف في جدول السمبلكس فهذا يعني ان:

- (أ) الحل الأمثل قد تم التوصل اليه في الجدول السابق.
- (ب) الحل الأمثل قد تم التوصل اليه في الجدول الحالي.
- (ج) لازال هناك مجال لتحسين الحل وإيجاد جدول جديد. ** محاضرة خطوات السيمبلكس
 - (د) هناك اكثر من حل أمثل

(٦) حساب الزمن المتوقع للنشاط في طريقة PERT:

- أ) يتم حسابه لجميع الأنشطة الحرجة فقط. ** محاضرة شبكات بيرت
 - (ب) يتم حسابه لجميع الاحداث
 - (ج) يتم حسابه لبعض الأنشطة الحرجة.
 - (c) يتم حسابه لجميع الأنشطة.

(٧) المفاهيم التالية جميعها تنطبق على النشاط الحرج ماعدا:

- (أ) النشاط الذي يمكن تأخير البدء فيه ** الاختبار الماضي + المصطلحات)الشبكات)
 - (ب) النشاط الذي لا يمكن تأخير البدء فيه
 - (ج) النشاط الذي له وقت فائض يساوي الصفر
 - (د) النشاط الذي إذا تم تأخير انتهائه، فأنه يتسبب في في تأخير المشروع

(٨) المسار الحرج هو:

- الذي يحتوي على جميع الانشطة الحرجة ** محاضرة الشبكات (المصطلحات)
 - (ب) الذي ينتهى في وقته المحدد
 - (ُج) نفس تعريف النشاط الحرج
 - (د) الذي يحتوي على جميع الانشطة

PERT (٩) يعني في شبكات الأعمال:

- Production E-business & Report Technique (1)
- (ب) Project Evaluation & Review Technique ** اول صفحة بالشبكات
 - Critical Path Method (で)
 - Production Evaluation & Report Technique (2)

(١٠) الاختلاف عند اتخاذ القرارات في حالتي عدم التأكد و المخاطرة:

- (أ) الاحتمالات المتعلقة بحالات الطبيعة معروفة في عدم التأكد، و غير متوفرة في المخاطرة
- (ب) الاحتمالات المتعلقة بحالات الطبيعة غير معروفة في عدم التأكد، و متوفرة في المخاطرة ** المحاضرة التالثة
 - (ج) التشاؤم و فرصة الندم تكون موجودة في عدم التأكد و غير متوفرة في المخاطرة
 - (د) الاختلاف في المسمى فقط، وليس هناك تأثير في العمليات الحسابية نفسها.

(١١) البرمجة الخطية تعتبر حالة خاصة من البرمجة الرياضية إذا:

- العلاقة خطية بين المتغيرات في دالة الهدف و القيود ** البرمجة الخطية + الواجب
 - (ب) قيم المتغيرات معروفة
 - (ج) دالة الهدف يوجد لها حل أمثل
 - (c) العلاقة بين المتغيرات يمكن برمجتها

(١٢) برنامج خطي ما يتكون من متغيرين و سبعة قيود، فإنه يمكن إيجاد الحل الأمثل عن طريق:

- (أ) السمبلكس فقط
- (ب) الرسم البياني فقط
- (ج) السمبلكس او الرسم البياني ** في محاضرة طرق حل البرمجة + المحاضرة المباشرة الثانية
 - (د) لا يمكن الحصول على حل أمثل لها بسبب كثرة القيود

Objective function (۱۳)

- (أ) متغيرات القرار
- (ب) قيود المسألة ** محاضرة البرمجة الخطية
 - (ج) دالة الهدف
 - (د) عدم السالبية

(١٤) المتغير الداخل في جدول السمبلكس هو:

- (أ) أكبر معامل سألب في صف دالة الهدف ** محاضرة السمبلكس + الاترام الماضية
 - (بُ) أصغر خارج قسمة للمتغيرات الراكدة
 - (ج) نقطة تقاطع العمود المحوري مع الصف المحوري
 - (د) أقل معامل سالب في الجدول

(١٥) البرمجة الخطية هي:

- Network Analysis (1)
- Non-linear Programming (中)
 - Goal Programming (で)
- (د) Linear Programming ** المقدمة + البر مجة الخطية

(١٦) الحل الأمثل في الرسم البياني يوجد دائماً عند:

- (أ) نقطة الأصلُّ (٠,٠٠) (ب) نقطة ركنية ** محاضرة الرسم البياني
 - (ج) نقطة تقاطع مع محور X١
 - (د) نقطة تقاطع مع محور XX

(١٧) القيد التالي لا يمكن ان يكون قيداً في برنامج خطى:

- $1 \cdot X^1 + \cdot X^7 \le 7 \cdot (1)$
- $Y \cdot X' Y \cdot X' > = Y \cdot (\psi)$
 - $X^{1}>=X^{1}$ (τ)

(١٨) أحد الخصائص المميزة لبحوث العمليات:

- (أ) تعتمد على الحل الجزئي للمشكلة
- (ب) تقوم بصياغة المسألة وأيس حل المشكلة/صناعة القرار
 - (ج) تعتمد على فريق متكامل ينظر للنظام ككل المقدمة
- (د) تعتمد على حل المشاكل يدوياً دون الحاجة لإستخدام الحاسوب

(١٩) عند الربط بين (بحوث العمليات، البرمجة الخطية، البرمجة الرياضية) من الأشمل فإن:

- (i) البرمجة الربأضية \rightarrow البرمجة الخطية \rightarrow بحوث العمليات
- $(\hat{\mathsf{u}})$ بحوث العمليات o البر مجة الرياضيةo البر مجة الخطية ** المناقشات + اختبار الترم الماضح
 - (ج) البرمجة الخطية ← البرمجة الرياضية ← بحوث العمليات
 - (د) البرمجة الرياضية ← بحوث العمليات ← البرمجة الخطية

(۲۰) بحوث العمليات يعنى:

- (أ) Operations Research **المحاضرة الاولى، لكن بسبب التقار ب الشديد
- ((سيتم مخاطبة العمادة لاحتساب الدرجة للكل)

- Operations & Research (+)
 - Business Methods (5)
 - Research Operations (2)

(٢١) اذا كان زمن البداية المتأخر= ١٢ و زمن النهاية المتأخر= ١٥ زمن البداية المبكر=١١ ، فإن الفائض ST يساوى:

(۲) اذا كان القيد الأول هو (7 = X + X + X) و القيد الثانى هو (7 = X + X + X) ، فإن الحل:

- (أ) غير محدود
- (ب) غير ممكن
- (ج) متعدد الحلول **الحالات الخاصة + ملاحظات ماقبل الاختيار
 - (د) متکــر<u>ر</u>

```
ناذا كان أحد المعادلات هي =3-1، فإن قيمة =1 تساوى:
                                                                              · (j)
                                                                            ٤- (ب)
X^{1-\xi=\bullet} \longrightarrow X^{1=\xi} بسؤال مباشر عند استخدام حل المعادلتين : X^{1-\xi=\bullet} \longrightarrow X^{1-\xi}
```

- (۲٤) اذا كان احد القيود في الشكل القياسي هو $S^{-1} = S^{-1} + X^{-1} + X^{-1}$ فإن قيمة $S^{-1} = S^{-1}$ في الحل الابتدائي تساوى:
 - 1 (1)

) (7)

- (ب) ۱۶۷
- (ج) * * من محاضرة السمبلكس، تكوين جدول الحل الابتدائي
- $(\circ 7)$ اذا كان القيد الأول هو $(\circ 7 = \times X + X + X)$ و القيد الثانى هو $(\circ 7 = \times X + X)$ ، فإن الحل:
 - (أ) غير محدود
 - (ب) غير ممكن ** محاضرة الحل البياني ، عند التظليل
 - (ج) متعدد الحلول
 - (د) متکــرر
 - Decision variables (۲۶)
 - (أ) اساليب القرار
 - (ب) متغيرات القرار ** صياغة برنامج خطي
 - (ج) القرارات المتغيرة
 - (د) قيود القرار
 - Critical Activity (۲۷) یعنی:
 - (أ) مسار حرج
 - (ب) نشاط و همي
 - (ج) حدث حرج (ج) حدث حرج (د) نشاط حرج ** الشبكات المصطلحات
 - (٢٨) دالة الهدف في البرمجة الخطيــة تأخذ شكل:
 - (أ) تعظيم أو تدنية ** محاضرة البرمجة الخطية الشكل العام
 - (ب) تعظیم و تدنیة
 - (ج) تعظيم في الرسم البياني، و تدنية في طريقة السمبلكس
 - (د) معادلة من الدرجة الثانية
 - (٢٩) النشاط في طريقة PERT يأخذ:
 - (أ) زمن واحد مؤكد
 - (ب) زمن واحد عشوائی
 - (ج) ثلاثة أوقات (متفائل، اكثر احتمالاً، متشائم) ** محاضرة بيرت
 - (د) وقتین أثنین (متفائل، متشائم)

صياغة البرنامج الخطى

أحد المدارس تستعد لرحلة 0.0 طالب وطالبة. الشركة التي ستوفر النقل لديها عدد من الحافلات الكبيرة تتسع ل 0.0 مقعد لكل منهما و عدد من الحافلات الصغيرة تتسع الواحدة منها لـ 0.0 مقعدا، ولكن لا يوجد لدى الشركة الا 0.0 سائقين لقيادة هذه الحافلات. تكلفة تأجير الحافلة الكبيرة هي 0.0 ريال و 0.0 ريال للحافلة الصغيرة. (إذا افترضنا الن 0.0 الشاحات الكبيرة، 0.0 الشاحات الصغيرة)

هذا السؤال تم توضيحو التنبيه بشكل مباشرة على اهم معلومتين: وضع خط لنوع الدالة + تعريف المتغيرات لك

(٣٠) دالة الهدف في هذه المسألة تأخذ الشكل التالي:

- Max $z=\wedge \cdot \cdot x + \neg \cdot x$ (i)
- (ب) Min z=٨٠٠x١+٦٠٠x٢ ** تم تحديد نوع الدالة + ارقام مباشرة
 - Max $z=\circ \cdot x + \xi \cdot x$ (ε)
 - $Min z = \wedge \cdot \cdot x + \cdots x < = 1 \cdot \cdot \cdot (2)$

(٣١) القيد الخاص بعدد المقاعد يساوى:

- $X^1+X^7 \le \xi \cdot \cdot \quad (i)$
- (بُ) ٤٠٠ ٤ + ٢٠٠١ × ١+٤٠ × ارقام مباشرة من المسألة متعلقة بالمقاعد
 - $\circ \cdot X + \xi \cdot X < = \gamma \cdot \cdot \quad (z)$
 - $\circ \cdot X + \xi \cdot X < \xi \cdot \cdot \quad (2)$

(٣٢) القيد الخاص بالسائقين هو:

- أ) X = X + X القام مباشرة من المسألة متعلقة بالسائقين X = X + X الختبار الاختبار
 - $X^{1}+X^{7}>=9$ (\rightarrow)
 - $X^{\gamma} <= ^{q}; X^{\gamma} <= ^{q} (z)$
 - $X_1+X_1 \le y$ (7)

(٣٣) دالة الهدف في هذه المسألة من نوع:

- (أ) تُدنية ** مباشرة و مُعطاه تم وضّع خط تحته
 - (ب) ثنائية الهدف
 - (ج) تعظیم
 - (د) غير محددة

الرسم البياني

إذا أعطيت البرنامج الخطى التالي و طُلب منك استخدام الرسم البياني في الحل:

$$Max z = ^{\forall} x_{\downarrow} + ^{\forall} x_{\downarrow}$$

s.t.

$$X' + \lambda X' \leq \gamma \cdot \tag{1}$$

$$X_{i} + X_{j} \leq 00$$
 (7)

$$X_{,},X_{,}\geq$$

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبارات الماضية + نموذج الاختبار محاضرة رقم ١٤

- (٣٤) القيد الثاني يتقاطع مع محور X في النقطة:
 - (1,1) (1)

 - (بُ) (مُوْرِ٠) (ج) (٥٥,٠) ** المحاضرة المباشرة الثانية (د) (٥٥,٥٥)
 - (٣٥) القيد الأول يتقاطع مع محور X في النقطة:
 - (أ) (٠,٤٠) ** المحاضرة المباشرة الثانية
 - (ب) (ب٤٠,٠)
 - (۶) (۲,۲)
 - $(\cdot, \wedge \cdot)$ (2)
- (٣٦) القيد الأول يتقاطع مع القيد الثاني في النقطة:
 - (°, 7°) (İ)
 - (۳۰,٥) (ب)
 - (て・、て・) (さ)
- (د) (٣٠,٢٥) ** محاضرة الرسم البياني (تقاطع نقطتين) او بالآلة الحاسبة
 - (٣٧) قيمة دالة الهدف عن نقطة التقاطع اعلاه تساوي:
- (أ) * ١٤٠ * تعويض مباشر في دالة الهدف + المحاضرة المباشرة الثانية
 - (ب) ۱۱۰
 - (ج) ه٧
 - 77. (2)

الطريقة المبسطة (طريقة السمبلكس)

لدينا البرنامج الخطي التالي:

Max
$$z = \forall x_1 + \forall x_2$$

s.t.
 $x_1 + \forall x_2 \leq \land \land \qquad (\land)$
 $x_1 + x_2 \leq \land \land \qquad (\land)$
 $x_1 + x_2 \leq \land \land \qquad (\land)$

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبارات الماضية + نموذج الاختبار محاضرة رقم ١٤

- (٣٨) دالة الهدف في الشكل القياسي لهذه المسألة ستكون على الشكل:
 - Max z $\forall x \land + \forall x \land = \cdot \quad (i)$
 - (ب) • = ٣x٢ ٢x١ Max z * المحاضرة المباشرة الثانية
 - Max $z + {}^{r}x{}^{r} {}^{r}x{}^{r} = \cdot (\tau)$
 - $Min z {}^{\gamma}x{}^{\gamma} {}^{\gamma}x{}^{\gamma} = \cdot \quad (2)$
- (٣٩) القيد الأول في الشكل القياسي لهذه المسألة سيكون على الشكل:
 - أ) $\lambda \cdot \hat{\mathbf{x}} = \mathbf{x} + \mathbf{x} + \hat{\mathbf{x}}$ المحاضرة المباشرة الثانية
 - $X' + YX' + S' < = \lambda \cdot (\psi)$
 - $X^{1} + {}^{1}X^{2} + s^{1} > = \lambda \cdot (\varepsilon)$
 - $X^{1} + {}^{1}X^{2} S^{1} = \lambda \cdot (2)$
- (٤٠) القيد الثاني في الشكل القياسي لهذه المسألة سيكون على الشكل:
 - $X^{1} + X^{7} S^{1} = 00 \quad (1)$
 - $X^{1} + x^{7} + s^{1} < = 00$ (4)
 - $X^{1} + x^{7} s^{1} \le \infty$ (5)
 - (د) $x^* = x^* +

** لمن يسأل عن استخدام ١٦، نستطيع استخدام اي رمز آخر مثلما تم التوضيح في المحاضرة المباشرة الثانية أو المسجلة. و مع هذا كله، سوف اخاطب العمادة لمنح درجة هذا السؤال للكل يتبع، اذا كان جدول الحل الابتدائي (الأولى) على النحو التالي

م أساسية	Χ'n	X	S١	ST	الثابت
Z	-7	-٣	*	*	•
Si	١	۲	*	*	۸۰
S٢	١	١	*	*	00

*لا تحتاج لها

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبارات الماضية + نموذج الاختبار محاضرة رقم ١٤

- (٤١) المتغير الداخل في الجدول هو:
- (ب) XX **محاضرة السمبلكس
 - S1 (5)
 - S⁷ (2)
- (٢٤) المتغير الخارج من الجدول هو:
 - X1 (İ)
- (ب) X۲ (ج) S۱ **محاضرة السمبلكس

 - (٤٣) كَفيمة العنصر المحوري هي:

 - (ب) ٥,٠
 - (ج)
 - (د) ۲ **محاضرة السمبلكس
- (٤٤) (الصف المحوري الجديد) سوف يكون:
- (د) (۲۰ * * ۱ ۰٫۰) ** محاضرة السمبلكس
 - (٥٤) معادلة صف Z الجديدة في الجدول الجديد هي:
- (أ) (۱۲۰ * * ، ۰٫۰-) ** محاضرة السمبلكس (ب) (۶۰ * * ، ،) (ج) (۱۲۰ * * ، ۰۰) (د) (۱۲۰ * * ۳- ۲-)

إذا كان احد جداول الحل لبرنامج خطى ما على النحو التالي

م أساسية	X١	X۲	S١	SY	الثابت
Z	٠,٠٠٠)	•	*	*	٧٥
Х	•	١	*	*	٨
S٢	,	•	*	*	١.

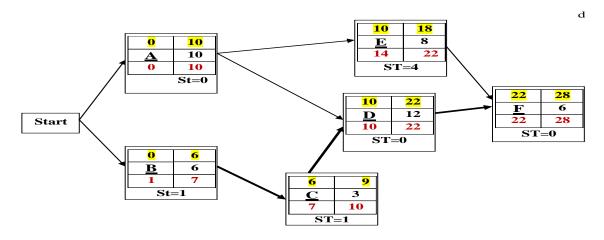
*لا تحتاج لها

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبار الماضى+ نموذج الاختبار محاضرة رقم ١٤

- (٤٦) قيمة دالة الهدف Z هي:
 - (أ) ٠٨
- (ب ۷۵ ** مباشر + محاضرة السمبلكس
 - (ج) ۹۳
 - 14 (7)
- (٤٧) النقطة التي تحقق عندها الحل الأمثل هي:
 - (λ, \cdot) (1)
 - (ب) (۸,۱۰)
- رُج) (٨٠,٨) ** قيمة X١ من الجدول مباشرة، قيمة X٢ من الجدول
 - (1,1)

(٤٨) قيمة ١٦ هي:

- A (1)
- (ب) ۱۰
- (ج) ** محاضرة السمبلكس (لأنها غير موجودة بالجدول فقيمتها صفر)
 - ر) (


(٤٩) قَيمة X١ هي:

- (أ) ** محاّضرة السمبلكس (لأنها غير موجودة بالجدول فقيمتها صفر)
 - (ب) ۱۰
 - (ج) ۸
 - (د) لا يمكن حسابها

(٥٠) هل يمكن تحسين الحل لهذا الجدول النهائي:

- (أ) نعم
- (ب) طريقة السمبلكس لا توفر آلية للتعرف على إمكانية تحسين الحل
 - (ج) لا ** محاضرة السمبلكس (هل توجد قيم سالبة؟
 - (c) المعلومات المُعطاة غير كافيه

المسار الحرج إذا اعطيت شبكة الاعمال التالية (المطلوب القيام بالحسابات اللازمة و الأزمنة الفائضة)

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة رقم ١٤ هذه الشبكة نفس التي حلها بالمحاضرة المسجلة (الشبكات) مع تغيير في ارقام قليلة) في المحاضرة المباشرة الثالثة تم حل الشبكة مباشرة معكم + التأكيد عليكم بأن الشبكة ستأتى فارغة بالاختبار النهائي وعليكم تعبيئة الخلايا

- (٥١) الزمن الكلي للمشروع (المسار الحرج) هو:
 - * ۲۸ ([†])
 - (ب) ۲۶
 - (ج) ۲۲
 - (۲) ۲۲
 - (٢٥) زَمن البداية المتأخر للنشاط A يساوي:
 - <u>۱</u> (أ)
 - · (中)
 - (ج)
 - (7)
 - (۵۳) زمن البداية المبكر للنشاط D يساوي
 - 10 (1)
 - (ب) ۱۲
 - (ج)
 - (ح) ۹
- (۵۶) زمن النهاية المتأخرة للنشاط C يساوي (۱) ۹ (أ)
 - (ب) ۲

نموذج A

- C $(\dot{\neg})$
- D (z)

(٥٦) الزمن الفائض للنشاط C يساوي

- (ب) ۲
- (ج)
- (د) غير متوفر

(۵۷) بدأنا بعقدة بداية Start و ذلك بسبب:

- (أ) وجود نشاط و همي
- (ب) وجود نشاطين في البداية * قواعد الرسم في الشبكات
 - (ج) عدم وجود نهایة End
 - (د) يمكن الاستغناء عن عقدة البداية في هذه الشبكة

جدولة المشاريع وتقييمها PERT الجدول التالى يمثل تسلسل الأنشطة لمشروع ما (علامة * تدل على ان النشاط حرج):

التباين	المتوقع	ا لتقديـــر				
		تشاؤم (L)	أكثر احتمالاً (M)	تفاؤل (S)	رمز النشاط	
		٨	٤,٥	٤	A*	
		١٦	١٣	١.	В	
		1 £	٥	۲	C*	

S+4*M+Lالتباین = $\left(\frac{L-S}{6}\right)^2$ 6

قوانين قد تحتاج لها: الوقت المتوقع=

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة رقم ١٤ هذه الشبكة نفس التي حلها بالمحاضرة المسجلة (الشبكات بيرت) مع تغيير في ارقام قليلة)

(٨٥) الوقت المتوقع للنشاط الحرج A يساوي

- ۲۳,۳۳ (أ)
 - (ب)
 - (ج) ٥,٤

(٩٩) الوقت المتوقع للنشاط C يساوي

- ۱۳ (أ)
- ٥,٥ (ب)
 - (ج)
- (د) ه,۳

(٦٠) تباين النشاط الحرج C يساوي

- (أ) ۲
- (ب)
- (ج) ۲۶
 - ٤ (٤)

(٢١) الزمن الذي يستغرقه هذا المشروع (زمن الإنجاز) يساوي:

- r (1)
- (ب) ۱۱
- (ج) ۲۶
- 19 (2)

(٦٢) تباين المشروع يساوي:

- (أ)
- (ب) ۶۶,۵
- (ج) ٤٤, ١
- ۲, ٤٤ (۵)

تحليل القرارات

الجدول التالي يمثل ثلاثة بدائل للاستثمار مع وجود ثلاث حالات :

ضعيف	متوسط	ختد	
٥	٥	٥	اسهم
٣_	٥	١٢	سنـــدات
١	٦	11	عقارات

هذا السؤال و الفقرات التابعة تماماً على نفس نمط االاختبار الماضي + نموذج الاختبار محاضرة رقم ١٤ تم التنبيه على ذلك في المحاضرة المباشرة الثالثة + المحاضرة التاسعة + الملاحظات

(٦٣) وفقاً للمدخل التفاؤلي MaxiMax ، فأن البديل الأفضل هـو:

- (أ) اسهم و سندات
 - (ب) عقارات
 - (ج) اسهم
 - <u>(د) سندات</u>

(٦٤) وفقاً للمدخل المتشائم MaxiMin فإن البديل الأفضل هو:

- (أ) عقارات
 - (ب) اسهم
- (ج) لأيوجد
- (د) سندات

هو :	الأفضل	فان البديل	MiniMax	وفقأ لمدخل الندم	(70)
• •			TATTTTTATT		•

- (أ) سندات
 - (ب) اسهم
- (ج) عقارات
- (د) متساوية بالأفضلية

(٦٦) إذا افترضنا ان احتمال (الاقبال الجيد، المتوسط) يساوي ٤٠، • لكل حالة على حده ، فإن احتمال الاقبال الضعيف =

- (أ) ٠,٤٠
- (ب) ۲٫۲۰ (جاء بهذا الصيغة في اختبار الترم الماضي، وقاموا بحسابه = ۱-۰٫٤۰-۰٫٤۰ = ۰٫۲۰
 - (ج) لا يمكن قياسه
 - ٠,٨٠ (١)

(٦٧) بافتراض استمرار فرضية فقرة رقم ٦٦ اعلاه، فإن القيمة النقدية المتوقعة للأسهم (1) (1) (1)

- (ب) ** اضرب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعة)
 - (ج) ۲,۶
 - 1 5 (2)

بافتراض استمرار فرضية فقرة رقم
$$77$$
 اعلاه ، فإن القيمة النقدية المتوقعة للسندات تساوي: $(1 - 1)$

- (ب) ۲٫٥
- (ج) ٢,٢ ** اضر ب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعة)
 - ٤,٤ (١)

(٦٩) بافتراض استمرار فرضية فقرة رقم ٦٦ اعلاه ، فإن القيمة النقدية المتوقعة للعقارات تساوي:

- (۱) (ب) ۱۸
- رُج) ۱۵
- (د) ٧ ** اضرب العائد في المصفوفة بالاحتمال المقابل له (نفس المثال في المسجلة التاسعة)

(٧٠) أسم البرنامج الاكاديمي الذي تدرسه الآن هـــو:

- (أ) الاعمال و الادارة
 - (ب) إدارة الاعمال

 - (c) لا أعـــرف

هذا ليس سؤال استظراف،، لكن ماهو جوابك لمن يسألك: اى برنامج تدرس بالجامعة او تخصصك الخ) او ماهو نظام التعلم الالكترونى الذي تستخدمون؟ هذه معلومات عامة يجب ان تعرفها ۞