

ورشة عمل مادة التحليل الإحصائي

الدفعة الماسية ٣٦٦ هـ / ١٠١٥م للدكتور / أحمد محمد فرحان إدارة أعمال مستوى رابع 4

كل الشكر والإمتنان الأعضاء فريق عمل الورشة على ما قدموه

al_anoud/Legeиd\$/shaden1/hejabaa/ tad400/ Marei

ندى الموسى / 2COOL

الملخص النهائي من المحاضره (1-14)
مطابق للمحتوى + اجتهاد اعضاء الورشة
واعذرونا على تقصيرنا والتمسوا لنا العذر ان وجد خطأ غير مقصود
واعذرونا على التقصير
دعواتنا لكم بدوام النجاح والتوفيق،،

تعريف المجموعة:

صريقة كتابة المجموعات:

~······

€.....

€.....

€..... **€**······

> (وهي مجموعة منتظمة تسير بنفس الشكل ٢ ٣ ٤ وهكذا) بنظام فارق معين بين الارقام - مثل مجموعة ٨ الفرق بين الرقم والذي

(و هي مجموعة مغلقة و لكن المساحة لا تكفي لكتابة من ١ إلى

١٠٠ و سوف نستخدم النقاط للتعبير عن بعض العناصر)

C= { 1, 2, 3}

A , B , C ,

A= { 1,3,5,7,9....... \}

a,b,c,....

 \in

 $a \in A$

a ∉ A

 $A = \{ 1, 2, 3, ..., 100 \}$

 ✓ طريقة القاعدة (الصفة المميزة): ويتم فيها وصف المجموعة بذكر صفة يمكن بواسطتها تحديد

عناصرها ، أي الصفة التي تحدد ارتباط عناصر المجموعة

 $A = \{x : \underbrace{x : x}\}$ طالب بمقرر الاحصاء في الادارة: B = { x: **x** } C = {x: عن بعد x } D = {x: -3 ≤ x ≤ 1 عدد صحيح x} X = { x : 0 ≤ x ≤ 12 عدد صحيح x}

أنواع المجموعات:

 ✓ المجموعة الخالية: هي المجموعة التي لا تحتوي أي عنصر ويرمز لها بالرمز ф (فاي) أو { } . أمثلة :-

✓ المجموعة المنتهية: المجموعة التي تكون عناصرها محدودة . المجموعات التالية مجموعات منتهية ...

√ المجموعة الغير منتهية : المجموعة التي تكون عناصرها غير محدودة (وهي المجموعة التي لا يمكن تحديد عناصرها بشكل دقيق) .

 $A = \{x : x \in A = \{x \in A : x \in A \}$

 $B = \{ x : A : A \in \mathbb{R}$

 $A = \{2, 4, 6, 8\}$ $B = \{1, 2, 3, \dots, 100\}$ C = { x , y , s, t u }

A = { x : عدد طبيعي فردي } B = { 10, 20, 30,...... }

✓ المجموعة الكلية :

هي المجموعة التي تدرس جميع المجموعات باعتبارها مجموعات جزئية و يرمز لها بالرمز ∪.

تكون المجموعة Α جزئية من المجموعة Β إذا كانت جميع $A \subset B = 1$ الصورة :- B موجودة في B و تكتب على الصورة

فإن A ⊂ B.

اذا كانت

إذا كان

الحل:

إذا كان

أوجد A ∩ B؟

أوجد (AUB) ؟

٢- المجموعة المكونة من جميع طلاب التعليم الالكتروني بجامعة الملك فيصل مجموعة جزئية من مجموعة طلاب هذه الجامعة.

 $A \subseteq B$, $B \subseteq A$ $\gg \gg A = B$

إذا كانت A جزيئية من B وتساويها وكذلك B جزيئه من A وتساويها .. فتكون A تساوى B

أما المجموعتان المتكافئتان فهما المجموعتان اللتان تتساويان في عدد عناصرها وتكتب على الصورة В ≡В

أى المجموعات التالية متكافئة وأيها متساوية ؟ 1- $A = \{1, 5, 7, 9\}$, $B = \{9, 7, 5, 1\}$ $2-A=\{2,5,9\}$, $B=\{a,s,d\}$ الحل:

1 - A = B $2 - A \equiv B$

 $A = \{1, 2, 3, 7\}$ $B = \{2, 4, 6, 8\}$

 $A = \{ -1, 0, 1, 2, 3 \}$

 $B = \{0,2,4,6,\}$

 $(AUB) = \{1,2,3,4,6,7,8\}$

 $A = \{2, 4, 6\}$

 $B = \{1,2,3,4,5,6,7,8\}$

اتحاد المجموعتين A و B (A U B) هو مجموعة كل العناصر الموجودة في A أو في B أو في كليهما.

العمليات على المجموعات:

تقاطع المجموعتين A و B (A∩B) هو مجموعة كل العناصر الموجودة في A وفي B معاً أي العناصر المشتركة بين A و B.

$(A \cap B) = \{0, 2\}$ الحل:

إذا كان $\cup = \{1,2,3,4,5,6,7,8,9,10\}$ A={2,4,6,8,10} \overline{A} المجموعة المكملة

$$\overline{A} = \{1,3,5,7,9\}$$
 : الحل

اذا كانت $A = \{1,2,3,x,y\}$ $B={3,4,5,x,w}$ أوجد **B-B** $A-B = \{1.2.v\}$

✓ المكملة أو المتممة: يقال أن \overline{A} مكملة المجموعة A إذا كانت تحتوى على جميع عناصر المجموعة الكلية ل باستثناء عناصر A.

إذ كانت مجموعتان B ، A فإن A-B يسمى بالفرق وهو مجموعة كل العناصر الموجودة Aوليست في B.

وتقرأ من اليسار إلى اليمين A ناقص B وليس العكس..

 $\checkmark A \cup B$

 $\checkmark A \cap B$

أوجد:

الله مثال:

 \checkmark A – B

 $A=\{1,2,3,x,y\}$

إذا كانت:

 $\checkmark \overline{\mathbf{A}}$

B={3,4,5,x,w}

 $\sqrt{\overline{B}}$

والمجموعة الكلية: (1,2,3,4,5,x,y,w,z

 $\checkmark \overline{A} \cup \overline{B}$

 $\checkmark \overline{A} \cap \overline{B}$ $\checkmark \overline{\mathbf{A}} \cup \mathbf{A}$

 $\checkmark \overline{A} \cap A$

2. $A \cap B = \{3,x\}$

3. $A - B = \{4,5,w\}$

4. \overline{A} $={4,5,w,z}$

5. **B** $={1,2,y,z}$

6. $\overline{A} \cup \overline{B} = \{1,2,4,5,y,w,z\}$

7. $\overline{A} \cap \overline{B} = \{Z\}$

8. $\overline{A} \cup A = U$

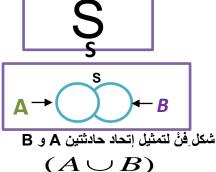
9. $\overline{A} \cap A = \{\}$

الحل ...

وممكن أن تكون الإجابة فاي Ø المجموعة الخالية

أشكال فنْ VIN Figures

يمكن تمثيل المجموعات والعمليات المختلفة عليها من خلال استعمال اشكال هندسية تسمى أشكال فِنْ وذلك وفق ما يلى:



Y. إتحاد الحوادث Events Union ؛ لأي حادثتين A و B فإن الحادثة التي تتضمن كافة العناصر التي تنتمي إلى A أو إلى B أو إلى كليهما معا يطلق عليها إتحاد حادثتين ويرمز لها $(B \cup A)$ أو $(A \cup B)$ والشكل التالي يوضح ذلك:

 $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \dots \cup_n$: هو الحوادث هو A1, A2, A3, An فإن إتحاد هده الحوادث هو عام لأي n حادثة

ويمكن القول أن $A_i = \bigcup_{i=1}^n A_i$ هو حدث يقع إذا وقع أحد هذه الحوادث Ai على الأقل وهو ما يطلق عليه جمع الأحداث

فالإتحاد ∪ يعني اتحاد المجموعتين A و B وهو مجموع العناصر الموجودة في كلتا المجموعتين دون تكرار العناصر.

≥ مثال:

A={1,2,-6,-7}

B={-6,-7,-11}

 $(A \cup B) = \{1,2,-6,-7,-11\}$

✓ خواص العمليات الجبرية لإتحاد الحوادث:

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$: فإن حوادث فإن C و B و A إذا كانت $A \cup (B \cap C)$

ويعني ذلك توزيع الإتحاد على التقاطع.

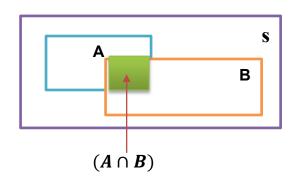
 $(A \cup B) = (B \cup A)$: وكذلك هناك خاصية التبديل والتي تعنى أن

$A \cup (B \cap C)$ أن كان عندنا

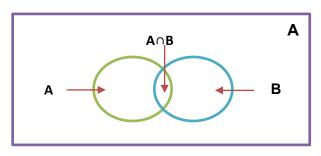
فيتم توزيع خارج القوس مع داخل القوس A , C و اتحاد B , A البشارته يتم ايجاد اتحاد المجموعتين التي نتجت ثم ايجاد التقاطع بين المجموعتين التي نتجت عن الإتحاد $(A \cup B) \cap (A \cup C)$

". تقاطع الحوادث Events Intersection."

لأي حادثتين A و B فإن الحادثة التي تتضمن كافة نقاط العينة التي تنتمي إلى A و B أو إلى كليهما معا في نفس الوقت يطلق عليها تقاطع حادثتين ويرمز لها (A ∩ B) أو (A و B) وباستخدام أشكال فِنْ يكون الجزء المحدد بـ A and B هو الذي يمثل تقاطع الحادثتين:



🗷 مثال:



شكل فن لتمثيل تقاطع حادثتين A و B

 $\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap A_3 \cap A_1$ وبشكل عام لأي n حادثة n عام لأي n عام لأي n عام لأي أم عام ل

ويمكن القول أن A_i هو حدث يقع إذا وفقط وقعت كل الحوادث A_i على الأقل وهو ما يطلق عليه ضرب الحوادث

فالتقاطع ∩ إذا هو مجموعة العناصر المشتركة بين مجموعتين أو أكثر.

A={1,2,-6,-7}

B={-6,-7,-11}

 $(A \cap B) = \{-6, -7\}$

✓ خواص العمليات الجبرية لإتحاد الحوادث:

 $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$: إذا كانت A و B و C ثلاث حوادث فإن

ويعنى ذلك توزيع التقاطع على الإتحاد.

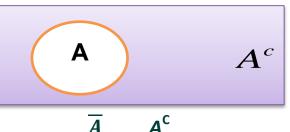
 $(A \cap B) = (B \cap A)$: وكذلك هناك خاصية التبديل والتي تعنى أن

$A\cap (B\cup C)$ شرح: أن كان عندنا

فيتم توزيع خارج القوس مع داخل القوس بإشارته يتم ايجاد تقاطع B, A وتقاطع A, C ثم ايجاد الإتحاد بين المجموعتين التي نتجت $(A \cap B) \cup (A \cap C)$ عن التقاطع

٤- الحادثة المتممة Complementary Event

لأي حادثة ٨ فإن متممتها هي الحادثة التي تتضمن كافة العناصر التي لا تنتمي إلى A ويرمز لها بالرمز A^{c} أو \overline{A} وهو حدث يتألف من جميع عناصر Ω غير المنتمية إلى Λ وباستخدام أشكال فن فإن الجزء المظلل يمثل الحادثة المتمة:



شكل فنْ لتمثيل مكملة الحادثة ٨

S={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

A={1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

B={1, 2, 3, 6, 8, 11, 12, 14, 16}

 $\overline{A} = \{2, 4, 6, 20\}$

 \overline{B} ={4, 5, 7, 9, 10, 13, 15, 17, 18, 19, 20}

- الحوادث المتنافية Mutually Execlusive Events

 $A \cap A^c = \phi$ الحادثتان $A \cap B = \phi$ و المنفصلتان إذا كان تقاطعهما خاليا أي أن $A \cap B = \phi$ و متنافيتان أو منفصلتان إذا كان تقاطعهما خاليا أي أن $A \cap B = \phi$ و باستخدام أشكال فإن الحادثتان المنفصلتان يتمثلان بالشكل التالى :

$$A \cap B = \phi$$

$$A \cap A^c = \phi$$

شكل فنْ لتمثيل حادثتان متنافيتان A و B

$$\overline{U}$$
 و \overline{S} و \overline{A} و \overline{A} و \overline{A} و \overline{A} و \overline{S} و \overline{A} و \overline{S} و \overline{A} و \overline{A}

$$A \cup A^c = S$$

$$A \cap A^c = \phi$$

$$\overline{S} = \phi$$

$$\overline{\phi} = S$$

$$A \cup S = S$$

$$A \cap S = A$$

$$A \cap \phi = \phi$$

$$\overline{B \cup A} = \overline{B \cap A}$$

$$\overline{A \cup B} = \overline{A \cap B}$$

إذا كانت
$$A \subset B$$
 فإن:

$$A = A \cap B$$

$$B = A \cup B$$

$$\overline{B} \subset \overline{A}$$

** أمثلة وتمارين **

🗷 التمرين الأول:

يراد شراء ثلاثة أنواع من اللحوم من جزار معين، فإذا رمزنا للحم الدجاج بـ A ولحم الضأن بـ B ، ولحم العجل بـ C فإن :

- $A\cap B\cap C$: وفر أنواع اللحوم الثلاثة يعني توفر لحم A و B و C أي بمعنى -
- $\overline{A} \cap \overline{B} \cap \overline{C}$: و کلها أي نوع من اللحوم يعني عدم توفر A و B و C او کلها أي بمعنى $\overline{C} \cap \overline{C}$
- $A \cup B \cup C$: أو C أو C أو C أو كلها أي بمعنى توفر على الأقل هو توفر C
 - $A\cap \overline{B}\cap \overline{C}$: توفّر نوع A فقط یعنی \overline{A}
- f C وعدم توفر النوعين الآخرين ، أو توفر f B وعدم توفر النوعين الآخرين أو توفر f B وعدم توفر النوعين الآخرين ، أو توفر f C وعدم توفر النوعين الآخرين أي بمعنى f C f C f C f C f C f C f C f C f C

شرح الحل السابق /

- ا. إن ذكر بالسوال حرف (و) تكون الإجابة ∩ تقاطع لماذا؟ لانه اشطر الزامي توفر الأنواع الثلاث (اي انواع اللحوم الثلاث) كما بالحاله الأولى .
- ٢. إن ذكر عدم توفر جميع الأنواع مع حرف (و) نكتب المتممه لكل نوع (حدث) مع رمز التقاطع ∩ كما بالحالة الثانية .
- ٣. إن ذكر توفر نوع واحد على الأقل من الأنواع المذكورة مع حرف (أو) نستخدم رمز الإتحاد ∪ مع ذكر جميع الأنواع اي ليس الزامي وجود كل الأنواع مره واحده كما بالحالة الثالثة .
- ٤. توفر نوع واحد فقط (اي الزامي) نستخدم بهذه الحالة رمز التقاطع ∩ مع الحالات الممتمة للأنواع (الأحداث) الباقية كما بالحالة الرابعة.
- ه. بالحالة الاخيره اشترط توفر نوع واحد على الأكثر من الثلاث أنواع لكن لم يحدد نوع بعينه. هنا كل مره نوجد نوع من الأنواع الثلاثه ونكتبه كما هو بدون شرطه A وننفي النوعان الأخران اي المتممة لهما ويكتب نفس حرف كل نوع فوقه شرطه مثل \overline{B} مع استخدام رمز التقاطع بينها ونكررها B مرات حسب عدد الأنواع B وبما انه لم يشترط نوع معين نستخدم رمز الإتحاد بين الثلاث حالات ..

التمرين الثاني:

وضح أي من هذه المجموعات هي مجموعة خالية أو مجموعة منتهية أو مجموعة غير منتهية :-

- i. A ={x: عدد سالب و موجب x } = Ø
- مجموعة منتهية = { 12, 9, 6, 8} B = {3 ,6, 9, 12
- iii. $C = \{x: العربية العربية تقع في شبة الجزيرة العربية <math>x \} = \emptyset$
- iv. D = { 2, 4, 6,,100} = مجموعة منتهية
- v. E = { 100 , 200 , 300 ,......} = غير منتهية = {
- vi. F = { w, e, r, t } = مجموعة منتهية

🗷 التمرين الثالث:

$$B = \{1,2,3,4,5,6,7,8\}$$
 و $A = \{3,5,7,7\}$ فهل يمكن القول أن $A = \{3,5,7,7\}$. ۱

الحل / نعم لانه جميع عناصر A موجوده في B

$$2-A=\{20,50,70\}$$
, $B=\{k,d,u\}$

1.
$$A = B$$
 line والعدد

🗷 التمرين الرابع:

$$B = \{ 1, 2, 3, 4, 5 \}$$
 $C = \{ 6, 7, 8, 9, 10 \}$

1-
$$A \cup B$$
 5- $A \cap \overline{C}$

$$2-A\cap C$$
 6-A-(B\cap C)

$$3-\overline{A}\cap \overline{B}$$
 7- $(\overline{A}\cup B)-C$

$$4-B\cup C$$
 8- $(\overline{\overline{B}\cap \overline{C}})$

الحل:

$$1-A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\}$$

$$2-A \cap C = \{6, 8, 10\}$$

$$3 - \overline{A} \cap \overline{B} = \overline{A \cup B} = \{0, 7, 9\}$$

$$4-B \cup C = \{1,2,3,4,5,6,7,8,9,10\}$$
 $(\overline{A} \cup B) - C = \{0,1,2,3,4,5\}$

$$5-A \cap \overline{C} = A - C = \{2, 4\}$$

$$6-A-(B\cap C)=B\cap C=\emptyset$$

$$A-(B\cap C)=A-(\emptyset)=A$$

7-
$$(\overline{\mathbf{A}} \cup \mathbf{B})$$
 – \mathbf{C}

$$\overline{A} = \{0,1,3,5,7,9\}$$

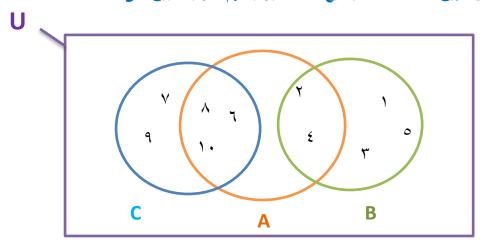
$$\overline{A} \cup B = \{0, 1, 2, 3, 4, 5, 7, 9\}$$

$$(A \cup B) - C = \{0, 1, 2, 3, 4, 5\}$$

8-
$$(\overline{\overline{B} \cap \overline{C}}) = \overline{(B \cup C)} = B \cup C$$

$$B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

حل السؤال السابق عن طريق أشكال فِنْ لتوضيح حل الدكتور وللفهم اكثر بالتطبيق على الشكل:



🗷 التمرين الخامس:

إذا كانت :

أوجد المجموعة الكلية ثم أوجد :-

1.
$$AUB = \{4,6,8,10,12,r,m,o\}$$

2.
$$A \cap B = \{10,r\}$$

3.
$$B - A = \{4,6,0\}$$

4.
$$\overline{A} = \{4,6,0\}$$

5.
$$\overline{B}$$
 ={8,12,m}

6.
$$\overline{A} \cup \overline{B} = \{4,6,8,12,0,m\}$$

7.
$$\overline{A} \cap \overline{B} = \{\}$$

8.
$$\overline{A} \cup A = U$$

• ممكن حلها ايضاً عن طريق تخطيط للمجموعات بأشكال فين كما بالسؤال السابق ..

🗷 التمرين السادس:

. نفترض أن $A=\{3,4,5,x,y\}$ و $B=\{4,x,y,z\}$ ضع الرمز $B=\{4,x,y,z\}$ و نفترض أن $A=\{3,4,5,x,y\}$

- **1.** 3 ∈ A
- **2.** 3 ∉ B
- **3.** x ∈ A
- **4.** x ∈ B
- 5. z ∉ A
- 6. 1 ∉ A
- **7.** 1 ∉ B

تعريف الإحتمالات : يمكن تعريف الاحتمالات بطرق عديدة غير أن أبسطها "هو مقياس لامكانية وقوع حدث (Event)

وتستعمل كلمة احتمالات بشكل دائم في حياتنا اليومية مثل:

- احتمال أن ينجح الطالب في مقرر دراسي.
 - احتمال نزول المطر اليوم

وفي أحيان أخرى تستخدم كلمة احتمالات ككلمة مرادفة لبعض الكلمات الأخرى مثل: ممكن، غالبا، مؤكد، مستحيل ... وقد ارتبط المفهوم التقليدي للاحتمال بألعاب الحظ لمدة طويلة، وتختلف درجة إمكانية تحقق أي حادثة من شخص إلى آخر حسب خبرته والمعلومات المتوفرة لديه عن الحادثة. وقد تطور علم الاحتمالات تطورا كبيرا وسريعا وأصبح أساسا لعلم الإحصاء وبحوث العمليات وغيرها .

۱) التجربة العشوائية Random Experiment :

هي تلك التجربة التي تكون جميع نتائجها معلومة مسبقا ولكن لا يمكن التنبؤ بحدوث أي من هذه النتائج بصفة مؤكدة مثلا:

رمي حجر نرد مرة واحدة يعتبر تجربة عشوائية، حيث نعلم جميع قيم نتائج التجربة وهي إما ١ أو ٢ أو ٣ أو ٤ أو ٥ أو ٦ ولكن لا يمكن تحديد أي الأرقام يظهر إلى الأعلى بصورة مؤكدة قبل إجراء التجربة.

المشاركة في سباق الخيل لحصان معين يعتبر تجربة عشوائية فهو إما أن يفوز أو يخسر أو يتعادل.

رمي عملة معدنية مرة واحدة أو عدد من المرات يعتبر تجربة عشوائية معروف جميع نتائجها قبل أن تبدأ التجربة، ولكن لا يمكن الجزم بظهور أي منها في رمية معينة.

٢) الحادث والفراغ العيني : ح فراغ العينة :

هو المجموعة الشاملة التي تحتوي على جميع النتائج الممكنة للتجربة العشوائية ويرمز له بالرمز Ω ويطلق علية الحالات الممكنة.

افترض أننا نقوم بإجراء تجربة ما كرمي زهرة النرد مثلاً وبالاحظ كل النتائج الممكنة وهي ظهور أحد الأوجه السبة ١ أو ٢ أو ٣ أو ٤ أو ٥ أو ٦ وبفترض أننا مهتمون بظهور رقم فردي أي ١ أو ٣ أو ٥ من التجربة . وهكذا فإن عملية رمي الزهرة تسمى تجربة (Experiment) وظهور رقم فردي هو محل اهتمامنا يسمى حادثاً (Event) ومجموعة جميع الحالات الممكنة الظهور تسمى بالفراغ العيني (Sample Space) ويلاحظ أن الحادث قد يكون حالة او اكثر من الفراغ العيني .

- ✓ الحادثه:

هي مجموعة جزئية من فراغ العينة وتمثل مجموعة النتائج التي تحقق الحدث وتسمى أيضا الحالات المواتية Favorable Cases ، فمثلا الحصول على رقم زوجي في تجربة رمي زهرة النرد مرة واحدة تكون الحادثة هي {٢ ، ٤ ، ٢} ، ويمكن أن تحتوي الحادثة على عنصر واحد أو أكثر.

خلاصة التعريفات السابقة بمثال التالى:

الحصان في سبق الخيل تجربة عشوائية الحتمال (يكسب،يخسر،يتعادل) فراغ العينة ما هو احتمال أن يفوز؟ حدث ما هو احتمال ان يخسر ؟ حدث ما هو احتمال ان يتعادل؟ حدث ما هو احتمال ان يتعادل؟

٣- أنواع الحوادث:

أ. الحوادث المتنافية (Mutually Exclusive Events)

يقال عن الحادثين A و B أنهما متنافيان إذا استحال حدوثهما معا. فمثلاً عند رمي عملة معدنية لا يمكن الحصول على وجهين في وقت واحد.

ب. الحوادث المستقلة (Independent Events)

يعتبر الحادثين A أو B حادثين مستقلين إذا كان وقوع إحداهما أو عدم وقوعه لا يؤثر في وقوع الآخر. فمثلاً عند رمي قطعة عملة واحدة مرتين متتاليتين فإن نتيجة الرمية الثانية لا تتأثر بنتيجة الأولى.

ج. الحوادث الشاملة (Exhaustive Events)

تسمى الحوادث C ، B ، A ... حوادث شاملة في تجربة ما إذا كان لابد من حدوث إحداها عند إجراء التجربة.

فمثلاً عند اختيار طالب من الجامعة لمعرفة حالته ما إذا كان مدخنا أو غير مدخن تعتبر هذه الحالات حوادث شاملة لأنه لابد للفرد أن يكون له صفة واحدة من هذه الصفات. كذلك فإن الحصول على العدد ١ أو ٢ أو ٣ أو ٤ أو ٥ و أو ٦ عند رمي حجر النرد تعتبر حوادث شاملة لأنه لابد من حدوث إحداها.

🗷 مثال

رمي حجر نرد مرد واحدة ، أحسب التالي:

- احتمال الحصول على رقم ٥
- احتمال الحصول على رقم زوجي
- احتمال الحصول على رقم أكبر من ٢
- احتمال الحصول على رقم أقل من ٧
 - احتمال الحصول على رقم ٧

الحل:

فراغ العينة لهذه التجربة هو : Ω = $\{1, 2, 3, 4, 5, 6\}$ فيكون بالتالى الحل كما يلى:

$$P(A=5)=\frac{1}{6}$$

$$P(A=2,4,6)=\frac{3}{6}$$

$$P(A>2)=\frac{4}{6}$$

$$P(A<7)=\frac{6}{6}=1$$

$$P(A=7)=\frac{0}{6}=0$$

ويستنتج من ذلك أن أقل قيمة للاحتمال تساوي الصفر ويقال أن الحدث في هذه الحالة (حدث مستحيل) بينما تساوي واحد إذا كان الحدث مؤكد.

☑ مثال :
 الجدول التالي يمثل توزيع عمال أحد المصانع حسب الحالة الاجتماعية للعامل والقسم الدي يعمل به:

المجموع	متزوج	أعزب	الحالة الاجتماعية
12	7	5	القسم الأول
22	14	8	القسم الثاثي
16	6	10	القسم الثالث
50	27	23	المجموع

اختر عامل من الجدول السابق بطريقة عشوائية، ثم احسب الاحتمالات التالية:

- أن يكون أعزبا
- أن يكون متزوجا
- أن يكون من القسم الأول
- أن يكون من القسم الأول أو الثاني
- أن يكون من القسم الأول وأعزب

الحل:

نفرض أن الحادثة △ أن يكون العامل أعزب أي △= {أن يكون العامل أعزب} فيكون الاحتمال المطلوب:

$$P(A) = \frac{\text{acc leavel leave}}{\text{acc leavel leave}} = \frac{23}{50} = 0.46$$

نفرض أن الحادثة B أن يكون العامل متزوج أي أن B = {أن يكون العامل متزوج} فيكون الإحتمال المطلوب:

$$P(B) = \frac{\text{acc llashly large}}{\text{acc llashly like}} = \frac{27}{50} = 0.54$$

نفرض أن الحادثة C أن يكون العامل من القسم الأول أي أن C = { أن يكون العامل من القسم الأول } فيكون الإحتمال المطلوب:

P(C) =
$$\frac{200}{200}$$
 = $\frac{12}{50}$ = 0.24

نتفرض ان الحادثة D ان يكون العامل القسم الاول او الثاني D أي = $\{$ ان يكون العامل من القسم الاول او الثاني $\}$ فيكون الاحتمال المطلوب:

P(D) =
$$\frac{34}{50}$$
 عدد عمال قسم الثاني او الاول = $\frac{12+22}{50}$ = $\frac{34}{50}$ 0.68

نفترض ان الحادثة E ان يكون العامل من القسم الاول و أعزب أي ان E أن يكون العامل من القسم الاول و أعزب E فيكون الاحتمال المطلوب :

$$P(E) = \frac{2 - 3 + 3}{3 + 3 + 3} = \frac{5}{50} = 0.1$$

جمع الاحتمالات: أ- في حالة كون الحوادث متنافية

إذا كانت الحوادث A3, A2, A1 حوادث متنافية بمعنى أن حدوث أحدها يؤدي إلى استحالة حدوث أي من الحوادث الأخرى وبالتالي فإن احتمال حدوث هذه الحوادث معاً يكون معدوماً فإن احتمال وقوع أي حادث من الحوادث المتنافية يساوي مجموع احتمالات وقوع هذه الحوادث .

• أو **=** +

$$P(A) = P(A) + P(B)$$
 فإن

يرمز أيضاً لاحتمال وقوع أحد الحادثين بالرمز

حوادث متنافية

$$P(AUB) = P(A) + P(B)$$

🗷 مثال:

رمي حجر نرد مرة واحدة ، احسب:

- احتمال الحصول على رقم ٥ أو ٦
- احتمال الحصول على رقم زوجي

الحل:

حيث أن الحصول على رقم ٥ أو ٦ حادثتان متنافيتان ، أي أن:

= A1={الحصول على الرقم $^{\circ}$ ، و A2= {الحصول على الرقم $^{\circ}$ فإن:

P(A1 U A2)=(1/6)+(1/6)=1/3

وحيث أن الحصول على رقم زوجي يعنى الحصول على رقم ٢ أو رقم ٤ أو رقم ٦ وكلها حوادث متنافى، أي أن:

A1= {الحصول على الرقم ٢} ، و A2= {الحصول على الرقم ٤} ، و A3= {الحصول على الرقم ٢} فإن:

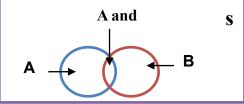
 $P(A1 \cup A2 \cup A3)=(1/6)+(1/6)+(1/6)=1/2$

حو ادث متنافية

في حالة الحوادث المتنافية: نستخدم الجمع بين الحوادث.

ب في حالة كون الحوادث غير متنافية

عند عدم اشتراط تنافي الحادثين A و B يكون المقصود بالحادث (A أو B) وقوع A على انفراد أو وقوع B على انفراد أو وقوع الحادثين A و B معا في وقت واحد كما يتضح من الشكل التالي



حوادث غير متنافية

الآن (P (A) + P (B) تمثل مجموع الحالات المواتية للحادث A مضافاً إليها مجموع الحالات المواتية للحادث B ولكن يجب ملاحظة أن كل من الحالات المواتية للحادث A وتلك المواتية للحادث B تتضمن الحالات المواتية

لوق و A و B معاً ، وبه ذا فإنه في حالة جمع (B) P (A) و (B) P فإننا نجمع (B و B) P فإننا نجمع (B و B) P مرتين ، لهذا لابد من طرح (B و A و واحدة لنحصل على الاحتمال (B أو P) P وهذا هو :

$$P(A \cup B) = P(A) + P(B) - P(A \cup B)$$

أو

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

• في حالة الحوادث الغير متنافية : نستخدم الجمع بين الحوادث ثم طرح التقاطع في ما بينها

🗷 مثال:

الجدول التالي يمثل توزيع عمال أحد المصانع حسب الحالة الاجتماعية للعامل والقسم الذي يعمل به:

المجموع	متزوج	أعزب	الحالة الاجتماعية
12	7	5	القسم الأول
22	14	8	القسم الثاثي
16	6	10	القسم الثالث
50	27	23	المجموع

اختير عامل من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

• احتمال أن يكون العامل من القسم الأول أو الثاني. ... حادثه متنافية جمع الحوادث

احتمال أن يكون العامل متزوجا أو من القسم الأول حادثه غير متنافية جمع الحوادث – تقاطعهم

• احتمال أن يكون العامل من القسم الثالث أو أعزب ... حادثه غير متنافية جمع الحوادث - تقاطعهم

الحل:

نفرض أن الحادثة A1 أن يكون العامل من القسم الأول أي أن A1 = {أن يكون العامل من القسم الأول}

نفرض أن الحادثة A2 أن يكون العامل من القسم الثاني أي أن A2 = {أن يكون العامل من القسم الثاني}

فيكون الاحتمال المطلوب:

P(A1)=12/50

P(A2)=22/50

 $P(A1 \cup A2) = P(A1) + P(A2) = (12/50) + (22/50) = 34/50 = 0.68$

نفرض أن الحادثة [٨] أن يكون العامل متزوجا أي أن [٨] = {أن يكون العامل متزوج}

نفرض أن الحادثة A2 أن يكون العامل من القسم الأول أي أن A2 = {أن يكون العامل من القسم الأول}

فيكون الاحتمال المطلوب:

P(A1)=27/50

P(A2)=12/50

 $P(A1 \cup A2) = P(A1) + P(A2) - P(A1 \cap A2) = (27/50) + (12/50) - (7/50) = 32/50 = 0.64$

نفرض أن الحادثة A1 أن يكون العامل من القسم الثالث أي أن $A1 = \{i$ يكون العامل من القسم الثالث} $A2 = \{i$ يكون العامل أعزب أي أن $A2 = \{i$ يكون العامل أعزب $A2 = \{i$ يكون العامل أعزب $A2 = \{i$ يكون العامل أعزب $A2 = \{i\}$

فيكون الاحتمال المطلوب:

P(A1)=16/50

P(A2)=23/50

 $P(A1 \cup A2) = P(A1) + P(A2) - P(A1 \cap A2) = (16/50) + (23/50) - (10/50) = 29/50 = 0.58$

o الاحتمال الشرطى Conditional Probability •

إذا كان لدينا الحادثين A2, A1 وكان (P(A2) لا يساوي الصفر فإن الاحتمال الشرطي للحادث A1 بشرط وقوع الحادث A2 يعطى بالمعادلة التالية:

$$P(A1|A2) = \frac{P(A_1 \cap A_2)}{P(A_2)}$$
 تقاطع الشرطين تقسيم (على) الشرط الثاني

أي أن الاحتمال الشرطي للحادث A1 بشرط وقوع الحادث A2 يساوي حاصل قسمة الاحتمال المركب لـ A2 , A1 على احتمال الحادث A2 .

🗷 مثال:

إذا كان احتمال نجاح طالب في مقرر الرياضيات 0.64 واحتمال نجاحه في مقرر الإحصاء ومقرر الرياضيات معا 0.32 فما هو احتمال نجاحه في مقرر الإحصاء؟ علما بأنه نجح في مقرر الرياضيات.

الحل:

نفرض أن ٨٦={ نجاح الطالب في مقرر الإحصاء }

وبذلك يكون:

P(A2)=0.64

P(A1∩A2)=0.32

ويكون المطلوب في هذه المسألة هو حساب P (A1 | A2) وبتطبيق العلاقة:

P (A1 | A2) =
$$\frac{P(A_1 \cap A_2)}{P(A_2)} = \frac{0.32}{0.64} = 0.5$$

إذا احتمال نجاح الطالب في مقرر الإحصاء علما بأنه نجح في مقرر الرياضيات هو 0.5

☑ مثال:
الجدول التالي يمثل توزيع عمال أحد المصانع حسب الحالة الاجتماعية للعامل والقسم الذي يعمل به:

المجموع	متزوج	أعزب	الحالة الاجتماعية
12	7	5	القسم الأول
22	14	8	القسم الثاثي
16	6	10	القسم الثالث
50	27	23	المجموع

اختير عامل من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- احسب احتمال أن يكون العامل من القسم الأول بشرط أنه متزوج؟ احتمال أن يكون العامل أعزب بشرط أنه من القسم الثالث؟

الحل:

نفرض أن A_1 {أن يكون العامل من القسم الأول}

 $A={i \cup 200}$

الثالث العامل من القسم الثالث B_3

Ba {أن يكون العامل أعزب}

فيكون بالتالي:

١- احتمال أن يكون العامل من القسم الأول بشرط أنه متزوج هو:

احتمال أن يكون من القسم الأول ومتزوج

احتمال أن يكون متزوج

P (A1 | A2)=
$$\frac{P(A_1 \cap A_2)}{P(A_2)} = \frac{\frac{7}{50}}{\frac{27}{50}} = \frac{7}{27}$$

إذا احتمال أن يكون العامل من القسم الأول بشرط أنه متزوج هو 0.259

٢- احتمال أن يكون العامل أعزب بشرط أنه من القسم الثالث هو:

احتمال أن يكون العامل أعزب بشرط أنه من القسم الثالث

احتمال أن يكون من القسم الثالث

P (B1 | B2) =
$$\frac{P(A_1 \cap A_2)}{P(A_2)} = \frac{\frac{10}{50}}{\frac{16}{50}} = \frac{10}{16}$$

إذا احتمال أن يكون العامل أعزب بشرط أنه من القسم الثالث هو 0.625

ضرب الاحتمالات

إن احتمال حدوث حادثين مستقلين أو أكثر معاً يساوي حاصل ضرب احتمال حدوث كل واحد من هذه الحوادث ببعضها بعضاً.

فمثلا إذا كان لدينا صندوق به ١٠ كرات متماثلة منها ٦ بيضاء و ٤ سوداء وسحبنا كرة من الصندوق فإن احتمال أن تكون بيضاء و ١٠ كرات متماثلة منها ٦ بيضاء و ١٠ سوداء 6/10 واحتمال أن تكون سوداء 6/10 واحتمال أن تكون سوداء 6/10 ، فتكرار العملية يؤدي إلى نفس الكرة مرة أخرى فإن احتمال أن تكون بيضاء 6/10 واحتمال أن تكون سوداء 4/10 ، فتكرار العملية يؤدي إلى نفس الاحتمال.

ومن هذا نرى أن نتيجة السحب الأول لا تؤثر على نتيجة السحب الثاني وهذا ما يسمى سحب بإرجاع أو إحلال أو إعادة.

فإذا كان لدينا الحادثين المستقلين ٨٦ و ٨٥ فإن احتمال حدوثهما معا هو:

$$P(A1 \cap A2) = P(A1) P(A2)$$

بمعنى أن احتمال وقوع حدثين مستقلين معا يساوي حاصل ضرب احتمال وقوع أي منهما بمفرده في احتمال وقوع الحدث الآخر بمفرده وفي حالة التعميم لـ n فإن :

🗷 مثال: إذا رمينا قطعة نقود مرتان ، احسب الاحتمالات التالية:

- أن تكون الأولى صورة والثانية كتابة.
- أن تكون كلتاهما صورة.

الحل: نفرض أن: 🗚= (ظهور صورة في الرمية الأولى)

Δ= {ظهور كتابة في الرمية الثانية}

$$P(A_1) = \frac{1}{2}$$
 , $P(A_2) = \frac{1}{2}$

حيث أن الحادثتان A1 و A2 مستقلتين فإن احتمال أن تكون الرمية الأولى صورة والثانية كتابة هو:

$$P(A_1 \cap A_2) = P(A_1) \times (P(A_2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

الخلاصة / في حالة الحوادث المستقلة يتم ضرب الحوادث

نفرض أن: B1={ظهور صورة في الرمية الأولى}

B2={ظهور صورة في الرمية الثانية}

$$P(B_1) = \frac{1}{2}$$
, $P(B_2) = \frac{1}{2}$

فيكون:

وحيث أن الحادثتان B1 و B2 مستقلتين فإن احتمال أن تكون الرمية الأولى صورة والثانية صورة هو:

$$P(B_1 \cap B_2) = P(B_1) \times (P(B_2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

مما سبق يمكن القول أن الحوادث المعطاة تكون مستقلة عندما تبقى الاحتمالات ثابتة مثل الحوادث:

١- رمي قطع نقود (أو قطعة واحدة عدة مرات)

٢- رمي أحجار نرد (أو حجر نرد عدة مرات)

٣- السحب مع الإرجاع (أو الإعادة)

ع مثال:

الجدول التالي يمثل توزيع عمال أحد المصانع حسب الحالة الاجتماعية للعامل والقسم الذي يعمل به فإذا سحب عاملان من المصنع مع الإرجاع (أي إرجاع العامل الأول قبل سحب العامل الثاني) احسب:

المجموع	متزوج	أعزب	الحالة الاجتماعية
12	7	5	القسم الأول
22	14	8	القسم الثاثي
16	6	10	القسم الثالث
50	27	23	المجموع

اختير عاملان من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- احتمال أن يكون العاملان من القسم الأول؟
 - احتمال أن يكون العاملان متزوجان؟
- احتمال أن يكون للعاملين نفس الحالة الاجتماعية؟
 - احتمال أن يكون العاملان من القسم نفسه؟

الحل:

١- احتمال أن يكون العاملان من القسم الأول يعني أن يكون العامل الأول من القسم الأول (الحادثة A1) والعامل الثاني من القسم الأول (الحادثة A2) وحيث أنهما مستقلان (لأن السحب مع الإرجاع) فإن:

$$P(A_1 \cap A_2) = P(A_1) \times (P(A_2) = \frac{12}{50} \times \frac{12}{50} = \frac{144}{2500} = 0.0576$$

٢- احتمال أن يكون العاملان متزوجان ، يعني أن يكون العامل الأول متزوج (الحادثة B1) والعامل الثاني متزوج (الحادثة B2)
 (B2) وحيث أنهما مستقلان (لأن السحب مع الإرجاع) فإن:

$$P(B_1 \cap B_2) = P(B_1) \times (P(B_2)) = \frac{27}{50} \times \frac{27}{50} = \frac{729}{2500} = 0.2916$$

٣- احتمال أن يكون للعاملين نفس الحالة الاجتماعية يعني أن يكون العاملان كلاهما متزوجين (الحادثة A) أو أن يكون
 كلاهما أعزبين (الحادثة B) فإن:

$$P(A \cup B) = P(A) + (P(B))$$

$$= P(A_1 A_2) + P(B_1 B_2)$$

$$= P(A_1 \times A_2) + P(B_1 \times B_2)$$

$$= \left[\frac{27}{50} \times \frac{27}{50}\right] + \left[\frac{23}{50} \times \frac{23}{50}\right] = 0.5032$$

٤- احتمال أن يكون العاملان من القسم نفسه يعني أن يكون العاملان كلاهما من القسم الأول (الحادثة A) أو أن يكون كلاهما من القسم الثانث (الحادثة C) فإن:

$$P(A \cup B \cup C) = P(A) + (P(B) + (P(C)))$$

$$= P(A_1 A_2) + P(B_1 B_2) + P(C_1 C_2)$$

$$= P(A_1 \times A_2) + P(B_1 \times B_2) + P(C_1 \times C_2)$$

$$= \left[\frac{12}{50} \times \frac{12}{50}\right] + \left[\frac{22}{50} \times \frac{22}{50}\right] + \left[\frac{16}{50} \times \frac{16}{50}\right] = 0.3536$$

نظریـــة بایــز (Bayes' Theorem)
 إذا كانت A1, A2, An مجموعة أحداث متنافية وكانت احتمالات حدوثها

P(A1), P(A2), P(An) وإذا كان هناك حدث B يحدث إذا حدث أي من الأحداث المتنافية أنظر الشكل بالأسفل،

 $1 \le r \le n$

فإن احتمال حدوث الحدث Ar بشرط حدوث B هو:

$$P(A_r|B) = \frac{P(A_r)P(B|A_r)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

المهم فهم طريقة الحل / ولا يهم حفظ القانون بهذه الحالة .. كما B في حل المثال التالي A2 **A**3 An

◄ مثال:-

مصنع يقوم بإنتاج سلعة معينة به ثلاث آلات، تنتج الآلة الأولى ٢٠% من إجمالي إنتاج السلعة وتنتج الآلة الثانية نسبة ٥٣% والثالثة بنسبة ٥٤% ، فإذا كانت نسبة الإنتاج المعيب في الثلاث آلات على الترتيب هو ٢% و ٥.١% و ٣% ، سحبت وحدة عشوائيا من إنتاج المصنع فوجد أنها معيبة، احسب الاحتمالات التالية:

١- أن تكون القطعة المعيبة من إنتاج الآلة الأولى؟

٢- أن تكون القطعة المعيبة من إنتاج الآلة الثانية؟

الحل: نفرض أن

B= {إنتاج سلعة معينة}

فيكون بالتالى:

تكون السلعة من إنتاج الآلة الأولى إذا علم - بشرط - أنها معيبة هو:

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)} = \frac{0.2 \times 0.02}{(0.2 \times 0.02) + (0.35 \times 0.025) + (0.45 \times 0.03)} = 0.152$$

واحتمال أن تكون السلعة من إنتاج الآلة الثانية إذا علم - بشرط - أنها معيبة هو:

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)} = \frac{0.35 \times 0.025}{(0.2 \times 0.02) + (0.35 \times 0.025) + (0.45 \times 0.03)} = 0.333$$

→ مثال: - مثال: - مثال: - مثال: - مثال النظافة في هذه الأقسام هي ٣٠% ، ٢٠% ، ٢٠% ، ١٠% على التوالي، إذا كانت مستشفى به أربعة أقسام، نسب عمال النظافة في هذه الأقسام هي ٣٠% ، ٤٠% ، ٢٠% ، ١٠% على التوالي، إذا كانت مستشفى به أربعة أقسام، نسب عمال النظافة في هذه الأقسام هي ٣٠% ، ٤٠% ، ٢٠% ، ٢٠% ، ١٠% على التوالي، إذا كانت مستشفى به أربعة أقسام، نسب عمال النظافة في هذه الأقسام هي ٣٠% ، ٤٠٠ ، ٢٠% ، ٢٠% ، ٢٠٪ ، ١٠٠ على التوالي، إذا كانت مستشفى به أربعة أقسام، نسب عمال النظافة في هذه الأقسام هي ٣٠٠ ، ٢٠٪ ، ٢٠% ، ٢٠٪ ، ٢٠٪ ، ٢٠٪ ، ٢٠٪ ، ٢٠٪ ، ١٠٠ على التوالي، إذا كانت مستشفى به أربعة أقسام، نسب عمال النظافة في هذه الأقسام هي ٣٠٠ ، ٢٠٪ ، ٢ نسب العمال المدخنين بهذه الأقسام هي ١٥%، ١٨% ، ٢١% ، ٩ % على التوالى، اختير عامل عشوانياً فوجد أنه مدخن ، احسب الاحتمالات التالية:

- ١- أن يكون العامل من القسم الأول؟
- ٢- أن يكون العامل من القسم الثاني؟
- ٣- أن لا يكون العامل من القسم الأول؟

الحل:

$$P(A1)=0.3$$
 $P(B \mid A1)=0.15$ $P(B \mid A1)=0.15$ $P(A2)=0.4$ $P(B \mid A2)=0.18$ $P(A2)=0.4$ $P(B \mid A2)=0.18$ $P(A3)=0.2$ $P(B \mid A3)=0.12$ $P(B \mid A3)=0.12$ $P(B \mid A4)=0.12$ $P(B \mid A4)=0.09$ $P(B \mid A4)=0.09$ $P(B \mid A4)=0.09$

احتمال أن يكون العامل من القسم الأول إذا علم — بشرط — أنه مدخن :

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{\sum_{i=1}^{4} P(A_i)P(B|A_i)} = \frac{0.3 \times 0.15}{(0.3 \times 0.15) + (0.4 \times 0.18) + (0.2 \times 0.12) + (0.1 \times 0.09)} = 0.3$$

واحتمال أن يكون العامل من القسم الثاني إذا علم - بشرط - أنه مدخن:

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{\sum_{i=1}^{4} P(A_i)P(B|A_i)} = \frac{0.4 \times 0.18}{(0.3 \times 0.15) + (0.4 \times 0.18) + (0.2 \times 0.12) + (0.1 \times 0.09)} = 0.48$$

واحتمال أن لا يكون العامل من القسم الأول إذا علم - بشرط - أنه مدخن:

$$P(A_1^c|B) = 1 - 0.3 = 0.7$$

الخلاصة لحل التمارين بدون حفظ القوانين .. مجرد فهم تطبيق القانون :

- جمع الاحتمالات / حرف (أو) = + حوادث متنافيه (اي انعدام حدوثها مع بعضها) يتم الجمع بين الحوادث حوادث غير متنافية (تقاطعها بنقطة معينه) (يتم جمعها ثم طرح التقاطع بينها)
- ٢- ضرب الإحتمالات / حرف (و) = × حوادث مستقلة (اي امكانية حدوث احدهما بدون ما تأثر على الأخرى) يتم ضرب الحوادث.
 - ٣- احتمال شرطى / (لا يتحقق الحدث الاول الإبشرط تحقق الحدث الثاني) ياخذ تقاطع الحدثين ثم يقسم على الحدث الثاني
 - ٤- <u>نظرية بايز</u> / يضرب كل حدث بالأحتمال الخاص فيه .. ثم يتم اخذ الحدث المطلوب ويقسم على / جميع الاحداث الأخرى مضروبه بإحتمالاتها بما فيهم الحدث المطلوب . والجمع بينها

****** تمارین واجب ******

- ١- عرف المصطلحات التالية:-
- (التجربة العشوانية فراغ العينة الحادث الحوادث المتنافية الحوادث المستقلة الحوادث الشاملة) . ٢- الجدول التالي يمثل توزيع موظفي أحد الشركات حسب الحالة الاجتماعية للموظف والمستوى الاداري الذي يعمل

المجموع	متزوج	أعزب	الحالة الاجتماعية
Y £	١٤	1.	مستوى الإدارة الدنيا
£ £	۲۸	١٦	مستوى الإدارة المتوسطه
٣٢	١٢	۲.	مستوى الإدارة العليا
1	0 \$	٤٦	المجموع

أولاً: -اختر موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- أن يكون أعزبا.
- أن يكون متزوجا.
- أن يكون من مستوى الادارة الدنيا.
- أن يكون من مستوى الادارة الدنيا أو المتوسطة.
 - أن يكون من مستوى الإدارة الدنيا وأعزب.

ثانياً: اختير موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- احسب احتمال أن يكون موظفى الادارة الدنيا بشرط أنه متزوج؟
- احتمال أن يكون الموظف أعزب بشرط أنه من موظفى الادارة العليا ؟

ثالثاً: تم اختيار ٢ موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- احتمال أن يكون الموظفين من الإدارة الدنيا ؟
 - احتمال أن يكون الموظفين متزوجان؟
- احتمال أن يكون للموظفين نفس الحالة الاجتماعية؟
 - احتمال أن يكون الموظفين من القسم نفسه؟
- ٣- مصنع يقوم بإنتاج سلعة معينة به ثلاث آلات، تنتج الآلة الأولى ٤٠% من إجمالي إنتاج السلعة وتنتج الآلة الثانية نسبة ٢٠% و الثلاث آلات على الترتيب هو ٤% و ٣% و ٥٠% ، سحبت وحدة عشوائيا من إنتاج المصنع فوجد أنها جيدة ، احسب الاحتمالات التالية:
 - أن تكون القطعة الجيدة من إنتاج الآلة الأولى؟
 - أن تكون القطعة الجيدة من إنتاج الآلة الثانية؟

** حل تمارين الواجب **

التمرين الأول:

حرف المصطلحات التالية: التحرية العشمانية في اغياما

(التجربة العشوانية - فراغ العينة - الحادث - الحوادث المتنافية - الحوادث المستقلة - الحوادث الشاملة) .

التجربة العشوانية: هي تلك التجربة التي تكون جميع نتائجها معلومة مسبقا ولكن لا يمكن التنبؤ بحدوث أي من هذه النتائج بصفة.

فراغ العينة: هو المجموعة الشاملة التي تحتوي على جميع النتائج الممكنة للتجربة العشوائية ويرمز له بالرمز Ω ويطلق علية الحالات الممكنة.

الحادث: هي مجموعة جزئية من فراغ العينة وتمثل مجموعة النتائج التي تحقق الحدث وتسمى أيضا الحالات المواتية Favorable Cases ، فمثلا الحصول على رقم زوجي في تجربة رمي زهرة النرد مرة واحدة تكون الحادثة هي {٢ ، ٤ ، ٤ ، ويمكن أن تحتوي الحادثة على عنصر واحد أو أكثر.

الحوادث المتنافية: يقال عن الحادثين A و B أنهما متنافيان إذا استحال حدوثهما معا. فمثلاً عند رمي عملة معدنية لا يمكن الحصول على وجهين في وقت واحد.

الحوادث المستقلة: يعتبر الحادثين A أو B حادثين مستقلين إذا كان وقوع إحداهما أو عدم وقوعه لا يوثر في وقوع الآخر. فمثلاً عند رمي قطعة عملة واحدة مرتين متتاليتين فإن نتيجة الرمية الثانية لا تتأثر بنتيجة الأولى.

الحوادث الشاملة: تسمى الحوادث C ، B ، A ... حوادث شاملة في تجربة ما إذا كان لابد من حدوث إحداها عند إجراء التجرية.

🗷 التمرين الثاني:

٤- الجدول التالي يمثل توزيع موظفي أحد الشركات حسب الحالة الاجتماعية للموظف والمستوى الاداري الذي يعمل به

المجموع	متزوج	أعزب	الحالة الاجتماعية
7 £	١٤	1 *	مستوى الإدارة الدنيا
£ £	۲۸	17	مستوى الإدارة المتوسطه
٣٢	١٢	۲.	مستوى الإدارة العليا
1	0 £	٤٦	المجموع

أولاً: اختر موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- أن يكون أعزبا.
- أن يكون متزوجا.
- أن يكون من مستوى الإدارة الدنيا.
- أن يكون من مستوى الادارة الدنيا أو المتوسطة.
 - أن يكون من مستوى الادارة الدنيا وأعزب.

الحل:

نفرض أن الحادثة ٨ أن يكون الموظف أعزب أي ٨= {أن يكون الموظف أعزب } فيكون الاحتمال المطلوب:

$$P(A) = \frac{46}{100} = 0.46$$

نفرض أن الحادثة B أن يكون الموظف متزوج أي أن B = {أن يكون الموظف متزوج} فيكون الإحتمال المطلوب:

$$P(B) = \frac{\text{acc lhag diago in harize}}{\text{acc lhag diago in like}} = \frac{54}{100} = 0.54$$

نفرض أن الحادثة C أن يكون الموظف من مستوى الإدارة الدنيا

أي أن] = { أن يكون الموظف من مستوى الإدارة الدنيا } فيكون الإحتمال المطلوب:

$$P(C) = \frac{24}{100} = \frac{24}{100}$$
 = 0.24

نتفرض ان الحادثة D ان يكون الموظف من مستوى الادارة الدنيا أو المتوسطة .

D أي أن = { ان يكون الموظف من مستوى الإدارة الدنيا أو المتوسطة }

فيكون الاحتمال المطلوب:

$$P(D) = \frac{24+44}{100} = \frac{68}{100}$$
 عدد موظفین مستوی الإدارة الدنیا أو المتوسطة عدد الموظفین الکلی

• حادثتان متنافياتان أي لا يمكن حدوثهما معاً وذكرت أو بالسؤال أو = + يتم جمع الحوادث

نفترض ان الحادثة E ان يكون الموظف من مستوى الإدارة الدنيا وأعزب أي ان E = { أن يكون الموظف من مستوى الإدارة الدنيا وأعزب } فيكون الاحتمال المطلوب:

$$P(E) = \frac{2 - 10}{200} = \frac{10}{100} = 0.1$$

الحل بطريقة الضرب:

$$P(E) = \frac{24}{100} \times \frac{46}{100} = 0.24 \times 0.46 = 0.1$$

■ حادثتان مستقلتان أي يمكن حدوث احدهما مما لا ياثر على الاخرى وذكرت و بالسؤال و= × يتم ضرب الحوادث او اختيار نقطة التقاء الحادثتين كم تم بحل السؤال .

ثانياً: اختير موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- · احسب احتمال أن يكون موظفى الادارة الدنيا بشرط أنه متزوج؟
- احتمال أن يكون الموظف أعزب بشرط أنه من موظفي الادارة العليا؟

الحل:

نفرض أن A_1 {أن يكون الموظف من مستوى الإدارة الدنيا }

A= {أن يكون الموظف متزوج}

 $B_3 = \{i \text{ is some bound} \}$

B4= {أن يكون الموظف أعزب}

فيكون بالتالي:

١- احتمال أن يكون الموظف من موظفى الإدارة الدنيا بشرط أن يكون متزوج:

احتمال أن يكون من موظفي الإدارة الدنيا بشرط انه متزوج

احتمال أن يكون متزوج

P (A1 | A2)=
$$\frac{P(A_1 \cap A_2)}{P(A_2)} = \frac{\frac{14}{100}}{\frac{54}{100}} = \frac{14}{54}$$

إذا احتمال أن يكون الموظف من موظفى الإدارة الدنيا بشرط أنه متزوج هو: 0.259

٢- احتمال أن يكون الموظف أعزب بشرط أنه من موظفي الادارة العليا:

احتمال أن يكون العامل أعزب بشرط أنه من موظفي الإدارة العليا

احتمال أن يكون موظفي الإدارة العليا

P (B1 | B2) =
$$\frac{P(A_1 \cap A_2)}{P(A_2)} = \frac{\frac{20}{100}}{\frac{32}{100}} = \frac{20}{32}$$

إذا احتمال أن يكون الموظف أعزب بشرط أنه من موظفي الادارة العليا هو 0.625

P (A1 | A2)=
$$\frac{P(A_1 \cap A_2)}{P(A_2)}$$
 : (الإحتمال الشرطي) : • تم تطبيق القانون السابق الخاص بحالة (

لكن بهذه الحالة لا يهم حفظ القانون فقط طريقة تطبيقه الحدث الثاني) ياخذ تقاطع الحدثين ثم يقسم على الحدث الثاني التاني المناني على الحدث الثاني المناني المدن الثاني المدن المدن الثاني المدن المد

ثالثاً: تم اختيار ٢ موظف من الجدول السابق بطريقة عشوائية، احسب الاحتمالات التالية:

- احتمال أن يكون الموظفين من الادارة الدنيا؟
 - احتمال أن يكون الموظفين متزوجان؟
- احتمال أن يكون للموظفين نفس الحالة الاجتماعية؟
 - احتمال أن يكون الموظفين من القسم نفسه؟

الحل:

بدون حفظ القوانين فقط طريقة تطبيقها

١- احتمال أن يكون الموظفان من موظفي الإدارة الدنيا يعني أن يكون:

الموظف الأول من الإدارة الدنيا (الحادثة A_1) و الموظف الثاني من الإدارة الدنيا (الحادثة A_2)

وحيث أنهما مستقلان (لأن السحب مع الإرجاع) فإن:

$$P(A_1 \cap A_2) = P(A_1) \times (P(A_2)) = \frac{24}{100} \times \frac{24}{100} = \frac{576}{10000} = 0.0576$$

تم ضرب الحوادث

٢- احتمال أن يكون الموظفان متزوجان ، يعني أن يكون :

الموظف الأول متزوج (الحادثة B1) والموظف الثاني متزوج (الحادثة B2)

وحيث أنهما مستقلان (لأن السحب مع الإرجاع) فإن:

$$P(B_1 \cap B_2) = P(B_1) \times (P(B_2)) = \frac{54}{100} \times \frac{54}{100} = \frac{2916}{10000} = 0.2916$$

٣- احتمال أن يكون للموظفين نفس الحالة الاجتماعية يعني أن يكون:

الموظفان كلاهما متزوجين (الحادثة A) أو أن يكون كلاهما أعزبين (الحادثة B) فإن:

$$P(A \cup B) = P(A) + (P(B))$$

$$= P(A_1 A_2) + P(B_1 B_2)$$

$$= P(A_1 \times A_2) + P(B_1 \times B_2)$$

$$= \left[\frac{54}{100} \times \frac{54}{100}\right] + \left[\frac{46}{100} \times \frac{46}{100}\right] = \left[\frac{2916}{10000}\right] + \left[\frac{2116}{10000}\right]$$

$$= 0.2916 + 0.2116$$

$$= 0.5032$$

الاول متزوج و الثاني متزوج أو

الأول أعزب و الثاني أعزب

وبما ان : و = ضرب ، أو = + تم ضرب الحوادث المستقله لكل حاله على حدى ثم جمعهما

٤- احتمال أن يكون الموظفان من القسم نفسه يعني أن يكون:

الموظفان كلاهما من الإدارة الدنيا (الحادثة A) أو أن يكون كلاهما من الأدارة المتوسطه (الحادثة B) أو أن يكون كلاهما من الإدارة العليا (الحادثة C) فإن:

$$\begin{split} P(A \cup B \cup C) &= P(A) + (P(B) + (P(C) \\ &= P(A_1 A_2) + P(B_1 B_2) + P(C_1 C_2) \\ &= P(A_1 \times A_2) + P(B_1 \times B_2) + P(C_1 \times C_2) \\ &= \left[\frac{24}{100} \times \frac{24}{100} \right] + \left[\frac{44}{100} \times \frac{44}{100} \right] + \left[\frac{32}{100} \times \frac{32}{100} \right] = \left[\frac{576}{10000} \right] + \left[\frac{1936}{10000} \right] + \left[\frac{1024}{10000} \right] \\ &= 0.0576 + 0.1936 + 0.1024 \\ &= 0.3536 \end{split}$$

٣- مصنع يقوم بإنتاج سلعة معينة به ثلاث آلات، تنتج الآلة الأولى ٤٠% من إجمالي إنتاج السلعة وتنتج الآلة الثانية نسبة ٢٥ % والباقي من إنتاج الالة الثالثة، فإذا كانت نسبة الإنتاج المعيب في الثلاث آلات على الترتيب هو ٤ % و ٣ % و ٥.٥% ، سحبت وحدة عشوائيا من إنتاج المصنع فوجد أنها جيدة ، احسب الاحتمالات التالية:

- أن تكون القطعة الجيدة من إنتاج الآلة الأولى؟
 أن تكون القطعة الجيدة من إنتاج الآلة الثانية؟

الحل:

بالبداية نخطط انتاج المصنع لكل آله واستخراج انتاج الالة الثالثة من باقى انتاج الآلتان الأولى والثانية ونسبة الإنتاج الجيد من باقى نسبة المعيب حسب التالى: على اساس ان انتاج المصنع بالكامل = ١٠٠%

الإنتاج الجيد من الآله الاولى = ١٠٠%- ٤% = ٩٦ %
الإنتاج الجيد من الآله الثانية =٠٠١% - ٣% =٣٠ %
الإنتاج الجيد من الآله الثالثة = ١٠٠ % - ٥,٥ %=٥,٤ ٩%

انتاج الجيد	انتاج المعيب	نسبة الإنتاج	الآلات
% ⁴ ⁷	% £	% £ ·	الآلمة الأولى
% ٩ ٧	%٣	% Y 0	الآلة الثانية
%	%°.°	%٣٥	الآلة الثالثة

$$P(A_r ig| B) = rac{P(A_r)P(B ig| A_r)}{\displaystyle\sum_{i=1}^n P(A_i)P(B ig| A_i)}$$
 $1 \leq r \leq n$ بتطبیق قانون نظریهٔ بایز

والحل بطريقة مباشره بفهم طريقة تطبيق القانون بدون حفظة او الحل بشكل مطول كالتالى:

بما ان القانون ينص على:

نظرية بايز / يضرب كل حدث بالأحتمال الخاص فيه .. ثم يتم اخذ الحدث المطلوب ويقسم على / جميع الاحداث الأخرى مضروبه بإحتمالاتها بما فيهم الحدث المطلوب والجمع بينها.

وبما ان المطلوب أن تكون القطعة الجيدة من إنتاج الآلة الأولى:

فالحل كالتالي:

(الجيد للألة، × نسبة انتاج الألة،) +(الجيد للألة، × نسبة انتاج الألة،) + (الجيد للألة، × نسبة انتاج الألة،

$$\frac{0.40 \times 0.96}{(0.40 \times 0.96) + (0.25 \times 0.97) + (0.35 \times 0.94.5)}$$

المطلوب الثاني أن تكون القطعة الجيدة من إنتاج الآلة الثانية:

نفس الطريقة السابقة لكن الحدث الثاني بالبسط على بقية الأحداث بالمقام.

$$\frac{(0.25 \times 0.97)}{(0.40 \times 0.96) + (0.25 \times 0.79) + (0.35 \times 0.94.5)}$$

المتغير العشوائي Random Variable:

المتغير العشوائي هو الذي يأخذ قيما حقيقية مختلفة تعبر عن نتائج فراغ العينة، ومن ثم مجال هذا المتغير، يشمل كل القيم الممكنة له، ويكون لكل قيمة من القيم التي يأخذها المتغير احتمال معين .

وينقسم المتغير العشوائي إلى قسمين هما:

- قيم صحيحة فقط .

 المتغيرات العشوانية المنفصلة Discrete Random Variables
- المتغيرات العشوائية المتصلة (المستمرة) Continuous Random Variables قيم صحيحة وكسرية .

أولاً: المتغيرات العشوائية المتقطعة (المنفصلة):

المتغير العشوائي المنفصل هو الذي يأخذ قيم بينية، ومتباعدة، ويرمز للمتغير العشوائي بشكل عام بحرف من الحروف x, y, z, الأبجدية الكبيرة X, y, z, ويرمـز للقيم التي يأخـذها المتغير بالحروف الأبجدية الصغيرة،

فالمتغير العشوائي المنفصل هو كل قيمة من قيم المتغير العشوائي ، ومن أمثلة هذه المتغيرات:-

- عدد الأولاد الذكور في الأسرة المكونة من أربع أولاد X:{x=0,1,2,3,4}
- عدد العملاء الذين يتم إنهاء خدمتهم البنكية كل 10 دقائق ٧، {.... Y:{y=0,1,2,3,....}
 - عدد مرات استخدام نوع معين من الأسمدة خلال الدورة الزراعية.
 - عدد الوحدات التالفة من إنتاج مزرعة معينة تنتج 200 وحدة كل موسم.
 - عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر.

✓ التوزيع الاحتمالي للمتغير العشوائي المنفصل:

التوزيع الاحتمالي، هو الذي يبين احتمالات حدوث القيم التي يمكن يأخذها المتغير، والتي ترتبط باحتمالات النتائج الممكنة في فراغ العينة، وبمعنى آخر هو التكرار النسبي للقيم التي يمكن أن يأخذها المتغير.

 $X:\{x=x_{1},x_{2},...,x_{n}\}$ فإذا كان المتغير العشوائي المنفصل X فإذا كان المتغير العشوائي المنفصل

وكان X_i وكان المتغير العشوائي يأخذ القيمة X_i هو احتمال أن المتغير العشوائي يأخذ القيمة والمائي يأخذ القيمة الممكنة للمتغير العشوائي X_i وهو جدول مكون من عمودين، الأول به القيم الممكنة للمتغير العشوائي X_i

 $P(X=x_i)=f(x_i)$. والثاني به القيم الاحتمالية لهذا المتغير ، أي أن $X:\{x=x_1,x_2,...,x_n\}$

جدول التوزيع الاحتمالي للمتغير العشوائي المنفصل

/ مثال: عدد احتمال نسبة عدد الاسر بالنسبة لعدد الأفراد

عدد الأسر	عدد الأفراد	الفرض الأحتمالي لنسبة الاسر حسب عدد الأفراد
10	1	10/100= 0.10
20	2	20/100=0.20
30	3	30/100=0.30
40	4	40/100=0.40
	\(\sum_{100} \)	1

	ſ
Xi	$\int (xi)$
X ₁	$\int (x1)$
X ₂	$\int (x2)$
	-
X _n	$\int (xn)$
\sum	١

🗷 مثال:

إذا كانت نسبة مبيعات أحد المراكز التجارية من التفاح الأمريكي 0.60، بينما يكون نسبة مبيعاته من الأنواع الأخرى للتفاح 0.40، اشترى أحد العملاء عبوتين . والمطلوب:

• كون فراغ العينة.

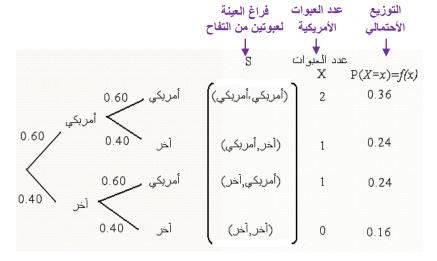
إذا عرف المتغير العشوائي بأنه عدد العبوات المشتراة من التفاح الأمريكي، فأوجد الآتي:

- التوزيع الاحتمالي للمتغير العشوائي.
 - ارسم دالة الاحتمال لهذا المتغير.

الحل:

تكوين فراغ العينة: التجربة هنا هو شراء وحدتين من عبوات التفاح، ومن ثم فراغ العينة يتكون من أربع نتائج، هي:

التوزيع الاحتمالي لعدد العبوات المشتراة من التفاح الأمريكي من المعلوم أن العميل اشترى عبوتين، وأن المتغير العشوائي هو عدد العبوات المشتراة من التفاح الأمريكي، لذا تكون القيم الممكنة للمتغير العشوائي هي:



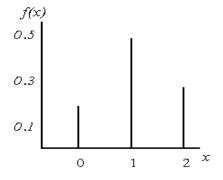
x=0 إذا كانت العبوتين من النوع الآخر، أي إذا كانت نتيجة التجربة (آخر، آخر)

x=1 إذا كان أحد العبوتين من النوع الأمريكي، أي إذا كانت نتيجة التجربة (آخر، أمريكي) أو (أمريكي، آخر)

x=2 إذا كان العبوتين من النوع الأمريكي، أي إذا كانت نتيجة التجربة (أمريكي، أمريكي)

ومن ثم يأخذ المتغير القيم: X:{x=0,1,2} ، ويرتبط احتمالات هذه القيم باحتمالات نتائج التجربة المناظرة لها كما هو مبين أعلاه، ومن ثم يكون التوزيع الاحتمالي للمتغير العشوائي X هو:

(جدول التوزيع الاحتمالي لعدد العبوات المشتراة من التفاح الأمريكي) | رسم دالة الاحتمال f(x):



X_i	$f(x_i)$
0	$0.40 \times 0.40 = 0.16$
1	$0.40 \times 0.60 + 0.40 \times 0.40 =$
	0.48
2	$0.60 \times 0.60 = 0.36$
Σ	1

الوسط الحسابي والتباين للمتغير العشوائي المنفصل:

$$\boxed{\mu = \sum x_i \ f(x_i)}$$

يرمز للوسط الحسابي للمتغير العشوائي بالرمز (ميو)، ويحسب بتطبيق المعادلة التالية:

$$\sigma^2 = \sum (x_i - \mu)^2 f(x_i)$$
$$= \sum x_i^2 f(x_i) - \mu^2$$

وأما التباين ويرمز له بالرمز (سيجما) ٢، ٤م فيحسب بتطبيق المعادلة التالية:

التابین = مجموع (القیم $\times \times$ احتمال القیم) – الوسط الحسابی

🗷 مثال: في المثال السابق احسب ما يلي:

- الوسط الحسابي لعدد العبوات المشتراة من النوع الأمريكي .
- احسب الانحرافَ المعياري لعدد العبوات المشتراة من النوع الأمريكي .
 - أوجد معامل الاختلاف النسبي .

الحل:

- الوسط الحسابي لعدد العبوات من النوع الأمريكي:
- لحساب الوسط الحسابي والانحراف المعياري يتم استخدام المعادلة الخاصة بذلك وهذا يتطلب تكوين جدول يشمل

المجاميع التالية: $\sum x_i f(x_i)$, $\sum x_i^2 f(x_i)$ ، وذلك كما يلي:

القيم عدد عبوات التفاح الأمريكي	إحتمال القيم لعدد عبوات التفاح الأمريكي	(القيمة × الإحتمال) ↓	(القيم ' × الإحتمال) ↓
\mathcal{X}_{i}	$f(x_i)$	$x_i f(x_i)$	$x_i^2 f(x_i)$
0	0.16	0	0
1	0.48	0.48	0.48
2	0.36	0.72	1.44
Σ	1	1.20	1.92
		μ = المجموع	$σ^2 = 1$ المجموع $μ^2$

$$\mu = \sum_i x_i \ f(x_i) = 1.20$$
 : وذا الوسط الحسابي هو

$$= \sum x_i^2 f(x_i) - \mu^2 = 1.92 - (1.20)^2 = 0.48$$

ولحساب الانحراف المعياري يجب أولا حساب التباين وهو:

اذا الانحراف المعياري قيمته هي:
$$\sigma = \sqrt{\sigma^2} = \sqrt{0.48} = 0.693$$
 • جذر التباين

$$C.V = \frac{\sigma}{u} \times 100 = \frac{0.693}{1.2} \times 100 = 57.7$$

معامل الاختلاف النسبي هو:

= الانحراف المعياري قسمة الوسط الحسابي ضرب ١٠٠

ثانياً: المتغيرات العشوائية المستمرة Continuous Random Variables

- المتغير العشوائي المستمر هو الذي يأخذ قيما متصلة، ويأخذ عدد لانهائي من القيم الممكنة له داخل مجاله، فإذا كان x متغير عشوائي مستمر، ويقع في المدى (a,b)، أي أن: ، X = x : a < x < b فإن للمتغير X عدد X عدد لانهائي من القيم تقع بين الحدين الأدنى والأعلى (a,b)، ومن الأمثلة على المتغيرات الكمية المستمرة ما يلى:
 - كمية الألبان التي تنتجها البقرة في اليوم باللتر:
 - المساحة المزروعة بالأعلاف في المملكة بالألف هكتار:
 - فترة صلاحية حفظ الدجاج المبرد بالأيام:

 - وزن الجسم بالكيلوجرام للأعمار من (30-40):
 - وهكذا الأمثلة على المتغير الكمى المستمر كثيرة.

- ${X = x: 10 < x < 40}$
- ${X = x: 1000 < x < 15000}$
- ${X = x : 1 < x < 5}$
- $\{X = x: 55 < x < 80\}$

الوسط الحسابي والتباين للمتغير العشوائي المستمر:

 $a < x < b^{\chi}$ إذا كانت f(x) هي دالة كثافة الاحتمال للمتغير العشوائي \int

فإن معادلة الوسط والتباين يمكن كتابها كما يلى:

 $\mu = E(x) = \int_{0}^{x} x f(x) dx$ $\sigma^2 = E(x^2) - u^2$, $E(x^2) = \int_0^x x^2 f(x) dx$

التوزيعات الاحتمالية للمتغيرات المنفصلة:- ✓ توزيع ذي الحدين:

يستخدم هذا التوزيع في الحالات التي يكون للظاهرة محل الدراسة نتيجتان فقط متنافيتان، النتيجة محل الاهتمام وتسمى بحالة النجاح، والأخرى تسمى بحالة الفشل، ومن أمثلة ذلك:

- عند إعطاء مريض نوع معين من الأدوية، لها نتيجتان: (استجابة للدواء، أو عدم استجابة)
- عند فحص عبوة بداخلها نوع معين من الفاكهة، لها نتيجتان (الوحدة إما أن تكون سليمة، أو تكون
- عند إلقاء قطعة عملة، لها نتيجتان (ظهور الوجه الذي يحمل الصورة، أو الوجه الذي يحمل الكتابة)
 - نتيجة الطالب في الاختبار (نجاح، رسوب)
 - استخدام المزارع لبرنامج معين في الزراعة (يستخدم، أو لا يستخدم)

✓ شكل التوزيع الاحتمالي ثنائي الحدين:

إذا كررت محاولة من المرات، بحيث أن كل محاولة لها نتيجتان فقط متنافيتان هما:

- النتيجة محل الاهتمام " حالة نجاح " وتتم باحتمال ثابت في كل محاولة هو $\hat{q} = 1 - p$ النتيجة الأخرى " حالة فشل " وتتم باحتمال ثابت أيضا هو
- وبافتراض أن هذه المحاولات مستقلة، بمعنى أن نتيجة كل محاولة ليس لها علاقة بنتيجة المحاولة الأخرى، وإذا كان المتغير العشوائي X يعبر عن عدد حالات النجاح "عدد النتائج محل الاهتمام" في الـ n محاولة، فإن مدي المتغير $X: \{x=0,1,2,...,n\}$ العشوائى X والذي يعبر عن عدد حالات النجاح هو: إذا فتوزيع ذو الحدين هو أحد التوزيعات الاحتمالية المنفصلة، ويستخدم لإيجاد احتمال وقوع حدث معين (نجاح) عدداً من المرات مقداره X من بين n من المحاولات لنفس التجربة (ونرمز لهذا الاحتمال بالرمز (P(X) وذلك عندما تتحقق الشروط
 - هناك ناتجان ممكنان فقط ومتنافيان لكل محاولة.
 - المحاولات وعددها مستقلة عن بعضها البعض.
 - احتمال وقوع الحدث المعين في كل محاولة (النجاح) P ثابت ولا يتغير من محاولة لأخرى

فبالتالي يمكن حساب الاحتمال من خلال المعادلة التالية:

$P(X) = \frac{n!}{X!(n-X)!} P^{x} (1-P)^{n-X}$	حيث ! n (وتقرأ " مضروب n ") = 1, n. (n-1). (n-2)3.2.1 = !0.
$\mu = np$	ويكون متوسط توزيع ذي الحدين
$\sigma = \sqrt{np(1-p)}$	وانحراف المعياري

✓ تحدید شکل التوزیع:

يتحدد شكل التوزيع ثنائى الحدين وفقا لقيمة احتمال النجاح كما يلى:

- إذا كان p = 0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون متماثل.
- إذا كان p < 0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون موجب الالتواء.
- إذا كان p>0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون سالب الالتواء.

☑ <u>مثال:</u> عند رمی عملة متوازنة مرتین فإن النواتج الممكنة هي TT,TH,HT,HH وعلى ذلك فإن :

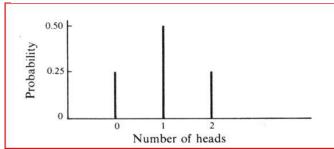
وهكذا فإن عدد الصور متغير عشوائي منفصل ، وتمثل مجموعة كل النواتج الممكنة مع احتمالاتها المناظرة توزيعاً احتمالياً منفصلا، أنظر الجدول التالى:

$$P(0H) = \frac{1}{4}$$

$$P(1H) = \frac{1}{2}$$
 and $P(2H) = \frac{1}{4}$

$$P(2H) = \frac{1}{4}$$

ويمكن كذلك تمثيل ذلك من خلال الرسم التالى:



الاحتمال	إمكانية حدوثها	عدد الصور
0.25	TT	0
0.50	тн, нт	1
0.25	НН	2

🗷 مثال:

إذا كان إحتمال نجاح الطالب في مقرر التحليل الإحصائي ٨٠% تم إختيار ٤ طلاب المطلوب :-

الحل:

$$P = 0.80$$
 , $(1-P=0.20)$, $n=4$

١- جدول توزيع ثنائى الحدين :-

عدد الطلاب الناجحين	عدد الطلاب الراسبين	الاحتمال	الناتج
0	4	$= 4C0 \times (0.80)^{0} \times (0.20)^{4}$	0.0016
1	3	$= 4C1 \times (0.80)^1 \times (0.20)^3$	0.0256
2	2	$= 4C2 \times (0.80)^2 \times (0.20)^2$	0.1536
3	1	$= 4C3 \times (0.80)^3 \times (0.20)^1$	0.4096
4	0	$= 4C4 \times (0.80)^4 \times (0.20)^0$	0.4096

$$\mu = n \times p = 4 \times 0.80 = 3.2$$
 = (legued liberally =) = 1.2

$$\sigma = \sqrt{n \times p \times (1-p)} = \sqrt{4 \times 0.8 \times 0.2} = 0.8$$
 = الانحراف المعياري

🗷 مثال:

إذا كان إحتمال حياة شخص عند العمر ٣٠ هو ٣٠% تم إختيار ٥ أشخاص عند تمام العمر ٣٠ المطلوب :-

- ١. كون جدول توزيع ثنائي الحدين .
- ٢. أوجد إحتمال حياة ٤ أشخاص.
- ٣. أوجد احتمال وفاة ٣ أشخاص.
- ٤. أوجد احتمال حياة ٣ أشخاص على الاقل.
 - ه. القيمة المتوقعة (الوسط الحسابي).
 - ٦. الانحراف المعياري.

الحل :-

$$P = 0.60$$
 , (1-P= 0.40) , n=5

١- جدول توزيع ثنائي الحدين :-

عدد الاحياء	عدد الوفيات	الاحتمال	الناتج
0	5	$= 5C0 \times (0.60)^{0} \times (0.40)^{5}$	0.01024
1	4	$= 5C1 \times (0.60)^1 \times (0.40)^4$	0.0768
2	3	$= 5C2 \times (0.60)^2 \times (0.40)^3$	0.2304
3	2	$= 5C3 \times (0.60)^3 \times (0.40)^2$	0.3456
4	1	$= 5C4 \times (0.60)^4 \times (0.40)^1$	0.2592
5	0	$= 5C4 \times (0.60)^5 \times (0.40)^0$	0.07776

$$P(4) = 0.2592$$

٢- أوجد احتمال حياة ٤ أشخاص:

$$P(2) = 0.2304$$

٣- أوجد احتمال وفاة ٣ أشخاص:

٤- أوجد احتمال حياة ٣ أشخاص على الاقل:

$$P=(p(3)+p(4)+p(5))=0.07776+0.2592+0.3456=0.68256$$

٥- القيمة المتوقعة (الوسط الحسابي) :-

$$\mu = n \times p = 5 \times 0.60 = 3$$

٦- الانحراف المعياري =

$$\sigma = \sqrt{n \times p \times (1 - p)} = \sqrt{5 \times 0.6 \times 0.4} = 1.095445$$

** تمارين والأمثله بداية المحاضره الرابعه ..

وتتبع المحاضره الثالثه **

أي ظاهره ذات وجهين ... تتبع التوزيع الإحتمالي ثنائي الحدين

المثال ١ :

إذا كان احتمال إصابة الهدف لشخص ما هو $\frac{1}{5}$ أتيحت له فرصة الرماية في 10 محاولات

- ما هو احتمال إصابة الهدف مرتين على الأكثر
 - احتمال اصابة الهدف مرة واحدة

x متغير عشوائي يمثل عدد مرات النجاح في إصابة الهدف في ١٠ محاولات

n = 10, p = 1/5, q = 4/5; x = 0, 1, 2, ..., 10

احتمال إصابة الهدف مرتين على الأكثر:

$$P(X \le 2) = p(X = 0) + p(X = 1) + p(X = 2)$$

$$= {10 \choose 0} (1/5)^0 (4/5)^{10} + {10 \choose 1} (1/5)^1 (4/5)^9 + {10 \choose 2} (1/5)^2 (4/5)^8$$

= (0.8)10 + 2(0.8)9 + 1.8(0.8)8 = 0.6778

 $m n=10,\;p=1/5,\;q=4/5$: بالمعطيات : m shift بعدها زر m shift بعدها زر بالمعطيات : m nCr

عدد المحاولات	عدد اصابة الهدف	الاحتمال	الناتج
0	10	$= 10C0 \times (1/5)0 \times (4/5)10$	0.1073
1	9	$= 10C1 \times (1/5)1 \times (4/5)9$	0.2684
2	8	$= 10C2 \times (1/5)2 \times (4/5)8$	0.3019
		\sum احتمال اصابة الهدف مرتين على الأكثر \sum	<u>0.6776</u>

- احتمال إصابة الهدف مرة واحدة أي احتمال x = 1

$$P(X = 1) = {10 \choose 1} (1/5)^{1} (4/5)^{9}$$

من الجدول السابق بالألة الحاسبة:

= 10C1 ×	$(1/5)1 \times$	(4/5)9		0.2684
----------	-----------------	--------	--	--------

المثال ٢:

ه- ألقيت عملة ثلاث مرات. فإذا كان X يمثل عدد ظهور الصور فأوجد التوزيع الاحتمالي وكذلك التوقع والتباين الحل: يما أن احتمال العملة المعدنية = 1 كل وجه = 1/2 = 0.5

ويكون له توزيع ذي الحدين:

بالتعويض بالأله الحاسبة بالمعطيات السابقة:

عدد مرات الرمي	عدد اصابة الهدف	الاحتمال	الثاتج
0	3	$= 3C0 \times (0.5)0 \times (0.5)3$	0.125
1	2	$= 3C1 \times (0.5)1 \times (0.5)2$	0.375
2	1	$= 3C2 \times (0.5)2 \times (0.5)1$	0.375
3	0	$= 3C3 \times (0.5)3 \times (0.5)0$	0.125
		\sum	<u>1</u>

$$\mu = np$$
 $\mu = 3 \times 0.5 = 1.5$

التوقع = الوسط الحسابى: بالتعويض بالقانون

$$\sigma^2 = n \times p \times q$$

 $\sigma^2 = 3 \times 0.5 \times 0.5 = 0.75$

 $\sqrt{\sigma^2} = \sqrt{0}.75 = 0.866$

المثال ٣

وجد فى إنتاج أحد المصانع أنه من بين 1000 وحدة إنتاج يوجد 150 وحدة معيبة. أخذت عينة بإرجاع مكونة من 5 وحدات، أوجد الاحتمالات التالية:

- ١- الوحدات المختارة كلها سليمة
- ٢- على الأكثر توجد واحدة معيبة
- ٣- على الأقل توجد وحدتان معيبتان
- ٤- القيمة المتوقعة و التباين للوحدات المعيبة.

الحل:

احتمال النجاح (الحصول على وحدة معيبة) p = 150/1000 = 0.15

q = 1-p= 1-0.15 =0.85 (عدم الحصول على وحدة معيبة)

عدد المحاولات (عينة بإرجاع مكونة من 5 وحدات) n = 5

X متغير عشوائي يمثل عدد الوحدات المعيبة يأخذ القيم 4,5, 3,4,5 X

ويكون له توزيع ذي الحدين:

عدد المحاولات	عدد اصابة الهدف	الاحتمال	الناتج
0	5	= 5C0 × (0.15)0 × (0.85)5	0.4437
1	4	$= 5C1 \times (0.15)1 \times (0.85)4$	0.3915
2	3	$= 5C2 \times (0.15)2 \times (0.85)3$	0.1381
3	2	$= 5C3 \times (0.15)3 \times (0.85)2$	0.1381
4	1	$=5C4 \times (0.15)4 \times (0.85)1$	
5	0	$=5C5 \times (0.15)5 \times (0.85)0$	
		Σ	<u>1</u>

1. الوحدات المختاره كلها سليمة: يعنى أن x=0

 $=5C0 \times (0.15)0 \times (0.85)5$ 0.4437

 $x \le 1$ أن يعنى أن $x \le 1$. على الأكثر توجد واحدة معيبة

 $P(X \le 1) = p(X=0) + p(X=1)$ = 0.4437 + 0.3915 = 0.8352

 $x \ge 2$: على الأقل توجد وحدتان معيبتان $x \ge 2$

بما يعني ان الإحتمال يبدا من ٢ إلى ٥ (٢+٣+٤+٥) بما ان التوزيع الإحتمالي بالنهاية مجموعه = ١ وأوجدنا قيمة الإحتمال ٠ والإحتمال ١ بالطلبان السابقان..

إذن الحل: المجموع - (قيمة احتمال ١+١)

$$P(X \ge 2) = 1 - p(X < 2)$$

= 1 - [p(X = 0) + p(X = 1)]
= 1 - 0.8325 = 0.1648

٤. - القيمة المتوقعة و التباين للوحدات المعيبة.

$$0.75 = 5 \times 0.15 = n \cdot P = 10$$
 القيمة المتوقعة $n \times p \times (1 - p) = 10$ التباين $n \times p \times (1 - p) = 10$ التباين $n \times p \times (1 - p) = 10$

• خلاصة المحاضرة الثالثه /

القوانين المهمة التي تم استخدامها بحل التمارين:

$P(X) = \frac{n!}{X!(n-X)!} P^{x} (1-P)^{n-X}$	قانون استخراج التوزيع الإحتمالي : طريقة تطبيقه واستخدام الآله الحاسبة : $n,p,p-1=q$. بالضغط على زر n shift بعدها زر n وبالمعطيات : n n n n n n n n n
$\mu = np$	متوسط توزيع ذي الحدين (التوقع)
$\sigma^2 = \mathbf{n} \times \mathbf{p} \times \mathbf{q}$	التباين
$\sigma = \sqrt{np(1-p)}$	وانحراف المعياري = جذر التباين

ب - توزیع بواسون:-

$$P(x) = \frac{e^{-\mu} \mu^{x}}{x!}$$

$$x = 0,1,2,...$$

✓ هو توزيع احتمالي منفصل آخر يستخدم لتحديد احتمال وقوع عدد معين من النجاحات في وحده الزمن، وذلك عندما تكون الأحداث أو "النجاحات" مستقلة عن بعضها البعض وعندما يبقى متوسط عدد النجاحات ثابتاً لوحدة الزمن عندنذ:

حيث : x = العدد المعين من النجاحات.

P(x) احتمال عدد x من النجاحات.

ويمكن e=2.718 عقريبا، ويمكن e=2.718 عقريبا، ويمكن عنص الآلات الحاسبة،

e = (In ث shift) جساب قيمتها باستخدام الآلة الحاسبة.

 $x! = x(x-1)(x-2)...3 \times 2 \times 1$: ويساوي " مضروب العدد x

u = المتوسط

 $X! = (shift مُ x^{-1})$ يالألة الحاسبة :

مضروب الصفر = ١

يشتق توزيع بواسون من توزيع ذي الحدين عندما يكون :-

- عدد المحاولات n كبير جدا
- بينما يكون احتمال النجاح p صغير بحيث تبقى np قيمة ثابتة معتدلة يوصف متغيرات عشوائية متقطعة تعبر عن عدد كبير من الحوادث مثل:
 - عدد حوادث السيارات في الشهر داخل مدينة كبيرة
 - عدد الكرات الحمراء في عينة الدم
 - عدد الأخطاء المطبعية في الصفحات المختلفة للكتاب
 - عدد القطع التالفة في الإنتاج الكلى لسلعة معينة
 - o توزيع بواسون فإن X إذا كان للمتغير
- التوقع (المتوسط الحسابي) = التباين فقط بتوزيع بواسون
- $E(X) = \lambda$ التوقع $O(X) = \lambda$ التباین $O(X) = \lambda$

◄ مثال: في كمية كبيرة من القطع المصنعة، وكان معلوما أن بها نسبة %0.3 من القطع المعيبة. أخذت منه عينة بإرجاع عشوائية حجمها 350 قطعة. احسب الاحتمالات الآتية:

- ١) وجود قطعة معيبة
- ٢) وجود قطعتان معيبتان
- ٣) عدم وجود أية قطع معيبة
- ع) وجود على الأكثر وحدتان معيبتان

الحل:

عملية سحب العينة تمثل سلسلة عددها n=350 واحتمال أن تكون القطعة معيبة (النجاح) p=0.003 واضح n كبيرة و p صغيرة

المتوسط
$$\lambda$$
=np = 350(0.003) = 1.05

$$p(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!} = e^{-1.05} \frac{1.05^{x}}{x!}$$

بفرض أن X يمثل عدد القطع المعيبة في العينة له توزيع بواسون ,

بتطبيق القانون بالآله الحاسبة

$$p(X=1) = e^{-1.05} \frac{1.05^1}{1!} = (0.3499)(1.05) = 0.367$$

١. وجود قطعة معيبة في العينة

$$p(X = 2) = e^{-1.05} \frac{1.05^2}{2!} = (0.3499)(0.55125) = 0.193$$

٣. عدم وجود أي قطع معيبة في العينة

٢. وجود قطعتان معيبتان في العينة

$$p(X=0)=e^{-1.05}\frac{1.05^0}{0!}=0.350$$

 $P(X \le 2) = p(X=0) + p(X=1) + p(X=2)$ = 0.350 + 0.367 + 0.193= 0.91

اضافة الدكتور

٥. وجود اكثر من ٢ وحدة معيبة : يعنى أن : x > 2

$$X > 2 = p(3) + p(4) + p(5) + \dots p(350)$$

وبما ان توزيع بواسون النهائي = 1 إذن: حسب النتيجه التي تم استخراجها من ١ و ٣ و ٣ بالأسئلة السابقه = 1 - p(0) + p(1) + p(2) = 1 - 0.91 = 0.09

مثال:-

إذا كان عدد الأخطاء المطبعية في كتاب يتكون من 600 صفحة هو 50 خطأ فإذا كانت الأخطاء تتوزع توزيعا عشوائيا. فما احتمال إذا اختيرت 10 صفحات عشوائيا أن لا تحتوى على أخطاء.

الحل:

بفرض أن x يمثل عدد الأخطاء في كل صفحة

وأن عدد المحاولات (الصفحات) تمثل سلسلة من محاولات برنولي عددها n = 10

$$p = \frac{50}{600} = 0.083$$

ونسبة الخطأ (النجاح) هي:

$$\lambda = np = 10(0.083) = 0.83$$

وعليه فإن -:

وبالتالى فإن لـ X توزيع بواسون:

$$p(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-0.83} \frac{0.83^k}{k!}$$

بتطبيق القانون بالآله الحاسبة

$$P(X=0) = e^{-0.83} \frac{0.83^0}{0!} = 0.436$$

احتمال أن لا يوجد أخطاء يساوى

 ✓ <u>مثال:</u>
 إذا كان من المعلوم أن عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر تتبع توزيع بواسون بمتوسط 3 وحدات شهريا، إذا عرف المتغير العشوائي x بأنه عدد الوحدات التي تستهلكها الأسرة خلال الشهر من هذه السلعة.

- ما نوع المتغير العشوائي؟
- اكتب شكل دالة الاحتمال لهذا المتغير.
 - احسب الاحتمالات التالية:
- احتمال أن الأسرة تستهلك وحدتين خلال الشهر؟
- احتمال أن أسرة ما تستهلك 3 وحدات على الأكثر خلال الشهر؟
 - احسب الوسط الحسابي، والانحراف المعياري لعدد الوحدات المستهلكة.
 - حدد شكل التوزيع.

الحل:-

 $X: \{x = 0,1,2,3,...\}$ عدد الوحدات التي تستهلكها الأسرة متغير كمي منفصل، ومدى هذا المتغير في هذه الحالة هو:

شكل دالة الاحتمال:

$$P(x) = \frac{e^{-\mu}\mu^{x}}{x!}$$
 :بما أن متوسط عدد الوحدات التي تستهلكها الأسرة خلال الشهر هو: $\mu = 3$ ، إذا دالة الاحتمال هي:
$$= \frac{e^{-3}3^{x}}{x!} , \quad x = 0.1.2....$$

حساب الاحتمالات:

- احتمال أن أسرة ما تستهلك 3 وحدات على الأكثر خلال الشهر هو:

$$P(X \le 3) = p(3) + p(2) + p(1) + p(0)$$

$$= \left[\frac{3^3}{3!} + \frac{3^2}{2!} + \frac{3^1}{1!} + \frac{3^0}{0!} \right] \left[\frac{0.0498}{1} \right]$$

$$= \left[0.0498 \right] \left(\frac{27}{6} + \frac{9}{2} + \frac{3}{1} + \frac{1}{1} \right) = 0.0498(13) = 0.6474$$

 $\mu = 3$

 $\sigma^2 = \mu = 3$

حساب الوسط الحسابي، والانحراف المعياري لعدد حالات الاستجابة:

- الوسط الحسابي (μ) في حالة التوزيع بواسون هو معلمة معطاة هي:

في هذا التوزيع، فإن التباين يساوي الوسط الحسابي: أي أن:

ومن ثم يكون الانحراف المعياري هو:

 $\sigma = \sqrt{\mu} = \sqrt{3} = 1.732$

ويمكن حساب معامل الاختلاف النسبي، بتطبيق المعادلة التي سبق استخدامها ، وهو:

$$C.V = \frac{\sigma}{\mu} \times 100 = \frac{1.732}{3} \times 100 = 57.7\%$$

= الإنحراف المعياري قسمة الوسط الحسابى ضرب ١٠٠

دائما توزيع بواسون موجب الالتواء

- تحديد شكل التوزيع:

<u>حثال:</u>
 يتلقى قسم شرطة فى المتوسط 5 مكالمات في الساعة فيكون احتمال تلقى مكالمتين في ساعة مختارة عشوائياً هو:

$$P(x) = \frac{e^{-\mu} \mu^{x}}{x!}$$

$$= \frac{e^{-5} 5^{x}}{x!} = , \quad x = 0,1,2,...$$

$$= \frac{(25)(0.00674)}{(2)(1)} = 0.08425$$

o التوزيع الإحصائي: -

و هو الشكل الذي تأخذه مجموعة البيانات، وشكل البيانات مهم جدا في تحليلها ووصفها وكخطوة تسبق قرار استخدام أي اسلوب احصائى .

ويرتبط التوزيع الاحصائي عادة بنوعين من البيانات المتصلة والمنفصلة، ويناسب النوع المنفصل المقاييس الاسمية والمرتبية ، وهناك بعض المقياس المنفصلة ثنائية أي انه لا يوجد بها الا قيميتين، وهي لا تسمي توزيعات طبيعية وانما تسمى توزيعات ثنائية ، ومن أهم مقاييس التوزيعات المنفصلة مقياس ذو الحدين وذلك عائد لان الاجابة على المقياس الاسمي اما نعم أو لا ، ولذلك غالبا ما يرمز لها في الحاسب بصفر (غياب الصفة) [اناث حيم] . أما التوزيعات الاحصائية المتصلة فهي ذات أهمية كبيرة في العلوم الإحصائية وذلك لأن اغلب الاختبارات الاحصائية تتعامل مع هذا النوع من البيانات.

التوزيعات الاحتمالية للمتغيرات المتصلة:

هناك بعض التوزيعات الاحتمالية المتصلة لها دوال كثافة احتمال محددة ومنها:

- التوزيع الطبيعي
- التوزيع الطبيعي (القياسي) المعياري
 - توزیع t

وسنقوم في هذه المحاضرة بتناول هذه التوزيعات بشيء من التوضيح والتفصيل:

وكما أوضحنا أن المتغير العشوائي المتصل x هو ذلك المتغير الذي يمكن أن يأخذ عدداً لا نهائياً من القيم المعلومة، واحتمال أن تقع x داخل أي فترة يمثلها مساحة التوزيع الاحتمالي (ويسمى أيضاً دالة الكثافة) داخل هذه الفترة، والمساحة الكلية تحت المنحني (الاحتمال) تساوى

✓ التوزيع الطبيعي

هو أفضل وأكثر التوزيعات الاحتمالية المتصلة استخداماً في النواحي التطبيقية، ومنها الاستدلال الإحصائي شاملا التقدير، واختبارات الفروض، كما أن معظم التوزيعات يمكن تقريبها إلى هذا التوزيع .

والتوزيع الطبيعي هو توزيع احتمالي متصل، وهو جرسي الشكل ومتماثل حول الوسط الحسابي، ويمتد إلى مالا نهاية في الاتجاهين، ولكن معظم المسلحة (الاحتمال) تتركز حول الوسط الحسابي .

خصائص التوزيع الطبيعى:

يعتبر التوزيع الطبيعي من أهم أنواع التوزيعات الاحصائية المتصلة ومن خصائصه انه:

- توزيع جرسى أي يشبه الجرس.
 - توزیع متصل
 - توزيع متماثل حول الوسط
- الالتواء (الاطراف) والتفلطح (القمة) يساوي صفر.
- يحوي منوال ووسط ووسيط واحد وذات قيم متساوية بمعنى أن الجزء الذي على يمين الوسط مطابق للجزء الايسر
 - الذيلين الايمن والايسر يقتربان من الخط الافقى ولكن لا تلامسه
 - المساحة الكلية تحت المنحنى تساوي واحد صحيح

- منحنى دالة الاحتمال للتوزيع الطبيعي له خاصية شكل الجرس. ويتحدد شكل الجرس تماماً لأي توزيع طبيعي خاصة إذا علمنا الوسط الحسابي μ والانحراف المعياري σ لهذا التوزيع.
 - على كيفية الانتشار. σ على كيفية الانتشار. σ على كيفية الانتشار.

والتوزيع الطبيعي وتطبيقاته الاحصائية ليس موضوعا جديدا بل عرف منذ القرن السابع عشر الميلادي ومن ابرز الدراسات المعروفة تلك الدراسة البريطانية التي اخذت اطوال ٨٥٨٥ من الافراد البريطانيين في القرن التاسع عشر وعمل هذا المنحنى وبالتالى تم اعتبار هذه العينة تمثل التوزيع الطبيعي.

معالم هذا التوزيع:

توجد معلمتين لهذا التوزيع هما:

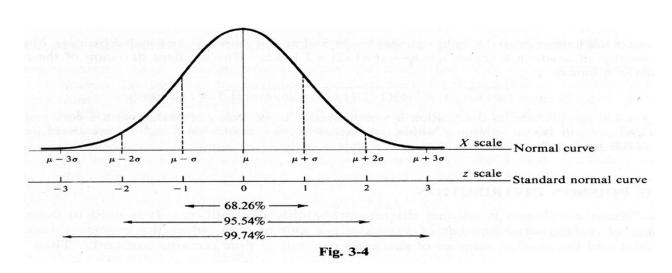
$$var(x) = \sigma^2$$
 والتباین $E(x) = \mu$

ومن ثم يعبر عن توزيع المتغير بالرموز : $x \sim N(\mu, \sigma^2)$ ويعني ذلك أن المتغير العشوائي x يتبع التوزيع الطبيعي بمتوسط μ ، وتباين $x \sim N(\mu, \sigma^2)$

التوزيع الطبيعي القياسي (المعياري):- الوسط الحسابي حفظ

- احتمال وقوع أية مشاهدة على بعد انحراف معياري واحد من الوسط الحسابي هو 0.6827 بين 1-: 1
- احتمال وقوع أي مفردة على بعد إنحرافين معياريين من الوسط الحسابي هو 9545. 0 بين 2-: 2
- · احتمال وقوع أية مفردة على بعد ثلاثة انحرافات معيارية من الوسط الحسابي هو 0.9973 بين 3-: 3

والشكل التالي يوضح ذلك:



مثال :-

تم دراسة متوسط طول الطالب في كلية إدارة الأعمال هو ١٨٠ سم و ذلك بانحراف معياري ١٠ سم تم اختيار أحد الطالب عشوائياً فإذا علمت أن هذه الظاهرة تتبع التوزيع الطبيعي فأوجد :-

۱-احتمال أن ينحصر طول الطالب بين ۱۷۰ سم و ۱۹۰ سم (p(170<x<190)).

٢-احتمال أن ينحصر طول الطالب بين ١٦٠ سم و ٢٠٠ سم ((200)p(160<x<200)).

٣-احتمال أن ينحصر طول الطالب بين ١٥٠ سم و ٢١٠ سم (٢١٠).

٤- احتمال أن يكون طول الطالب أقل من ١٩٠ سم ((p(x<190)).

٥- احتمال أن يكون طول الطالب أكبر من ١٩٠ سم ((p(x>190)).

٢-احتمال أن يكون طول الطالب أكبر من ١٥٠ سم (١٥٥).

٧- احتمال أن يكون طول الطالب أقل من ١٦٠ سم (p(x<160)).

الحل :-

۱-احتمال أن ينحصر طول الطالب بين ۱۷۰ سم و ۱۹۰ سم ((p(170<x<190):-

$$z = \frac{x-\mu}{\sigma} = \frac{170-180}{10} < z < \frac{190-180}{10} = -1 < z < 1$$
 P= 68.26%

٢-احتمال أن ينحصر طول الطالب بين ١٦٠ سم و ٢٠٠ سم (p(160<x<200)) :-

$$z = \frac{x - \mu}{\sigma} = \frac{160 - 180}{10} < z < \frac{200 - 180}{10} = -2 < z < 2$$
 P= 95.45%

٣-احتمال أن ينحصر طول الطالب بين ١٥٠ سم و ٢١٠ سم ((p(150<x<210)):-

$$z = \frac{x - \mu}{\sigma} = \frac{-150 - 180}{10} < z < \frac{210 - 180}{10}$$

-3 < z < 3 = P = 99.74%

٤- احتمال أن يكون طول الطالب أقل من ١٩٠ سم ((p(x<190)) :-

$$z = \frac{x - \mu}{\sigma}$$

$$z < \frac{190-180}{10} = z < 1$$
 = P = (0.6826/2) + 0.5 = 84.13%

٥- احتمال أن يكون طول الطالب أكبر من ١٩٠ سم ((p(x>190):-

$$z = \frac{x - \mu}{\sigma}$$

$$z > \frac{190-180}{10} = z > 1 = P = 0.5 - (0.6826/2) = 15.87\%$$

-: (p(x>150)) منم ١٥٠ من ١٥٠ عنون طول الطالب أكبر من ١٥٠ سم

$$z = \frac{x - \mu}{\sigma}$$

$$z > \frac{150-180}{10}$$

$$= z > -3$$

z < 3

٧- احتمال أن يكون طول الطالب أقل من ١٦٠ سم (p(x<160)):-

$$z = \frac{x - \mu}{\sigma}$$

$$z < \frac{160-180}{10}$$

z > 2

Tables of the Normal Distribution

Probability Content from -oo to Z

Z	Ţ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	-+- I	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	1	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	ì	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	i	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	ı	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	ı	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	1	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	1	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	1	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	ı	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	1	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	ı	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	ı	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	1	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	1	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	1	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	ı	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	1	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	1	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	ı	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	1	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	1	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	1	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	ı	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	1	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	1	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	ı	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	ı	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	1	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

✓ استخدامات التوزيع الطبيعي القياسي:-

يستخدم التوزيع الطبيعي القياسي في التعامل مع الكثير من المشاكل العملية وإيجاد القيم الاحتمالية لها وإليك بعض الأمثلة على ذلك:

🗷 مثال:

افترض أن إدارة المرور بالأحساء وضعت جهازا للرادار على طريق الدمام عند مدخل المبرز وذلك لضبط السيارات المسرعة في الساعة للسيارات التي تمر بمدخل المبرز في فترة عمل المسرعة في الساعة للسيارات التي تمر بمدخل المبرز في فترة عمل الرادار، إذا كانت X تتوزع توزيعا معتدلا وسطه الحسابي 60 ميلا وتباينه 25 ميلا، أوجد التالي:

- نسبة السيارات التي تقل سرعتها عن 50 ميلا في الساعة .
- نسبة السيارات التي تزيد سرعتها عن 65 ميلا في الساعة.
- نسبة السيارات التي تكون سرعتها بين 60 ميلا و 70 ميلا في الساعة.
- عدد السيارات التي تكون سرعتها بين 60 ميلا و 77.45 ميلا من بين 10000 سيارة .

الحل :-

١- نسبة السيارات التي تقل سرعتها عن ٥٠ ميلا في الساعة :

$$P(X < 50) = P(\frac{x - \mu}{\sigma} < \frac{50 - 60}{\sqrt{25}}) = P(Z < -2) = 0.5 - (0.9545/2) = 0.02275$$

٢- نسبة السيارات التي تزيد سرعتها عن 65 ميلا في الساعة:

$$P(X > 65) = P(\frac{x - \mu}{\sigma} > \frac{65 - 60}{\sqrt{25}}) = P(Z > 1) = 1 - P(Z \le 1) = 0.5 - (0.6826/2) = 0.1587$$

٣- نسبة السيارات التي تكون سرعتها بين 60 ميلا و 70 في الساعة :

$$P(60 \le X \le 77.45) = P(\frac{60 - 60}{\sqrt{25}} \le Z \le \frac{70 - 60}{\sqrt{25}})$$
$$= P(0 \le Z \le 2) = P(Z \le 2) - P(Z \le 0)$$
$$= (0.9545/2) = 0.4772$$

٤- عدد السيارات المتوقع سرعتها بين 60 ميلا و 70 ميلا من بين 10000 سيارة:

10000(0.47725)=4772

• <u>ملاحظة .. اضافة من عندي حسب ما فهمت من شرح الدكتور .. اتمنى اكون وفقت</u> جدول التوزيع الطبيعي : بتطبيق القانون (القيمة – المتوسط / الإنحراف المعياري) بعد الحصول على الناتج – نتبع طريقة الجدول

اذا كان المطلوب أقل من (z < x)	اذا كان المطلوب أكبر من (z>x)	الوسط الحسابي
Z > 1 =0.50 - (0.6827/2)	Z < 1 = (0.6827/2)+ 0.50	0.6827 = -1 < z < 1
Z > 2 = 0.50 - (0.9545/2)	Z < 2 = (0.9545 /2)+ 0.50	0.9545 = -2 < z < 2
Z > 3 =0.50 - (0.9974/2)	Z < 3 = (0.9974/2)+ 0.50	0.9974 = -3 < z < 3
	يطبق نفس الطريقه لو الإشاره -	

توزيعات المعاينة Sampling Distribution's

الاستدلال الإحصائي:

تهتم نظرية العينات بدراسة العلاقة بين المجتمع والعينات المسحوبة منه فيما يسمى بالاستدلال الإحصائي statistical . يعتبر الاستدلال الإحصائي من أهم الأدوات المساعدة على اتخاذ القرارات في الاقتصاد والأعمال والعلوم، ويشمل الاستدلال الإحصائي اختبار الفرضيات والتقدير.

ولكى يكون التقدير (واختبار الفروض) سليم، ينبغي أن يبنى على عينة ممثلة للمجتمع، ويمكن تحقيق ذلك بالمعاينة العشوائية، حيث يكون لكل مفردة في المجتمع فرصة متكافئة للدخول في العينة.

العينة العشوائية:

وهناك عدة طرق لأخذ العينات من المجتمع لاستخدامها في الاستدلال الإحصائي ومن أشهر هذه الطرق هي العينة العينة المعشوائية وهي العينة.

فمثلاً نستعين بعينه مسحوبة من المجتمع لتقدير معالم هذا المجتمع مثل متوسطة أو تباينه أو غير ذلك. أو أعطاء عينه من المرضى بارتفاع الضغط، مثلاً دواء معين ثم قياس ضغطهم قبل وبعد تناولهم لهذا الدواء لمعرفة ما إذا كان هذا الدواء مفيد في خفض الضغط أم لا.

: Population المجتمع

أي مجموعات من المفردات تشترك في صفه أو صفات وتكون موضوع دراسة أو بحث فإن هذه المجموعة يطلق عليها إحصائيا مجتمع الدراسة أو اختصاراً المجتمع Population.

والمجتمع قد يكون مجموعة ما من البشر أو أشجار أنواع معينه من الفاكهة أو الحيوانات الزراعية أو إنتاج دولة ما لسلع معينه خلال فترة زمنية محدده...الخ.

والمجتمع قد يكون محدوداً إذا كان يمكن حصر عدد أفراده مثل سكان مدينة ما أو طلاب مرحلة تعليمية معينة

وقد يكون المجتمع غير محدود (لانهائي) إذا كان لا يمكن حصر عدد أفراده مثل النجوم والكواكب أو الكائنات الحية بمياه المحيطات والأنهار

وعند دراسة صفة ما أو صفات معينه لمجتمع ما فإن البيانات الإحصائية عن تلك الصفة أو الصفات تجمع بأحد أسلوبين:-

أولاً: أسلوب الحصر الشامل (census): وفيه تجمع البيانات عن كل مفرده من مفردات المجتمع، وهذا الأسلوب لا يتبع عادة إلا في حالة التعدادات التي تجريها الدول وتدعمها بإمكانيات ضخمه مثل تعدادات السكان والتعدادات الصناعية والتعدادات الزراعية.

الثانى: أسلوب المعاينة (Sampling method): وفيه يتم جمع البيانات عن جزء من مفردات المجتمع يختار بطريقة أو بأخرى ويطلق عليه عينه (Sample) ثم بعد ذلك يتم تعميم نتائج الدراسة على المجتمع بأكمله.

بعض مزايا أسلوب المعاينة:-

يتميز أسلوب المعاينة عن أسلوب الحصر الشامل بمزايا عدديه منها:

1. يؤدي استخدام العينات العشوائية إلى خفض تكاليف الدراسات الميدانية بسبب صغر حجم العينة بالنسبة إلى حجم المجتمع وهو ما يؤدي إلى تخفيض الأعباء الإدارية والفنية التي تتطلبها أي دراسة ميدانية.

- ٢. يتحقق وفر واضح في الوقت الذي ينفق في دراسة ميدانية على أساس عينة بدلاً من الحصر الشامل وتتضح أهمية الوقت عندما نقوم بدراسة ظاهرة تتغير بمرور الوقت، فتكون البيانات المجموعة والنتائج وقت ظهورها غير مطابقة لواقع المجتمع وتصبح النتائج ذات قيمه محدودة بعد أن فقدت عنصر المطابقة مع واقع الظاهرة وتوزيعها الحالي في المجتمع.
- ٣. في المجتمعات غير المحدودة (اللانهائية) مثل مجتمع الكائنات الحية في البحار والمحيطات لا يمكن أن تتم الدراسة على أساس الحصر الشامل ولكن لابد وأن تتم الدراسة بأسلوب المعاينة.
- ٤. أيضاً هناك بعض الاختبارات لابد وأن تتم بأسلوب المعاينة لأن إجراء مثل هذه الاختبارات على أساس الحصر الشامل يؤدي إلى تلف المادة المختبرة أو هلاكها. فاختبار صلاحية شحنه من المفرقعات مثلاً لابد وأن يتم على أساس العينة وبالمثل تحليل دم المرضى يتم على أساس عينه.

أقسام العينات:-

تنقسم العينات عادة إلى قسمين رئيسين وهما عينات عشوائية وعينات غير عشوائية، وفيما يلي تفصيل لكل قسم منها:

١. العينات العشوائية:

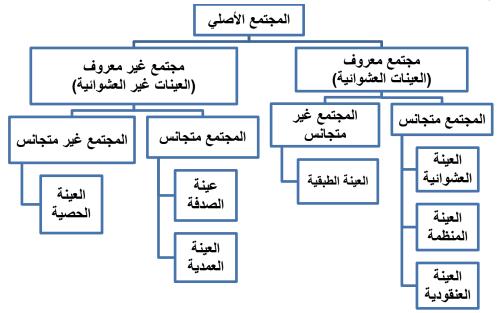
وهي تلك العينات التي يتم اختيار مفرداتها حسب خطه إحصائية لا يكون فيها للباحث أو لمفردات العينة دخل في اختيار أي مفرده فيها ، حيث يتم الاختيار باستخدام أساليب معينة تلعب الصدفة خلالها الدور الأول في اختيار المفردة ولكن بشرط أن يتحقق لجميع المفردات احتمال ثابت ومحدد للاختيار. والعينات العشوائية إذا ما تم اختيارها بالطريقة العلمية السليمة والمناسبة يمكن أن تكفل درجه عالية من دقة التمثيل للمجتمعات المسحوبة منها لذلك فهي الوسيلة الأساسية في حالة البحوث العلمية الدقيقة.

٢. العينات غير العشوائية:

وهي تلك العينات التي لا تكفل لجميع مفردات المجتمع احتمال ثابت ومحدد للاختيار، وغالباً يتدخل الباحث في عملية الاختيار بصورة أو بأخرى.

وسيتم فيما يلي استعراض لأهم أنواع العينات العشوائية والعينات غير العشوائية.

√ أقسام العينات:



أ - العنات الاحتمالية:

جميع عناصر المجتمع لها نفس الفرصة في الظهور في العينة	العينة العشوائية
يقسم المجتمع إلى طبقتين على الأقل ثم نختار العينة من كل منهما	العينة الطبقية
نختار نقطة بداية من المجتمع ثم نختار العنصر الموجود على بعد ثابت من هذه النقطة	العينة المنتظمة
يقسم المجتمع إلى مساحات أو أجزاء ثم نختار عشوائيا بعض هذه المساحات، ثم نختار جميع عناصرها بالعينة.	العينة العنقودية

ب - العينات غير الاحتمالية:

عينة الصدفة	يتم اختيارها عن طريق الصدفة
العينة العمدية (القصدية)	يتم اختيار أفراد العينة تحت شروط معينة لتحقيق الهدف من التجربة
العينة الحصية	يقسم المجتمع إلى أجزاء ثم نختار العينة من كل جزء من أجزاء المجتمع وفقا للنسب المحددة

أخطاء البيانات الإحصائية: -

تتعرض البيانات الإحصائية التي يتم جمعها إلى نوعين من الأخطاء:

- 1. خطأ التميز أو التحيز: وهو ذلك الخطأ الناتج عن مصادر متعددة، منها أخطاء في تصميم البحث أو التجربة أو أخطاء فنيه أثناء جمع البيانات أو خلال العمليات الحسابية التي تتم على البيانات المتجمعة. أخطاء التميز تزداد بازدياد الفروق بين الإمكانيات (المادية والفنية) اللازم توافرها لضمان أقصى درجة دقة ممكنه وبين الإمكانيات الفعلية المتاحة للباحث.
- ٢. خطأ المعاينة العثوائية أو خطأ الصدفة: وهو الخطأ الناتج عن فروق الصدفة بين مفردات المجتمع التي دخلت العينة وبين تلك المفردات التي لم تشأ الصدفة أن تدخل العينة .
 - وفيما يلي شرح لهذين الخطأين:

١- خطأ التميز أو التحيز:

اذا سحبنا عدة عينات من مجتمع ما وحسبنا المتوسط الحسابي لكل عينة من هذه العينات ثم حسبنا المتوسط الحسابي لهذه المتوسطات فهذا المتوسط يجب أن يساوي المتوسط الحسابي الحقيقي للمجتمع المسحوبة منه هذه العينات، وفي حال وجود فرق بين المتوسطين فإن هذا الفرق يسمى بخطأ التميز أو التحيز.

✓ أسباب خطأ التميز أوالتحيز:

- الاختيار غير العشوائي للعينة: تعتمد بعض طرق الاختيار للعينة على خاصية معينة كالاعتماد على دليل الهاتف (عند دراسة الدخل والانفاق).
 - التحيز المقصود (تعمد إدخال بعض الوحدات)
 - استبدال وحدة بوحدة أخرى غير مدرجة ضمن الإطار العام للدراسة.

٢- خطأ المعاينة العشوائية Random Sampling Error

عند اختيار العينة العشوائية هناك خطأ ينتج عن الاختلاف أو التشتت Variation بين قيم الوحدات التي تتكون منها العيهة وتلك الوحدات التي لم تشأ الصدفة أن تدخلها في العينة وهذا الخطأ يسمى بخطأ المعاينة العشوائي

• كيف نقلل من خطأ المعاينة العشوائي:

• زيادة حجم العينة

طريقة الاختيار المناسب التي تقلل من اختلاف قيم الوحدات الإحصائية (كالأسلوب الطبقي أو العينة المنتظمة...الخ).

المعالم والإحصاءات:-

اعتاد البعض على معاملة القيم التي يحصل عليها من العينة وكأنها قيم مجتمعها، وهذا خطأ فادح. فلكي يستدل على خصائص مجتمع الدراسة تعتمد معادلات عديدة، ومتنوعة حسب نوع العينة.

فالمقاييس الإحصانية التي تحسب من بيانات مجتمع الدراسة بأكمله يطلق عليها معالم المجتمع (Parameters of population)

أما المقاييس الإحصائية التي تحسب من بيانات عينه مسحوبة من مجتمع الدراسة فيطلق عليها إحصاءات (Statistics)

وللتفرقة بين المعالم والإحصاءات يجب أن نرمز لكل منها برموز تختلف عن رموز الأخرى، على سبيل المثال يرمز للمتوسط الحسابي للعينة بالرمز \overline{X} ، أيضاً للانحراف المعياري للمجتمع بالرمز σ بينما يرمز للانحراف المعياري للعينة بالرمز σ وهكذا.

الخطأ المعياري:

بمعرفة قيمة الانحراف المعياري لقيم العينة يمكن تقدير قيمة الخطأ المعياري في الانحراف المعياري للعينة باعتماد المعادلة الآتية:-

$$SE = \left[\frac{S}{\sqrt{n}}\right] \sqrt{1 - (\frac{n}{N})}$$

حيث ان:
$$(N) = -$$
 حجم مجتمع العينة $(n) = -$

وفق هذه المعادلة تؤخذ نسبة العينة إلى مجتمعها، وكلما كبرت هذه النسبة تحسن تمثيلها لمجتمع الدراسة، أما عندما يكون حجم مجتمع العينة مجهولا، حينها تعتمد المعادلة الآتية:-

$$SE = \frac{S}{\sqrt{n}}$$

الخطأ المعياري = الانحراف المعياري لقيم العينة / جذر حجم العينة

أما عندما يكون حجم العينة أكثر من (١٠٠) فتعتمد المعادلة أدناه:-

$$SE = \frac{S}{\sqrt{n^2 - 1}}$$

الخطأ المعياري = الانحراف المعياري لقيم العينة / جذر (حجم العينة) ٢

إن الانحراف المعياري للتوزيع النظري لمتوسطات العينات يقيس خطأ المعاينة ويسمى بالخطأ المعياري للمتوسط، ومن الضروري التذكر دوما أن متوسط المجتمع قيمة محددة تقع ضمن مجال محدد Certain Interval ، والباحث غير متأكد من قيمتها، ولكنه يحسب احتمالية وجودها ضمن المجال المحدد وبمستوى ثقة إحصائية معلوم

مستوى الثقة وحدودها:

إذا أخذت جميع العينات المحتملة من مجتمعها فيتوقع أن تكون متوسطات العينات موزعة بالتساوي حول متوسط مجتمع الدراسة. بعبارة أخرى، إن متوسط متوسطات العينات يساوي متوسط مجتمعها.

وتتوزع متوسطات العينات دائما بصورة متماثلة Normal Distribution ، والذي يمتاز رياضيا بالابتعاد بنسب ثابتة عن المتوسط مع كل درجة معيارية، وبالتالي تباينت متوسطات العينات المأخوذة منه فانه يتوقع أن يقع متوسطه وباحتمالية قدرها كالتالي:

- ستوى ثقة إحصائية قدره (٢٦ ٨٦%) أو باحتمالية قدرها (١٦٨٢٧) يقع متوسط مجتمع الدراسة بين قيمة متوسط متوسطات العينات و (+ و -) درجة واحدة من الخطأ المعياري
- مستوى ثقة إحصائية قدرها (٩٩%)، أو باحتمالية (٩٥٠٠) يقع متوسط مجتمع الدراسة بين متوسط متوسطات العينات و (+ و -) درجتان من الخطأ المعياري تقريبا.
- مستوى ثقة إحصائية قدرها (٩٩ %) أو باحتمالية قدرها (٩٩.٠) يقع متوسط مجتمع الدراسة بين قيمة متوسط
 متوسطات العينات و (+ و -) ثلاث درجات من قيمة الخطأ المعياري تقريبا.

وتسمى هذه بمستويات الثقة Confidence Level و يعبر عنها بإشارة النسبة المئوية (%) بان تكون التقديرات صحيحة أو باحتمالية (١٠٠٠) أو (٠٠٠٠) أن تكون خاطئة.

◄ مثال:-

قام أحد الباحثين في مجال الزراعة بدراسة مائة مزرعة، فوجد أن متوسط مساحة المزرعة الواحدة (٣٠) هكتارا، وبانحراف معياري عن المتوسط بقيمة (٢٦) هكتارا .

• أحسب حدود الثقة في تقدير متوسط مساحة المزرعة في منطقة الدراسة؟

حجم العينة:-

إن لحجم العينة أهمية كبيرة في تحديد الثقة بالنتائج، لذا من الضروري أن يسلط الضوء عليه بشيء من التفصيل وحسب التوزيعات المعروفة للقيم، وسيتم هنا تناول نوعين من التوزيعات وهي:

- ١. التوزيع الطبيعي للقيم
 - ٢. توزيع (ت) للقيم

(أ) التوزيع الطبيعي للقيم:

كلما كبر حجم العينة ازدادت دقة تمثيلها لمجتمعها واقترب توزيع القيم فيها من التوزيع الطبيعي (المتماثل الجانبين) وأصبحت عملية الاستدلال أكثر دقة. وللتوضيح نورد مثالا، إذا أريد معرفة نسبة طلبة قسم الإدارة إلى مجموع طلبة الكلية فان عينة من عشرة طلبة قد لا تفي بالغرض، ولكن عينة من مائة طالب تفي بالغرض حتما. بعبارة أخرى، إن حجم العينة أساسي لإعطاء صورة عن مجتمع الدراسة وليس النسبة المنوية للعينة قياسا بحجم مجتمعها. فكلما ازداد حجم العينة ازدادت الثقة بتقديرات خصائص المجتمع وصغرت معه حدود الثقة.

(ب) توزيع (ت) للقيم:

من الضروري اخذ الحذر عندما يكون حجم العينة صغيرا اقل من (٣٠) وذلك لأنها تتطلب إجراءات خاصة عند التحليل. فعندما يكون حجم العينة أكثر من (٣٠) يتجه توزيع قيمها نحو التوزيع الطبيعي وبغض النظر عن التوزيع الحقيقي لقيم مجتمع الدراسة.

وبالنسبة للعينات الصغيرة الحجم فان توزيع قيمها يتأثر بطبيعة توزيع قيم المجتمع المأخوذة منه. وعندما يكون توزيع قيم المجتمع معروفا أو متوقعا أن لا يكون طبيعي حينها يجب اعتماد حجم كبير للعينة. أما إذا كان توزيع قيم المجتمع طبيعيا عندها يمكن اخذ عينات بحجم صغير ويعتمد توزيع (ت) (T) في التحليل و المقارنة.

يتشابه توزيع قيم (ت) مع شكل الجرس بزيادة الحجم حتى يتطابق معه عندما يتعدى العدد (٣٠) فشكل توزيع (ت) للقيم لا يختلف كثيرا عن التوزيع الطبيعي إلا في الأعداد القليلة، وكلاهما متماثل النصفين لذا يعتمد كبديل له في القيم القليلة العدد. ولتوزيع (ت) جداول للقيم الحرجة منظمة على شكل اسطر اعتمادا على درجة الحرية التي تقاس بـ (حجم العينة - ١). أما الأعمدة فتمثل درجة الاحتمالية Probability، وتتناقص القيم الحرجة بتزايد درجة الحرية (حجم العينة). ودرجة إلحرية تقضل على حجم العينة في الأحجام الصغيرة للعينة لأنها تقلل من الانحياز في تقدير خصائص

مجتمع الدراسة.

العوامل المحددة لحجم العينة:

✓ درجة التباين في خصائص مجتمع الدراسة: يلعب التباين في خصائص مجتمع الدراسة دورا مهما في تحديد درجة دقة نتائج العينة، فكلما كان التباين كبيرا تطلب الأمر زيادة حجم العينة ليكون تمثيلها للتباين في المجتمع صحيحا. طريقة التحليل المعتمدة: عند إقرار حجم العينة، من الضروري تحديد الحجم الأصغر المقبول للعينة في المجاميع الثانوية ضمن مجتمع الدراسة ، إذ أن بعض الاختبارات الإحصائية تتطلب عددا معينا كحد أدنى لكل فئة أو صنف لتكون النتائج ذات معنى.

✓ حجم المعلومات المطلوبة:

فكلما كانت المعلومات المطلوبة من العينة (الواحدة) كثيرة وتفصيلية كان حجم العينة صغيرا، ما لم يكن المشروع البحثي كبيرا وتتوفر له المصادر البشرية والمادية اللازمة. إن الدقة في المعلومات المطلوبة من العينة أهم بكثير من حجم العينة ، فحجم العينة لا يتحدد بحجم مجتمع الدراسة فقط، بل وبالدقة المتوخاة والتفاصيل المطلوبة .

√ المصادر المالية والبشرية المتوفرة:

تتطلب الدراسة الميدانية توفر مصادر مالية وبشرية لتغطية تكاليفها التي تكون في الغالب باهظة لتأثيراتها على تحديد حجم منطقة الدراسة، مجتمع الدراسة وبالتالي حجم العينة. إن مضاعفة حجم العينة يتطلب زيادة في كمية المصادر المالية والجهد البشرى

✓ حدود الثقة في تقديرات خصائص مجتمع الدراسة:

لزيادة الدقة في النتائج يعمد البعض إلى تقليص حدود الثقة (المدى الذي يفترض أن يقع ضمنه المعدل المتوقع للمجتمع). إن إنقاص حدود الثقة من (٦٠) إلى (٤%) يتطلب زيادة حجم العينة بنسبة (٢٠٥%)، وكلما كان المدى كبيرا كان حجم العينة صغيرا، والعكس صحيح.

✓ حالات الإخفاق وعدم الاستجابة: العامل الآخر الذي يحدد حجم العينة هي حالات الإخفاق في الحصول على المعلومات وعدم الاستجابة أو المعلومات غير الوافية

التقدير:-

اختبار السميستر الماضى سؤالين من المحاضره ٦

التقدير هو عملية استنتاج أو تقدير أحد معالم المجتمع (مثل الوسط الحسابي أو الانحراف المعياري) بناءً على بيانات عينة مسحوبة من المجتمع .

وهناك نوعان (أو أسلوبان) للتقدير:

- الأول تقدير النقطة (أو القيمة الواحدة).
- الثاني تقدير الفترة (أو فترة التقدير أو الثقة).

$$\Lambda \cdot = \mu$$
 إذا كان الوسط الحسابي للعينة $\overline{X} = \Lambda$ إذا للمجتمع الدا كان الوسط الحسابي للعينة المجتمع Λ

التقدير بنقطة يعني أن نحصل على قيمة واحدة من العينة، وتستخدم هذه القيمة الواحدة كتقريب أو كتقدير لمعلمة المجتمع المجهولة.

فمثلاً لو أخذنا الوسط الحسابي للدخل في العينة كتقدير لمتوسط الدولة نكون قد حصلنا على تقدير نقطة لمتوسط دخل الدولة. وكمثال آخر لو أخذنا نسبة الناخبين في العينة الذين يؤيدون مرشحا معيناً كتقدير لهذه النسبة في المجتمع نكون حصلنا على تقدير نقطة للنسبة في مجتمع الناخبين.

۱- التقدير بفترة: – إذا كان الوسط الحسابي للعينة
$$\overline{X}=0.0$$
 إذا للمجتمع $y \geq 0.0$

أما التقدير بفترة فنحصل من خلاله على مدى Range أو فترة تتحدد بحدين (حد أدنى وحد أعلى) نحصل عليهما من العينة. ونلاحظ هنا أن فترة التقدير (أو تقدير الفترة) تحتوي على أكثر من قيمة بل قد يكون عدد القيم غير محدود أو لا نهائياً في كثير من الحالات.

<u>مثلاً:</u>

إذا قدرنا أن الوسط الحسابي لأعمار الناخبين يتراوح بين (6 - 40) و (6 + 40) سنة أي يتراوح بين 34 سنة كحد أدنى و 46 سنة كحد أعلى نكون قد حصلنا على تقدير فترة للوسط الحسابي لأعمار الناخبين في المجتمع ، ونلاحظ أن هذه الفترة (34, 46) تحتوي على عدد لا نهائي من الأعمار، بمعنى أن العدد لا يقتصر فقط على الأعداد الصحيحة والتي تشمل السنوات، ولكنها تشمل أيضا كسور السنوات، والأيام والشهور، والساعات. الخ

تقدير الوسط الحسابي للمجتمع: - (هام جدا للاختبار)

أ – احسب الوسط الحسابي للعينة \overline{X} .

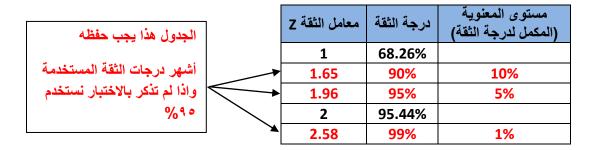
$$\frac{\sigma}{\sqrt{n}}$$
 يساوي: باخطأ المعياري للوسط والذي يساوي:

ج - أضرب الخطأ المعياري للوسط في معامل الثقة المناسب (أو الدرجة المعيارية) حسب درجة الثقة المطلوبة (Z) أي أحسب:
$$Z \, rac{\sigma}{\sqrt{n}}$$

د- فعندما نطرح حاصل الضرب السابق من الوسط الحسابي للعينة نحصل بالتالي على الحد الأدنى لفترة التقدير، وعندما نجمع حاصل الضرب مرة أخرى على الوسط الحسابي للعينة نحصل بالتالي على الحد الأعلى لفترة التقدير.

σ الانحراف المعياري للمجتمع

$$\mu = \overline{x} \pm z \frac{\sigma}{\sqrt{n}}$$



مع ملاحظة أنه إذا كان الانحراف المعياري للمجتمع غير معروف . وهو غالبا ما يحدث في الواقع ، فيمكن استخدام الانحراف المعياري للعينة (S) بدلا منه طالما كان حجم العينة كبيرا بدرجة كافية وتصبح فترة تقدير الوسط الحسابي للمجتمع كما يلى:

الانحراف المعياري للعينة

$$\widehat{\mu} = \overline{X} \pm Z \frac{S}{\sqrt{n}}$$

ولإيضاح هذه النقطة بشيء من التفصيل نأخذ المثال التالى:

مثال: - (هام)

لو أردنا معرفة متوسط الدخل اليومي لمجموعة من الناخبين في دولة ما، فإن ذلك يبدو أمرا صعباً من الناحية العملية نظراً لكبر حجم مجتمع الناخبين، إضافة إلى طول الوقت والتكاليف. لذا فإن الأسلوب العلمى المتبع في حالة كهذه هو اختيار عينة عشوائية نستطيع من خلال معرفة نتائجها لتقدير متوسط دخول الناخبين في هذه الدولة.

فلو سحبت عينة عشوائية من مجموع مجتمع الناخبين في دولة ما حجمها 100 ناخب، فإذا كان الوسط الحسابي والانحراف المعياري للدخل السنوي للناخبين بالعينة هما على الترتيب 90 ألف ريال و 25 ألف ريال.

المطلوب:

أوجد فترة تقدير للوسط الحسابي للدخل السنوي لمجموع الناخبين في هذه الدولة بدرجة ثقة %95 ؟

الحل: -

بما أن فترة تقدير الوسط الحسابي للمجتمع هي:

$$\widehat{\mu} = \overline{X} \pm Z \frac{S}{\sqrt{n}}$$

والمعلومات المعطاة هي:

مجم العينة n = 100

$$\overline{X} = 90$$

S= 25

وحيث أن درجة الثقة هي ٩٥% فإن: Z = 1.96 حسب ما هو موضح في الجدول السابق. وبالتالي فإن فترة تقدير الوسط الحسابي للدخل السنوي لمجتمع الناخبين بدرجة ثقة ٩٥% هي :

مرہ نطبقها جمع ومرہ نطبقها طرح
$$\widehat{\mu} = 90 \pm \ 1.\,96 \ rac{25}{\sqrt{100}}$$

أي أن الوسط الحسابي للدخل السنوي لمجتمع الناخبين يتراوح بين 85.1 ألف ريال كحد أدنى، 94.9 ألف ريال كحد أعلى، وذلك بدرجة ثقة % 95.

مثال: - (هام)

أخذت عينة عشوائية حجمها 144 بوسط مقداره 100 وانحراف معياري مقداره 60 وبالتالي فإن فترة تقدير الوسط الحسابي للمجتمع بدرجة ثقة ٩٥% هي:

مرہ نطبقها جمع ومرہ نطبقها طرح
$$\widehat{\mu} = 100 \pm_{\hat{\mu}} 1.96 \; rac{60}{\sqrt{144}}$$

أي أن μ تقع بين 20.2, 80.8 بدرجة ثقة %95 . وكثيرا ما تستخدم أيضاً درجات الثقة 90, %99 وهي مناظرة لقيمة z=2.58 , z=1.64

تحديد حجم العينة لتقدير الوسط الحسابي للمجتمع :- (هام)

يعتبر تحديد حجم العينة المناسب من المشاكل المهمة والشانعة التي تواجه الباحثين في مختلف المجالات، وبالذات عند دراسة الظواهر السياسية والاجتماعية ...الخ ، ويختلف تحديد حجم العينة باختلاف الهدف من التقدير.

فإذا كان المطلوب هو تقدير الوسط الحسابي للمجتمع، فإن فترة تقدير الوسط هي كما سبق وأن أوضحنا:

$$\widehat{\mu} = \overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$$

$$n=rac{Z^2 \, \sigma^2}{
ho^2}$$
 : ومنها نجد أن حجم العينة يأخذ الشكل التالي

Z = هو معامل الثقة (أو الدرجة المعيارية) المقابل لدرجة الثقة المطلوبة، ونحصل عليها من جدول التوزيع الطبيعي المعياري. (الجدول المطلوب حفظه سابقا)

هو تباین المجتمع (أو هو مربع الانحراف المعیاري). (یأتي بالسؤال في الاختبار)
$$\sigma^2$$

e = هو أقصى خطأ مسموح به في تقدير الوسط، وهو عادة ما يحدده الباحث، وتتوقف قيمته على أهمية الموضوع أو الظاهرة السياسية المراد دراستها، ومدى الدقة المطلوبة في التقدير، ويسمى اختصاراً "الخطأ في تقدير الوسط".

ولتوضيح كيفية تحديد حجم العينة المناسب عند تقدير الوسط الحسابي للمجتمع، نأخذ المثال التالى:

مثال: -

إذا كانت دخول الأفراد اليومية في إحدى دول العالم النامية تتبع التوزيع الطبيعي بانحراف معياري $\sigma = 15$ دولاراً، فما هو حجم العينة المناسب لتقدير متوسط دخول الأفراد في هذه الدولة بحيث لا يتعدى الخطأ في تقدير متوسط الدخل اليومي 5 دولارات، وذلك بدرجة ثقة 99?

الحل: -

في هذا المثال نجد أن:

درجة الثقة % 99 أي أن : Z = 2.58

أقصى خطأ مسموح به هو 5 دولارات، أي أن: e = 5

 $\sigma=15$: والانحراف المعياري للمجتمع

 $n=rac{Z^2 \, \sigma^2}{e^2}$: وبالتعويض بهذه القيم في المعادلة التي تحدد حجم العينة وهي

≈ تعني مع التقريب للأعلى

$$n=rac{2.58^2~15^2}{5^2}$$
 = 59.85 $pprox 60$: فإن حجم العينة مقرباً لأقرب عدد صحيح هو :

أي أنه يجب على الباحث أن يأخذ عينة لا يقل حجمها عن 60 فرداً حتى يكون لديه تقديراً دقيقاً عن متوسط دخول الأفراد في هذه الدولة بحيث لا يتعدى الخطأ في تقديره لمتوسط الدخل عن خمس دولارات، وذلك بدرجة ثقة % 99.

مثال : -

يرغب أحد مدراء إحدى المصانع في تقدير متوسط عدد الدقائق التي يأخذها العمال لإنجاز عملية صناعية معينة بحيث لا يتعدى الخطأ في تقدير متوسط الأداء في حدود ± 8 دقيقة وبدرجة ثقة ± 90 ويعلم المدير من خبرته الماضية أن الانحراف المعياري ± 15 هو 15 دقيقة .

الحل: -

في هذا المثال نجد أن:

درجة الثقة ٩٠% أي أن : Z = 1.65

e=3: أقصى خطأ مسموح به هو π دقائق، أي أن

 $\sigma=15$: والانحراف المعياري للمجتمع

 $n=rac{Z^2 \, \sigma^2}{e^2}$: وبالتعويض بهذه القيم في المعادلة التي تحدد حجم العينة وهي

 $n=rac{1.65^2\ 15^2}{3^2}$ = 68 : هو : عدد صحيح هو أن حجم العينة مقرباً لأقرب عدد صحيح هو γ

أي أنه يجب على المدير أن يأخذ عينة لا يقل حجمها عن 68 فرداً حتى يكون لديه تقديراً دقيقاً لعدد الدقائق التي يأخذها العمال لإنجاز عملية صناعية معينة بحيث لا يتعدى الخطأ في تقديره لمتوسط الإنجاز عن ثلاث دقائق، وذلك بدرجة ثقة 90 %.

ومما سبق نستنتج أن :-

في حالة تقدير النقطة نحصل على قيمة واحدة من العينة، وتستخدم هذه القيمة الواحدة كتقريب أو كتقدير لمعلمة المجتمع المجهولة. فمثلاً لو أخذنا الوسط الحسابي للدخل في العينة كتقدير لمتوسط الدولة نكون قد حصلنا على تقدير نقطة لمتوسط دخل الدولة.

أما في حالة تقدير الفترة أو فترة التقدير فنحصل على مدى Range أو فترة تتحدد بحدين (حد أدنى وحد أعلى) - نحصل عليهما من العينة. ونلاحظ هنا أن فترة التقدير (أو تقدير الفترة) تحتوي على أكثر من قيمة بل قد يكون عدد القيم غير محدود أو لا نهائياً في كثير من الحالات.

فترات الثقة للمتوسط باستخدام توزيع t :-

تناولنا فيما سبق التقدير الإحصائي للوسط الحسابي للمجتمع في الحالات التي يكون فيها الانحراف المعياري للمجتمع معلوماً، و (أو) أن العينة كبيرة بدرجة كافية.

ولكن إذا كانت العينة صغيرة بمعنى أن حجمها أقل من (30) مفردة، والانحراف المعياري للمجتمع الطبيعي غير معلوم، فإن التوزيع الإحصائي المتبع في مثل هذه الحالات هو ما يطلق عليه " توزيع ال

ولعل الاختلاف الأساسي بين توزيع (t) والتوزيع الطبيعي هو أن الانحراف المعياري للعينة هو المستخدم في الأول بدلا من الانحراف المعياري للمجتمع في الثاني، وفيما عدا ذلك فالتوزيعان متماثلان وكلما زادت قيمة (n) كلما اقترب توزيع (t) من توزيع (z) ويعتمد توزيع (t) على ما يعرف بدرجات الحرية DEGREES OF FREEDOM .

درجات الحرية: DEGREES OF FREEDOM

تعرف <u>درجات الحرية ب</u>أنها عدد المشاهدات المستقلة في العينة والتي تساوي حجم العينة مطروحاً منه عدد القيود أو معالم المجتمع التي يتم تقديرها من بيانات العينة.

وكمثال مبسط لشرح فكرة درجات الحرية نفترض أن لدينا 3 قيم واشترطنا أن مجموع القيم يساوي 10 فإن لدى الباحث في هذه الحالة حرية في اختيار الرقم الأول (وليكن 2) والثاني (وليكن 3) لذلك فإن قيمة الثالثة لابد وأن تكون (5) بالتالي نستطيع القول بأن درجة الحرية المتاحة لدى الباحث هي (2) أي 1 - 3 = 2 أي أن درجات الحرية في هذه الحالة هي :

n - 1

حيث n تساوي حجم العينة (والتي تساوي في المثال السابق 3)

والرقم (1) والذي طرحناه يعني الشرط الذي يحتم أن مجموع القيم = 10

n - k وبصفة عامة إذا كان عدد القيود (k) فإن درجات الحرية تساوي

وفترة الثقة %95 لوسط المجتمع غير المعلوم عند استخدام توزيع (t) هي:

$$P\left(\overline{X}-t\frac{s}{\sqrt{n}}<\mu<\overline{X}+t\frac{s}{\sqrt{n}}\right)=0.95$$

حيث تشير (t) إلى قيمة (t) التي تقع عندها 2.5% من المساحة الكلية للمنحنى عند كل طرف (عند درجات الحرية $\sigma \overline{x} = \sigma/\sqrt{n}$ بدلا من s/\sqrt{n} بدلا من s/\sqrt{n}

شروط توزیع t:

ويمكن تحديد الشروط الثلاثة لاستخدام توزيع t كما يلى:

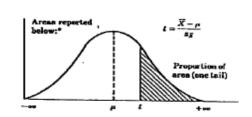
- ١. أن يكون المجتمع المسحوبة منه العينة له توزيع طبيعي.
- ٢. والانحراف المعياري للمجتمع غير معروف (أو مجهول).
 - ٣. والعينة صغيرة (حجمها أقل من 30 مفردة).

جدول توزیع t:

قيمة (t) درجات الحرية تكون معطاة في السؤال بالاختبار

الجدول أدناه بعطى قيمة ≈1 المقابلة للمساحة المظللة وقيمتها ∝

Proportions of Area for the t Distributions



df	0.10	0.05	0.025	0.01	0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898

df	0.10	0.05	0.025	0.01	0.005
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2.660
120	1.289	1.658	1.980	2.358	2.617
00	1.282	1.645	1.960	2.326	2.576

t Table											
cum, prob	£.50	t ₇₅	£_80	£.85	ž.90	£.95	t.975	t.99	£.995	£.999	t ,9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583 2.567	2.921	3.686	4.015
17 18	0.000	0.688	0.863	1.069	1.333	1.740 1.734	2.110 2.101		2.898	3.646	3.965 3.922
18	0.000	0.688	0.862	1.066	1.330	1.729	2.093	2.552 2.539	2.878	3.610 3.579	3.822
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
22 23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1,315	1.708	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
27 28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3,408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	096	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence L	evel				

<u>مثال : -</u>

العينة اقل من ٣٠ و المجتمع يتبع التوزيع الطبيعي:

سحبت عينة عشوائية من n=10 بطارية فلاش متوسطها ٥ ساعات، والانحراف المعياري للعينة n=1 ساعة من خط إنتاج من المعروف أنه ينتج بطاريات عمرها موزع طبقاً للتوزيع الطبيعى .

المطلوب:

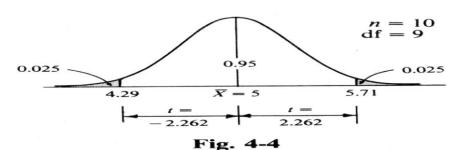
إيجاد فترة الـ 95% ثقة للمتوسط غير المعلوم لعمر البطاريات في المجتمع كله.

الحل:

لإيجاد فترة الـ 95% ثقة للمتوسط غير المعلوم لعمر البطاريات في المجتمع كله، فإننا نوجد أولا قيمة (t) 0.025 و التي تكون معها 2.5% من المساحة عند الأطراف لدرجات حرية n-1=9 . ونحصل على هذه القيمة من خلال الرجوع إلى جدول (t) بالتحرك تحت عمود 0.025 حتى درجات حرية 9 والقيمة التي سيتم التحصل عليها هي 2.262 إذن: $\hat{\mu} = \overline{X} \pm t \frac{s}{\sqrt{n}}$

$$\widehat{\mu} = \overline{X} \pm 2.262 \frac{S}{\sqrt{n}} = 5 \pm 2.262 \frac{1}{\sqrt{10}} \cong 5 \pm 2.262 (0.316) \cong 5 \pm 0.71$$

بين 5.71, 4.29 ساعة بدرجة ثقة %95 (أنظر الشكل التالي): $\hat{\mu}$ وتقع



تقدير فترة النسبة للمجتم

(فترة الثقة للنسبة)

إن تقدير النسبة في المجتمع تعتبر من الحالات المهمة لقياس الظواهر السياسية، وبالذات الوصفية منها كقياس اتجاهات الرأي العام، وقياس نسبة قتلى الحروب، ونسبة الدول التي أوفت بالتزاماتها في المنظمات الدولية أو الإقليمية... وغيرها ونظراً لأنه من الصعوبة بمكان في كثير من الأحيان حساب هذه النسبة مباشرة من المجتمع، فإننا غالبا ما نلجأ لتقدير هذه النسبة من عينة عشوائية مسحوبة من هذا المجتمع.

خطوات تقدير النسبة في المجتمع:

فلو افترضنا أن نسبة المؤيدين للسياسة الاقتصادية التي تنتهجها دولة ما هي P وأن العينة العشوائية كبيرة بدرجة كافية وأن نسبة مؤيدي هذه السياسة في العينة هي \widehat{P} فتقدير النسبة في المجتمع تكون كما يلي:

$$P = \widehat{P} \pm Z \sqrt{\frac{\widehat{P}(1-\widehat{P})}{n}}$$

مثال: -

عينة عشوائية حجمها 144 ناخباً سحبت من إحدى المدن فوجد أن عدد المؤيدين في العينة لمرشح معين هو 60 ناخباً، أنشئ فترة تقدير لنسبة المؤيدين لهذا المرشح في المدينة كلها بدرجة ثقة % 95.

الحل:

نحسب أولاً نسبة المؤيدين للمرشح في العينة \widehat{P} التي نحصل عليها بقسمة عدد المؤيدين له على العدد الكلي للعينة (حجم العينة) أي أن : $\widehat{P} = rac{60}{144} = 0.4$

وحيث أن درجة الثقة المطلوبة هي % 95 فإن معامل الثقة المناسب هو: 1.96 = Z وفترة تقدير نسبة المؤيدين لهذا المرشح في المدينة تأخذ الشكل التالى:

$$P = \widehat{P} \pm Z \sqrt{\frac{\widehat{P}(1-\widehat{P})}{n}}$$

وبالتعويض عن حجم العينة 144 = n

 $1 - \widehat{P} = 1 - 0.42 = 0.58$ والنسبة في العينة

ومعامل الثقة 2 = 1.96

نحصل بعدها على:

$$P = 0.42 \pm 1.96 \sqrt{\frac{0.42 \times 0.58}{144}}$$

$$= 0.42 \pm (1.96)(0.0411)$$

$$= 0.42 \pm 0.08$$

$$\therefore P \begin{cases} 0.34 \\ 0.50 \end{cases}$$

أي أن نسبة المؤيدين للمرشح في المدينة تتراوح بين 0.50, 0.34 وذلك بدرجة ثقة % 95 ، بمعنى آخر أن نسبة مؤيدي هذا المرشح في هذه المدينة لا تتجاوز % 50 كحد أعلى، وبالتالي ففرصته في الفوز كمرشح قد لا تكون كبيرة وذلك بدرجة ثقة % 95 بمعنى أن هذا الحكم لا تتجاوز نسبة الخطأ فيه % 5.

لإثباتها عمل صياغة فرض وهو تساءل قابل للإجابة بنعم أو لا المنصية المحاضرة ٧

اختبارات الفروض الاحصانية Testing Statistical Hypotheses

كمثال متوسط الناس إلي بتهرب من التعليم في بلد ماء اكبر من أو اقل أو يساوي من الناس إلي بتهرب من التعليم في بلد أخر

لدراسة أي ظاهره وإثباتها يجب على الإحصائي

أو لا يوجد تسرب من التعليم مقابل فرض أخر يقول هناك تسرب من التعليم

هنا تأتي مهمة الإحصائي بالإثبات هل هناك تسرب أو لا يوجد تسرب من التعليم

المقصود بالفروض هذا الفروض الإحصائية statistical hypotheses بمعنى الفروض التي تتعلق بالمجتمع الإحصائي المسحوبة منه العينة، أو توزيع هذا المجتمع أو معالمه كالوسط الحسابي أو النسبة في المجتمع.

والفرض ما هو إلا تخمين أو استنتاج ذكي مبني على حيثيات معقولة أو منطقية ولكنه ليس مبنياً على حسابات دقيقة خاصة بالمجتمع لأننا نفترض أنه لا يمكن دراسة المجتمع بالكامل عن طريق الحصر الشامل بل نحاول استنتاج أو الاستدلال على مقاييس المجتمع باستخدام بيانات ونتائج العينة. (دراسة نسبه معينه أو متوسط)

فمثلاً: قد يفترض الباحث أن متوسط الدخل الشهري للفرد في دولة ما هو 200 ريال (بناءً على ما يراه من مستوى المعيشة في هذا البلد وأوضاعه الاقتصادية)، ويحتاج إلى اختبار علمي (إحصائي) لمعرفة مدى صحة هذا الفرض أو قد يفترض باحث آخر أن نسبة الناخبين في إحدى الدوائر الذين يؤيدون مرشحاً معيناً لا تقل عن % 30 و هكذا. والمطلوب هو اختبار مدى صحة هذه الفروض. أي أن يصل الباحث إلى قرار إما بقبول الفرض أو عدم قبوله (أي رفضه) وذلك باحتمال معين. وقبل تناول كيفية إجراء الاختبارات الإحصائية نستعرض أولاً بعض المفاهيم والتعريفات الأساسية اللازمة لهذا الموضوع حتى تكون الصورة أكثر وضوحاً.

مفهوم الاختبارات الإحصائية :- الفروض تقسم إلى قسمين:

ا. الفرض العدمي (أو الصفري) The Null Hypothesis (الأساسي)

الفرض العدمي هو "الفرض الأساسى المراد اختباره". ويرمز له عادة بالرمز (Ho) هذا الفرض يأخذ - عادة - شكل معادلة أو مساواة. فمثلاً إذا كان الفرض العدمي المراد اختباره هو أن متوسط دخل الفرد في إحدى المناطق هو 200 ريال شهرياً فإن هذا الفرض يكتب بالرموز كما يلي: + Ho: + 200

الفرض ألعدمي لابد يكون فيه علامة (=)

ويقرأ بالشكل التالى:

الفرض العدمي هو: أن متوسط دخل الفرد في المنطقة هو 200 ريال شهرياً.

وكمثال آخر: إذا كان الفرض المراد اختباره هو أن نسبة المؤيدين لبرنامج اقتصادي معين بين عمال أحد المصانع هي % 30، فإن هذا الفرض يكتب بالرموز كما يلى: Ho:P=0.30

ويقرأ بالشكل التالى:

الفرض العدمي هو: أن نسبة المؤيدين للبرنامج الاقتصادي بين عمال المصنع هي 0.30

The Alternative Hypothesis : الفرض البديل. ٢

في اختبارات الفروض يتحتم وضع فرض آخر غير الفرض العدمي المراد اختباره يسمى الفرض البديل. وهذا الفرض " هو الذي سيقبل في حالة رفض الفرض العدمي، وبالتالي فإن الفرض الغدمي، وبالتالي فإن الفرض البديل يعرف كما يلى :

"الفرض البديل هو الفرض الآخر الذي سيقبل في حالة رفض الفرض العدمي" ويرمز له عادة بالرمز: H1:

والفرض البديل له أهمية كبيرة في قياس الظواهر الاجتماعية - كما سوف نرى - فهو الذي يحدد نوع الاختبار المستخدم لذلك فهو يأخذ أحد أشكال ثلاثة هي : -

أ- أن يأخذ شكل " لا يساوي ". وفي هذه الحالة نستخدم ما يسمى : "اختبار الطرفين"

فمثلاً: إذا كان الفرض العدمي هو أن متوسط الدخل الشهري لفئة معينة في المجتمع هو 200 ربيال.

Ho: $\mu = 200$

في الاختبار كلمة (تختلف) تعني ليست أكثر أو اقل إذا (لا يساوي) وتعني اختبار طرفين

فإن الفرض البديل في هذه الحالة يأخذ الشكل التالي:

بمعنى أن متوسط دخل هذه الفئة من المجتمع " لا يساوي " 200 ريال شهرياً. 200±H1:μ±200

بمعنى أن متوسط دخل هذه الفئة من المجتمع " لا يساوي " 200 ريال شهرياً.

ب- أو أن يأخذ شكل " أكبر من ". وفي هذه الحالة نستخدم ما يسمى " اختبار الطرف الأيمن ".

فمثلاً: قد يكون الفرض البديل كما يلي: H1: µ > 200

أي أن متوسط الدخل لهذه الفئة من المجتمع أكبر من 200 ريال شهرياً.

ج- وأخيراً قد يأخذ الفرض البديل شكل " أقل من ".وفي هذه الحالة نستخدم ما يسمى " اختبار الطرف الأيسر".

فمثلاً: قد يكون الفرض البديل هو: H1: µ < 200

أي أن متوسط الدخل لهذه الفئة من المجتمع أقل من 200 ريال شهرياً.

الخلاصة: الفروض الإحصائية:-

تعتبر الفروض الإحصائية بمثابة اقتراح عن معالم المجتمع موضوع الدراسة، والتي ما زالت غير معلومة للباحث، فهي حلول ممكنة لمشكلة البحث

الفروض فرضية العدم (الصفرية) الفرضية البديلة

الخطأ في اتخاذ القرار: -

ففي حالة قبول الباحث لفرضه العدمي، فلا مجال للبحث في الفرض البديل، أما في حالة حدوث العكس بمعنى رفض الفرض العدمي فإنه يتحتم في هذه الحالة قبول الفرض البديل، على أنه من الجدير بالذكر أن الباحث هنا عرضة للوقوع في الخطأ عند اتخاذ قراره بقبول الفرض العدمي أو رفضه، فقد يرفض فرضاً هو في الواقع صحيح، وقد يقبل فرضا هو في الواقع غير صحيح. لذلك فقد تم تصنيف هذه الأخطاء إلى نوعين هما:

الخطأ من النوع الأول: Type I error في الاختبار السمستر السابق

الخطأ من النوع الأول هو "رفض الفرض العدمي بينما هو صحيح". أي أنه على الرغم من أن الفرض العدمي في الواقع صحيح وكان من الواجب قبوله فقد تم أخذ قرار خاطئ برفضه. وباختصار شديد فإن الخطأ من النوع الأول هو: "رفض فرض صحيح".

الخطأ من النوع الثاني : Type II error

وفي المقابل فإن الخطأ من النوع الثاني يعني "قبول الفرض العدمى بينما هو خاطئ " أي أنه على الرغم من أن الفرض العدمي خاطئ وكان من الواجب رفضه فقد تم أخذ قرار خاطئ بقبوله وباختصار شديد فإن الخطأ من النوع الثاني هو "قبول فرض خاطئ ".

وقد يتساءل البعض عند مدى إمكانية تصغير الخطأين معاً ولكن لسوء الحظ لا يمكن تصغيرهما معاً إلى أدنى حد ممكن، ويبدو أن الطريقة الوحيدة المتاحة لذلك هي زيادة (أو تكبير) حجم العينة، الأمر الذي قد لا يكون ممكنا في كل الحالات. لذلك فإن الذي يحدث عادة هو تثبيت أحدهما كأن يكون نسبة أو احتمال حدوث الخطأ من النوع الأول ومحاولة تصغير الآخر.

مستوى المعنوية: Level of Significance

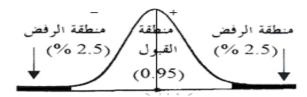
والمقصود بمستوى المعنوية هو " احتمال حدوث الخطأ من النوع الأول ". أو نسبة حدوثه " أي احتمال رفض الفرض العدمي بينما هو صحيح ".

وعادة ما يرمز إلى مستوى المعنوية بالرمز اللاتيني ألفا α وأشهر قيمتين لمستوى المعنوية هما (5%، 1) ولكن ليس هناك ما يمنع من أن يأخذ قيما أخرى.

ومن الملاحظات المهمة هنا هو أن " مستوى المعنوية" والذي يسمى أحياناً " مستوى الدلالة " هو "المكمل لدرجة الثقة" بمعنى أن مجموعهما يساوى %100 أو واحد صحيح. فإذا كانت درجة الثقة %95 فإن مستوى المعنوية يساوي %5. والعكس صحيح فإذا كان مستوى المعنوية %5 فإن هذا يعني أن درجة الثقة % 95. ولعل من أهم الملاحظات هنا هو استخدام تعبير "مستوى المعنوية" في حالات اختبارات الفروض، بينما يستخدم مصطلح "درجة أو مستوى الثقة" في حالات اختبارات الفروض.

والفكرة الأساسية في اختبار الفرض هي تقسيم المساحة تحت المنحنى إلى منطقتين: أحداهما تسمى " منطقة القبول " أي منطقة قبول الفرض العدمي والتي تسمى أحيانا " بالمنطقة الحرجة قبول الفرض العدمي والتي تسمى أحيانا " بالمنطقة الحرجة الفرض العدمي والتي تسمى أحيانا " بالمنطقة الحرجة أن منطقة المركزة والنقطة الجديرة بالملاحظة هنا هي أن منطقة القبول تمثل درجة الثقة، بينما تمثل منطقة الرفض مستوى المعنوية. وهناك ثلاث حالات مختلفة لمنطقتي القبول والرفض هي :

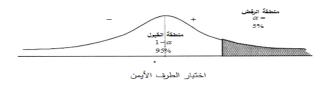
الأولى : إذا كان الفرض البديل يأخذ شكل " لا يساوي " كأن يكون الفرض في هذه الحالة هو أن متوسط دخل الفرد لا يساوي 200 ريال فإن منطقة الرفض تكون موزعة على طرفي المنحنى بالتساوي، ويسمى الاختبار في هذه الحالة " اختبار الطرفين "، والذي يأخذ الشكل التالي (بافتراض أن α=5) :



فالفرض العدمي هنا يعني أن متوسط دخل الفرد يساوي 200 ريال شهريا، والفرض البديل في هذه الحالة هو بمعنى أن متوسط دخل الفرد لا يساوي 200 ريال شهرياً. حيث تمثل المنطقة البيضاء غير المظللة منطقة القبول والتي قد تساوي %95 وبالتالي فمنطقة الرفض مقسمة بالتساوي على طرفى المنحنى في هذه الحالة تكون قيمة كل منهما % 2.5.

والنتيجة هو أن القرار أيا كان نوعه سيكون بمستوى معنوية % 5 بمعنى أن احتمال أو نسبة الخطأ فيه من النوع الأول تساوي 5 %.

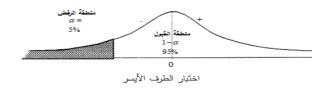
الثانية: إذا كان الفرض البديل يأخذ شكل "أكبر من" فإن منطقة الرفض تكون مركزة بالكامل في الطرف الأيمن للمنحني. ويسمى الاختبار في هذه الحالة اختبار الطرف الأيمن. والذي يأخذ الشكل التالي أدناه:



فالفرض العدمي هنا نفس فرض المثال السابق، بينما الفرض البديل هو H1: μ > 200

بمعنى أن متوسط دخل الفرد أكبر من 200 ريال شهرياً. وبالتالي "فإن مستوى المعنوية والذي يساوى مثلاً %5 مركز في الطرف الأيمن من المنحنى".

الثالثة: إذا كان الفرض البديل يأخذ شكل " أقل من " فإن منطقة الرفض تكون مركزة بالكامل في الطرف الأيسر للمنحني. ويسمى الاختبار في هذه الحالة اختبار الطرف الأيسر. والشكل التالي يوضح ذلك:



مع افتراض ثبات الفرض العدمي كما في المثال السابق، بينما الفرض البديل هو <u>Η1:μ<200</u> بمعنى أن متوسط دخل الفرد أقل من 200 ريال شهرياً، وبالتالي "فإن مستوى المعنوية والذي يساوي مثلاً % 5 مركز في الطرف الأيسر من المنحنى".

خطوات الاختبار الإحصائي:

- 1) وضع الفرض العدمى Ho، والذي يأخذ عادة شكل " يساوي " فمثلاً إذا كان المطلوب هو اختبار ما إذا كان متوسط عمر الناخب هو 20 سنة فإن هذا الفرض يصاغ كما يلي: $\frac{20}{100}$
 - ٢) وضع الفرض البديل H1، والذي يأخذ أحد أشكال ثلاثة إما:

وبالرموز فإن الفرض البديل قد يأخذ شكل أحد الصيغ التالية:

<u>H1 : μ≠20</u>	لا يساوي
H1 " μ>20	أكبر من
H1: µ<20	أقل من

والفكرة الأساسية في اختبار الفرض هي تقسيم المساحة تحت المنحنى إلى منطقتين: أحداهما تسمى "منطقة القبول" أي منطقة قبول الفرض العدمي والتي تسمى أحيانا " بالمنطقة الحرجة Critical region ".

والنقطة الجديرة بالملاحظة هنا هي أن منطقة القبول تمثل درجة الثقة، بينما تمثل منطقة الرفض مستوى المعنوية.

مثال (۱): - (هام) (سؤال اختبار في السميستر الماضي وهو نفس المثال الرابع فقط التغيير في الفرض الصفري تغير بالمثال الرابع إلى الفرض العدمي)

عينة عشوائية حجمها 49 شخصاً اختيرت من أفراد دولة ما، فإذا كان الوسط الحسابي لدخول الأفراد الأسبوعية في العينة هو 75 ريال . كيف يمكن اختبار الفرض الصفري بأن متوسط الدخل الأسبوعي لمواطني هذه الدولة يساوي 72 ريال مقابل الفرض البديل أنه لا يساوي 72 وذلك بمستوى معنوية % 5 إذا علمت أن الانحراف المعياري لدخول الأفراد يساوي 14 ريال .

الحل: -

١- الفرض العدمي: هو أن متوسط المجتمع يساوي 72 وبالرموز: Ho: µ=72

Y- الفرض البديل: هو أن المتوسط لا يساوى 72 وبالرموز: 12≠72 : H1: µ≠72

٣- الإحصائية: بما أن العينة كبيرة فإن الإحصائية في حالة اختبار الوسط تأخذ الشكل التالى:

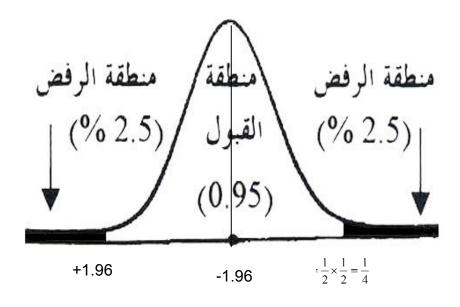
$$Z_{\overline{X}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

n=49
$$\sigma$$
 =14 \overline{X} =75 μ =72 حيث

وبالتعويض نحصل على:

أي أن قيمة الإحصائية تساوي 1.5

٤- حدود منطقتي القبول والرفض: نحصل عليها من التوزيع الطبيعي المعياري حيث مستوى المعنوية %5 وبما أن
 الفرض البديل هو: "لا يساوي" فإن ما يستخدم في هذه الحالة هو اختبار الطرفين كما في الشكل التالي:

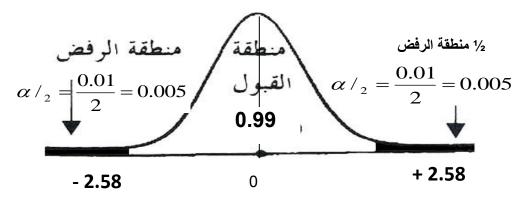


وقد حصلنا على حدود منطقتي القبول والرفض وذلك بقسمة درجة الثقة (المكملة لمستوى المعنوية) والتي تساوي 0.95 على 2 فنحصل على 0.4750 وبالكشف في جدول التوزيع الطبيعي المعياري عن 2 التي تقابل المساحة 0.4750 نجد أنها تساوي 1.96 وحيث أنها موزعة على طرفي المنحنى بالتساوي فنضع إشارة موجبة في النصف الأيمن، وإشارة سالبة في النصف الأيسر، أي أن منطقة القبول تبدأ من القيمة ١٩٦٠ وتستمر حتى القيمة ١٩٦٠ + (أي أن أي قيمة محصورة بين هاتين القيمتين تكون في منطقة القبول، وأي قيمة خارج هذه الحدود تكون في منطقة الرفض).

٥- المقارنة والقرار: وبمقارنة قيمة الإحصائية المحسوبة من الخطوة رقم 3 (والتي تساوي 1.5) بحدود منطقتي القبول والرفض (من الخطوة رقم 4) نجد أنها تقع في منطقة القبول لذلك فإن القرار هو:

قبول الفرض الصفري بأن متوسط دخول الأفراد الأسبوعية في هذه الدولة يساوي 72 دولاراً وذلك بمستوى معنوية % 5.

لو استخدمنا مستوى معنوية 1% بدلاً من 5% كما في المثال أعلاه فإن حدود منطقتي القبول والرفض تصبح كما يلي:



وبمقارنة قيمة الإحصائية 1.5 بحدود منطقتي القبول والرفض نجد أنها تقع في منطقة القبول أي أن القرار هو نفسه قبول الفرض الصفري ولن يتغير بل يتأكد باستخدام مستوى معنوية 1%.

مثال (٢): -

أفترض أن شركة ترغب في اختبار ما إذا كان يمكنها الادعاء بأن متوسط عمر المصباح من إنتاجها هو 1000 ساعة احتراق. وأنها قامت بأخذ عينة عشوائية حجمها n = 100 من إنتاجها فوجدت أن متوسط العينة X = 980 ساعة والانحراف المعياري للعينة X = 80 ساعة.

فإذا أرادت الشركة القيام بالاختبار عند مستوى معنوية %5، فعليها القيام بالتالى:

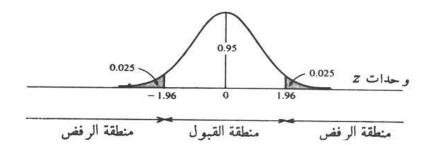
الحل: -

حيث أن μ يمكن أن تساوي أو تزيد عن، أو تقل عن 1,000، فان الشركة يجب أن تضع الفرض الصفري والفرض البديل كالآتى:

 $H_1: \mu \neq 1,000 \ H_0: \mu = 1,000$

وحيث أن 30 < n ، فإن توزيع المعاينة للوسط يكون تقريباً طبيعياً (ويمكن استخدام c كتقدير بدلاً من c وتكون منطقة القبول للاختبار عند مستوى المعنوية c بين 1.96 تحت التوزيع الطبيعي القياسي وحيث أن منطقة الرفض تقع عند ذيل التوزيع، فإن الاختبار يسمى اختبار ذو ذيلين. وتكون الخطوة الثالثة إيجاد القيمة المناظرة لقيمة c :

$$Z_{\overline{X}} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \longrightarrow Z_{\overline{X}} = \frac{980 - 1000}{\frac{80}{\sqrt{100}}} \longrightarrow Z_{\overline{X}} = \frac{-20}{\frac{80}{10}} = 2.5$$



 $\mu = 0$ أي أن أن μ المحسوبة تقع داخل منطقة الرفض، فإن على الشركة أن ترفض الفرضية الصفرية μ 1,000 وتقبل الفرضية البديلة (H_1) أي 1,000 $\mu \neq 1,000$ وذلك عند مستوى معنوية %5.

مثال (٣): -

ترغب شركة أن تعرف بدرجة ثقة %95 ما إذا كان يمكنها الادعاء بأن صناديق الصابون المسحوق الذي تبيعها تحتوي على اكثر من 500 جرام (حوالي 1.1 رطل) من الصابون. وتعرف الشركة من الخبرة الماضية أن أوزان الصابون x = 75 جرام و 75 جرام

جرام. الحل: -

مهم جدا: وأتوقع والله اعلم راح يجى السؤال

وحيث أن الشركة ترغب في اختبار ما إذا كانت 4 > 500 ، فإن:

هذا بالاختبار ۞

 $H_0: \mu = 500$

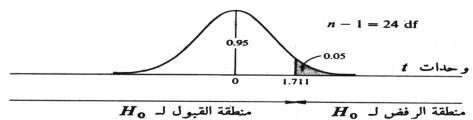
نركز هنا بموضوع أل (t) بدلا عن (Z) الدكتور ذكر بأنه بالاختبار راح يسال عن درجات الحرية وهي تساوي (n-1) إذا (n-1=25) وال (t) بيذكرها بسؤال الاختبار t=1.77

 $H_1: \mu > 500$

وحيث أن التوزيع طبيعي ، n < 30، وكذلك σ غير معلومة، فعلينا أن نستخدم توزيع (t) بدلا عن التوزيع (z) (بدرجة حرية n-1=24 لتحديد المنطقة الحرجة، أي منطقة الرفض، للاختبار بمستوى معنوية 5. ونجد ذلك في الجدول المخصص لاختبار t ويعرضها الشكل التالي، ويسمى هذا اختبار الذيل الأيمن. وأخيراً حيث أن

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \longrightarrow Z_{\overline{X}} = \frac{520 - 500}{\frac{75}{\sqrt{25}}} \longrightarrow Z_{\overline{X}} = \frac{20}{\frac{75}{5}} = 1.33$$

وهي تقع داخل منطقة القبول، وتقبل H_0 أي $\mu = 500$ ، عند مستوى معنوية 50 (أو بدرجة ثقة 95) .



مثال (٤): (هام) (سؤال اختبار في السميستر الماضي و هو نفس المثال الأول فقط التغيير في الفرض العدمي تغير بالمثال الأول إلى الفرض الصفري)

عينة عشوائية حجمها 49 شخصاً اختيرت من أفراد دولة ما، فإذا كان الوسط الحسابي لدخول الأفراد الأسبوعية في العينة هو 75 ريال . كيف يمكن اختبار الفرض العدمي بأن متوسط الدخل الأسبوعي لمواطني هذه الدولة يساوي 72 ريال مقابل الفرض البديل أنه لا يساوي 72 وذلك بمستوى معنوية % 5 إذا علمت أن الانحراف المعياري لدخول الأفراد يساوي 14 ريال .

الحل :-

Ho: μ = 72: وبالرموز | 12 وبالرموز | 1- الفرض العدمي | 40 متوسط المجتمع يساوي

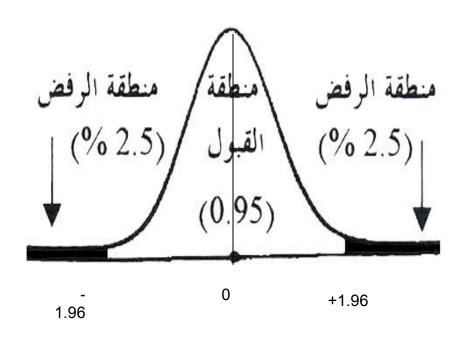
 $H1: \mu \neq 72$: هو أن المتوسط لا يساوي 72 وبالرموز $\mu \neq 72$

- الإحصائية: بما أن العينة كبيرة فإن الإحصائية في حالة اختبار الوسط تأخذ الشكل التالى:

$$Z_{\overline{X}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 $r = 49$ $r = 14$ $r = 75$ $r = 75$

أي أن قيمة الإحصائية تساوي 1.5

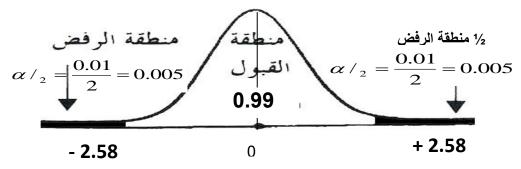
٤- حدود منطقتي القبول والرفض: نحصل عليها من التوزيع الطبيعي المعياري حيث مستوى المعنوية %5 وبما أن الفرض البديل هو: "لا يساوي" فإن ما يستخدم في هذه الحالة هو اختبار الطرفين كما في الشكل التالي:



٥- المقارنة والقرار: وبمقارنة قيمة الإحصائية المحسوبة من الخطوة رقم 3 (والتي تساوي 1.5) بحدود منطقتي القبول والرفض (من الخطوة رقم 4) نجد أنها تقع في منطقة القبول لذلك فإن القرار هو:

قبول الفرض الصفري بأن متوسط دخول الأفراد الأسبوعية في هذه الدولة يساوي 72 دولاراً وذلك بمستوى معنوية % 5. ملاحظة:

لو استخدمنا مستوى معنوية 1% بدلاً من 5% كما في المثال أعلاه فإن حدود منطقتي القبول والرفض تصبح كما يلي:



وبمقارنة قيمة الإحصانية 1.5 بحدود منطقتي القبول والرفض نجد أنها تقع في منطقة القبول أي أن القرار هو نفسه قبول الفرض العدمي ولن يتغير بل يتأكد باستخدام مستوى معنوية 1%.

مثال (٥):- (هام) (سؤال اختبار في السميستر الماضي)

يدّعي أحد المرشحين في الانتخابات أنه سيحصل على نسبة %70 من أصوات الناخبين عندما تجري الانتخابات. ولاختبار هذا الادعاء تم اختيار عينة عشوائية من الناخبين حجمها 100 ناخب، ووجد أن نسبة من يؤيدون المرشح في العينة هي % 60 اختبر مدى صحة ادعاء المرشح بأن النسبة في المجتمع هي % 70 مقابل الفرض البديل أن النسبة أقل من %70 وذلك بمستوى معنوية % 5.

الحل :-

الفرض العدمي هو أن النسبة في المجتمع (نسبة من يؤيدون المرشح في المجتمع) هي 0.70 أي أن الفرض العدمي
 هو أن الادعاء صحيح وأن المرشح سيحصل على النسبة التي ادعاها وهي % 70 بالرموز 0.70 P = 0.70

٢- الفرض البديل والمنطقي: في هذه الحالة هو أن النسبة في المجتمع أقل من هذا الادعاء وبالرموز:

H1: P < 0.70

٣- الإحصائية: وتأخذ الإحصائية في حالة اختبار النسبة الشكل التالي:

$$Z_{\widehat{p}} = \frac{\widehat{p} - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

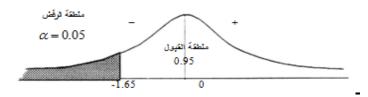
n=100 $\hat{p}=0.60$ P=0.70 1- P=1- 0.70=0.30 -: حیث أن

$$Z_{\hat{\mathbf{p}}} = \frac{0.60 - 0.70}{\sqrt{\frac{0.70 \times 0.30}{100}}}$$

$$Z_{\widehat{\mathbf{p}}} = \frac{-0.1}{0.046} = -2.17$$

أَي أن قيمة الإحصائية تساوي 2.17 -

 $\alpha = 5$ وبما أن $\alpha = 5$ وبما أن القرض القبول والرفض نحصل عليها من التوزيع الطبيعي المعياري، حيث مستوى المعنوية $\alpha = 5$ وبما أن الفرض البديل هو " أقل من " فنستخدم اختبار الطرف الأيسر.



٥- المقارنة والقرار: وبمقارنة قيمة الإحصائية التي حصلنا عليها في الخطوة رقم (٣) التي تساوي 2.17 - بحدود منطقتي القبول والرفض (من الخطوة رقم ٤) نجد أن قيمة الإحصائية تقع في منطقة الرفض لأن 2.17 - أصغر من 1.65 - فإن القرار هو:

رفض الفرض العدمى بادعاء المرشح بأن نسبة مؤيديه فى المجتمع هى % 70 وقبول الفرض البديل بأن النسبة أقل من % 70 وذلك بمستوى معنوية % 5 (أي أن احتمال الخطأ فى هذا القرار لا يتعدى % 5).

مثال (٦):-

البيانات التالية تمثل نتائج عينتين عشوائيتين مستقاتين مسحوبتين من منطقتين لمقارنة متوسط عمر الناخب فيهما:

$$\overline{X}_1$$
=35 \overline{X}_2 =29 n_2 =80 n_1 =100

اختبر الفرض العدمي: أن متوسط عمر الناخب في المنطقة الأولى يساوي متوسط عمر الناخب في المنطقة الثانية بمستوى معنوية %5 مقابل الفرض البديل أنهما غير متساويين إذا علمت أن:

$$\sigma_1^2=60$$

$$\sigma_2^2 = 32$$

١- الفرض العدمي أن المتوسطين متساويان وبالرموز:

Ho:
$$\mu_1 = \mu_2$$

٢- الفرض البديل أن المتوسطين غير متساويين وبالرموز:

$$H1: \mu_1 \neq \mu_2$$

٣- الإحصائية: تأخذ الشكل التالى:

$$Z_{\overline{X}1-\overline{X}2} = \frac{\overline{X}1 - \overline{X}2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

وبالتعويض عن :-

$$n_1 = 100$$
 $n_2 = 80$ $\overline{X}_1 = 35$ $\overline{X}_2 = 29$ $\sigma_1^2 = 60$ $\sigma_2^2 = 32$

نحصل على :-

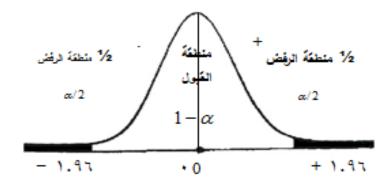
$$Z_{\overline{X}1-\overline{X}2} = \frac{35-29}{\sqrt{\frac{60}{100} + \frac{32}{80}}}$$

$$Z_{\overline{X}1-\overline{X}2}=\frac{6}{\sqrt{1}}=6$$

أير أن قيمة إحصائي الاختبار تساوي 6.

ع- حدود منطقتي القبول والرفض التي نحصل عليها من جدول التوزيع الطبيعي Z لأن العينات كبيرة، والاختبار هو اختبار الطرفين (لأن الفرض البديل لا يساوي)

ومستوى المعنوية المطلوب هو % 5.



أي أن منطقة القبول تبدأ من 1.96- إلى 1.96+ ومنطقة الرفض هي القيم التي أصغر من 1.96 - والتي أكبر من 1.96 +.

٥- المقارنة والقرار ولما كانت قيمة الإحصائية (والتي تساوي) 6 <u>تقع في منطقة الرفض</u> فإن القرار هو رفض الفرض العدمي وقبول الفرض البديل بمستوى معنوية 5% أي أننا نرفض الفرض القائل بأن متوسط عمر الناخب في المنطقة الأولى يساوي متوسط عمر الناخب في المنطقة الثانية وذلك بمستوى معنوية % 5.

اختبار السميستر الماضى ٦ اسأله من المحاضرة ٨

أنواع الاختبار (الفروض)

الاختبارات الإحصائية لعينة واحدة One Sample Test

اختبار Z-test

في كثير من الأحيان لا يمكن معرفة تباين المجتمع الذي سحبت منه العينة ، إلا أنه إذا كان حجم العينة كبيرا (٣٠ < n فإنه "يمكن استخدام تباين العينة الكبيرة (S2) عوضاً عن تباين المجتمع (σ2) الغير معلوم"، وذلك لأن (S2) مقدر جيد ل (σ²) ولأنه لا يتغير كثيراً من عينة لأخرى ما دام حجم العينة كبير، ففي هذه الحالة يمكننا استخدام اختبار (Z) لاختبار الفرضيات الصفرية موضع الدراسة وذلك من خلال المختبر الإحصائي التالي:

$$Z = \frac{\overline{X} - \mu_{\rm o}}{\sigma / \sqrt{n}}$$

المختبر الإحصائي هو نفسه إحصائي الاختبار (السؤال في الاختبار يطلب إحصائي الاختبار) اللي هو Z

ويعتبر ذلك مدخل ضروري لفهم اختبار t-test .

مثال على اختبار Z : (هام) (سؤال اختبار في السميستر الماضي)

إذا كان متوسط استهلاك الفرد السعودي من الدجاج حسب تقارير وزارة الصحة هو (١٢) كيلوجرام بانحراف معياري (٦) كيلوجرامات لفترة السبعينات الميلادية. أجرى أحد الباحثين دراسة في عام ٢٠٠٣م من عينة قوامها (٤٩) فرداً ووجد أن متوسط الاستهلاك للفرد هو (١٤) كيلوجرام. هل تشير الدراسة الحالية أن متوسط الاستهلاك أرتفع عما عليه في السبعينات

<u>الحل:</u>

$$\mu$$
=12 σ=6 n=49 \overline{X} =14

ذكر بالسؤال أن متوسط الاستهلاك ارتفع إذا اختبار من طرف واحد

لو لم يحدد مستوى الثقة في الاختبار إذا يساوي

في حال ذكر بالسؤال التباين نأخذ جذره لان الانحراف

 $\sqrt{36} = 6 = \sqrt{36}$ مثال التباین ۳٦ إذا الانحراف المعیاری

يساوى ٥%

المعيارى جذر التباين.

لو لم يحدد مستوى المعنوية في الاختبار إذا

1) فرض العدم والفرض البديل.

فرض العدم: Ho: µ=12

الفرض البديل: H₁: μ>12

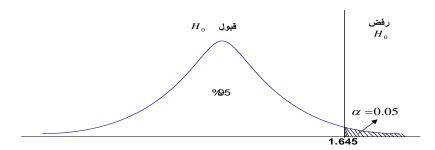
٢) مستوى الدلالة =(0.05): هو نفسه مستوى المعنوية ويساوى ٥%

٣) إحصائية الاختبار (Z):

$$Z = \frac{\overline{X} - \mu_{o}}{\sigma/\sqrt{n}} = \frac{14 - 12}{6/\sqrt{49}} = 2.33$$

٤) تحديد قيمة Z المعيارية من الجدول عند مستوى دلالة (٠٠٠٠)، نحتاج لتحديد قيمة Ζα التي تقع علي اليمين وتساوي ٥٤٦٠ (أنظر الشكل التالي):

٢.٣٣ اكبر من ١.٦٥ إذا تقع في منطقة الرفض



بما أن القيمة المحسوبة (٢.٣٣) أكبر من القيمة النظرية المستخرجة من الجدول (١.٦٥) كما يبين الشكل، فإنها تقع في منطقة الرفض. وبذلك نرفض فرض العدم حيث أن البيانات المتوفرة تقدم دليلاً كافياً على أن متوسط استهلاك الفرد من لحوم الدواجن في الوقت الحالي قد اختلف بمستوى معنوي أو ذو دلالة عما علية في سبعينات القرن الماضي.

اختبار t-test :

"ولكن إذا كان حجم العينة صغيراً (٣٠ > n) فإن قيمة (s²) تتغير كثيراً من عينة إلى أخرى وبالتالي لا يمكننا هنا أن نستخدم اختبار (z)، مما دفع كثيراً من الإحصانيين للبحث عن البديل المناسب".

مثال على اختبار t : (هام)

$$t = \frac{\overline{X} - \mu_{\rm o}}{S / \sqrt{n}}$$

لو كانت لدينا عينة عشوائية تتكون من ٢٥٠ طالب وجد أن الوسط الحسابي لأطوال طلاب العينة ٩٥.٥٥ اسم، والانحراف المعياري = ٢٠٤ سم، علما بأن الوسط الحسابي لأطوال طلاب الجامعة يبلغ ١٥٨ سم، اختبر أهمية الفرق المعنوي بين الوسط الحسابي لأطوال طلاب الجامعة.

n= 250
$$\overline{X} = 155.96$$
 S=2.94 μ =158

سيتم اختبار الفرضيات التالية:

رغم أن العدد n اكبر من ٣٠ تم استخدام اختبار t بسبب أن الانحراف المعياري بالسؤال للعينة وليس للمجتمع .

الفرضية الصفرية : لا توجد فروق ذات دلالة إحصائية بين متوسط أطوال الطلاب في العينة ومتوسط أطوال الطلاب في الجامعة ($\mu = \mu_0$)

الفرضية البديلة : توجد فروق ذات دلالة إحصائية بين متوسط أطوال الطلاب في العينة ومتوسط أطوال الطلاب في الجامعة $(\mu \neq \mu_0)$

من السؤال الفرق المعنوي بين الوسط الحسابي لأطوال طلاب العينة والوسط الحسابي لأطوال طلاب الجامعة هل يوجد فرق أو لا يوجد فرق يعني هل هم متساويين أم غير متساويين إذا اختبار ذو طرفين

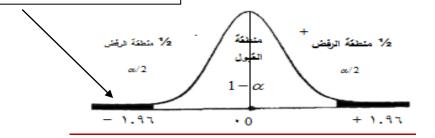
منطقة الرفض : قيمة (t) ألجدوليه (في الاختبار تعطى بالسؤال) عند مستوى دلالة α ٠٠٠٥ ودرجات حرية (n-1) ٢٤٩ = ١.٩٦٠

n= 250
$$\overline{X} = 155.96$$
 S=2.94 μ =158

المختبر الإحصائي :(أخصائي الاختبار)

$$t = \frac{\overline{X} - \mu_{o}}{S/\sqrt{n}} = \frac{155.95 - 158}{2.94/\sqrt{250}} = -11.006$$

-١١٠٠٦ تقع بمنطقة الرفض هنا لأنها اكبر من -١٦٥



القرار:

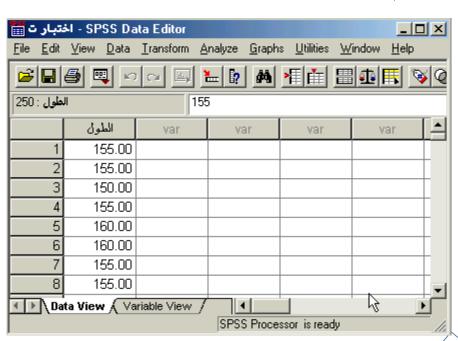
قيمة (t) المحسوبة (- ١١.٠٠٦) أكبر من قيمة (t) المجدولة (1.٩٦) عند مستوى دلالة α

نرفض الفرضية الصفرية ونقبل البديلة .

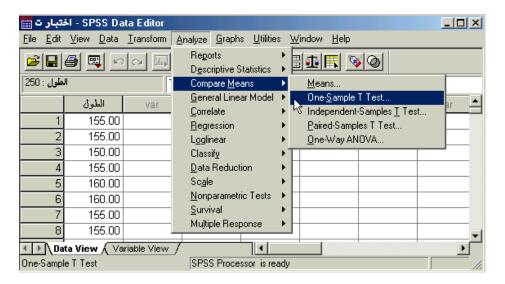
"أي أنه توجد فروق ذات دلالة إحصائية بين الوسط الحسابي للعينة والوسط الحسابي لمجتمع البحث".

لغرض حساب قيمة (t) لنفس المثال السابق من خلال استخدام برنامج الـ SPSS اتبع الخطوات التالية:

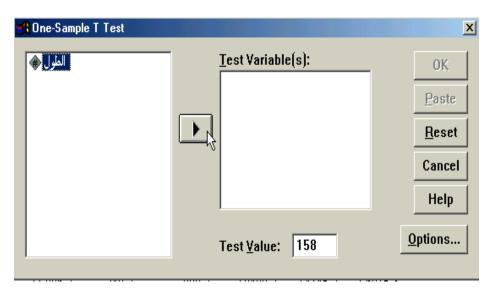
✓ قم بإدخال البيانات المراد تحليلها من خلال شاشة تحرير البيانات Data Editor بالطريقة المناسبة كالتالي: -



ندخل أطوال الطلاب والبالغ عددهم ٢٥٠ في خانة الطول كل خانه طول طالب واحد ✓ من القائمة "تحليل" Analyze اختر الأمر "مقارنة المتوسطات" Compare Means فتظهر قائمة أوامر فرعية اختر منها "اختبار (t) لعينة واحدة" One-Sample T Test كالتالئ:



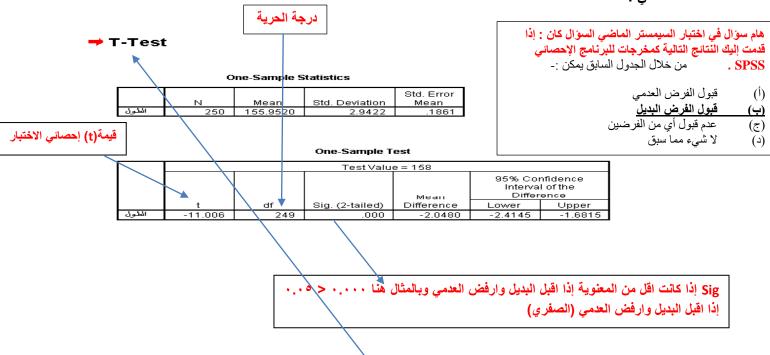
✓ بعد اختيار الأمر "اختبار (t) لعينة واحدة" One-Sample T Test سوف يظهر صندوق الحوار التالي :



- √ من قائمة المتغيرات في الجهة اليسرى من صندوق الحوار انقر نقرا مزدوجا على المتغير "الطول" (أو أنقر على السهم الذي يظهر في صندوق الحوار بعد التظليل على المتغير المرغوب نقله إلى الجهة الأخرى) ستلاحظ انتقاله مباشرة في المستطيل "متغيرات الاختبار" (Test Variable(s).
- ✓ في الحقل الخاص بـ "القيمة المختبرة" Test Value أكتب القيمة التي تريد أن تقارن بها متوسط العينة موضع الدراسة (في هذا المثال يتم كتابة الرقم ١٥٨ والذي يمثل متوسط أطوال الطلاب في الجامعة).
- √ قم بالنقر على زر "خيارات" Options في الجهة السفلية اليمنى من صندوق الحوار السابق وذلك عند الرغبة في تغيير قيمة "فترة الثقة" Confidence Interval حيث يظهر لك صندوق الحوار التالي والذي يتيح إمكانية تغيير فترة الثقة المختبرة (بشكل تلقائي سوف تظهر القيمة ٩٠%)، وبعد الانتهاء من التعديل على هذا الصندوق الحواري أنقر على زر "استمرار" Continue.



✓ أنقر بعد ذلك على زر "موافق" OK سيؤدي ذلك إلى تنفيذ الاختبار، وستلاحظ ظهور النتائج في شاشة المخرجات كالتالى:



Sig. (2-tailed) ، وقيمة (t) المحسوبة t0 - t1 ، ودرجات الحرية الحرية (t1 ، وقيمة (t2 قيمة (t3 قيمة المحسوبة كا Sig. (2-tailed) . t3 قيمة (t4 قيمة (t5 قيمة (t5 قيمة (t6 قيمة المحسوبة Sig. (t6 قيمة (t7 قيمة (t8 قيمة (t8 قيمة (t8 قيمة (t8 قيمة (t9 قيمة

طريقة السؤال بالاختبار:

- 1- ماهو نوع الاختبار المستخدم؟ t-test
- ٢- قيمة أخصائي الاختبار تساوي؟ 11.006-
 - ٣- درجات الحرية تساوى؟ 249
- ٤- أيهما ستقبل الفرض ألعدمي أم البديل ؟ البديل لان sig اقل من ٠٠٠٠

الاختبارات الإحصائية لعينتين مستقلتين

Independent Samples t-test

مثال:-

أراد باحث أن يعرف أثر استخدام نظم مساندة القرارات على كفاءة القرارات التي تتخذها الإدارة بمساعدة تلك النظم، فوزع ، ه مديرا لمنشآت صناعية عشوانيا في مجموعتين، ثم عين أحدهما بطريقة عشوانية لتكون مجموعة تجريبية والأخرى ضابطة، وفي نهاية التجربة وزع على المجموعتان استقصاء يقيس درجة فاعلية القرار وكفاءته عندما يتم اتخاذه باستخدام نظم مساندة القرارات بدلا من الطريقة التقليدية فكانت النتائج كما يلي:

تجريبية: هي إلي سوف يتم الاختبار عليها و نقيس هل مستواها زاد أم لا.

ضابطه: لم يتم عمل اختبار على ألمجموعه وإنما استمرت كما هي.

الضابطة	المجموعة	المجموعة التجريبية		
Y 0= n₂	عدد المجموعة	Y 0= n₁	عدد المجموعة	
$\overline{\cdot \cdot = X_2}$	متوسط الأداء	$\forall . \forall \cdot = \overline{X}_1$	متوسط الأداء	
1. Y h = S ₂	التباين	$Y.YV = S_1$	التباين	

فهل تدل هذه البيانات على أن أداء المجموعة التجريبية كان أفضل من أداء المجموعة الضابطة عند مستوى معنوية α = ٠٠٠٠ ؟

منكر بالسؤال كلمة أفضل إذا اختبار من طرف واحد

الحل :-

سيتم اختبار الفرضيات التالية: μ₁ = التجريبية μ₂ = الضابطة

الفرضية الصفرية: لا توجد فروق ذات دلالة إحصائية بين متوسط المجموعة التجريبية ومتوسط المجموعة الضابطة

 $.(H_o : \mu_1 = \mu_2)$

الفرضية البديلة : توجد فروق ذات دلالة إحصائية بين متوسط المجموعة التجريبية ومتوسط المجموعة الضابطة لصالح المجموعة التجريبية $(H_1: \mu_1 > \mu_2)$.

مستوى الدلالة: α = ٥٠٠٠

لأنها عينتين تم طرح ٢ بدلا عن واحد لاستخراج درجات الحرية.

أي اختبار t راح يذكره الدكتور في سؤال الاختبار. (حدود منطقة الرفض والقبول)

المختبر الاحصائي:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S\sqrt{\frac{1}{n_1} - \frac{1}{n_2}}}$$

ولتطبيق هذه العلاقة يلزمنا حساب قيمة الانحراف المعياري (S) من خلال العلاقة التالية:

$$S^2 = \frac{\left[(n_1 - 1)(S_1^2)\right] + \left[(n_1 - 1)(S_2^2)\right]}{(n_1 + n_2) - 2}$$

إذا التباين يساوى:

$$S^2 = \frac{[(25-1)(2.27)^2] + [(25-1)(1.78^2)]}{(25+25)-2} = 4.16$$

إذن الانحراف المعياري يساوى:

$$S = \sqrt{S^2} = \sqrt{4.16} = 2.04$$

ثم نحسب قيمة (t) من خلال تطبيق العلاقة التالية:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S\sqrt{\frac{1}{n_1} - \frac{1}{n_2}}} = \frac{7.60 - 6.0}{2.04\sqrt{\frac{1}{25} - \frac{1}{25}}} = 2.77$$

القرار:

قيمة (t) المحسوبة (٢.٧٧) أكبر من قيمة (t) المجدولة (١.٦٨) عند مستوى دلالة α

نرفض الفرضية الصفرية ونقبل البديلة

أي أن المجموعة التي خضعت للتجربة يصبح أداؤهم أفضل في عملية اتخاذ القرار من الذين لم يخضعون للتجربة وذلك عند مستوى دلالة $\alpha = 0.00$.

الاختبارات الإحصائية لعينتين غير مستقلتين (العينات المرتبطة)

Paired Samples t-test

مثال :- (هام) (سؤال اختبار في السميستر الماضي)

أراد باحث أن يعرف أثر برنامج التدريب الصيفي في الميدان على أداء الطلاب وتحصيلهم في كلية العلوم الإدارية، ولغرض تحقيق ذلك قام الباحث باختبار الطلاب قبل وبعد البرنامج التدريبي، ولكون نفس الطلاب أخذوا الاختبارين، فإن الباحث يتوقع معامل ارتباط موجب بين تحصيل الطلبة في كلا القياسين. ولغرض اختبار مدى دلالة الفروق بين الاختبار القبلي والاختبار البعدي، لابد على الباحث أن يتأكد من قيمة الارتباط بين الاختبارين والتي كانت 0.46 r = 0.46 ، وقد كانت النتائج التي تم التوصل إليها كما يلى :

فتبار البعدي	וצי	لاختبار القبلي	1)
۱ ۰ ۰ = n ₂	عدد المجموعة	$\cdot \cdot \cdot = n_1$	عدد المجموعة
• A. 77=X2	متوسط الأداء	\circ £. \forall $\lambda = \overline{X}_1$	متوسط الأداء
7 £=S22	التباين	٤٩= S ₁	التباين

فهل تدل هذه البيانات على أن أداء الطلاب التحصيلي في الكلية بعد أخذ البرنامج التدريبي كان أفضل من أدانهم قبل أخذ البرنامج التدريبي عند مستوى $\alpha = 0.0$ ؟

ذكر بالسؤال كلمة أفضل المفروض اختبار من طرف واحد. ولكن فقط في هذا المثال لأنها عينه وحده فطبيعي أن البرنامج التجريبي راح يؤثر بالمجموعة قبل البرنامج وبعده إذا $\mu_1 \neq \mu_2$

الحل:

سيتم اختبار الفرضيات التالية:

الفرضية الصفرية: لا توجد فروق ذات دلالة إحصائية بين متوسط تحصيل الطلاب قبل وبعد البرنامج التدريبي (Ηο : μ1=μ2).

الفرضية البديلة : توجد فروق ذات دلالة إحصائية بين متوسط تحصيل الطلاب قبل وبعد البرنامج التدريبي $\mu_1 \neq \mu_2$).

هنا غير رأيه الدكتور ويقول من طرفين فقط بالسؤال هذا لأنهم أكيد بعد البرنامج التدريبي ببكون تحصيلهم أفضل، نقطه يجب مناقشتها وسيتم إرسال رسالة استفسار للتأكد من الجواب والعودة لتعديل الملخص (أتوقع لأنها عينه وحده قبل وبعد)

مستوى الدلالة: α = ٥٠٠٠

منطقة الرفض : قيمة مستوى الدلالة $\alpha = 0.00$ والاختبار من طرفين ، ودرجات الحرية $\alpha = 0.00$ ، بذلك تكون قيمة (t) الجدولية = 0.00 الجدولية = 0.00 الأنها عينه وحده نطرح واحد وقيمة $\alpha = 0.00$ كالعادة تأتى مع سؤال الاختبار

المختبر الإحصائى:

هنون حفظ
$$m{t} = rac{\overline{X}_1 - \overline{X}_2}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}} - 2r \left(rac{S_1}{\sqrt{n_1}}
ight) \left(rac{S_2}{\sqrt{n_2}}
ight)}$$

إذا قيمة (t) تساوي:

$$t = \frac{54.28 - 58.66}{\sqrt{\frac{49}{100} + \frac{64}{100} - 2(0.46) \left(\frac{7}{\sqrt{100}}\right) \left(\frac{8}{\sqrt{100}}\right)}} = 5.59$$

في هذه المعادلة ليس هناك مانع من الابتداء بـ X_1 أو X_2 في الترتيب ، لأن الإشارة ليس لها أي تأثير على النتيجة المتحصلة

القرار:

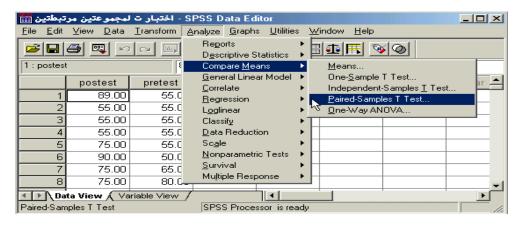
قيمة (t) المحسوبة (٥٠٥٩) أكبر من قيمة (t) المجدولة (١.٩٨٠). عند مستوى دلالة α

ن نرفض الفرضية الصفرية ونقبل البديلة، أي أن للبرنامج التدريبي تأثير إيجابي على تحصيل الطلاب وأدائهم في الكلية وذلك عند مستوى دلالة $\alpha = 0$.. وذلك عند مستوى دلالة

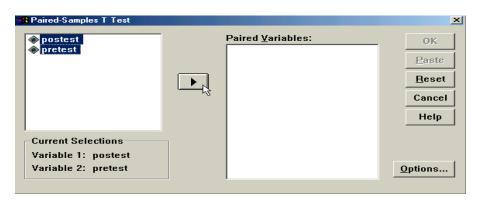
SPSS Data Editor - اختبار ت لم <u>File Edit View Data Transform Analyze Graphs Utilities</u> <u>W</u>indow postest pretest 89.00 55.00 1 55.00 55.00 2 55.00 3 55.00 4 55.00 55.00 75 OO 55.00 5 50.00 6 90.00 75.00 65.00 7 75.00 8 80.00 SPSS Processor is ready ■ Data View \ Variable View /

لاحظ أنه تم إدخال البيانات بطريقة مختلفة عن ما تم إتباعه في حالة العينتين المستقلتين، هنا لابد من إدخال بيانات كل متغير في عمود منفصل عن الآخر، وقد تم إعطاء كل متغير اسم مختلف عن الآخر الاختبار البعدي posttest و الاختبار القبلي pretest .

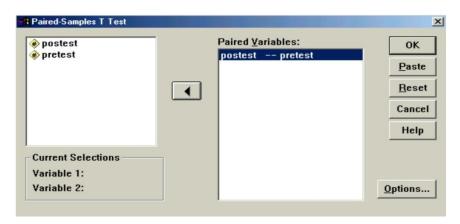
✓ من القائمة "تحليل" Analyze اختر الأمر "مقارنة المتوسطات" Compare Means فتظهر قائمة أوامر فرعية اختر منها "اختبار (t) للعينات المرتبطة"



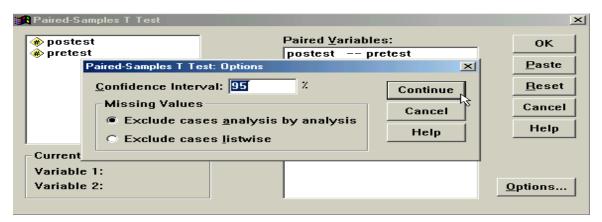
√ بعد اختيار الأمر "اختبار (t) للعينات المرتبطة" <u>Paired-Samples T-Test</u> سوف يظهر لك صندوق الحوار التالى:



√ من قائمة المتغيرات في الجهة اليسرى من صندوق الحوار حدد المتغيرين المرتبطين مع بعضها لتحليلها كأزواج، ونقلها إلى المستطيل الخاص بـ "المتغيرات الزوجية" Paired Variables (سوف تلاحظ أثناء التحديد ظهور اسم المتغير الأول واسم المتغير الثاني بعد كل عملية تحديد في المربع أسفل قائمة المتغيرات)، ثم بعد ذلك أنقر على السهم الذي يظهر مقابل المستطيل الخاص بـ "متغيرات الاختبار" ، ستلاحظ انتقال المتغير مباشرة في المستطيل "المتغيرات الزوجية" (Paired Variable كرر نفس الإجراء مع المتغيرات الزوجية الأخرى والمراد تحليلها "المتغيرات الزوجية" (Paired Variable كرر نفس الإجراء مع المتغيرات الزوجية الأخرى والمراد تحليلها

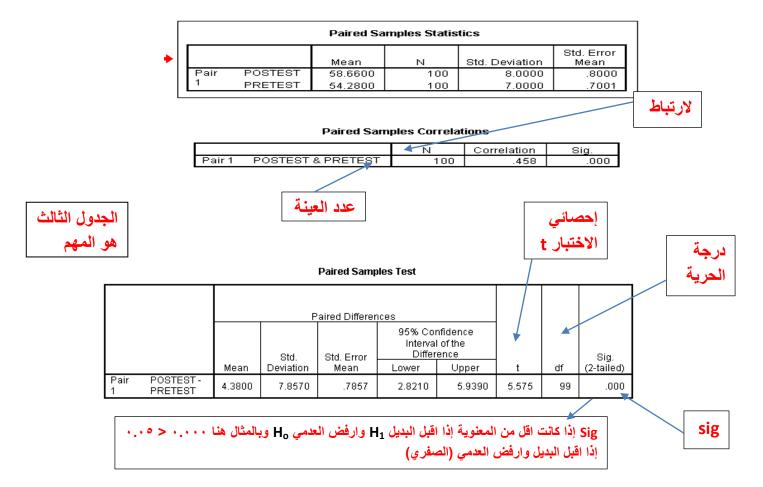


√ أنقر على زر "خيارات" Options في الجهة السفلية اليمنى من صندوق الحوار السابق وذلك عند الرغبة في تغيير قيمة "فترة الثقة" Confidence Interval حيث يظهر لك صندوق الحوار التالي والذي يتيح إمكانية تغيير فترة الثقة المختبرة (بشكل تلقائي سوف تظهر القيمة ٩٠%) ، وبعد الانتهاء من التعديل على هذا الصندوق الحواري أنقر على زر "استمرار" Continue.



√ أنقر بعد ذلك على زر "موافق" OK سيؤدي ذلك إلى تنفيذ الاختبار، وستلاحظ ظهور النتائج في شاشة المخرجات كالتالى:

T-Test



نلاحظ أن برنامج الـ SPSS قام مباشرة بحساب الإحصاءات الأساسية للبيانات مثل المتوسط الحسابي للمتغير SPSS فلاحظ أن برنامج الـ SPSS قام مباشرة بحساب الإحصاءات الأساسية للبيانات مثل المتوسط الحسابي (٥٤.٢٥٠) والانحراف المعياري لنفس المتغير المتغير المتغير المتغيرات موضع الدراسة Paired والانحراف المعياري (٧٠٠٠). بالإضافة إلى ذلك تم حساب معامل ارتباط بيرسون للمتغيرات موضع الدراسة Sample Correlation وقد كانت قيمته (٥٥٤٠).

ثم بعد ذلك قام البرنامج بحساب قيمة (t) للمتغيرات موضع الدراسة في الجدول المعنون بـ "اختبار العينات المرتبطة" $\frac{df}{dt}$ Paired Sample Test ومن هذه النتائج نلاحظ أن قيمة (t) المحسوبة $\frac{df}{dt}$ ومن هذه النتائج نلاحظ أن قيمة $\frac{df}{dt}$ Sig. (2-tailed) في الجدول (٠٠٠٠) أصغر من قيمة $\frac{df}{dt}$ وقيمة (2-tailed) في الجدول (٠٠٠٠) أصغر من قيمة $\frac{df}{dt}$ وقيمة (10-0.0) أصغر من قيمة $\frac{df}{dt}$ وأن أداء الطلاب في الكلية بعد أخذ البرنامج التدريبي كان أفضل من أداء الطلاب في الكلية بعد أخذ البرنامج التدريبي عند مستوى $\frac{df}{dt}$ و $\frac{df}{dt}$

One Way ANOVA تحليل التباين الأحادي

تحليل التباين الأحادي (مستوى واحد) :-

هو طريقة لاختبار معنوية الفرق بين المتوسطات لعدة عينات بمقارنة واحدة، ويعرف أيضاً بطريقة تؤدي لتقسيم الاختلافات الكلية لمجموعة من المشاهدات التجريبية لعدة أجزاء للتعرف على مصدر الاختلاف بينها ولذا فالهدف هنا فحص تباين المجتمع لمعرفة مدى تساوى متوسطات المجتمع .

ولكن لا بد من تحقيق ثلاثة أمور قبل استخدامه وهي:

- ١- العينات عشوائية ومستقلة.
- ٢- مجتمعات هذه العينات كلاً لها توزيع طبيعي.
- ٣- تساوي تباين المجتمعات التي أخذت منها العينات العشوائية المستقلة.

ولتوضيح ما سبق بمقارنة متوسطًات ثلاث مجتمعات باستخدام ثلاث عينات (تحقق فيها الشروط الثلاثة السابقة) موضحة بالجدول الآتى:

مثال (١) : -

إذا كان لدينا ثلاث منتجات لإحدى الشركات الصناعية ، وتم تقييمها من قبل مجموعة من المستهلكين وحصلنا على النتائج التالية :

المنتج (٣)	المنتج (٢)	المنتج (١)
X ₃	X ₂	X ₁
۲	٤	٧
۲	7	1.
٣	٧	1.
٧	٩	11
٦	٩	١٢
۲.	٣٥	0.

المطلوب: هل هناك فروق ذات دلالة بين المنتجات الثلاثة ؟

الحل :-

وضع فرض العدم والفرض البديل.
 صياغة الفرضية الصفرية كالتالى:

H0:
$$\mu = \mu = \mu$$

في حين تفترض الفرضية البديلة التالي:

متوسطان على الأقل غير متساويين: HA:

- تحديد مستوى الدلالة (α): وتحدد مستويات المعنوية سلفاً وهي عادة 0.05 أو 0.01
 - حساب إحصائية الاختبار (F) وذلك من خلال إتباع الخطوات التالية:-

X ₃ (٣	المنتج (المنتج (۲) X ₂		X ₁ (\)	المنتج ا
X_3^2	X_3	X_2^2	X_2	X_1^2	X_1
ź	۲	١٦	٤	٤٩	٧
£	4	٣٦	٦	1	١.
٩	٣	٤٩	٧	1	1.
٤٩	٧	۸۱	٩	171	11
٣٦	۲	۸۱	٩	1 £ £	١٢
1 • ٢	۲.	777	٣٥	012	٥,

$$\overline{X} = \frac{50}{5} = 10 = X_1$$
 Large leading \checkmark

$$\overline{X} = \frac{35}{5} = 7 = X_2$$
 المتوسط الحسابي لـ \checkmark

$$\overline{X} = \frac{20}{5} = 4 = X3$$
 | Large |

1- مجموع المربعات الكلى Total Sum of Squares

Total...SS =
$$\sum X^2 - \frac{\left(\sum X\right)^2}{(n_e)(k)} = 879 - \frac{(105)^2}{15} = 144$$

حيث ng تعني عدد أفراد المجموعة المحددة و k تعني عدد المجموعات موضع الدراسة.

- مجموع المربعات بين المجموعات Between Sum of Squares

Between ..SS =
$$\sum \frac{\left(\sum X_g\right)^2}{n_g} - \frac{\left(\sum X\right)^2}{(n_g)(k)} = \frac{(50)^2}{5} + \frac{(35)^2}{5} + \frac{(20)^2}{5} - \frac{(105)^2}{15} = 90$$

✓ مجموع المربعات داخل المجموعات Within Sum of Squares ح

- مجموع المربعات داخل المجموعات Within SS -

= مجموع المربعات الكلي - مجموع المربعات بين المجموعات

√ نحسب درجات الحرية:

درجات الحرية بين المجموعات Between groups

degrees of freedom

$$(K-1) = 3-1 = 2$$

درجات الحرية داخل المجموعات Within groups

degrees of freedom

$$(nK - K) = 15 - 3 = 12$$

درجات الحرية الكلية Total degrees of freedom

$$(nK-1)=15-1=14$$

✓ التباين بين المجموعات أو ما يسمى متوسط المربعات بين المجموعات Between mean square =

$$Beween..groups..mean..square = \frac{Between..SS}{K-1}$$

Beween..groups..mean..square =
$$\frac{90}{2}$$
 = 45

✓ التباين داخل المجموعات أو ما يسمى متوسط المربعات داخل المجموعات Within mean square =

Within .. groups .. mean .. square =
$$\frac{Within .. SS}{(n-K)}$$

Within .. groups .. mean .. square =
$$\frac{54}{12}$$
 = 4.5

√ قيمة F =

$$F = \frac{Between ..groups..mean..square}{Within ..groups..mean..square} = \frac{45}{4.5} = 10$$

✓ نقوم بعد ذلك بتفريغ ما تم الحصول عليه من معلومات في جدول تحليل التباين كالتالى:

قيمة F	متوسط المربعات Means	درجات الحرية	مجموع المربعات SS	مصدر التباين
	£0	*	۹.	بين المجموعات Between groups
١.	٤.٥	١٢	0 £	داخل المجموعات Within groups
		1 £	1 £ £	الكلي (المجموع) Total

بالرجوع إلى جدول توزيع F نجد أن القيمة الحرجة لـ F بدرجات حرية للبسط تساوي Y ودرجات حرية للمقام تساوي Y وباستخدام مستوى = Y نجد أن القيمة الحرجة تساوي Y

وحيث أن القيمة المحسوبة L = F = 1 وهي بالتالي أكبر من القيمة الحرجة المجدولة، نستنتج أن الفرضية الصفرية تكون مرفوضة، أي يوجد اختلاف بين متوسطي مجتمعين على الأقل من المجتمعات التي قيّمة من المستهلكين ولمعرفة بين أي من المنتجات تكون الفروق ينبغي علينا اللجوء إلى أسلوب المقارنات المتعددة Multiple Comparisons .

مثال (٢) : -

قام أحد الباحثين بتفريغ ما تم الحصول عليه من معلومات في جدول تحليل التباين كالتالى:

قيمة F	متوسط المربعات Means	درجات الحرية df	مجموع المربعات SS	مصدر التباين
		10	200	بين المجموعات Between groups
				داخل المجموعات Within groups
		20	250	الكلي (المجموع) Total

قيمة إحصائي الاختبار F تساوي :-

10 -

ب- 5

ج- 80

(د) لا شيء مما سبق

من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض (إذا علمت أن قيمة F الجدولية تساوي 6.88) يمكن :-

أ- قبول الفرض البديل.

ب- قبول الفرض العدمي.

ج- عدم قبول أي من الفرضين.

د- لاشيء مما سبق

مثال (٣) : -

إذا كانت لدينا البيانات التالية والتي تمثل بيانات أربع مجموعات تم استطلاع آراؤها حول موضوع ما:

Α	В	С	D
8	4	5	6
7	3	3	5
9	6	4	6
5	5	5	4
6	2	3	3
7	7	2	4
42	27	22	28

المطلوب:

هل هناك فروق بين آراء هذه المجموعات الأربع ولصالح من هذا الفرق؟

الحل :-

وضع فرض العدم والفرض البديل.
 صياغة الفرضية الصفرية كالتالى:

H0:
$$\mu$$
1 = μ 2 = μ 3 = μ 4

في حين تفترض الفرضية البديلة التالي:

متوسطان على الأقل غير متساويين: HA:

- تحدید مستوی الدلالة (α): وتحدد مستویات المعنویة سلفاً وهي عادة إما 0.05 أو 0.01 ولیکون α
 - حساب إحصائية الاختبار (F) وذلك من خلال إتباع الخطوات التالية:
 - . ∇ iجمع قيم كل متغير للحصول على ∇ ∇
 - . نربع كل درجة في كل متغير للحصول على X^2 لكل متغير $\sqrt{}$
 - . نجمع قيم مربع كل درجة للحصول على $\sum X^2$ لكل متغير \checkmark
 - ربع مجموع كل متغير للحصول على $(\sum X)^2$ لكل متغير . \checkmark
 - $\overline{X} = \frac{\sum x}{n}$: نحسب متوسط كل متغير من خلال العلاقة \checkmark

Α	A ²	В	B ²	С	C ²	D	D ²	
8	64	4	16	5	25	6	36	
7	49	3	9	3	9	5	25	
9	81	6	36	4	16	6	36	
5	25	5	25	5	25	4	16	
6	36	2	4	3	9	3	9	
7	49	7	49	2	4	4	16	
42		27		22		28		119
	304		139		88		138	669
1764		729		484		784		3761
42/6= 7		27/6 =4.5		22/6 =3.7		28/6 =4.7		

١- مجموع المربعات الكلي Total Sum of Squares =

Total..SS =
$$\sum X^2 - \frac{\left(\sum X\right)^2}{(n_g)(k)} = 669 - \frac{\left(119\right)^2}{24} = 669 - 590.042 = 78.958$$

٢- مجموع المربعات بين المجموعات =

Between SS =
$$\sum \left[\sum \frac{\left(\sum X_g\right)^2}{n_g} \right] - \frac{\left(\sum X\right)^2}{n.k}$$

$$=\frac{(42)^2 + (27)^2 + (22)^2 + (28)^2}{6} - 590.042 = 36.8$$

- مجموع المربعات داخل المجموعات Within SS=

= مجموع المربعات الكلي - مجموع المربعات بين المجموعات

£ 7.1 = 77. A - VA.9 =

ثم نقوم بعمل جدول تحليل التباين كالتالى:

Source of Variance	SS	d f	MS	F	f _{0.05,3,20}
بين المجموعات	SST – SSW = 36.8	K-1=4-1=3	12.264	5.818	3.10
داخل المجموعات	42.1	K(n - 1) = 4(6 - 1) = 20	2.108		
TOTAL	78.958	Kn - 1 = 24 - 1 = 23			

قيمة F المحسوبة أكبر من قيمة F الجدولية (٣.١ < ٥.٨١٨) فالمتوسطات غير متساوية ، أي قبول الفرض البديل القائل بعدم تساوي المتوسطات .

مثال (٤) : -

للمقارنة بين أربعة أنواع من القمح (D · C · B · A) بغرض تعميم أفضلها في الزراعة تم زراعة كل نوع في حوض تجريبي بحيث كانت الأحواض الأربعة متماثلة في الخصوبة ونوع التربة وكمية الأسمدة المستعملة ومنسوب المياه ودرجة الحرارة وكانت إنتاجية الفدان من كل نوع كما يلي :-

D	С	В	Α
2	7	6	1
6	8	5	3
4	6	7	5

المطلوب :-

اختبار معنوية الفروق بين الأنواع الأربعة من القمح بدرجة ثقة \$95 .

الحل :-

Ho: $\mu_A = \mu_B = \mu_C = \mu_D$

 $H1: \mu_A \neq \mu_B \neq \mu_C \neq \mu_D$

عدد المجموعات 4 = k

عدد مفردات المجموعة الواحدة n = 3

العدد الكلى للمفردات = 3 × 4 = 12

	A	A ²	В	B ²	С	C	D	D ²	
	1	1	6	36	7	49	2	4	
	3	9	5	25	8	64	6	36	
	5	25	7	49	6	36	4	16	
$\sum X$	9		18		21		12		60
$\sum X^2$		35		110		149		56	350
$(\sum X)^2$	81		324		441		144		990
$\overline{X} = \frac{\sum x}{n}$	9 /3 =3		18/3=6		21/3=7		12/3=4		

١- مجموع المربعات الكلي Total Sum of Squares =

Total..SS =
$$\sum X^2 - \frac{(\sum X)^2}{(n_g)(k)} = 350 - \frac{(60)^2}{12} = 350 - 300 = 50$$

٢- مجموع المربعات بين المجموعات =

Between SS =
$$\sum \left[\sum \frac{\left(\sum X_g\right)^2}{n_g} \right] - \frac{\left(\sum X\right)^2}{n.k}$$

$$=\frac{(9)^2+(18)^2+(21)^2+(12)^2}{3}-300=30$$

۳- مجموع المربعات داخل المجموعات Within SS =
 = مجموع المربعات الكلي – مجموع المربعات بين المجموعات

Y . = Y . _ 0 . =

ثم نقوم بعمل جدول تحليل التباين كالتالى:

Source of Variance	SS	d f	MS	F	f _{0.05,3,8}
بين المجموعات	SST – SSW = 30	K-1=4-1=3	10	4	4.07
داخل المجموعات	20	K(n - 1) = 4(3 - 1) = 8	2.5		
TOTAL	50	Kn - 1 = 12 - 1 = 11			

قيمة المحسوبة أقل من قيمة F الجدولية (٢٠٠٤ > ٤) فالمتوسطات متساوية

أي قبول الفرض العدمي القائل بتساوي المتوسطات ، وعلى ذلك فلا توجد فروق معنوية بين متوسطات إنتاجية الفدان للأنواع الأربعة من القمح والفروق الموجودة بينهم ترجع إلى عوامل الصدفة .

مثال (٥) : -

طبقت ثلاثة برامج مختلفة للتدريب على ثلاث مجموعات من اللاعبين: الأولى تضم أربعة أفراد و الثانية تضم ستة أفراد و الثالثة تضم خمسة أفراد و في نهاية فترة التدريب أجرى لهم اختبار وكان عدد الأهداف المسجلة لكل لاعب كما يلى:-

البرنامج الثالث	البرنامج الثاني	البرنامج الأول
7	6	5
6	2	6
8	4	7
9	5	6
5	3	
	4	

اختبر ما إذا كانت هناك فروقاً معنوية بين برامج التدريب الثلاث بمستوى معنوية %5.

Ho: $\mu_1 = \mu_2 = \mu_3$

 $H1: \mu_1 \neq \mu_2 \neq \mu_3$

3 = k عدد المجموعات

العدد الكلى للمفردات = ٤ + ٦ + ٥ = ١٥

	Α	A ²	В	B ²	С	C ²	
	5	25	6	36	7	49	
	6	36	2	4	6	36	
	7	49	4	16	8	64	
	6	36	5	25	9	81	
			3	9	5	25	
			4	16			
$\sum X$	24		24		35		83
$\sum X^2$		146		106		255	507
$(\sum X)^2$	576		576		1225		2377
$\overline{X} = \frac{\sum x}{n}$	24 /4 =6		24/6=4		35/5=7		

ا - مجموع المربعات الكلي Total Sum of Squares

Total...SS =
$$\sum X^2 - \frac{\left(\sum X\right)^2}{(n_g)(k)} = 507 - \frac{\left(83\right)^2}{15} = 507 - 459.267 = 47.73$$

٢- مجموع المربعات بين المجموعات =

Between SS =
$$\sum \left[\sum \frac{\left(\sum X_g\right)^2}{n_g} \right] - \frac{\left(\sum X\right)^2}{n.k}$$

$$= \left(\frac{(24)^2}{4} + \frac{(24)^2}{6} + \frac{(35)^2}{5}\right) - 459.267 = 25.73$$

٣- مجموع المربعات داخل المجموعات Within SS=

= مجموع المربعات الكلي - مجموع المربعات بين المجموعات

YY = Yo.VT - £V.VT =

ثم نقوم بعمل جدول تحليل التباين كالتالى:

Source of Variance	SS	d f	MS	F	f _{0.05,2,12}
بين المجموعات	25.73	2	12.865	7.018	3.89
داخل المجموعات	22	12	1.833		
TOTAL	47.73	14			

قيمة F

المحسوبة أكبر من قيمة F الجدولية (٣.٨٩ > ٣.٨٩) فالمتوسطات غير متساوية

أي قبول الفرض البديل القائل بعدم تساوي المتوسطات مما يعنى وجود فروق معنوية بين برامج التدريب الثلاثة وذلك بدرجة ثقة %95.

مثال (٦) : -

في تجربة لمقارنة ٣ مجموعات تحتوى كل منها على ٥ مفردات حصلنا على النتائج التالية :-

مجموع المربعات الكلي = ١٧٦

مجموع المربعات بين المجموعات = ١٠٤

المطلوب :-

- ١- اختبار معنوية الفروق بين متوسطات المجتمعات التي سحبت منها العينات بمستوى معنوية %5.
 - ٢- إذا أظهر الاختبار وجود فروق معنوية بين المتوسطات فالمطلوب تحليل معنوية هذه الفروق .

Ho: $\mu_A = \mu_B = \mu_C = \mu_D$

 $H1: \mu_A \neq \ \mu_B \neq \ \mu_C \neq \ \mu_D$

عدد المجموعات a = K

عدد مفردات المجموعة الواحدة n = 5

العدد الكلى للمفردات = 3 × 5 = 15

مجموع المربعات الكلي = ١٧٦

مجموع المربعات بين المجموعات = ١٠٤

مجموع المربعات داخل المجموعات = ١٧٦ - ١٠٤ = ٧٧

ثم نقوم بعمل جدول تحليل التباين كالتالي:

Source of Variance	SS	d f	MS	F	f _{0.05,2,12}
بين المجموعات	104	2	52	8.67	3.89
داخل المجموعات	72	12	6		
TOTAL	176	14			

قيمة F المحسوبة أكبر من قيمة F الجدولية (٣.٨٩ > ٣.٨٩) فالمتوسطات غير متساوية أي قبول الفرض البديل القائل بعدم تساوي المتوسطات .

اختبار الفروض الإحصائية المعلمية

معامل الارتباط:

هو تعبير يشير إلى المقياس الإحصائي الذي يدل على مقدار العلاقة بين المتغيرات سلبية كانت أم إيجابية، وتتراوح قيمته بين الارتباط الموجب التام (+1) وبين الارتباط السالب التام (-1).

العلاقة الطردية بين المتغيرات:

هو تعبير يشير إلى تزايد المتغيرين المستقل والتابع معا، فإذا كانت الإنتاجية مرتفعة، ومستوى الجودة مرتفع، يقال حينئذ أن بينهما ارتباط موجب، وأعلى درجة تمثله هي (+1).

العلاقة العكسية بين المتغيرات:

هو تعبير يشير إلى تزايد في متغير يقابله تناقص في المتغير الآخر، فإذا كانت الإنتاجية منخفضة ومستوى الجودة مرتفع، يقال حينئذ أن بينهما ارتباط سالب، وأعلى درجة تمثله هي (-١).

الارتباط الجزئي Partial Correlation:

هو عبارة عن مقياس لقوة واتجاه الارتباط بين متغيرين كميين بعد استبعاد إثر متغير كمي ثالث، حيث يلاحظ انه بالرغم من ان قيمة معامل الارتباط بيرسون قد تكون كبيرة ولكن لا يمكن الاعتماد عليها لكونه يعتمد في قياسه على متغيرين فقط، فقد يوجد متغير ثالث يؤثر في المتغيرين ولهذا برزت اهمية معامل الارتباط الجزئي.

فمثلا:

يمكن قياس قوة الارتباط بين مستوى الطلبة في الجامعات والبيئة الجامعية بعد استبعاد عدد ساعات الدراسة لكل طالب. ويتم حساب الارتباط المناسب لعدد الارتباط المناسب لعدد العينة ولطبيعة توزيع المتغيرات). العينة ولطبيعة توزيع المتغيرات).

أي أن بإمكان الباحث استخدام معامل ارتباط بيرسون أو معامل ارتباط سيبرمان أو غير ذلك من معاملات الارتباط تبعا كما ذكر لطبيعة توزيع متغيرات الدراسة.

مثال:

أراد باحث أن يدرس العلاقة بين التحصيل الدراسي والغياب لدى مجموعة من الطلبة، ومن المعروف أنه إلى جانب الغياب فإن طريقة التدريس للطالب تؤثر في تحصيله الدراسي أيضا، فإذا استطاع الباحث أن يضبط هذا المتغير (المتغير الخاص بطريقة التدريس) أثناء إجرائه للتجربة، ويختار الطلبة من بين الذين يتعلمون بطريقة تدريس واحدة فإنه يكون بذلك قد عزل تأثير هذا المتغير.

أما إذا لم يستطع الباحث اختيار الطلبة من الذين يخضعون لطريقة تدريس واحدة، وكان الطلبة يتلقون تدريسهم وفقا لطرق تدريس مختلفة، فإنه بذلك يكون في حاجة لمعامل الارتباط الجزئي لكي يعزل تأثير متغير طريقة التدريس في العلاقة بين التحصيل الدراسي والغياب، والبيانات التالية توضح هذا المثال:

طريقة التدريس	التحصيل	الغياب	الطلبة
(٣)	(٢)	(1)	
١٣	10	٧٠	١
٧.	١٣	11.	۲
٥٥	11	١٢٠	٣
۸٠	١٣	90	٤
٠٦	• ^	1.0	٥

المطلوب:

حساب معامل الارتباط بين الغياب والتحصيل مع تثبيت طريقة التدريس؟

الحل:

لغرض حساب معامل الارتباط بين الغياب والتحصيل مع تثبيت طريقة التدريس لا بد من حساب معاملات الارتباط بين المتغيرات الثلاثة السابقة كالتالى:

- معامل ارتباط بيرسون بين الغياب والتحصيل الدراسي ونرمز له ١.٢ أي معامل الارتباط بين المتغير (١) والمتغير (٢)
 - معامل ارتباط بيرسون بين الغياب وطريقة التدريس ونرمز له ١٠٣ أي معامل الارتباط بين المتغير (١) والمتغير (٣)
- معامل ارتباط بيرسون بين التحصيل الدراسي وطريقة التدريس ونرمز له ٢.٣ أي معامل الارتباط بين المتغير (٢) والمتغير (٣) ويتم حساب معامل ارتباط بيرسون من خلال العلاقة التالية:

$$\frac{1}{2} \left(\sum_{i} X \right) \left(\sum_{i} Y \right)$$

$$r = \frac{\sum XY - \frac{\left(\sum X\right)\left(\sum Y\right)}{n}}{\sqrt{\left(\sum X^2 - \frac{\left(\sum X\right)^2}{n}\right)\left(\sum Y^2 - \frac{\left(\sum Y\right)^2}{n}\right)}}$$

- Y. فيمة من X في X تعني مجموع حاصل ضرب كل قيمة من X
 - ـ کا کا تعنی مجموع قیم المتغیر $(\sum X)$
 - تعنى مجموع قيم المتغير $(\sum Y)$
 - Xتعنى مجموع مربع قيم المتغير X^2
 - $(\sum X)^2$ تعنى مربع مجموع قيم المتغير
 - \mathbf{Y}^2 تعنى مجموع مربع قيم المتغير \mathbf{Y}^2
 - کی تعنی مربع مجموع قیم المتغیر $(\sum Y)^2$
- عدد قيم الدراسة (عدد الأزواج المطلوب حساب الارتباط بينها).

XY	Y ²	X ²	التحصيل الدراسي (٢)	الغياب (١)	الطلبة
			Y	x	
1.0.	770	٤٩٠٠	10	٧.	١
150.	179	171	١٣	11.	۲
177.	171	1 £ £	11	17.	٣
١٢٣٥	179	9.70	١٣	90	£
٨٤٠	٦٤	11.70	٨	1.0	٥
٥٨٧٥	٧٤٨	0150.	۲.	٥,,	المجموع

$$r_{1.2} = \frac{5875 - \frac{(500)(60)}{5}}{\left[\sqrt{(51450) - \frac{(500)^2}{5}}\right] \left[\sqrt{(748) - \frac{(60)^2}{5}}\right]} = \frac{5875 - 6000}{\left(\sqrt{51450 - 50000}\right)\left(\sqrt{748 - 720}\right)}$$
$$= \frac{-125}{\left(\sqrt{1450}\right)\left(\sqrt{28}\right)} = \frac{-125}{(38.08)(5.292)} = \frac{-125}{201.519} = -0.620$$

معامل ارتباط بيرسون بين الغياب وطريقة التدريس ونرمز له ٣١٠ معامل

XY	Y ²	X ²	طريقة التدريس (٣)	الغياب (١)	الظلبة
			Y	x	
91.	1179	٤٩٠٠	10	٧٠	١
77	٤٠٠	171	۲.	11.	۲
77	۳.۲٥	1 2 2	٥٥	17.	٣
٧٩	7 2	9.40	۸۰	90	£
۲۳.	74	11.70	٦	1.0	٥
1 ٧ 9 ٤ ٠	1	0150.	1 7 £	٥,,	المجموع

$$r_{1.3} = \frac{17940 - \frac{(500)(174)}{5}}{\sqrt{(51450) - \frac{(500)^2}{5}} \sqrt{\sqrt{(10030) - \frac{(174)^2}{5}}}} = \frac{17940 - 17400}{\sqrt{51450 - 50000} \sqrt{\sqrt{10030 - 6055.2}}}$$

$$=\frac{540}{\left(\sqrt{1450}\right)\left(\sqrt{3974.8}\right)} = \frac{540}{\left(38.08\right)\left(63.046\right)} = \frac{540}{2400.73} = +0.225$$

 $r_{Y,T}$ معامل ارتباط بيرسون بين التحصيل الدراسي وطريقة التدريس ونرمز له

XY	Y ²	X ²	طريقة الدراسي (٣) Y	التحصيل الدراسي (١)	الطلبة
190	179	770	١٣	10	1
**.	٤٠٠	179	۲.	١٣	۲
٦.٥	٣٠٢٥	١٢١	٥٥	11	٣
1 . £ .	7 2	179	۸۰	١٣	ź
٤٨	**	٦٤	۲	٨	٥
Y 1 £ A	1	٧٨٤	1 7 £	٦.	المجموع

$$r_{2.3} = \frac{2148 - \frac{(60)(174)}{5}}{\sqrt{(748) - \frac{(60)^2}{5}} \sqrt{10030 - \frac{(174)^2}{5}}} = \frac{2148 - 2088}{\sqrt{748 - 720} \sqrt{10030 - 6055.2}}$$

$$=\frac{60}{(\sqrt{28})(\sqrt{3974.8})} = \frac{60}{(5.292)(63.046)} = \frac{60}{333.639} = +0.179$$

بعد حساب معامل الارتباط الثنائي المناسب نقوم بعدها بتطبيق قانون معامل الارتباط الجزئي كالتالى:

$$r_{1.2.3} = \frac{(r_{1.2}) - [(r_{1.3})(r_{2.3})]}{\sqrt{[1 - (r_{1.3})^2] 1 - (r_{2.3})^2}}$$

$$r_{1.2.3} = \frac{(-.620) - [(.225)(.179)]}{\sqrt{[1 - (.225)^2][1 - (.179)^2]}}$$

$$=\frac{(-.620)-(.0402)}{\sqrt{(1-0.0506)(1-0.032)}}$$

$$=\frac{-0.662}{\sqrt{(0.9494)(0.968)}}=\frac{-0.662}{\sqrt{0.919}}$$

$$=\frac{-0.660}{0.9586}=-0.689$$

مثال:

يقوم أحد الباحثين بدراسة العلاقة بين ثلاث من الظواهر وهي A و B و C ووجد أن الارتباط بين كل من الظاهرة الأولى A والظاهرة الثانية B يساوي (0.62) والارتباط بين كل من الظاهرة الثانية والثالثة يساوي (0.225-) والارتباط بين كل من الظاهرة الثانية والثالثة تساوي (0.179)، فالمطلوب تقدير قيمة الارتباط الجزئي بين كل من هذه الظواهر.

الحل:

بعد حساب معامل الارتباط الثنائي المناسب نقوم بعدها بتطبيق قانون معامل الارتباط الجزئي كالتالى:

$$r_{1.2.3} = \frac{(r_{1.2}) - [(r_{1.3})(r_{2.3})]}{\sqrt{[1 - (r_{1.3})^2][1 - (r_{2.3})^2]}}$$

 $r_{1.2} = 0.62$

 $r_{1.3} = -0.225$

 $r_{2.3} = 0.179$

$$r_{1.2.3} = \frac{(.620) - [(-.225)(.179)]}{\sqrt{[1 - (-.225)^2][1 - (.179)^2]}}$$

$$= \frac{(.620) + (.0402)}{\sqrt{(1 - 0.0506)(1 - 0.032)}}$$

$$=\frac{0.662}{\sqrt{(0.9494)(0.968)}} = \frac{0.662}{\sqrt{0.919}}$$

$$=\frac{0.660}{0.9586}=0.689$$

اختبار معنوية معامل الارتباط Significance Of Correlation Coefficient

إذا كانت قيمة معامل ارتباط العينة r قريبة من + 1 أو r أو r فإن هناك علاقة خطية قوية بين المتغيرين، وإذا كانت r فإنه لا توجد علاقة خطية بينهما، أما إذا كانت قيم r متوسطة فإنه يجب اختبار معنوية (أو دلالة) معامل ارتباط العينة، وهل هناك ارتباط حقيقى بين المتغيرين في المجتمع، أم أن الارتباط بينهما زائف وغير حقيقى.

وفيما يلى نتناول بالتفصيل اختبار معنوية معامل ارتباط المجتمع والذي نرمز له بالرمز R.

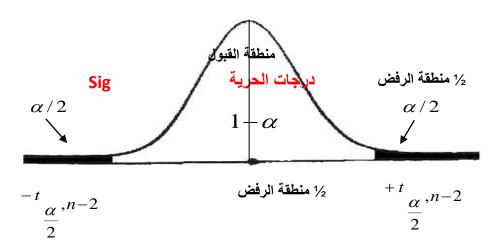
اختبار أن معامل ارتباط المجتمع يساوي الصفر:

بافتراض أن المجتمع له توزيع طبيعي فإن معامل ارتباط العينة r يكون له توزيع t بوسط حسابي يساوي r وانحراف معياري يساوي r بافتراض أن المجتمع له توزيع طبيعي فإن معامل ارتباط المجتمع يساوي صفر كما يلى: r

- $H_0: R=0$: الفرض العدمى: أن معامل ارتباط المجتمع يساوي صفر، أي لا يوجد ارتباط بين المتغيرين. وبالرموز
 - $H_A: R \neq 0$ الفرض البديل: معامل ارتباط المجتمع لا يساوي صفر، أي ويجد ارتباط بين المتغيرين، وبالرموز:
 - $T = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$ التالي: التالي: $\frac{1}{\sqrt{\frac{1-r^2}{n-2}}}$ التالي: التالي: $\frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$

والتي لها توزيع t بدرجات حرية n - 2.

 $\frac{\alpha}{2}$ عليها من جدول t منطقتى القبول والرفض: والتي نحصل عليها من جدول t لمستوى معنوية يساوي n - 2 ودرجات حرية تساوي n - 2 (اختبار الطرفين):



هـ المقارنة والقرار:

حيث نقارن قيمة المحسانية الاختبار (المحسوبة في الخطوة رقم π) بحدود منطقتي القبول والرفض (من الخطوة رقم π). فإذا وقعت قيمة الإحصانية في منطقة القبول فإن القرار هو قبول الفرض العدمي بأن π 0 أي لا يوجد ارتباط بين المتغيرين والعكس إذا وقعت قيمة الإحصانية في منطقة الرفض فإن القرار هو رفض الفرض العدمي، وفي هذه الحالة نقبل الفرض البديل بأن هناك ارتباط بين المتغيرين وذلك بمستوى معنوية يساوي π 0.

مثال:

اختبر معنوية معامل الارتباط لوكان لدينا البيانات التالية:

وذلك بمستوى معنوية % 5.

الحل:

لوكان لدينا البيانات التالية:

وتكون خطوات اختبار معنوية الارتباط كما يلى:

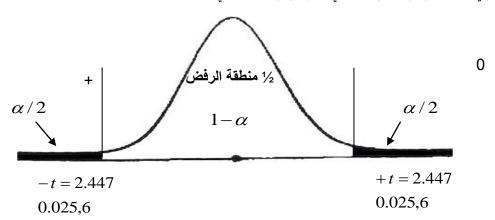
- $H_0: R = 0$ الفرض العدمى: 0 $H_A: R \neq 0$

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{0.91}{\sqrt{\frac{1-(0.91)^2}{10-2}}} = \frac{0.91}{\sqrt{\frac{0.1719}{8}}} = \frac{0.91}{\sqrt{0.0215}} = \frac{0.91}{0.1466} = 6.208$$

t = 6.208 اذا:

٤- حدود منطقتى القبول والرفض:

من جدول t حيث مستوى المعنوية $\alpha=0.05$, $\alpha=0.05$, $\alpha=0.05$ نجد أن قيمة t تساوي ٢.٤٤٧ وتكون حدود منطقتي القبول والرفض كما يلي:



هـ المقارنة والقرار:

بمقارنة قيمة الإحصائية المحسوبة في الخطوة رقم ٣ والتي تساوي 6.2074 بحدود منطقتي القبول والرفض (أو قيم t الجدولية في الخطوة رقم ٤) نجد أنها تقع في منطقة الرفض (حيث أنها أكبر من 2.447) لذلك فإن القرار هو: رفض الفرض العدمي وقبول الفرض البديل. أي رفض أن معامل الارتباط يساوي صفر. وقبول أن معامل الارتباط لا يساوي صفر أي يوجد ارتباط بين المتغيرين (أعمار الناخبين ودخولهم اليومية) وذلك بمستوى معنوية % 5.

مثال:

أن معامل الارتباط بين ثلاث ظواهر اقتصادية قد بلغت (r = 0.21) وكان عدد المفردات التي تم دراستها (n = 10)، وقد رغب الباحث في دراسة معنوية الارتباط وذلك بمستوى 5%.

- 1- قيمة إحصائى الاختبار t تساوي: -
 - **0.6075** 1
 - **-0.6075** \rightarrow
 - ج 6.208
 - د لاشيء مما سبق
- ٢- إذا علمت أن حدود منطقتي القبول و الرفض هي (2,447 , -2,447)فعلى ذلك يمكن :-
 - قبول الفرض العدمي.
 - ب رفض الفرض العدمي
 - ج عدم قبول أي من الفرضين.
 - د لاشيء مماسبق

الحل:

لوكان لدينا البيانات التالية:

وتكون خطوات اختبار معنوية الارتباط كما يلي:

الفرض العدمي: H₀: R = 0

۲ – الفرض البديل: 0 ≠ H_A: R ≠ 0

٣ - إحصائى الاختبار:

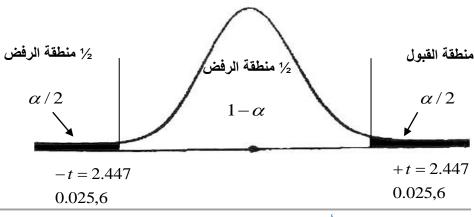
$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{0.21}{\sqrt{\frac{1 - (0.21)^2}{10 - 2}}} = 0.6075$$

t = 0.6075 إذا:

٤ - حدود منطقتى القبول والرفض:

(n-2=10-2=8) و درجات الحرية تساوي ($\alpha=0.025$) $\alpha=0.05$ المعنوية $\alpha=0.025$

نجد أن قيمة t تساوي ٢.٤٤٧ وتكون حدود منطقتى القبول والرفض كما يلي:



٥ - المقارنة والقرار:

بمقارنة قيمة الإحصائية المحسوبة في الخطوة رقم ٣ والتي تساوي 0.6075 بحدود منطقتي القبول والرفض (أو قيم t الجدولية في الخطوة رقم ٤) نجد أنها تقع في منطقة القبول (حيث أنها أقل من 2.447) لذلك فإن القرار هو: قبول الفرض العدمي. أي قبول الفرض القائل إن معامل الارتباط يساوي صفر. أي لا يوجد ارتباط بين المتغيرين وذلك بمستوى معنوية % 5.

<u>تمرین واجب:</u>

إذا علمت أنه:

أن معامل الارتباط بين ثلاث ظواهر اقتصادية قد بلغت (r = 0.91) وكان عدد المفردات التي تم دراستها (n = 10)، وقد رغب الباحث في دراسة معنوية الارتباط وذلك بمستوى %5"

- ۱ قيمة إحصائي الاختبار t تساوي: -
 - **0.6208** i
 - -0.6208 ب
 - **6.208** ε
 - د لاشىء مما سبق
- ٢ إذا علمت أن حدود منطقتي القبول و الرفض هي (2,447 , -2,447) فعلى ذلك يمكن :-
 - أ قبول الفرض العدمى.
 - ب رفض الفرض العدمي.
 - ج عدم قبول أي من الفرضين.
 - د لاشيء مما سبق

ملاحظة: طريقة حل تمرين الواجب، نفس طريقة المثال السابق.

-إختبارات جودة التوفيق:-

إذا كان لدينا مجموعة من المفردات لعينة مأخوذة من مجتمع الدراسة و نرغب في التعرف على التوزيع الاحتمالي لهذه البيانات ، ويتوقف على ويتم ذلك عن طريق ما يسمى بتوفيق المنحنيات حيث نبدأ بافتراض توزيع إحتمالى نظري يمكن أن تخضع له البيانات ، ويتوقف على بعض المقاييس الاحصائية الهامة للبيانات مثل الوسط الحسابي و الوسيط والانحراف المعياري ، ثم تستخدم بيانات العينة و التوزيع الاحتمالى المفترض في تقدير معالم هذا التوزيع والذي يفيد بدوره في الحصول على الاحتمالات ومن ثم التكرارات المتوقعة .

ثم تستخدم بيانات العينة و التوزيع الاحتمالي المفترض في تقدير معالم هذا التوزيع و الذي يفيد بدوره في الحصول على الاحتمالات ومن ثم التكرارات المتوقعة .

ومن ثم <mark>فإن جودة التوفيق</mark> هو اختبار إحصائي يمكن باستخدامه معرفة هل التوزيع أو المنحنى الاحصائي النظري الذي تم توفيقه باستخدام بيانات العينة المأخوذه من المجتمع الأصلي يمثل تمثيلاً جيدا توزيع المتغير محل الدراسة في هذا المجتمع أم لا ؟ أو بمعنى أخر هل هناك إختلاف بين التوزيع الاحتمالي النظري الذي تم توفيقه و توزيع العينة ؟

إختبار كا لجودة التوفيق:-

يستخدم أختبار كا لاختبار ما اذا كانت بيانات العينة تتبع توزيع إحتمالى نظري معين أو للتأكد من صحة فرض معين ، ويتم ذلك من خلال معرفة ما إذا كان هذا الفرق صغير كلما اقترب التوزيعان الفعلى و النظري .

أولاً: إختبار كا٢ لتوفيق التوزيعات الاحتمالية النظرية أو أي توزيع آخر غير محدد الصيغة

مثال (١) :-

الجدول التالي يبين توزيع ٢٠٠ طالب بكلية العلوم الإدارية و التخطيط بجامعة الملك فيصل حسب المعدل التراكمي للطالب :-

المعدل التراكمي	0 -	1 -	2 -	3 -	4 - 5	المجموع
عدد الطلاب	28	35	53	45	39	200

و المطلوب: توفيق توزيع منتظم يوضح توزيع الطلاب حسب المعدل التراكمي وإختبار جودة التوفيق بدرجة ثقة %95.

الحل :-

. Ho : توزيع الطلاب بكلية حسب فئات المعدل التراكمي يتبع التوزيع المنتظم .

H₁: توزيع الطلاب بكلية حسب فئات المعدل التراكمي لا يتبع التوزيع المنتظم .

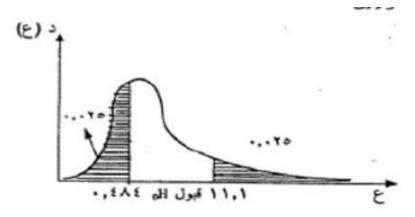
حيث أن هناك خمس فنات للمعدل التراكمي فيتم توزيع الطلاب على الخمس فنات بالتساوي و لكل فئة تتكرار متوقع يساوي مجموع التكرارات على خمسة (40 = 200/5) ، كما يتضح من الجدول التالى :-

(ش – ت) ^۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	فنات المعدل التراكمي
3.6	144	40	28	0 -
0.625	25	40	35	1 -
4.225	169	40	53	2 -
0.625	25	40	45	3 -
0.025	1	40	39	4 - 5
9.1		200	200	المجموع

درجات الحرية = (عدد الفنات – ۱) = (۱-۰) =

و عند مستوى معنوية %5 فإن قيمتي كا \ الجدولية هما (11.1 , 0.484) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلي :-

وحيث أن قيمة كا المحسوبة تقع في منطقة القبول لذلك نقبل الفرض العدمى و هو ما يعني أن منحنى التوزيع المنتظم يعتبر توفيق جيد لتوزيع طلاب الكلية حسب فنات المعدل التراكمى.



مثال (٢) :-

الجدول التالي يبين توزيع ١٠٠ موظف من موظفي إحدى الشركات حسب فئات الدخل الشهري (بالريال) :-

فئات الدخل الشهری	100 -	200 -	300 -	400 -	500 - 600	المجموع
عدد الموظفين	12	15	22	35	16	100

و المطلوب: توفيق توزيع منتظم يوضح توزيع الموظفين حسب الدخل الشهري وإختبار جودة التوفيق بدرجة ثقة %95.

الحل :-

<u>Ho</u> : توزيع الموظفين حسب فئات الدخل الشهري يتبع التوزيع المنتظم .

H₁: توزيع الموظفين حسب فنات الدخل الشهرى لا يتبع التوزيع المنتظم .

حيث أن هناك خمس فنات للدخل الشهري فيتم توزيع الموظفين على الخمس فنات بالتساوي و لكل فنة تتكرار متوقع يساوي مجموع التكرارات على خمسة (20 = 100/5) ، كما يتضح من الجدول التالي :-

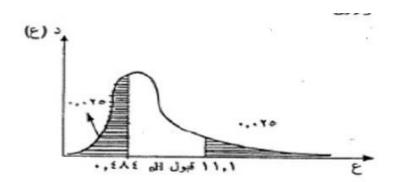
(ش – ت) ^۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	فئات الدخل الشهري
3.2	64	20	12	100 -
1.25	25	20	15	200 -
0.2	4	20	22	300 -
11.25	225	20	35	400 -
0.8	16	20	16	500 -600
16.7		100	100	المجموع

و عند مستوى معنوية %5 فإن قيمتي كا \ الجدولية هما (11.1 , 0.484) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلي .

و حيث أن قيمة كا ١ المحسوبة تقع في منطقة الرفض

لذلك نرفض الفرض العدمى و نقبل الفرض البديل و هو

ما يعني أن منحنى التوزيع المنتظم لا يعتبر توفيق جيد لتوزيع الدخل الشهري للموظفين.



مثال (٣) :-

قامت إحدى شركات الادوية بتوريد ١٠٠ كرتونه مصل الحمة الشوكية لأحد المستشفيات كل كرتونة تحتوى على ٣٠ زجاجة مصل و لوحظ توزيع عدد زجاجات المصل المكسورة بالكرتونة وكان كما يلي :-

عدد الزجاجات المكسورة بالكرتونه	0	1	2	3	4	5	المجموع
عدد الكراتين	22	28	35	10	3	2	100

و المطلوب : توفيق دالة إحتمال توزيع ذات الحدين لعدد زجاجات المصل المكسورة بالكرتونة في الشركة واختبار جودة التوفيق عند درجة الثقة %95 .

الحل :-

دالة التوزيع الاحتمال لتوزيع ذات الحدين تتوقف على معلمتين n و p أي عدد الفئات و الاحتمال :-

أولاً عدد الفئات تساوى 5 أي أن n = 5.

ثانياً: الاحتمال:

$$\mu = \frac{0 \times 22 + 1 \times 28 + 2 \times 35 + 3 \times 10 + 4 \times 3 + 5 \times 2}{100} = 1.5$$
نحسب المتوسط أو لأ

µ = n p -: لا تنسى أن

 $1.5 = 5 \times P$

P = 0.3

 $_{
m o}$ = 5, p = 0.3 عدد زجاجات المصل المكسورة بالكرتونة الواحدة يتبع التوزيع ثنائى الحدين بالمعلمتين $_{
m in}$ = 5, p = 0.3

n = 5 , p = 0.3 عدد زجاجات المصل المكسورة بالكرتونة الواحدة لا تتبع التوزيع ثنائى الحدين بالمعلمتين n = 5 , p = 0.3

و من خلال الاعتماد على معلمات التوزيع ثنائي الحدين يمكن تكوين جدول توزيع ثنائي الحدين ، كما يتضح من الجدول التالي :-

عدد الزجاجات المكسورة	الاحتمال	التكرار المتوقع
0	$^{5}c_{0} \times (0.3)^{0} \times (0.7)^{5} = 0.1681$	16.81
1	$^{5}c_{1} \times (0.3)^{1} \times (0.7)^{4} = 0.3602$	36.02
2	$^{5}c_{2} \times (0.3)^{2} \times (0.7)^{3} = 0.3087$	30.87
3	$^{5}c_{3} \times (0.3)^{3} \times (0.7)^{2} = 0.1323$	13.23
4	$^{5}c_{4} \times (0.3)^{4} \times (0.7)^{1} = 0.0284$	2.84
5	$^{5}c_{5} \times (0.3)^{5} \times (0.7)^{0} = 0.0024$	0.24
المجموع	<u>1</u>	<u>100</u>

لاحظ أن التكرار المتوقع = الاحتمال × عدد الكراتين ١٠٠

ولان إختبار كا٢ يشترط ألا يقل التكرار المتوقع لاي خلية عن ٥ ، لذلك سيتم دمج الخلايا الثلاثة الاخيرة لكي يصبح التكرار المتوقع لهم معا أكبر من أو يساوي ٥ كما يتضح من الجدول التالى :-

(ش – ت) ^۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	عدد الزجاجات المكسورة
1.60	26.94	16.81	22	0
1.79	64.32	36.02	28	1
0.55	17.06	30.87	35	2
0.11	1.72	16.31	15	3-5
4.05		100	100	المجموع

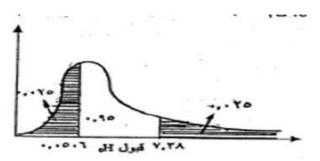
إذاً كا ٢ المحسوبة = 4.05

درجات الحرية = عدد الخلايا بعد الدمج - عدد المعلمات =

و عند مستوى معنوية %5 فإن قيمتي كا ٢ الجدولية هما (7.38, 0.0506) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلى :-

و حيث أن قيمة كا ٢ المحسوبة تقع في منطقة القبول

لذلك نقبل الفرض العدمى و هو ما يعني أن منحنى التوزيع ثنائي الحدين يعتبر توفيق جيد لتوزيع عدد الزجاجات حسب الزجاجات المكسورة.



مثال (٤) :-

قامت إحدى المطاعم بتوريد ٢٠٧ صندوق لأحد المستشفيات كل صندوق يحتوى على ٦٠ زجاجة مياه و لوحظ أن توزيع عدد زجاجات المياه المكسورة بالكرتونة كان كما يلى :-

عدد زجاجات المياه المكسورة بالكرتونه	0	1	2	3	4	5	المجموع
عدد الكراتين	40	50	72	29	9	7	207

و المطلوب : توفيق دالة إحتمال توزيع ذات الحدين لعدد زجاجات المياه المكسورة بالكرتونة واختبار جودة التوفيق عند درجة الثقة 95% .

دالة التوزيع الاحتمال لتوزيع ذات الحدين تتوقف على معلمتين n و p أي عدد الفئات و الاحتمال :-

أولاً عدد الفئات تساوى 5 أي أن n = 5.

ثانياً: الاحتمال:-

$$\mu = \frac{0 \times 40 + 1 \times 50 + 2 \times 72 + 3 \times 29 + 4 \times 9 + 5 \times 7}{207} = 1.7$$

$$1.7 = 5 \times P$$

$$P = 0.34$$

 $_{
m n}$ = 5 , p = 0.34 نائي الحدين بالمعلمتين $_{
m n}$ = 5 , p = 0.34 نائي الحدين بالمعلمتين $_{
m n}$ = 5 , p = 0.34 نائي الحدين بالمعلمتين

 $_{
m n}$ = 5, $_{
m p}$ = 0.34 عدد زجاجات المياه المكسورة بالكرتونة الواحدة لا تتبع التوزيع ثنائى الحدين بالمعلمتين $_{
m n}$ = 5, $_{
m p}$

و من خلال الاعتماد على معلمات التوزيع ثنائي الحدين يمكن تكوين جدول توزيع ثنائي الحدين ، كما يتضح من الجدول التالي :-

عدد الزجاجات المكسورة	الاحتمال	التكرار المتوقع
0	$^{5}c_{0} \times (0.34)^{0} \times (0.66)^{5} = 0.1252$	25.9
1	$^{5}c_{1} \times (0.34)^{1} \times (0.66)^{4} = 0.3226$	66.77
2	$^{5}c_{2} \times (0.34)^{2} \times (0.66)^{3} = 0.3323$	68.795
3	$^{5}c_{3} \times (0.34)^{3} \times (0.66)^{2} = 0.1712$	35.44
4	$^{5}c_{4} \times (0.34)^{4} \times (0.66)^{1} = 0.0441$	9.128
5	$^{5}c_{5} \times (0.34)^{5} \times (0.66)^{0} = 0.0045$	0.94
المجموع	<u>1</u>	<u>207</u>

لاحظ أن التكرار المتوقع = الاحتمال × عدد الكراتين ٢٠٧

ولان إختبار كا٢ يشترط ألا يقل التكرار المتوقع لاي خلية عن ٥ ، لذلك سيتم دمج الخلايا الاثنين الاخيرة لكي يصبح التكرار المتوقع لهم معا أكبر من أو يساوي ٥ كما يتضح من الجدول التالي :-

(ش – ت) ^۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	عدد الزجاجات المكسورة
7.676	198.81	25.9	40	0
4.211	281.2329	66.77	50	1
0.149	10.27	68.795	72	2
1.17	41.47	35.44	29	3
3.49	35.16	10.07	16	4-5
16.7		207	207	المجموع

إذاً كا أ المحسوبة = 16.7

درجات الحرية = عدد الخلايا بعد الدمج - عدد المعلمات =

T = **T** - **o** =

و عند مستوى معنوية %5 فإن قيمتي كا ٢ الجدولية هما (9.346 , 0.216) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلي :-

و حيث أن قيمة كا ' المحسوبة تقع في منطقة الرفض لذلك نقبل الفرض البديل و هو ما يعني أن منحنى التوزيع ثنائي الحدين لا يعتبر توفيق جيد لتوزيع عدد الزجاجات حسب الزجاجات المكسورة .

مثال (٥) :-

اختار أحد الباحثين عينة حجمها n=800 شخصا من أحد المدن، وكان توزيعهم حسب فصيلة الدم كالتالي:

0	AB	В	A	قصيلة الدم
350	100	150	200	عدد الأشخاص (التكرار المشاهد)

هل يتفق هذا التوزيع مع توزيع أفراد مدينة أخرى كان توزيع فصيلة دمهم حسب النسب التالية:

0	AB	В	Α	فصيلة الدم
45%	15%	15%	25%	النسب المئوية للأشخاص

 $\alpha = 0.05$ استخدم مستوى معنوية

الحل :-

الفروض الإحصائية:

<u>HO:</u> توزيع فصيلة الدم في العينة يتفق مع التوزيع المناظر للمدينة الأخرى

ΗΑ: توزيع فصيلة الدم في العينة لايتفق مع التوزيع المناظر للمدينة الأخرى

لابد أولاً من الحصول على التكرار المتوقع و ذلك عن طريق تحويل النسب التي حصلنا عليها في التمرين إلى أعداد وذلك بضرب هده النسب في مجموع التكرارات ٨٠٠

$$E_1 = np_1 = 800 (0.25) = 200$$

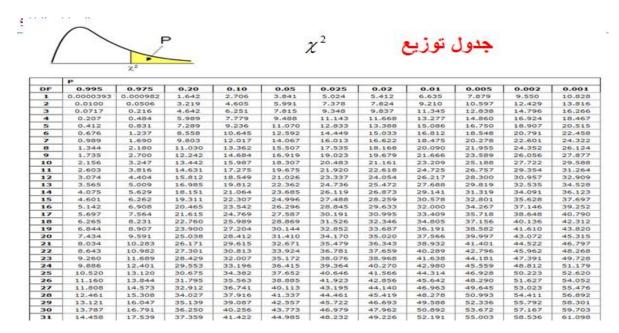
 $E_2 = np_2 = 800 (0.15) = 120$
 $E_3 = np_3 = 800 (0.15) = 120$
 $E_4 = np_4 = 800 (0.45) = 360$

(ش – ت) [*] ت	(ش – ت) '	التكرارات المتوقعة ت	التكرارات المشاهدة ش	فصيلة الدم
0	0	200	200	A
7.5	900	120	150	В
3.33	400	120	100	АВ
0.2778	100	360	350	0
11.11		800	800	المجموع

درجات الحرية = ٤ - ١ = ٣

و عند مستوى معنوية %5 فإن قيمتي كا ٢ الجدولية هما (9.346 , 0.216) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلي :-

و حيث أن قيمة كا ' المحسوبة تقع في منطقة الرفض لذلك نقبل الفرض البديل و هو ما يعني أن توزيع فصيلة الدم في المدينتين مختلف .



مثال (٦) :-قام أحد الباحثين بإختبار مدى أتفاق نتائج الطلاب للمعدلات التراكمية مع التوزيع المنتظم و حصل على النتائج التالية :-

التكرارات	التكرارات	فئات المعدل
المتوقعة ت	المشاهدة ش	التراكمي
80	56	0 -
80	70	1 -
80	106	2 -
80	90	3 -
80	78	4 - 5
400	400	المجموع

المطلوب:

١- تقدير قيمة كا المحسوبة.

(ش – ت) ۲	(ش – ت) ٚ	التكرارات	التكرارات	فئات المعدل
ت		المتوقعة ت	المشاهدة ش	التراكمي
7.2	576	80	56	0 -
1.25	100	80	70	1 -
8.45	676	80	106	2 -
1.25	100	80	90	3 -
0.05	4	80	78	4 - 5
18.2		400	400	المجموع

و عند مستوى معنوية %5 فإن قيمتي كا ١ الجدولية هما (11.1 , 0.484) و تكون منطقتي القبول و الرفض للفرض العدمي كما يلي .

و حيث أن قيمة كا ٢ المحسوبة تقع في منطقة الرفض

لذلك نقبل الفرض البديل و هو ما يعني أن منحنى

التوزيع المنتظم يعتبر توفيق جيد لتوزيع طلاب الكلية

حسب فئات المعدل التراكمي.



تابع الاختبارات الاحصائية اللامعلمية

تابع إختبارات جودة التوفيق:-

تانياً: إختبار كا2 لإستقلال متغيرين (ظاهرتين)في مجتمع واحد أو تجانس متغير (ظاهرة) ما في عدة مجتمعات

مثال (1) :-

سحبت عينة عشوائية من 100 فرد من إحدى المدن وتم توزيعهم حسب النوع و مستوى التعليم و كانت بيانتهم كما يلى :-

المجموع	مؤهل مرتفع	مؤهل فوق المتوسط	مؤهل متوسط	مستوى التعليم النوع
60	10	15	35	ذكر
40	20	5	15	أنثى
100	30	20	50	المجموع

المطلوب: إختبر الفرض القائل بوجود علاقة بين نوع الفرد و مستوى التعليم بدرجة ثقة 99%.

<u>الحل :-</u>

Но: لا يوجد علاقة بين الفرد و مستوى التعليم.

H1: يوجد علاقة بين الفرد و مستوى التعليم.

و يحسب التكرار المتوقع لكل خلية عن طريق ضرب مجوع الصف في مجموع العمود و القسمة على المجموع و ذلك بالنسبة لكل خلية فمثلاً أول خلية

$$\frac{50 \times 60}{100} = 30$$
 التكرار المتوقع لاول خلية =

المجموع	مؤهل مرتفع	مؤهل فوق المتوسط	موهل متوسط	مستوى التعليم الثوع
60	10	15	35	نكر
40	20	5	15	أنثى
100	30	20	50	المجموع

المجموع	مو هل مرتفع		المتوسط	مؤهل فوق	متوسط	مؤهل	مستوى التعليم النوع
	ij	m	ៗ	m	ប្	m	
60	18	10	12	15	30	35	ذكر
40	12	20	8	5	20	15	انثى
100	3	30	2	20	5	0	المجموع

(ش – ت) ^۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	توى التعليم	مسا التوع
0.8333	25	30	35	مؤهل متوسط	ذکر
0.75	9	12	15	مؤهل فوق المتوسط	
3.556	64	18	10	مؤهل مرتفع	
1.25	25	20	15	مؤ هل متوسط	أنثى
1.125	9	8	5	مؤ هل فوق المتوسط	٠
5.333	64	12	20	مؤهل مرتفع	
12.8472		100	100	موع	المج

إذاً كا ² المحسوبة = 12.8472

من جدول توزيع كا2 و عند درجات الحرية =

= (عدد الصفوف -1)(عدد الاعمدة -1) =

2 = (1-3) (1-2) =

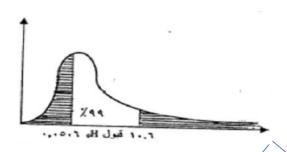
و لمستوى معنوية 1% نجد أن حدود فترة الثقة هي (10.6 , 0.01) كما يتضح من الشكل التالي :-

وحيث أن قيمة كا2 المحسوبة تقع في منطقة الرفض ، إذا

نرفض الفرض العدمى و نقبل الفرض البديل و القائل

بأنه توجد علاقة بين نوع الفرد و مستوى التعليم بدرجة

ثقة %99 .



مثال (2) :-

الجدول التالي يبين نتيجة أحد الاختبارات في نهاية دورة تدريبية موحده عقدت لثلاثة أقسام مختلفة بإحدى شركات الغزل و النسيج :-

المجموع	فشل	نجاح	النتيجة القسم
80	15	65	الغزل
70	8	62	النسيج
50	12	38	الطباعة
200	35	165	المجموع

و المطلوب: إختبار ما إذا كانت قدرات المتدربين متقاربة في الاقسام الثلاثة بدرجة ثقة %95.

Но: قدرات المتدربين متقاربة في الاقسام الثلاثة.

H1: قدرات المتدربين غير متقاربة في الاقسام الثلاثة.

نحسب أولاً التكرار المتوقع لكل خلية بنفس الطريقة في المثال السابق ، فمثلاً بالنسبة للخلية الاولى :-

$$\frac{165 \times 80}{200} = 66$$
 التكرار المتوقع للخلية الاولى :-

المجموع	فشل	نجاح	النتيجة
			القسم
80	15	65	الغزل
70	8	62	النسيج
50	12	38	الطباعة
200	35	165	المجموع

(ش – ت)۲ ت	(ش – ت)۲	التكرارات المتوقعة ت	التكرارات المشاهدة ش	النتيجة	القسم
0.015152	1	66	65	الغزل	
0.312771	18.0625	57.75	62	النسيج	نجاح
0.256061	10.5625	41.25	38	الطباعة	
0.071429	1	14	15	الغزل	
1.47449	18.0625	12.25	8	النسيج	فشل
1.207143	10.5625	8.75	12	الطباعة	
3.337		200	200	موع	المج

إذاً كا 2 المحسوبة = 3.337

و من جدول توزيع كا2 و عند درجات الحرية =

و لمستوى المعنوية 0.05 فإن حدود كا2 هي (7.38, 0.0506)

و حيث أن قيمة كا2 المحسوبة تقع في منطقة القبول ، فنقبل Ho أي يقبل الفرض الذي يقضي بأن قدرات المتدربين في الاقسام الثلاثة متقاربة عند مستوى المعنوية %5 .

اختبار تباين المجتمع

يستخدم توزيع في إجراء العجيد من الاختبارات الإحصائية مثل:

الاختبارات المتعلقة بتباين مجتمع ما (وذلك لاختبار المشاكل التي تتطلب اختبار تشتت مجتمع ما)، ويتم ذلك من خلال استخدام

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

ويفترض في هذا الاختبار أن العينة مسحوبة من مجتمع معتدل وذلك من خلال مقارنة قيمة χ^2 المحسوبة من المعادلة بالقيمة الحرجة لـ χ^2 والمستخرجة من جداول χ^2 .

مثال (3) :-

إذا علمت أن تباين قوة مقاومة الكسر للكابلات التي تنتجها إحدى الشركات لاتزيد عن 40000 ، وتستخدم الشركة الآن طريقة إنتاج جديدة يعتقد أنها ستزيد من تباين قوة مقاومة الكابلات للكسر، سحبت عينة عشوائية من عشرة كابلات فوجد تباينها يساوى 50000 .

بافتراض أن قوة مقاومة الكسر للكابلات تتبع التوزيع المعتدل، اختبر الفرض القائل بوجود زيادة معنوية في التباين عند مستوى معنوية $\alpha = 0.01$.

الحل :-

□ وضع فرض العدم والفرض البديل.

صياغة الفرضية الصفرية كالتالى:

H0: $\sigma^2 \le 40000$

في حين تفترض الفرضية البديلة التالي:

H_A: $\sigma^2 > 40000$

. مستوى الدلالة (lpha): وهي 0.01 . \Box

21.666 هي المجدولة عن المجدولة عن المجدولة عن المجدولة الحرية = 9 درجات الحرية = 9 درجات

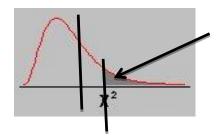
لذا فإن قاعدة القرار هي أن يتم رفض الفرضية الصفرية HO عندما تكون

$$\chi^2 \ge 21.666$$

وحيث أن قيمة χ^2 لاختبار تباين المجتمع يتم حسابها كالتالي :

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{(10-1)50000}{40000} = \frac{(9)50000}{40000} = \frac{450000}{40000} = 11.25$$

وحيث أن قيمة χ^2 المحسوبة أقل من قيمة χ^2 المجدولة، فإننا بالتالي نقبل الفرضية الصفرية HO عند مستوى دلالة 0.01 وبالتالي يمكننا القول أن بيانات العينة تدل على أن الزيادة الظاهرة في التباين ليست معنوية عند مستوى الدلالة المحدد ، والشكل التالي يوضح ذلك.



مثال (4) :-

إذا علمت أن تباين درجات الطلاب في جامعة الملك فيصل لا تقل عن 10 درجة، وتستخدم الجامعة الآن طريقة جديدة في التدريس يعتقد أنها ستقلل من تباين درجات الطلاب، سحبت عينة عشوائية من 12 طالب فوجد تباينها يساوي 24.

بافتراض أن درجات الطلاب تتبع التوزيع المعتدل ، اختبر الفرض القائل بإنخفاض معنوية التباين عند مستوى معنوية 0.01 α = α .

الحل:-

□ وضع فرض العدم والفرض البديل.

صياغة الفرضية الصفرية كالتالى:

HO:
$$\sigma^2 \geq 10$$

في حين تفترض الفرضية البديلة التالي:

$$_{\rm H_A:}$$
 $\sigma^2 < 10$

. 0.01 وهي): وهي الدلالة (lpha) تحديد مستوى الدلالة (

24.725 مي درجات الحرية = 11 ، فإن قيمة χ^2 المجدولة هي 24.725 \square

لذا فإن قاعدة القرار هي أن يتم رفض الفرضية الصفرية НО عندما تكون

 $\chi^2 \ge 24.725$

وحيث أن قيمة χ^2 لاختبار تباين المجتمع يتم حسابها كالتالي:

وحيث أن قيمة χ^2 المحسوبة أكبر من قيمة χ^2 المجدولة، فإننا بالتالي نرفض الفرضية الصفرية HO عند مستوى دلالة 0.01 .

مثال (5) :-

في دراسة للعلاقة بين التقدير الذي يحصل عليه الطالب في الجامعة وجنسه أخذت عينة من نتائج الطلاب الذكور و الاناث وكانت كما يلي:

أولا: الاناث

ممتاز	مقبول	ممتاز	جيد جدا	راسب	راسب	راسب	راسب
راسب	مقبول	مقبول	مقبول	جيد	جيد جدا	جيد جدا	ختر
جيد جدا	جيد جدا	راسب	مقبول	مقبول	مقبول	راسب	مقبول
جيد	جيد	ختر	ممتاز	جيد جدا	ممتاز	ختر	ختر
جيد	ممتاز	جيد جدا					

ثانيا: الذكور

جيد جدا	راسب	جيد جدا	راسب	ختر	ختر	ختر	راسب
مقبول	راسب	راسب	راسب	راسب	راسب	ختر	جيد جدا
ممتاز	مقبول	مقبول	راسب	راسب	ممتاز	ممتاز	مقبول
جيد	جيد	راسب	راسب	مقبول	ختر	ختر	ممتاز
ممتاز	جيد جدا	ختر	ممتاز	جيد جدا			

والمطلوب:

 $\alpha = 0.05$ الدلالة $\alpha = 0.05$ هل توجد علاقة بين تقدير الطالب وجنسه عند مستوى الدلالة

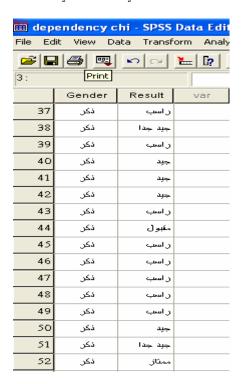
الحل :-

الفرضية الصفرية: تقدير الطالب لا يعتمد على جنسه (متغير الجنس والتقدير مستقلان)

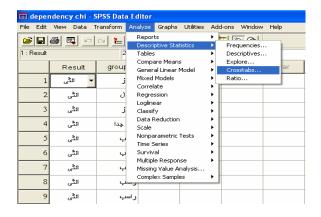
الفرضية البديلة: تقدير الطالب يعتمد على جنسه (توجد علاقة بين جنس الطالب وتقديره)

ثم نقوم بتعريف متغيرين نوعيين هما (Result) و (Gender) في شاشة تعريف المتغيرات بحيث يكون كود متغير (Result) هو (0= راسب، 1=مقبول، 2=بد، 3 جيد جدًا، 4=ممتاز) وكود المتغير (Gender) هو (1=ذكر، 2=انثى)

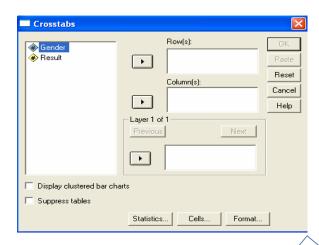
ندخل البيانات كما في الشكل التالي:



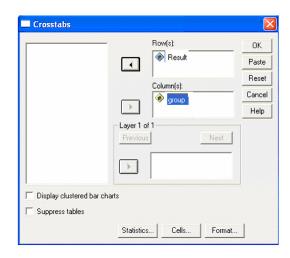
من قائمة التحليل Analyze نختار القائمة الفرعية للإحصاءات الوصفية Descriptive Statistics ومن ثم نختار الأمر Cross tabs



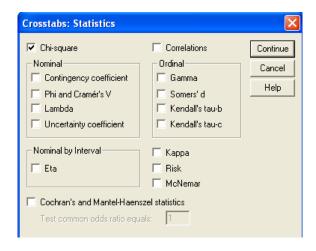
يظهر المربع الحواري التالي:



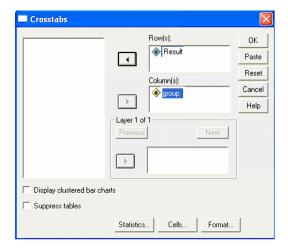
ننقل المتغير Result لخانة الصفوف Rows والمتغير Gender لخانة الأعمدة Result باستخدام الأسهم.



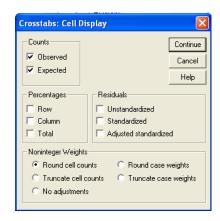
ومن ثم نضغط على Statistics للحصول على المربع الحواري التالى:



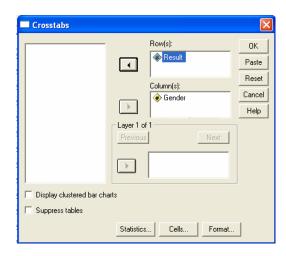
نضع علامة على خانة اختبار مربع كاي Chi-Square لحساب اختبار الاستقلالية ومن ثم نضغط على Continue للعودة للمربع الحواري السابق:



لاظهار جدول التوقعات نضغط على زر Cell ليظهر المربع الحواري التالي:



نختار الخيار Expected جدول توقعات ظهور البيانات ومن ثم نضغط Continue للعودة للمربع الحواري السابق.



نضغط على Ok للحصول على النتائج.

تتكون نتائج الأمر Cross tabulati من ثلاثة جداول:

الأول يصف حجم العينات المدخلة ونسب البيانات المفقودة كالتالى:

Crosstabs

Case Processing Summary						
	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	Ν	Percent
group * Result	72	100.0%	0	.0%	72	100.0%

الجدول الثاني يبين جدول توزيع العينة حسب المتغيرين والقيم المتوقعة حسب اختبار الاستقلالية كالتالي

عدد الذكور الراسبين

	group * Result Crosstabulation						
			Res	sult			
		_	ذکر	انئى	Total		
group	راسب	Count	12.00	7.00	19		
		Expected Sount	9.76	9.24	19.0		
1	مقبول	Count	5.00	8.00	13		
		Expected Count	6.68	6.32	13.0		
	خند	Count	9.00	8.00	17		
		Expected Count	8.74	8.26	17:8-		
1	جرد جدا	Count	5.00	7.00	12		
		Expected Count	6.17	5.83	12.0		
	ممئاز	Count	6.00	5.00	11		
		Expected Count	5.65	5.35	11.0		
Total		Count	37.00	35.00	72		
		Expected Count	37.00	35.00	72.0		

يبين الجدول الثانى السابق أن عدد البيانات المدخلة 72 ، عدد الذكور 37 (منهم 12 راسب وقيمتها المتوقعة 9.76 ، 5 مقبول وقيمتها المتوقعة 6.16 ، و 6 ممتاز وقيمتها المتوقعة 5.65 ، و 6 ممتاز وقيمتها المتوقعة 5.65) والاناث 35 (منهم 7 راسب وقيمتها المتوقعة 9.24 ، 8 مقبول وقيمتها المتوقعة 6.32 ، 8 جيد وقيمتها المتوقعة 8.26 ، و 5 ممتاز وقيمتها المتوقعة 5.35)

الجدول الثالث يبين نتيجة اختبار مربع كاي كالتالى:

قيمة الاختبار			رجة الحرية			
Chi-Square Tests						
	∠ Value	df▲	Asymp. Sig. (2-sided)			
Pearson Chi-Square	2.437ª	4	.656			
Likelihood Ratio	2.459	4	.652			
Linear-by-Linear Association	.298	1	.585			
N of Valid Cases	72					

 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.35.

يبين الجدول الثالث السابق أن قيمة اختبار مربع كاي هي 2.437 بدرجة حرية مقادرها 4

يتبين لنا من الجدول أن أقل قيمة لمستوى الدلالة هي Asymp. Sig. (2-sided) = 0.656 وهي اكبر من مستوى الدلالة α = 0.005 وبالتالي لا نستطيع رفض الفرضية الصفرية أي أن تقدير الطالب لا يعتمد على جنسه.

مثال (6) :-

الجدول التالى يوضح نتيجة إختبار مربع كاي (كا2) عند مستوى معنوية %5:-

Chi-Square Test

	Value	df	Asymp . Sig
			(2-sided)
Pearson Chi-Square	1.9496	3	.0437
Likelihood Ratio	1.9672	3	.0434
Linear-by- Linear			
Association	.2384	1	.0390
N of Valid Cases	32		

أجب عن الاسئلة التالية من خلال النتائج الواردة في الجدول السابق:-

(1) قيمة إحصائي الاختبار كا2 تساوي :-

- .2384 (أ)
- 1.9672 (-)
- (ج) <u>1.9496</u>
- (د) لا شيء مما سبق

(2) قيمة مستوى الدلاله المحسوبة للإختبار تساوي :-

- .0437 (¹)
- .0434 (-)
- (ج) 0390.
- (د) لا شيء مما سبق

(3) من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض يمكن :-

- (أ) قبول الفرض البديل.
- (ب) قبول الفرض العدمى.
- (ج) عدم قبول أي من الفرضين.
 - (د) لا شيء مما سبق

2 - اختبار مان وتني Mann – Whitney

استخدامه:

يعتبر هذا الاختبار بديل لا معلمي للاختبار الخاص بالفرق بين متوسطى مجتمعين والمبني على أساس عينتين مستقلتين أي أن هذا الاختبار بديل لاختبار † لعينتين مستقلتين، بل أنه أفضل منه خاصة إذا كانت العينتان مختارتين من مجتمعين لا يتبعان توزيعاً طبيعياً.

ويعد هذا الاختبار أكثر الاختبارات اللابارامترية استخداماً في البحوث عندما يكون المتغير التابع من المستوى الرتبي بدلاً من الدرجات الأصلية، كما يمكن استخدام هذا الاختبار إذا كانت المتغيرات من المستوى الفتري أو النسبي ولكنها لا تفي بشروط اختبار النسبة التائية مثل عدم اعتدالية التوزيع أو اختلاف التباين بين المجموعتين اختلافاً كبيراً.

مثال (1) :-

فيما يلى بيان بدرجات مجموعة من الطلاب في مادة المحاسبة، في كل من جامعة الملك فيصل وجامعة الدمام:

(١) درجات مادة المحاسبة بكلية إدارة الأعمال جامعة الملك فيصل:

١.	١٤	٧	٨	١٦
٣	٧	10	١٤	٧

(٢) درجات مادة المحاسبة بكلية إدارة الأعمال جامعة الدمام:

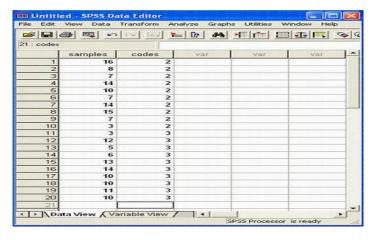
١٣	٦	٥	١٢	٣
١.	11	١.	١.	١٤

المطلوب:

ب استخدام اختبار مان – ويتني: اختبر هل هناك اختلاف في متوسط درجات مادة المحاسبة بين جامعة الملك فيصل وجامعة الدمام وذلك عند مستوى معنوية 5%.

الحل :-

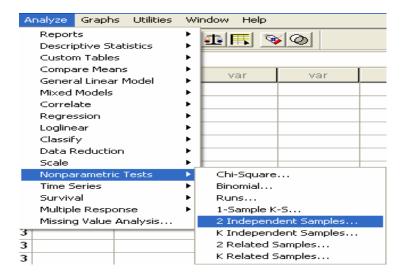
أولا: ندخل البيانات كالتالى:



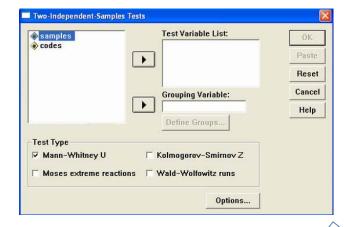
ملاحظة: في هذا التدريب نحن بصدد إدخال بيانات لعينات مستقلة، لذا تم إدخال جميع المشاهدات في عمود، والترميز الخاصة بالعينات في عمود أخر وذلك من خلال إعطاء الرقم (٢) لبيانات العينة الأولى و (٣) لبيانات العينة الثانية.

ثانيا: خطوات تنفيذ الاختبار:

نضغط على قائمة Analyze ومن القائمة الفرعية لـ Nonparametric tests نختار Nonparametric tests كما هو موضح بالشكل التالي :



سوف يظهر لنا المربع الحوارى التالى:



انقل المتغير Samples الى المربع الذى بعنوان Test Variable List ، ثم انقل متغير الترميز codes إلى المربع الذي بعنوان Groupies ، ثم بعد ذلك اضغط على Define Groups سوف يظهر لنا مربع حوارى جديد كما يلى:

Two Independent Samples: Define Groups					
Group 1:		Continue			
Group 2:		Cancel			
		Help			

- في خانة [Group 1] اكتب الرمز الخاص بالعينة الاولى (۲)، وفي خانة [Group 2] اكتب الرمز الخاص بالعينة الثانية (۳)
 - ثم اضغط Continue للعودة الى المربع الحوارى السابق
 - ثم اضغط Ok سوف تظهر لك نافذة المخرجات الخاصة بهذا الاختبار

Ranks

	CODES	N	Mean Rank	Sum of Ranks
SAMPLES	2	10	11.10	111.00
	3	10	9.90	99.00
	Total	20		

Test Statistics^b

	SAMPLES
Mann-Whitney U	44.000
Wilcoxon W	99.000
Z	457
Asymp. Sig. (2-tailed)	.648
Exact Sig. [2*(1-tailed Sig.)]	.684

يلاحظ من نتائج هذا الاختبار: أن قيمة P.Value تساوى 0.648 وهي أكبر من مستوى المعنوية 5% وبالتالي فأننا نقبل الفرض العدمي بأن متوسط درجات مادة المحاسبة في كلية إدارة الأعمال جامعة الملك فيصل يساوى متوسط درجات مادة المحاسبة في جامعة الدمام، أي أن الفروق بين الجامعتين غير معنوية.

مثال (٢) :-

" قام أحد الباحثين بمقارنة عينة من مرتبات موظفي القطاع الحكومي من مدينة الرياض بأخرى من مدينة جدة وذلك بصدد الوقوف على ما إذا كان هناك اختلاف في متوسط المرتبات وذلك عند مستوى معنوية %5، وب استخدام البرنامج الاحصائي SPSS حصلنا على النتائج التالية :-

	SAMPLES
Mann-Whitney U	55.000
Wilcoxon W	95.000
Z	037
Asymp . Sig . (2-tailed)	.028
Exact Sig .[2*(1-tailed	.034
Sig.)]	

الحل :-

(١) الاختبار المستخدم لدارسة الفرق بين متوسطى مجتمعين في هذه الحالة :-

أ ـ كا٢

ب - مان وتني

ج ـ ويلكوكسون

د - لا شيء مما سبق

(٢) قيمة إحصائى الاختبار تساوي :-

- .037 **-** أ

ب - <u>028.</u>

ج - 034.

د - لاشيء مماسبق

(٣) من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن :-

أ - قبول الفرض البديل

ب - قبول الفرض العدمي

ج - عدم قبول أي من الفرضين

د - لاشىء مماسبق

اختبار ویلکوکسون Wil Test

ستخدامه:

ويسمى باختبار اشارات الرتب Sign -rank، ويستخدم هذا الاختبار في تحديد ما إذا كان هناك اختلاف أو فروق بين عينتين مرتبطتين فيما يتعلق بمتغير تابع معين، ويعد بديلاً لابارامترياً لاختبار T لعينيتين مرتبطين، وتشتمل العينتان على نفس المجموعة من الأفراد يجرى عليهم قياس قبلي Pre test، وقياس بعدى Post test وفي مثل هذه الحالة يكون لكل فرد من أفراد العينة درجتان أحداهما تمثل درجته في الاختبار القبلي والثانية تمثل درجته في الاختبار البعدي. ويستخدم مع البيانات العددية فقط دون الاسمية حتى نحسب اختبار ويلكوكسن يجب اولا أن نجد الفرق بين القيمتين من أجل كل زوج ومن ثم من أجل كافة الحالات التي يكون عندها الفرق غير معدوم، نرتب الفروقات بشكل تصاعدي متجاهلين إشارة الفروقات، ذلك

الحالات التي يكون عندها الفرق غير معدوم، نرتب الفروقات بشكل تصاعدي متجاهلين إشارة الفروقات، ذلك يعني بأن نسند إلى الفرق الصغير التالي الرتبة ٢ وهكذا، أما في حالة الفروقات المتساوية (الحالات المتعادلة) نسند رتبة المتوسط إلى تلك الحالات.

مثال:-تأثير ممارسة الرياضة على إنقاص الوزن:

الوزن بعد ممارسة الرياضة	الوزن قبل ممارسة الرياضة
۸.	٨٥
٨٥	97
٨٥	۸.
٨٢	90
٧٥	9.
۸.	٨٨
۸٤	١٠٣
٨٦	٩٨

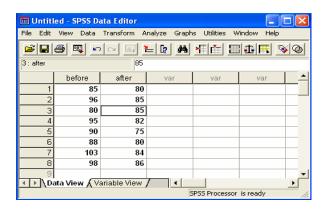
المطلوب:

اختبار هل هناك اختلاف معنوي في الوزن بسبب ممارسة الرياضة، باستخدام اختبار ويلكوكسون Wilcoxon عند مستوى معنوية %5.

الحل :-

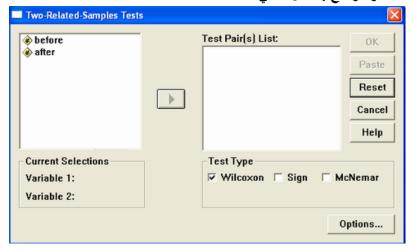
أولا: ندخل البيانات كالتالي:

حيث أننا بصدد عينات غير مستقلة، فإنه سيتم إدخال بيانات كل عينة في عمود مستقل، كما يلي:



ثانيا: خطوات تنفيذ الاختبار:

نضغط على قائمة Analyze ومن القائمة الفرعية لـ Nonparametric tests نختار Related Samples ٢ Related Samples كما هو موضح بالشكل التالي:



اضغط بالماوس مرة واحدة على المتغير before ثم على المتغير after (لاحظ أنه قد تم تظليل المتغيرين معًا)، ثم قم بنقل هذين المتغيرين الى المربع الذي بعنوان Test Pair(s) List وذلك من خلال الضغط على السهم الصغير الموجود بين المربعين.

لاحظ في نفس المربع الحوارى الذى أمامك: أن الاختيار الافتراضي من جانب البرنامج هو اختبار ويلكوكسن، وهو الاختبار الذى نريده لذا سنتركه كما هو. اضغط Ok ستظهر لك نافذة المخرجات الخاصة بهذا الاختبار كالتالى:

Ranks

		N	Mean Rank	Sum of Ranks
AFTER - BEFORE	Negative Ranks	7 <i>a</i>	4.93	34.50
	Positive Ranks	1 ^b	1.50	1.50
	Ties	0°		
	Total	8		

Test Statistics^b

	AFTER - BEFORE
Z	-2.313ª
Asymp. Sig. (2-tailed)	.021

قام البرنامج بحساب الفروق في الوزن على أساس التالي:

الفرق = الوزن بعد ممارسة الرياضة - الوزن قبل ممارسة الرياضة

ويلاحظ أيضا: أن متوسط الرتب السالبة (4.93) أكبر من متوسط الرتب الموجبة (1.5)، وهذا معناه أن متوسط الوزن قبل ممارسة الرياضة (إذا في غاية الأهمية أن نعرف الترتيب الذى استخدمه البرنامج للعينتين)

ويلاحظ من نتائج هذا الاختبار أن قيمة P.Value تساوي 0.021 وهي أقل من مستوى المعنوية %5 وبالتالي فإننا نقبل الفرض البديل بأن متوسط الوزن بعد ممارسة الرياضة يختلف معنويًا عن متوسط الوزن بعد ممارسة الرياضة.

مثال :-

إذا علمت أنه :-

" لدراسة تأثير أحد البرامج التدريبية على مجموعة من الطلاب تم اختبار مجموعة من الطلاب قبل البرنامج التدريبي على عينة من ٨ طلاب و اختبار الطلاب بعد الحصول على البرنامج التدريبي ولاختبار هل هناك اختلاف معنوي في مستوى تحصيل الطلاب ، عند مستوى معنوية %5، أستخدم الباحث البرنامج الاحصائي spss باستخدام اختبار ويلكوكسون Wilcoxon و حصلنا على النتائج التالية :-

Ranks

		N	Mean Rank	Sum of
				Ranks
AFTER-BEFORE	Negative Ranks	7	2.36	43.50
	Positive Ranks	1	3.54	3.54
	Ties	0		
	Total	8		

Test Statistics

	AFTER- BEFORE
Z	313
Asymp . Sig . (2-tailed)	.421

الحل :-

- (١) من الجداول السابقة يمكن توضيح أن :-
- أ مستوى الطلاب قبل الحصول على البرنامج التدريبي أفضل من المستوى بعد الحصول على البرنامج
- ب مستوى الطلاب بعد الحصول على البرنامج التدريبي أفضل من المستوى قبل الحصول على البرنامج
 - ج مستوى الطلاب قبل الحصول على البرنامج التدريبي مساوي لمستوى بعد الحصول على البرنامج
 - د لا شيء مما سبق
 - (٢) من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض يمكن :-
 - أ قبول الفرض البديل
 - ب قبول الفرض العدمي
 - ج عدم قبول أي من الفرضين
 - د لاشىء مما سبق

٣-اختبار كروسكال واليس Kruskal-Wallis Test

استخدامه:

يعتبر هذا الاختبار بديلاً لامعلميا لاختبار تحليل التباين في اتجاه واحد، وهو مبني على مجموع الرتب ويستعمل لاختبار الفروق بين ثلاث مجموعات أو أكثر في مثل الحالة الآتية:

مثال:

الجدول التالي يوضح درجات مجموعة من الطلاب في مادة الاقتصاد في ثلاث جامعات هي: جامعة الملك فيصل - جامعة الدمام - جامعة الدمام - جامعة الملك سعود:

جامعة الملك سعود	جامعة الدمام	جامعة الملك فيصل
٥	٤	١٣
٦	٧	١٤
10	١.	١٤
١.	١٢	10
١٤	٦	10
٦	١.	١٧
٦	١٣	٤
١٢	١٨	١٦

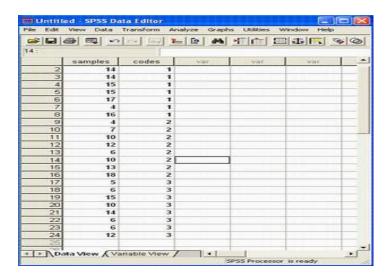
المطلوب:

دراسة مدى وجود اختلاف بين مستوى الطلاب في الجامعات الثلاثة السابقة باستخدام اختبار كروسكال- والس، وذلك عند مستوى معنوية %5

الحل :-

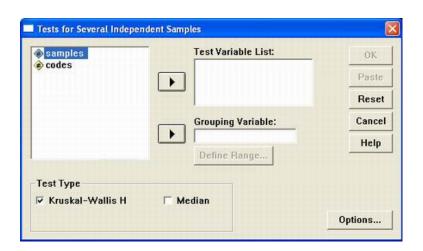
أولا: ندخل البيانات كالتالى:

حيث أننا بصدد ثلاث عينات مستقلة، لذا تم إدخال قيم المشاهدات في عمود، والرموز الخاصة بالعينات في عمود اخر، حيث تم إعطاء الرمز (١) لبيانات العينة الثالثة الثالثة كما يلي:



ثانيا: خطوات تنفيذ الاختبار:

نضغط على قائمة Analyze ومن القائمة الفرعية لـ Nonparametric tests نختار Analyze نختار Nonparametric tests كما هو موضح بالشكل التالى:



• انقل المتغير samples الى المربع الذى بعنوان Test Variable List ثم انقل متغير الاكواد codes الى المربع الصغير الذى بعنوان Grouping Variable (لاحظ أن الاختيار الافتراضي من جانب البرنامج هو اختبار كروسكال ـ والس)

• اضغط Define Groups سوف يظهر مربع حوارى جديد كما يلى:

Several Independent Samples: Define Range	×
Range for Grouping Variable	Continue
Minimum:	Cancel
Maximum:	Help

- في خانة Minimum اكتب أصغر الرمز (١) ، وفي خانة Maximum اكتب أكبر الرمز (٣) ، ثم اضغط Continue
 - ثم اضغط Ok سوف تظهر لك نافذة المخرجات الخاصة بهذا الاختبار كالتالى:

Ranks

	CODES	N	Mean Rank
SAMPLES	1	8	16.88
	2	8	10.75
	3	8	9.88
	Total	24	

Test Statisticsa,b

	SAMPLES
Chi-Square	4.706
df	2
Asymp. Sig.	.095

يلاحظ من نتائج هذا الاختبار أن قيمة P.Value تساوى 0.095 وهي أكبر من مستوى المعنوية 5%،

وبالتالي فأننا نقبل الفرض العدمي بأن متوسط درجات مادة الاقتصاد في كلية إدارة الأعمال في الجامعات الثلاثة متساوي، أي أن الفروق بين الجامعات الثلاثة غير معنوية.

مثال:-

"قام أحد الباحثين بدراسة درجات مجموعة من الطلاب في مادة التحليل الاحصائي في ثلاث جامعات هي: جامعة الملك فيصل — جامعة الدمام — جامعة الملك سعود ، وذلك لدراسة مدى وجود اختلاف بين مستوى الطلاب في الجامعات الثلاثة السابقة باستخدام اختبار كروسكال والس، وذلك عند مستوى معنوية %5، تم الحصول على النتائج التالية باستخدام البرنامج الاحصائي SPSS:-

Test Statistics

	SAMPLES
Ci-Square	.706
df	2
Asymp . Sig .	.025

(١) من الجدول السابق يمكن :-

أ - قبول الفرض البديل القائل بمعنوية الفروق بين الجامعات الثلاثة

- ب قبول الفرض العدمي القائل بأن الفروق بين الجامعات الثلاثة غير معنوية
 - ج قبول الفرض العدمي القائل بأن الفروق بين الجامعات الثلاثة معنوية
 - د لا شيء مما سبق
- ٤- حساب اختبار كولومجروف سيمرنوف لجودة التوافيق Goodness of Fit Test Kolmogorov-Smirnov من خلال برنامج SPSS

اختبار كولومجروف سيمرنوف لجودة التوافيق

: Goodness of Fit Test - Kolmogorov-Smirnov

استخدامه:

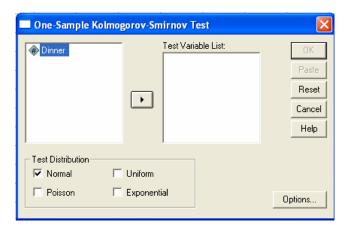
يستخدم هذا الاختبار لمعرفة إذا ما كانت العينة موضع الاهتمام تتبع توزيعاً احتمالياً معينا ويستخدم عوضاً عن اختبار مربع كاي عندما يكون مجموع التكرارات أقل من 30 أو يكون التكرار المتوقع لأي خلية أقل من خمسة وعملية ضم الخلايا تؤدي إلى فقد كثير من درجات الحرية مما يتعذر معه إجراء الاختبار أو أن تكون عملية الضم غير مناسبة. ويفضل استخدامه أيضاً في حالة كون التوزيع الاحتمالي لمتغير متصل.

ندخل البيانات في متغير نسميه Dinner كما في الشكل التالي:

Goodness of fit - SPSS Data Editor										
File Ec	dit View I	Data Trans	sform Ana	lyze Grapl	hs Utilities	Add-ons				
≃ ⊑	a 🚙 📼		* [?	44 -	rital IIIII	15 15 [3				
2:										
	Dinner	var	var	Var	var	Var				
1	20									
2	12									
3	16									
4	19									
5	24									
6	6									
7	10									
8	1									
9	15									
10	23									
11	8									
12	30									
13	2.5									
14	7					`				
1.5	10									
16	8									

من قائمة التحليل Analyze نختار القائمة الفرعية الاحصاءات الغير بارامترية Non-Parametric Test ومن ثم نختار الأمر 1-Sample K-S

يظهر المربع الحواري التالي:



يمكنك المربع الحواري السابق من اختيار التوزيع الذي تريد اختباره هل هو توزيع طبيعي Normal أو بواسون Poisson أو منتظم Uniform أو أسي Exponential فنختار التوزيع الطبيعي كما في الشكل أعلاه ونضغط Ok للحصول على النتائج التالية:

NPar Tests

One-Sample Kolmogorov-Smirnov Test

50~
45.00
15.26~
6.782
.081
.081
069
.573
.898

a. Test distribution is Normal.

b. Calculated from data.

898. مستوى دلالة الاختبار

لبيانات15.26

50 حجم العينة

6.782 الانحراف المعياري للبيانات

081 أكبر فرق بين البيانات و دالة التوزيع الاحتمالية

573. قيمة اختبار جودة المطابقة

تبين النتائج أعلاه أن متوسط عدد الزبائن هو 15.26 بانحراف معياري قدره 6.782 وأن قيمة اختبار كولموجروف سميرنوف لجودة المطابقة هو

القرار:

يبين الجدول السابق أن قيمة مستوى دلالة الاختبار هي Asymp. Sig. (2-tailed) = 0.898 وهي اكبر من مستوى دلالة الفرضية الصفرية $\alpha = 0.05$ وبالتالي نقبل الفرضية الصفرية، أي أن البيانات تتبع التوزيع الطبيعي وبالتالي نستنتج ان البيانات تتبع التوزيع الطبيعي بمتوسط قدره 15.26 وانحراف معياري 6.782 أي (15.26,6.782 X:N (15.26,6.782)

وإذا أردنا اختبار أن التوزيع يتبع توزيع بواسون نختار من الشاشة المخصصة لذلك توزيع بواسون وهكذا مع باقي التوزيعات.

" في دراسة نظاهرة متوسط وزن الاطفال في سن الروضة، أخذت عينة عشوائية من المجتمع مكونه من ٢٠ طفل فوجد أن الوسط الحسابي لوزن الطفل في هذه العينة هو ٢٠ كجم وذلك بانحراف معياري قدرة ٨ كجم ": -

- ١- إن فترة الثقة للوسط الحسابي للمجتمع بدرجة ثقة ٩٥ % هي: -
 - أ- (۲۱٫۳۵، ۲۱٫۳۵) کجم
 - ب- (۲۱٬۹۳،۱۸٬۰٤) کجم
 - ج- (۲۲،۵۸،۱۷۱۵) کجم
 - د- لاشيء مما سبق.
- ٢- إن فترة الثقة للوسط الحسابي للمجتمع بدرجة ثقة ٩٠ % هي: -
 - أ- (۲۱،۳۵، ۲۱،۳۵) کجم
 - ب- (۲۱٬۹۳،۱۸٬۰٤) کجم
 - ج- (۲۲،۸۰،۱۷،۱۵) کجم.
 - د- لاشىء مماسبق
- ٣- إن فترة الثقة للوسط الحسابي للمجتمع بدرجة ثقة ٩٩ % هي: -
 - أ- (۲۱٬۲۵، ۲۱٬۲۵) کجم
 - ب- (۲۱٬۹۳،۱۸.۰٤) کجم
 - ج- (۲۲،۵۸،۱۷<u>۱۵) کجم</u>
 - د- لاشىء مماسبق
- ٤- " يرغب أحد مديري المدارس الأهلية في تقدير متوسط عدد الوجبات التي يتم صرفها للطلاب في مدرسته خلال الشهر بحيث
 لا يتعدى الخطأ في تقدير متوسط عدد الوجبات خلال الشهر الواحد عن ٥ وجبات وبدرجة ثقة ٩٠%، ويعلم المدير من خبرته
 أن الانحراف المعياري هو ١٠ وجبات " والمطلوب: تقدير حجم العينة المطلوب لهذه الدراسة مقرياً الناتج للرقم الأعلى: -
 - أ- ١١ عينة
 - ب- ۱٦ عينة.
 - ج- ۳۳ عينة.
 - د- لاشىء مما سبق

" سحبت عينة عشوائية مكونة من ٢٥ طالب من الطلاب الدراسيين لمقرر الإحصاء في الإدارة فوجد أن متوسط درجاتهم ٨٠ درجة وذلك بانحراف معياري للعينة 5 = 5 ومن المعروف أن درجات الطلاب موزعة طبقاً للتوزيع الطبيعي ، مما سبق يمكن إيجاد حدى الثقة لدرجات الطلاب عند درجة ثقة ٥٠ % تساوى: -

درجات الحرية		.1.	0		* ₋ * 1	
٥	*_* * *	1_	710	Y_0V1	۳.۳٦٥	٤.٠٣٢
Y £		1.414	1.411	Y_+7£	Y_£ 9 Y	Y_V9V
40		1_817	١.٧٠٨	۲.٦٠	Y_£	۲.٧٨٧

- أ- (۸۲.۰۹۰، 77.94) درجة.
- ب- (۸۱٬۷۱۱،۷۸٬۲۸۹) درجة.
- ج- (۸۲۰۹۴، ۷۷۹۹۳۱) درجة
 - د- لاشىء مماسيق
- ٦- أن " رفض الفرض العدمي بينما هو صحيح " يسمى:-
 - أ- خطأ من النوع الأول.
 - ب- خطأ من النوع الثاني.
 - ج- الخطأ المعياري.
 - د- لاشىء مما سبق.

إذا علمت أنه: -

"عينة عشوائية حجمها ٤٩ شخصاً اختيرت من أفراد دولة ما، فإذا كان الوسط الحسابي لدخول الأفراد الأسبوعية في العينة هو ٧٥ ريال. ونرغب في اختيار الفرض العدمي بأن مستوط الدخل الأسبوعي لمواطني هذه الدولة يساوي ٧٢ ريال مقابل الفرض البديل أنه لا يساوي ٧٢ بمستوى معنوية ٥٠ إذا علمت أن الانحراف المعياري لدخول الافراد يساوي ١٤ ريال. "

- ٧- يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -
 - Ho : $\mu = \forall \forall$ · H1: $\mu < \forall \forall$ -1
 - Ho : $\mu = \forall \forall$ ' H1: $\mu > \forall \forall$ - ψ
 - Ho:μ = ∀Υ · H1:≠μ ∀Υ -₹
 - د- لاشىء مماسبق
 - ٨- قيمة إحصائى الاختبار فى هذه الحالة Σتساوى: -
 - أ_ ٣
 - ب- ۲۰،۰
 - ج- <u>۱.۰</u>
 - د- لاشىء مماسبق

- ٩- من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض يمكن: -
 - أ- قبول الفرض العدمي
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي الفرضين
 - د- لاشيء مما سبق

عينة عشوائية حجمها ٤٩ شخصاً اختيرت من أفراد دولة ما، فإذا كان الوسط الحسابي لدخول الأفراد الأسبوعية في العينة هو ٧٥ ريال. ونرغب في اختيار الفرض العدمي بأن مستوط الدخل الأسبوعي لمواطني هذهِ الدولة يساوي ٧٢ ريال مقابل الفرض البديل أنه لا يساوي ٧٢ بمستوى معنوية ١% إذا علمت أن الانحراف المعياري لدخول الافراد يساوي ١٤ ريال. "

- ١٠ ـ يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -
 - Ho : $\mu = \forall \forall$ · H1 : $\mu < \forall \forall$ -1
 - Ho : $\mu = \forall \forall$ ' H1: $\mu > \forall \forall$ - ψ
 - Ho :μ = ∀ Υ · H1 :≠μ ∀ Υ -₹
 - د- لاشىء مماسبق
 - ١١- قيمة إحصائي الاختبار في هذه الحالة كتساوى: -

 - ب۔ ٥٧٠٠

 - ج- ١<u>٠</u>٠ د- لاشيء مما سبق
- ٢ ١ من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن: -
 - أ- قبول الفرض العدمي
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي الفرضين
 - د- لاشىء مماسبق

" يدّعى أحد المرشحين في الانتخابات أنه سيحصل على نسبة ٧٠% من أصوات الناخبين عندما تجري الانتخابات. ولاختيار هذا الادعاء تم اختيار عينة عشوائية من الناخبين حجمها ١٠٠ ناخب، ووجد أن نسبة من يؤيدون المرشح في العينة هي ٦٠% اختبر مدى صحة ادعاء المرشح بأن النسبة في المجتمع هي ٧٠% مقابل الفرض البديل أن النسبة أقل من ٧٠% وذلك بمستوى معنوية

- ١٣- يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -
 - $PHo: = \cdot . \lor \cdot \cdot H1 : P < \cdot . \lor \cdot$
 - Ho: p = ·. √ · · · H1: P>0.70 --
 - Ho: P = 0.70 · 0.70≠H1: P -€
 - د- لاشىء مما سبق
 - ٤ ١ قيمة إحصائي الاختبار في هذه الحالة Z تساوى: -
 - ا- ۱۰.۰
 - ب- ١٠.١٠ -ب

 - ج- ۲<u>.۱۷ –</u> د- لاشيء مما سبق
- ٥١- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن: -
 - أ- قبول الفرض لعدمي
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي من الفرضين
 - د- لاشىء مماسبق

" البيانات التالية تمثل نتائج عينتين عشوائيتين مستقلتين مسحوبتين من منطقتين لمقارنة متوسط عمر الناخب فيهما حيث

الفرض العدمي : أن متوسط عمر الناخب في المنطقة الأولى يساوي $\overline{X1}$ = $\overline{X2}$ ، $\overline{X1}$ = $\overline{X2}$ ، $\overline{X1}$ = $\overline{X2}$ ، $\overline{X1}$ = $\overline{X2}$ ، $\overline{X2}$ ، $\overline{X1}$ = $\overline{X2}$ ، $\overline{X2}$ ، $\overline{X2}$ ، $\overline{X1}$ = $\overline{X2}$ ، $\overline{X2$ متوسط عمر الناخب في المنطقة الثانية بمستوى معنوية ٥% مقابل الفرض البديل أنهما غير متساويين إذا علمت أن:

$$\frac{2}{1} = 60\sigma \cdot \frac{2}{2} = 32\sigma$$

١٦- يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -

Ho:
$$\mu_2 - \mu_1$$
, H1: > $\mu_2 \mu_1$ -

Ho:
$$μ_2 - μ_1$$
 · H1: $≠ μ_2μ_1$ -ε

١٧ - قيمة إحصائي الاختبار في هذه الحالة Z تساوي: -

١٨- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن: -

" إذا كان متوسط استهلاك الفرد السعودي من الدجاج حسب تقارير وزارة الصحة هو (١٢) كيلو جرام بانحراف معياري (٦٠) كيلوجرامات لفترة السبعينات الميلادية، أجرى أحد الباحثين دراسة في عام ٢٠١٣م من عينة قوامها (٤٩) فرداً ووجد أن متوسط الاستهلاك للفرد هو (١٤) كيلو جرام، هل تثيير الدراسة الحالية أن متوسط الاستهلاك أرتفع عما عليه في السبعينات. "

- ١٩ يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -
 - $-\mu$ Ho: $\uparrow \uparrow \cdot > \mu$ H1: $\uparrow \uparrow \uparrow$
 - $-\mu$ Ho: $\gamma \gamma \cdot < \mu$ H1: $\gamma \gamma \rightarrow \psi$
 - $-\mu$ Ho: ۱۲ ، $\neq \mu$ H1: ۱۲ -ह
 - د- لاشىء مما سبق
 - · ٢-قيمة إحصائى الاختبار في هذه الحالة Z تساوي: -
 - ا_ ۲

 - ج- ۳۳.۰
 - د- لاشىء مما سبق
- ١١-من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض يمكن: -
 - أ- قبول الفرض العدمى
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي من الفرضين
 - د- لاشىء مما سبق

" لو كانت لدينا عينة عشوائية تتكون من ٢٥٠ طالب وجد أن الوسط الحسابي لأطوال العينة ٩٥.٥٥ سم، والانحراف المعياري = ٢٠٤ سم، علماً بأن الوسط الحسابي لأطول طلاب الجامعة يبلغ ١٥٨ سم، أختبر أهمية الفرق المعنوي بين الوسط الحسابي لأطوال طلاب الجامعة. "

- ٢٢- يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -
 - Ho : $\mu_0 \mu$ · H1 : $\mu < \mu_0$ -
 - Ho : $\mu_0 \mu$ · H1 : $\mu < \mu_0$ ---
 - Ho: $μ_0 μ$, H1: $μ ≠ μ_0$ -ε
 - د- لاشىء مما سبق
 - ٣٢- يسمى إحصائي الاختبار في هذه الحالة: -
 - Z -
 - <u>t</u> --
 - ج- H
 - د- لاشىء مماسبق
 - ٤٢- قيمة إحصائي الاختبار في هذه الحالة تساوي: -
 - **-** ۲. ⋅ -ĺ
 - ب- ۲.۹٤ ـ
 - ج- <u>۱۱٬۰۰۲ –</u>
 - د- لاشىء مماسبق
- ٥ ٢ من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن: -
 - أ- قبول الفرض العدمي
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي من الفرضين
 - د- لاشيء مماسبق

٢٦- إذا قدمت إليك النتائج التالية كمخرجات للبرنامج الإحصائي SPSS: -

T - test		C	one – Sample tes	st		
			e = 160			
	Т	df	Sig.(2-tailed)	Mean Difference	95% Confidence Interval of the difference	
					Lower	Upper
الطول	-11.006	249	0.000	-2.0480	-2.04145	-1.6815

من خلال الجدول السابق يمكن: -

- أ- قبول الفرض العدمي
 - ب- قبول الفرض البديل
- ج- رفض كل من الفرضين
 - د- لاشيء مماسبق

٢٧- إذا قدمت إليك النتائج التالية كمخرجات للبرنامج الإحصائي SPSS: -

T - test		One – Sample test				
	Test Value = 160					
	Т	df	Sig.(2-tailed)	Mean Difference	95% Confidence Interval of the difference	
					Lower	Upper
الطول	-1.006	249	0.000	-2.0480	-2.04145	-1.6815

من خلال الجدول السابق يمكن: -

- أ- قبول الفرض العدمي
- ب- قبول الفرض البديل
- ج- رفض كل من الفرضين
 - د- لاشيء مما سبق

" أراد باحث أن يعرف أثر استخدام نظم مساندة القرارات على كفاءة القرارات التي تتخذها الادارة بمساعدة تلك النظم، فوزع ٥٠ مديراً لمنشآت صناعية عشوائياً في مجموعتين، ثم عين أحدهما بطريقة عشوائية لتكون مجموعة تجريبية والاخرى ضابطة، وفي نهاية التجربة وزع على المجموعتان استقصاء بقيس درجة فاعلية القرار وكفاءته عندما يتم اتخاذه باستخدام نظم مساندة القرارات بدلاً من الطريقة التقليدية فكانت النتائج كما يلى: -

المجموعة الضابطة	المجموعة التجريبية
n ₂ =25	n ₁ =25
$\overline{X}1 = 6$	$\overline{X}1 = 7.6$
$S_2^1 = 1.78$	S_2^1 =2.27

وأردنا اختيار ما إذا كان أداء المجموعة التجريبية أفضل من أداء المجموعة الضابطة عند مستوى معنوية ٥%: -

٢٨- يمكن صياغة الفرض العدمي والفرض البديل على الشكل: -

Ho:
$$μ_2 - μ_1$$
 · H1 :> $μ_2μ_1$ -

Ho :
$$\mu_2 - \mu_1$$
 · H1 : $< \mu_2 \mu_1 - \mu_1$

Ho :
$$\mu_2 - \mu_1$$
 ' H1 : $\neq \mu_2 \mu_1$ -ह

٢٩ ـ درجات الحرية تساوى: -

· ٣- قيمة الانحراف المعياري S في هذه الحالة تساوي: -

٣١- قيمة إحصائى الاختبار t في هذه الحالة تساوي: -

- ٣٢- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض (إذا علمت أن قيمة t الجدولية تساوي ١.٦٨) يمكن: -
 - أ- قبول الفرض العدمى
 - ب- قبول الفرض البديل
 - ج- عدم قبول أي من الفرضين
 - د- لاشيء مما سبق
 - -- إذا كانت A , B , C تساوي :- A , B , C المادة A , B , C -- إذا كانت
 - $(A \cup B) \cap (A \cup C)$ -
 - $(A \cap B) \cup (A \cap C) \rightarrow$
 - $(A \cup B) \cup (A \cup C)$ -z
 - د- لاشىء مما سبق
 - عــ إذا كانت A,B,C تساوي :- A,B,C تساوي :-
 - $(A \cup B) \cap (A \cup C)$ -
 - $(A \cap B) \cap (A \cap C) \rightarrow$
 - $(A \cap B) \cup (A \cap C)$ -
 - د- لاشىء مما سبق
 - يراد شراء ثلاث أنواع من الكتب الدراسية A و D و Oفإن: -
 - ٥٥- توافر أنواع الكتب الدراسية الثلاثة يرمز لها بالرمز: -
 - $A \cup B \cup C$ -
 - $\overline{A} \cap \overline{B} \cap \overline{C} \rightarrow$
 - $\underline{A \cap B \cap C}$ - \overline{c}
 - د- لاشىء مماسبق

- ٣٦- عدم توافر الكتب الدراسية الثلاثة يرمز لها بالرمز: -
 - $A \cup B \cup C$ -
 - $\overline{A} \cap \overline{B} \cap \overline{C} \rightarrow$
 - $A \cap B \cap C$ - τ
 - د- لاشيء مما سبق

- ٣٧- توافر نوع واحد من الكتب الدراسية على الأقل A أو B أو C أو كلها يرمز لها بالرمز:-
 - $\underline{A \cup B \cup C}$ -
 - $\overline{A} \cap \overline{B} \cap \overline{C} \rightarrow$
 - $A \cap B \cap C$ -ج
 - د- لاشيء مماسبق
 - ٣٨- توافر الكتاب الدراسي ٨ فقط يمكن الرمز له بالرمز:-
 - $A \cup B \cup C$ -1

 - $\overline{A} \cap B \cap C$ - \overline{c}
 - د- لاشيء مماسبق
 - ٣٩ ـ توافر نوع واحد فقط من الكتب الدراسية يمكن الرمز له بالرمز: -
 - $\overline{A} \cup \overline{B} \cup \overline{C}$ -1
 - $A \cap \overline{B} \cap \overline{C}$ ---
 - $(A \cap \overline{B} \cap \overline{C}) \cup (B \cap \overline{A} \cap \overline{C}) \cup (C \cap \overline{B} \cap \overline{A})$ - ε
 - د- لاشيء مما سبق

الجدول التالي يمثل توزيع مجموعة من الطلاب والطالبات حسب التخصص الدقيق بكلية إدارة الأعمال: -

المجموع	طالبات	طلاب	
24	14	10	محاسبة
44	28	16	نظم
32	12	20	إدارة
100	54	46	المجموع

تم اختيار أحد الدارسين من الجدول السابق بطريقة عشوائية، أحسب الاحتمالات التالية: -

- ٠٤- احتمال أن يكون طالب: -
 - ._0 £ _1
 - ب- ٤٦
 - ج- ٤٢.٠
 - د- لاشيء مما سبق
- ١ ٤- احتمال أن تكون طالبه: -
 - .04 -1
 - ب- ۰.٤٦
 - ج- ۲۶.۰
 - د- لاشيء مما سبق
- ٢ ٤- احتمال أن يكون من قسم المحاسبة: -
 - 1.05
 - ب۔ ۲۱.۰
 - ٠<u>٠٢٤</u> -ت
 - ث- لاشىء مما سبق
- ٣٤- احتمال أن يكون من قسم المحاسبة وطالب: -
 - 1- 37.

 - ب- <u>۱۱.۰</u> ج- ۲٤.۰
 - د- لاشىء مماسبق

- ٤٤- أن يكون طالبه أو من قسم المحاسبة: -
 - اً- <u>۲۶ أ</u> ب- ۸۷<u>،</u> ۰

 - ج- ۵۰.۰
 - د- لاشيء مما سبق
 - ٥٤- أن يكون من قسم الإدارة أو طالب: -
 - ۱ـ ۸۷.۰
 - ب- ۲۳.۰

 - د- لاشيء مماسبق
- ٢٤- احتمال أن يكون من قسم المحاسبة بشرط أن تكون طالبة: -الاجابة (أ)

 - $\frac{\frac{7}{27}}{\frac{24}{100}}$ -
 - <u>54</u> 100 そ
 - د- لاشيء مما سبق
 - ٧٤- احتمال أن يكون طالب بشرط أنه من قسم الادارة: -الاجابة (ب)
 - $\frac{32}{100}$ j
 - $\frac{5}{8}$ $\frac{20}{100}$ ϵ
 - د- لاشيء مماسبق

" مصنع لإنتاج لعب الأطفال يمتلك ثلاث آلات Aو BوC، تنتج الآلة الأولى %25من الإنتاج والألة الثانية %40من الإنتاج والباقي من إنتاج الآلة الثالثة فإذا كانت نسبة المعيب في الآلات الثلاثة على الترتيب هو %3و%4 و %6، سحبت وحدة واحدة عشوانياً من إنتاج المصنع "، احسب الاحتمالات التالية: -

٨٤ - احتمال أن تكون الوحدة المسحوبة معيبة: -

$$0.25 \times 0.97 + 0.40 \times 0.96 + 0.35 \times 0.94$$

$$0.25 \times 0.03 + 0.40 \times 0.04 + 0.35 \times 0.06$$
 --

$$0.75 \times 0.03 + 0.60 \times 0.04 + 0.65 \times 0.06$$
 -7

9٤ - احتمال أن تكون الوحدة المسحوية جيدة: -

$$0.25 \times 0.97 + 0.40 \times 0.96 + 0.35 \times 0.94$$

$$0.25 \times 0.03 + 0.40 \times 0.04 + 0.35 \times 0.06$$
 --

$$0.75 \times 0.03 + 0.60 \times 0.04 + 0.65 \times 0.06$$
 -7

• ٥- احتمال أن تكون الوحدة معيبة ومن إنتاج الآلة الثالثة: -الاجابة (ج)

$$\frac{0.94 \times 0.35}{\times 0.97 + 0.40 \times 0.96 + 0.35 \times 0.94}$$

 0.40×0.04

 $0.25 \times 0.03 + 0.40 \times 0.04 + 0.35 \times 0.06$

 0.06×0.35

د- لاشىء مماسبق

"أحد المصانع وجد أنه من بين كل 1000 وحدة هناك 150 وحدة معيبة، أخذت عينة مكونة من خمس وحدات، فإذا علمت أن هذه الظاهرة تتبع التوزيع ثنائي الحدين " أوجد الاحتمالات التالية: -

- ١ ٥- احتمال أن تكون الوحدات المختارة كلها سليمة: -
 - 0.5563 -
 - ب- 0.4437
 - ح- 0.8352
 - د- لاشىء مماسبق
 - ٢٥- احتمال وجود وحدة على الأكثر معيبة: -
 - 0.4437 -
 - ب- 0.3915
 - -20.8352 ح
 - د- لاشيء مما سبق
 - ٣٥- احتمال وجود وحدتان معيبتان على الأقل: -
 - 0.8325 -
 - <u>0.1648</u> -ب
 - ح- 0.8500
 - د- لاشيء مماسبق
- ٤ ٥- القيمة المتوقعة للتوزيع المعبر عن عدد الوحدات المعيبة: -
 - ا- 0.15
 - ب۔ ہ
 - - 0.75
 - د- لاشيء مما سبق
 - ٥٥- قيمة التباين للتوزيع المعبر عن عدد الوحدات المعيبة: -
 - 0.6375 -
 - ب- 0.8536
 - ج- 0.7984
 - د- لاشيء مما سبق

" إذا كان من المعلوم أن عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر تتبع توزيع بواسون بمتوسط 3 وحدات شهريا، إذا عرف المتغير العشوائي x بأنه عدد الوحدات التي تستهلكها الأسرة خلال الشهر من هذه السلعة "

٥٦- ما نوع المتغير العشوائي: -

- أ- متغير وصفى
- ب- متغیر کمی متصل
- ج- متغیر کمی منفصل
- د- لاشىء مماسبق

٧٥- احتمال أن الأسرة تستهلك وحدتين خلال الشهر يساوي: -

- 0.0498 -
- ب- 0.2240
- ح- 0.4983
- د- لاشيء مما سبق

٨٥- احتمال أن أسرة ما تستهلك 3 وحدات على الأكثر خلال الشهر: -

- 0.4983 -
- ب- 0.2240
- - 0.6474 5
- د- لاشىء مماسبق

٩٥- القيمة المتوقعة للتوزيع السابق: -

- آ_ ۳
- ب۔ ہ
- ج- ١
- د- لاشيء مما سبق

٠٦- قيمة الانحراف المعياري للتوزيع السابق تساوي: -

- أ_ ٣
- ب- 1.732
- ج- 0.0498
- د- لاشيء مما سبق

١٦- معامل الاختلاف النسبي للتوزيع السابق يساوي: -

أ- 100%

<u>57.7%</u> ---

ج- %90

د- لاشيء مماسبق

٢٦- شكل التوزيع السابق: -

أ- توزيع سالب الالتواء

ب- توزیع متماثل

ج- توزيع موجب الالتواء

د- لاشيء مما سبق

٦٣- عرف كل من المصطلحات التالية: -

وفيه تجمع البيانات عن كل مفرده من مفردات المجتمع، وهذا الأسلوب لا يتبع عادة إلا في حالة التعدادات التي تجريها الدول وتدعمها بإمكانيات ضخمه مثل تعدادات السكان والتعدادات الصناعية والتعدادات الزراعية.	أسلوب الحصر الشامل
وفيه يتم جمع البيانات عن جزء من مفردات المجتمع يختار بطريقة أو بأخرى ويطلق عليه عينه (Sample) ثم بعد ذلك يتم تعميم نتائج الدراسة على المجتمع بأكمله.	أسلوب المعاينة
وهي العينة التي تكون لكل مفرده من مفردات المجتمع نفس فرصة الاختيار في العينة	العينة العشوانية
نختار نقطة بداية من المجتمع ثم نختار العنصر الموجود على بعد ثابت من هذه النقطة.	العينة المنتظمة
يقسم المجتمع إلى مساحات أو أجزاء ثم نختار عشوانيا بعض هذه المساحات، ثم نختار جميع عناصرها بالعينة.	العينة العنقودية
يقسم المجتمع إلى طبقتين على الأقل ثم نختار العينة من كل منهما.	العينة الطبقية
يتم اختيارها عن طريق الصدفة.	العينة الصدفة
يتم اختيار أفراد العينة تحت شروط معينة لتحقيق الهدف من التجربة.	العينة العمودية
يقسم المجتمع إلى أجزاء ثم نختار العينة من كل جزء من أجزاء المجتمع وفقا للنسب المحددة.	العينة الحصية

٤ ٦- إذا قدمت إليك النتائج التالية كمخرجات للبرنامج الإحصائي SPSS: -

T- TEST

Paired Sample test

ĺ		Paired Difference								
		Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference					
						Lower	Upper			Sig. (2-
l								t	df	tailed)
	Pair 1	Posttest pretest	4.3800	7.8570	.7857	.3765	5.9390	0.8546	99	.376

من خلال الجدول السابق يمكن: -

- أ- قبول الفرض العدمى
- ب- قبول الفرض البديل
- ج- رفض كل من الفرضين
 - د- لاشيء مما سبق

T- TEST

Paired Sample test

٥٠- إذا قدمت إليك النتائج التالية كمخرجات للبرنامج الإحصائي SPSS: -

		Paired Difference							
		Mean	Std. Deviation	Std. Error Mean	95% Confidence Interval of the Difference				
					Lower	Upper			Sig. (2-
							t	df	tailed)
Pair 1	Posttest pretest	4.3800	7.8570	.7857	۲_۸۲۱۰	0_989.	٥١٥٧٥	99	.***

من خلال الجدول السابق يمكن: -

- أ- قبول الفرض العدمي
 - ب- قبول الفرض البديل
- ج- رفض كل من الفرضين
 - د- لاشيء مما سبق

" إذا كان لدينا ثلاث منتجات لإحدى الشركات الصناعية، وتم تقييمها من قبل مجموعة من المستهلكين وحصلنا على النتائج التالية (عند مستوى معنوية %5): -

المنتج الثالث		الثاني	المنتج	الاول	المنتج	
X ₂ ²	<i>X</i> ₁	X_2^2	<i>X</i> ₂	X ₁ ²	<i>X</i> ₁	
4	2	16	4	49	7	
4	2	36	6	100	10	
9	3	49	7	100	10	
49	7	81	9	121	11	
36	6	81	9	144	12	
102	20	263	35	514	50	المجموع

٦٦- مجموع المربعات الكلي يساوي: -

۱- ۲۷۸

ب۔ ۱۰۰

ج- <u>۱ ؛ ؛ ۱</u> د- لا شيء مما سبق

٧٦- مجموع المربعات بين المجموعات يساوي: -

ج- ۳٥

د- لاشىء مماسبق

٨٦- مجموع المربعات داخل المجموعات: -

ب- ٤٥

د- لاشيء مماسبق

- ٩ ٦- درجات الحرية الكلية تساوي: -
 - ا_ ۲
 - ب۔ ۱۲
 - ج- <u>۱٤</u> د- لاشيء مما سبق
- ٠٧- قيمة إحصائي الاختبار Fتساوي: -
 - ا۔ ٥٤
 - ب ۱۰
 - ج۔ ۱۵
 - د- لاشيء مماسبق
- ١٧- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض (إذا علمت أن قيمة الجدولية تساوي 3.88)
 يمكن: -
 - أ- قبول الفرض البديل
 - ب- قبول الفرض العدمي
 - ج- عدم قبول أي من الطرفين
 - د- لاشيء مما سبق

قام أحد الباحثين بتفريغ ما تم الحصول عليه من معلومات في جدول تحليل التباين كالتالي (عند مستوى معنوية %5):

قیمة F	متوسط المربعات Means	درجات الحرية df	مجموع المربعات SS	مصدر التباين
		5	200	بين المجموعات Between groups
				داخل المجموعات Within groups
		15	280	الكلي (المجموع) Total

٢٧- قيمة إحصائي الاختبار Fتساوي: -

د- لاشج مما سبق

٧٣- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض (إذا علمت أن قيمة الجدولية تساوي

7.88)يمكن: -

أ- قبول الفرض البديل

ب- قبول الفرض العدمى

ج- عدم قبول أي من الفرضين

د- لاشيء مما سبق

Chi-Square Test

	Value	df	Asymp . Sig
			(2-sided)
Pearson Chi-Square	1.9496	3	.0437
Likelihood Ratio	1.9672	3	.0434
Linear-by- Linear			
Association	.2384	1	.0390
N of Valid Cases	32		

أجب عن الاسئلة التالية من خلال النتائج الواردة في الجدول السابق: -

٤٧- قيمة إحصائي الاختبار كا٢ تساوي: -

. ۲ T A £ _ 1

ب- ۱۹۹۷۲

ج- <u>۱.۹٤۹۲</u> د- لاشيء مما سبق

٧٥- من خلال مقارنة قيمة إحصائي الاختبار بقيمة حدود منطقتي القبول والرفض يمكن: -

أ- قبول الفرض البديل

ب- قبول الفرض العدمى

ج- عدم قبول أي من الفرضين

د- لاشيء مما سبق

" قام أحد الباحثين بمقارنة عينة من درجات الطلاب في مادة المحاسبة بكلية إدارة الاعمال جامعة الملك فيصل بأخرى من جامعة الدمام وذلك عند مستوى معنوية %5، وباستخدام البرنامج الاحصائي SPSS حصلنا على النتائج التالية: -

Test Statistics

	0.41401.50
	SAMPLES
Mann-Whitney U	44.000
Wilcoxon W	99.000
Z	457
Asymp .Sig . (2-tailed)	.648
Exact Sig .[2*(1-tailed Sig.)]	.684

٧٦- الاختبار المستخدم لدارسة الفرق بين متوسطى مجتمعين في هذه الحالة: -

- أ۔ كا٢
- ب- مان وتني
- ج- ويلكوكسون
- د- لاشيء مما سبق

٧٧- من خلال مقارنة قيمة إحصائى الاختبار بقيمة حدود منطقتى القبول والرفض يمكن: -

- أ- قبول الفرض البديل
- ب- قبول الفرض العدمي
- ج- عدم قبول أي من الفرضين
 - د- لاشي مما سبق

٧٨- " لدراسة تأثير أحد البرامج التدريبية على مجموعة من الطلاب تم اختبار مجموعة من الطلاب قبل البرنامج التدريبي على عينة من ٨ طلاب و اختبار الطلاب بعد الحصول على البرنامج التدريبي ولاختبار هل هناك اختلاف معنوي في مستوى تحصيل الطلاب ، عند مستوى معنوية %5 ، أستخدم الباحث البرنامج الإحصائي spss باستخدام اختبار ويلكوكسون Wilcoxon و حصلنا على النتائج التالية :-

Ranks

		N	Mean	Sum of
			Rank	Ranks
AFTER-BEFORE	Negative Ranks	7	2.36	43.50
	Positive Ranks	1	3.54	3.54
	Ties	0		
	Total	8		

Test Statistics

	AFTER- BEFORE
Z	313
Asymp .Sig . (2-tailed)	.421

من الجداول السابقة يمكن توضيح أن: -

- أ- مستوى الطلاب قبل الحصول على البرنامج التدريبي أفضل من المستوى بعد الحصول على البرنامج. بستوى الطلاب بعد الحصول على البرنامج التدريبي أفضل من المستوى قبل الحصول على البرنامج.
 - ج- مستوى الطلاب قبل الحصول على البرنامج التدريبي مساوي لمستوى بعد الحصول على البرنامج.
 - د- لاشيء مما سبق.

~ الواجبات ~

الواجب الأول (صورة)

(1) إذا كانت A, B, C ثلاث حوادث فإن العلاقة A, B, C ثماري :-	
$(A \cup B) \cap (A \cup C) \ (i) \bigcirc$ $(A \cap B) \cap (A \cap C) \ (\because) \bigcirc$ $(A \cap B) \cup (A \cap C) \ (o) \bigcirc$	
(د) لا تشيء مما مبيق الموال 2 معا مبيق الموال 2	حات تو الحفظ 🐼
)2) إذا علمت أنه " ير اد شراء ثلاث أنواع من الصحف اليومية A وB و D فإن ،توافر نوع واحد فقط من الصحف يمكن الرمز له بالرمز :-	
A∪¬B∪¬C¬(i)	
السؤال 3	رجات تم الحفظ 🥪
)3) إذا علمت أن "أحد المصانع وجد أنه من بين كل 1000 وحدة هناك 150 وحدة معيبة ، أخذت عينة مكونة من خمس وحدات ، فإذا علمت أن هذه الظاهرة تتبع التوزيع ثنائي الحدين " فإن القيمة المتوقعة للتوزيع المعبر عن عدد الوحدات المعيبة :-	عبر عن عدد الوحدات
0.15 (أ) □ 5 (ب) □ 0.75 (ق) 0.75 (ق) □	

الواجب الثاني (صورة)

الواجب الثالث (صورة)

