مقاييس التشتت للتوزيعات التكرارية الانحرف المعياري

اهداف المحاضرة

بنهاية المحاضرة يكون الطالب قادر على:

- ١. تعريف الانحراف المعياري للتوزيع التكراري.
- ٢. حساب الانحراف المعياري للتوزيع التكراري.
 - ٣. تعریف النظریة (١) للتوزیع التکراري.
- استخدام النظرية (۱) لحساب التباين والانحراف المعياري للتوزيع التكراري.

تعریف:

اذا كانت مراكز فئات توزيع تكراري هي X_1, X_2, \dots, X_h وكانت التكرارات المقابلة ليا هو الجذر المقابلة ليا هو الم

التربيعي الموجب للتباين

$$S = \sqrt{S^{2}} = \sqrt{\frac{\sum_{i=1}^{h} (X_{i} - \overline{X})^{2} f_{i}}{n-1}}$$

حيث ان

الوسط الحسابي للتوزيع التكراري. \overline{X}

مجموع التكرارات. = n

مثال (۱):

$$n = 70$$

$$\sum (X_i - \overline{X})^2 f_i = 1725$$
 اذا کان

احسب الانحراف المعياري؟

حل المثال (١):

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{h} (X_i - \overline{X})^2 f_i}{n-1}}$$
$$= \sqrt{\frac{1725}{70-1}} = \sqrt{\frac{1725}{69}} = \sqrt{25} = 5$$

مثال (٢): اوجد الانحراف المعياري للتوزيع التكراري؟

التكرار (f)	الفئات
0	10_0
٧	Yo _ 10
٩	T0 _ T0
١٣	٤٥ _ ٣٥
٦	00 _ 20
٤٠	مجموع التكرارات (n)

 $X_i = \frac{L+U}{2}$ حل المثال (۲): نحسب مراكز الفئات للتوزيع التكراري

X_i	التكرار (f)	الفئات
1 ·= Y÷(10+0)	0	10_0
7 ·= 7 ÷ (70+10)	٧	Yo _ 10
T.=T÷(T0+T0)	٩	TO _ TO
٤ ·= ٢ ÷ (٤0+٣0)	١٣	٤٥ _ ٣٥
0 ·= Y ÷ (00+ £0)	٦	00 _ 20
	٤٠	مجموع التكرارات (n)

 $\sum X_i f_i$ حل المثال (۲): لحساب الوسط الحسابي نحسب

$X_i f_i$	X_i	التكرار (f)	(لفنات
0.=0×1.	1 ·= Y÷(10+0)	٥	10 _ 0
1 £ •= V × Y •	7 ·= 7÷(70+10)	٧	Yo _ 10
77.=9×7.	" · = Y ÷ (" ∘ + Y ∘)	٩	70 _ 70
٥٢٠=١٣×٤٠	£ ·= Y÷(£ 0+ T 0)	۱۳	٤٥ _ ٣٥
*=1×0.	0 · = Y÷(00+ £0)	٦	00_ 50
174.		٤٠	مجموع التكرارات (n)

حل المثال (٢):

$$\overline{X} = \frac{\sum_{i=1}^{h} X_i f_i}{n}$$

$$= \frac{1280}{40} = 32$$

 $(X_i - \overline{X})$ حل المثال (۲): نحسب انحر افات مر اكز الفئات عن الوسط الحسابي

$X_i - \bar{X}$	$X_i f_i$	X_i	التكرار (f)	الفئات
YY_ = \(\tau \) .	0.=0×1.	\ \= \+(\0+0)	0	10_0
17-=77-7.	1 £ .= V × Y .	7 ·= 7÷(7 0 + 1 0)	Y	Yo _ 10
Y_ = \(\tau \) \(\tau \)	7 V + = 9 × V +	~ · = Y ÷ (~ ○ + Y ○)	٩	7 0 _ 70
۸ = ۳۲-٤٠	07.=17×£.	٤ ٠= ٢÷(٤٥+٣٥)	١٣	٤٥ _ ٣٥
11 = 47-0.	~·-1×0·	0 · = Y÷(00+ £0)	٦	00 <u> </u>
	171.		٤.	مجموع التكرارات (n)

 $(X_i - \overline{X})^2$ حل المثال (۲): نحسب

$(X_i - \bar{X})^2$	$X_i - \bar{X}$	$X_i f_i$	X_i	التكرار (f)	الفئات
٤٨٤	Y Y - = T Y - 1 .	0.=0×1.	\ .= Y ÷(\ 0 + 0)	٥	10-0
1 £ £	17-=77-7.	1 £ .= V × Y .	7 ·= 7÷(7 0 + 1 0)	٧	Yo _ 10
ŧ	Y-= TY- T.	7 V + = 9 × T +	~ · = · ÷ (~ · + · ·)	٩	70 _ 70
٦ ٤	۸ = ۳۲-٤٠	07.=17×£.	£ .= Y÷(£ 0+ T 0)	١٣	٤٥ _ ٣٥
47 £	11 = 47-0.	~··=1×0·	0 · = Y ÷ (0 0 + £ 0)		00 _ 20
		144.		٤.	مجموع التكرارات (n)

 $\sum (X_i - \bar{X})^2 f_i$ حل المثال (۲): نحسب

$(X_i - \overline{X})^2 f_i$	$(X_i - \overline{X})^2$	$X_i - \overline{X}$	$X_i f_i$	X_i	التكرار (f)	(لفئات
7 £ 7 . = 0 × £ \ £	£٨٤	۲۲_ = ۳۲_۱ .	0.=0×1.	\ .= Y÷(\0+0)	0	10_0
۱۰۰۸=٧×١٤٤	1 £ £	17-=77-7.	1 £ .= V × T .	Y . = Y ÷ (Y 0 + 1 0)	٧	Yo _ 10
77=9×£	ŧ	۲_ = ۳ ۲ - ۳ ۰	Y V • = 9 × W •	" · = Y ÷ (" o + Y o)	•	70 _ 70
\TY=\T×7 &	7 £	۸ = ۳۲-٤٠	07.=17×£.	£ .= Y÷(£0+70)	18	٤٥ _ ٣٥
19::=7×٣7:	77 £	11 = 41-0.	~··=1×0·	0 · = Y ÷ (00+ £0)	7	00_ 20
774.			144.		٤.	مجموع التكرارات (n)

حل المثال (٢):

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{h} (X_i - \overline{X})^2 f_i}{n-1}}$$
$$= \sqrt{\frac{6240}{40-1}} = \sqrt{\frac{6240}{39}} = \sqrt{160} = 12.65$$

النظرية (١)

التباين للتوزيع التكراري ذي فئات

$$S^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} f_{i} - n \overline{X}^{2} \right]$$

حيث ان

الوسط الحسابي للتوزيع التكراري. \overline{X}

مجموع التكرارات = n

مثال (۳):

باستخدام النظرية (١)

للتوزيع التكراري اوجد الانحراف المعياري؟

التكرار (f)	الفئات
0	10_0
٧	Yo _ 10
٩	TO _ TO
١٣	٤٥ _ ٣٥
٦	00 _ 20
٤٠	مجموع التكرارات (n)

 $X_i = \frac{L+U}{2}$ حل المثال (۳): نحسب مراكز الفئات للتوزيع التكراري

X_i	التكرار (f)	الفئات
1 ·= Y÷(10+0)	0	10_0
7 ·= 7 ÷ (70+10)	٧	Y0 _ 10
T.=T÷(T0+T0)	٩	T0 _ T0
٤ ·= ٢ ÷ (٤0+٣0)	١٣	٤٥ _ ٣٥
0 ·= Y ÷ (00+ £0)	٦	00 _ 20
	٤٠	مجموع التكرارات (n)

 $\sum X_i f_i$ حل المثال (٣): لحساب الوسط الحسابي نحسب

$X_i f_i$	X_i	التكرار (f)	المقات
0.=0×1.	1 ·= Y÷(10+0)	0	10 _ 0
\	Y .= Y÷(Y0+10)	٧	Y0 _ 10
YV.=9×٣.	~ · = · · · (~ · · · · ·)	٩	Wo _ Yo
٥٢٠=١٣×٤٠	£ ·= Y÷(£0+70)	۱۳	٤٥ _ ٣٥
*=1×0.	0 ·= Y÷(00+ £0)	٦	00 <u>t</u> 0
174.		٤٠	مجموع التكرارات (n)

حل المثال (٣):

$$\overline{X} = \frac{\sum_{i=1}^{h} X_i f_i}{n}$$

$$= \frac{1280}{40} = 32$$

 X_i^2 حل المثال (۳): نحسب

X_i^2	$X_i f_i$	X_i	التكرار (f)	الفئات
1	0:=0×1:	\ \= \+(\\0+0)	•	10_0
٤٠٠	1 £ .= V × Y .	7·=7÷(70+10)	٧	Y0 _ 10
٩	Y V • = 9 × W •	~·= Y÷(~°+ Y°)	9	40 <u> </u>
17	07.=17×£.	£ ·= 7÷(€ 0+ 7° 0)	14	٤٥ _ ٣٥
Y0	~··=1×0·	0 · = Y ÷ (00 + £0)	7	00_ 20
	174.		٤.	مجموع التكرارات (n)

 $X_i^2 f_i$ حل المثال (۳): نحسب

$X_i^2 f_i$	X_i^2	$X_i f_i$	X_i	التكرار (f)	القئات
•··=•× ₁₀₀	١	0.=0×1.	\ .= Y÷(\0+0)	0	10_0
Y	٤٠٠	1 £ .= V × Y .	7 ·= 7 ÷ (7 0 + 1 0)	Y	Yo _ 10
۸۱۰۰ = ۹×۹۰۰	٩	7 V • = 9 × V •	~ · = Y ÷ (~ 0 + Y 0)	4	70 _ 70
Y . A = 1 T × 1 7	17	07.=17×£.	٤٠=٢÷(٤٥+٣٥)	۲	٤٥ _ ٣٥
10=1×10	Yo	~·=1×°·	○·=Y÷(○○+٤○)	۲	00_ 20
٤٧٧		174.		٤.	مجموع التكرارات (n)

$$S^2 = \frac{1}{n-1} \left[\sum_i X_i^2 f_i - n \overline{X}^2 \right]$$
 :(٣) خان المثال $= \frac{1}{40-1} \left[47200 - 40 \times 32^2 \right]$ $= \frac{1}{39} \times 6240 = 160$ $S = \sqrt{S^2} = \sqrt{160} = 12.65$

تطبيقات الانحراف المعياري للتوزيع التكراري

$$\sum X_i^2 f_i = 30564$$

$$\overline{X} = 24$$

$$n=50$$
 اذا کان

اوجد:

أ- التباين

ب- الانحراف المعياري.