اهداف المحاضرة

بنهاية المحاضرة يكون الطالب قادر على:

- ١. تعريف معادلة خط الانحدار البسيط
 - ٢. حساب معادلة خط الانحدار البسيط
- تعریف العلاقة بین معامل ارتباط بیرسون و معادلة خط الانحدار البسیط.
 - ٤. حساب وتفسير معامل التحديد.

نجد ان معادلة خط الانحدار بين متغيرين x هي:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

حيث ان

- المتغير المستقل x
 - y المتغير التابع
- ع متغیر الخطأ ویتبع التوزیع الطبیعی بوسط حسابی صفر ε وتباین σ

 eta_1 استخدمت طریقة المربعات الصغری لتقدیر میل خط الانحدار $\hat{eta}_1=rac{SS_{xy}}{SS}$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

حيث ان: _

$$SS_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i y_i) - n\bar{x} \bar{y}$$

$$SS_x = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
 فتكون معادلة الانحدار هي:

• هناك علاقة بين معامل الارتباط r وميل خط الانحدار $\hat{\beta}_1$ هي:

$$r = \sqrt{\frac{SS_x}{SS_y}} \hat{\beta}_1$$

 $r^2 = \frac{SS_y - SSE}{SS_y}$

• ويمكن استنباط العلاقة

ويعرف بمعامل التحديد ويعطي القوة التفسيرية للمتغير المستقل.

• حيث ان

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = SS_y - \hat{\beta}_1 SS_{xy}$$

ويسمى مجموع مربع الخطأ

مثال (۱):

البسيط	الانحدار	معادلة خط	اوجدي	.)

- ٢. اوجدي معامل الارتباط.
- ٣. اوجدي معامل التحديد.
 - ٤. فسري هذه النتائج.

Y	X
3	2
7	6
2	3
8	5
5	4

حل المثال (١): حساب الوسط الحسابي للمتغيرين X و Y

Y	X
3	2
7	6
2	3
8	5
5	4
25	20

حل المثال (١): او X يتم حساب الوسط الحسابي لكلٍ من X و Y

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{20}{5} = 4$$

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} = \frac{25}{5} = 5$$

حل المثال (۱): لحساب مايلي قوم بحساب مايلي حل المثال (۱)

$$SS_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$SS_x = \sum_{i=1}^n (x_i - \overline{x})^2$$

حل المثال (۱): لحساب ما يلي eta_0 و eta_1 يتم حساب ما يلي

$(Y_i - \bar{Y})(X_i - \bar{X})$	$(X_i - \bar{X})^2$	$Y_i - \bar{Y}$	$X_i - \bar{X}$	Y	X
4	4	۲ _ = ٥ _ ٣	۲ ـ ٤ = ٢	3	2
4	4	Y=0_Y	Y= £-7	7	6
3	1	٣ _ = ٥ _ ٢	1 -= ٤-٣	2	3
3	1	٣=0- Λ	1=2-0	8	5
0	0	.=0_0	•= ٤- ٤	5	4
14	10			25	20

حل المثال (۱): لحساب مايلي قوم بحساب مايلي حل المثال (۱)

$$SS_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = 14$$

$$SS_x = \sum_{i=1}^n (x_i - \bar{x})^2 = 10$$

حل المثال (١): معادلة خط الانحدار هي

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_x} = \frac{14}{10} = 1.4$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 5 - 1.4 \times 4 = -1.6$$

$$\hat{Y} = -1.6 + 1.4X$$

 $(Y_i - \overline{Y})^2$ حل المثال (۱): لحساب معامل ارتباط بیرسون یتم حساب

$(Y_i - \bar{Y})^2$	$(Y_i - \bar{Y})(X_i - \bar{X})$	$(X_i - \bar{X})^2$	$Y_i - \overline{Y}$	$X_i - \bar{X}$	Y	X
4	4	4	۲ _ = ٥ _ ٣	۲ ـ ٤ - ٢	3	2
4	4	4	Y=0_Y	Y= £-7	7	6
9	3	1	٣ - =٥-٢	۱ -= ٤-٣	2	3
9	3	1	Y=0_A	1= 2-0	8	5
0	0	0	·=0_0	•= ٤- ٤	5	4
26	14	10			25	20

حل المثال (١): معامل ارتباط بيرسون هو

$$r = \sqrt{\frac{SS_x}{SS_y}} \hat{\beta}_1$$

$$r = \sqrt{\frac{10}{26}} \times 1.4 = 0.87$$

حل المثال (١): معامل التحديد هو

$$r^2 = (r)^2 = (0.87)^2 = 0.76$$

حل المثال (١):

تفسير معامل ارتباط بيرسون:

هناك ارتباط خطي طردي قوي بين X و Y

تفسير معامل التحديد:

المتغير المستقل X يفسر ٧٦٠ أي ٧٦% من التغيرات في المتغير التابع Y.

مثال (۲): اذا كان

$$\bar{x} = 55$$
 $\bar{y} = 7$ $\sum x_i^2 = 19900$ $\sum y_i^2 = 331$

$$\sum xy = 2566 \qquad n = 6$$

- ١. اوجدي معادلة خط الانحدار البسيط.
 - ٢. اوجدي معامل الارتباط.
 - ٣. اوجدي معامل التحديد.
 - ٤. فسري هذه النتائج.

حل المثال (۲): لحساب مايلي قوم بحساب مايلي حل المثال (۲)

$$SS_{xy} = \sum_{i=1}^{n} (x_i y_i) - n\bar{x} \ \bar{y} = 2566 - 6 \times 55 \times 7 = 256$$

$$SS_x = \sum_{i=1}^n x_i^2 - n\bar{x}^2 = 19900 - 6 \times 55^2 = 1750$$

حل المثال (٢): معادلة خط الانحدار هي

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_x} = \frac{256}{1750} = 0.15$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 7 - 0.15 \times 55 = -1.25$$

$$\hat{Y} = -1.25 + 0.15X$$

حل المثال (٢): معامل ارتباط بيرسون هو

$$SS_y = \sum_{i=1}^n y_i^2 - n\bar{y}^2 = 331 - 6 \times 7^2 = 37$$

$$r = \sqrt{\frac{SS_x}{SS_y}} \hat{\beta}_1$$

$$r = \sqrt{\frac{1750}{37}} \times 0.15 = 1$$

حل المثال (٢): معامل التحديد هو

$$r^2 = (r)^2 = (1)^2 = 1$$

حل المثال (٢):

تفسير معامل ارتباط بيرسون:

هناك ارتباط خطي طردي تام بين X و Y

تفسير معامل التحديد:

المتغير المستقل X يفسر كل التغيرات في المتغير التابع Y.