

Data Structures and Algorithms

A data structure is an arrangement of data in a computer's

memory or even disk storage. An example of several common data

structures are arrays, linked lists, queues, stacks, trees,….etc.

Algorithms, on the other hand, are used to manipulate the data

contained in these data structures as in searching and sorting.

Many algorithms apply directly to a specific data structures. When

working with certain data structures you need to know how to:

insert new data.

search for a specified item.

deleting a specific item.

Sort the data items in the data structure.

Abstract Data Types

An Abstract Data Type (ADT) is more a way of looking at a

data structure: focusing on what it does and ignoring how it does

its job.

A stack or a queue is an example of an ADT. It is important to

understand that both stacks and queues can be implemented

using an array. It is also possible to implement stacks and queues

using a linked list. This demonstrates the "abstract" nature of

stacks and queues: how they can be considered separately from

their implementation.

To best describe the term Abstract Data Type, it is best to break

the term down into "data type" and then "abstract".

Data type

When we consider a primitive type we are actually referring to

two things: a data item with certain characteristics and the

permissible operations on that data. The data type's permissible

operations are an inseparable part of its identity; understanding

the type means understanding what operations can be performed

on it.

Abstract

Now lets look at the "abstract" portion of the phrase. The word

abstract in our context stands for "considered apart from the

detailed specifications or implementation".

Data Structure Advantages Disadvantages

Array
Quick inserts

Fast access if index known

Slow search

Slow deletes

Fixed size

Ordered Array Faster search than unsorted array

Slow inserts

Slow deletes

Fixed size

Stack Last-in, first-out acces Slow access to other items

Queue First-in, first-out access Slow access to other items

Linked List
Quick inserts

Quick deletes
Slow search

Binary Tree

Quick search

Quick inserts

(If the tree remains balanced)

Deletion algorithm is complex

Graph Best models real-world situations
Some algorithms are slow and

very complex

Characteristics of Data Structures

