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MOST of the functions we have considered so far have been polynomial or
rational functions, with a few others involving roots of polynomial or rational
functions. Functions that can be expressed in terms of addition, subtraction,
multiplication, division, and the taking of roots of variables and constants are
called algebraic functions.

In Chapter 5 we introduce and investigate the properties of exponential func-
tions and logarithmic functions. These functions are not algebraic; they belong to
the class of transcendental functions. Exponential and logarithmic functions are
used to model a variety of real-world phenomena: growth of populations of peo-
ple, animals, and bacteria; radioactive decay; epidemics; absorption of light as it
passes through air, water, or glass; magnitudes of sounds and earthquakes. We
consider applications in these areas plus many more in the sections that follow.
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5-5 Exponential and Logarithmic
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Chapter 5 Group Activity:
Comparing Regression Models
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Chapters 4 and 5

SECTIONS

CA

bar67388_ch05_452-469  11/30/06  21:13  Page 453
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In Section 5-1 we introduce exponential functions and investigate their properties and
graphs. We also study applications of exponential functions in the mathematics of
finance.

Z Exponential Functions

Let’s start by noting that the functions f and g given by

f(x) � 2x and g(x) � x2

are not the same function. Whether a variable appears as an exponent with a constant
base or as a base with a constant exponent makes a big difference. The function g is
a quadratic function. We discussed quadratic functions in Chapter 3. The function f is
a new type of function called an exponential function.

The values of the exponential function f(x) � 2x for x an integer are easy to com-
pute. So if you were asked to graph f, you would probably construct a table of values,
plot points, and join those points with a smooth curve (see Fig. 1).

5-1 Exponential Functions

Z Exponential Functions

Z Graphs of Exponential Functions

Z Additional Exponential Properties

Z Base e Exponential Function

Z Compound Interest

Z Continuous Compound Interest

x f(x)

�3

�2

�1

0 1

1 2

2 4

3 8

1
2

1
4

1
8

x

y

5�5

5

10

f(x) � 2x

Z Figure 1
f(x) � 2x.
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One might raise the objection that we have not defined 2x for each real number x.
It is true that if is a rational number, then (see Section R-2). But
what does

mean? The question is not easy to answer at this time. In fact, a precise definition of
must wait for more advanced courses, where we can show that, if b is a positive

real number and x is any real number, then

bx

names a real number, and the graph of f(x) � 2x is as indicated in Figure 1. We also
can show that for x irrational, bx can be approximated as closely as we like by using
rational number approximations for x. Because � 1.414213 . . . , for example,
the sequence

21.4, 21.41, 21.414, . . .

approximates and as we use more decimal places, the approximation improves.212,

12

212

212

2x � 2n 2mx � m
n
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Z DEFINITION 1 Exponential Function

The equation

f(x) � bx b � 0, b � 1

defines an exponential function for each different constant b, called the
base. The independent variable x may assume any real value.

Thus, the domain of an exponential function is the set of all real numbers, and it
can be shown that the range of an exponential function is the set of all positive real num-
bers. We require the base b to be positive to avoid imaginary numbers such as (�2)1�2.

Z Graphs of Exponential Functions

ZZZ EXPLORE-DISCUSS 1

Compare the graphs of f(x) � 3x and g(x) � 2x by plotting both functions on
the same coordinate system. Find all points of intersection of the graphs. For
which values of x is the graph of f above the graph of g? Below the graph of g?
Are the graphs of f and g close together as x S �? As x S ��? Discuss.
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It is useful to compare the graphs of y � 2x and by plotting both
on the same coordinate system, as shown in Figure 2(a). The graph of

f(x) � bx b � 1 Fig. 2(b)

looks very much like the graph of the particular case y � 2x, and the graph of

f(x) � bx 0 � b � 1 Fig. 2(b)

looks very much like the graph of Note in both cases that the x axis is a
horizontal asymptote for the graph.

y � ( 
1
2)

x.

y � (1
2)

x � 2�x
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4�4

8

6

4

x

y

y � 2xy � � �x
 � 2�x1

2

x

y

y � bx

0 � b � 1

DOMAIN � (��, �) RANGE � (0, �)

y � bx

b � 1

Z Figure 2
Basic exponential graphs.

The graphs in Figure 2 suggest that the graphs of exponential functions have the prop-
erties listed in Theorem 1, which we state without proof.

Z THEOREM 1 Properties of Graphs of Exponential Functions

Let f(x) � bx be an exponential function, b � 0, b � 1. Then the graph of
f(x):

1. Is continuous for all real numbers

2. Has no sharp corners

3. Passes through the point (0, 1)

4. Lies above the x axis, which is a horizontal asymptote

5. Increases as x increases if b � 1; decreases as x increases if 0 � b � 1

6. Intersects any horizontal line at most once (that is, f is one-to-one)

Property 4 of Theorem 1 implies that the graph of an exponential function cannot be
the graph of a polynomial function. Properties 4 and 5 together imply that the graph
of an exponential function cannot be the graph of a rational function. Property 6
implies that exponential functions have inverses; those inverses, called logarithmic
functions, are discussed in Section 5-3.

(a) (b)
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Transformations of exponential functions are used to model population growth
and radioactive decay (these applications and others are discussed in Section 5-2). It
is important to understand how the graphs of those transformations are related to the
graphs of the exponential functions. We explain such a relationship in Example 1 using
the terminology of graph transformations from Section 3-5.
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Z Figure 3 �

Transformations of Exponential Functions

Let Use transformations to explain how the graph of g is related to the
graph of the exponential function f(x) � 4x. Find the intercepts and asymptotes, and
sketch the graph of g.

SOLUTION

The graph of g is a vertical shrink of the graph of f by a factor of Therefore g(x) � 0
for all real numbers and g(x) S 0 as x S ��. The x axis is a horizontal asymptote,

is the y intercept, and there is no x intercept. We plot the intercept and some addi-
tional points and sketch the graph of g (Fig. 3).

1
2

1
2.

g(x) � 1
2 
(4x ).

EXAMPLE 1

5�5

40

30

20

10

1

x

y

�1�2�3

MATCHED PROBLEM 1

Let Use transformations to explain how the graph of g is related to
the graph of the exponential function f(x) � 4x. Find the intercepts and asymptotes,
and sketch the graph of g. �

g(x) � 1
2 
(4�x ).

bar67388_ch05_452-469  11/30/06  21:13  Page 457



Property 2 is another way to express the fact the exponential function f(x) � ax is one-
to-one (see property 6 of Theorem 1). Because all exponential functions pass through
the point (0, 1) (see property 3 of Theorem 1), property 3 indicates that the graphs of
exponential functions with different bases do not intersect at any other points.
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Z EXPONENTIAL FUNCTION PROPERTIES

For a and b positive, a � 1, b � 1, and x and y real:

1. Exponent laws:

axay � ax�y (ax)y � axy (ab)x � axbx

2. ax � ay if and only if x � y. 

3. For x � 0, ax � bx if and only if a � b.

25x

27x
     � 25x�7x    � 2�2x

a 
x

a 
y � a 

x�yaa

b
bx

�
a 

x

bx

Using Exponential Function Properties

Solve 4x�3 � 8 for x.

SOLUTION

Express both sides in terms of the same base, and use property 2 to equate exponents.

4x�3 � 8 Express 4 and 8 as powers of 2.

(22)x�3 � 23
(ax)y � axy

22x�6 � 23
Property 2

2x � 6 � 3 Add 6 to both sides.

2x � 9 Divide both sides by 2.

CHECK

4(9	2)�3 � 43	2 � (14)3 � 23 �
✓

8

x � 9
2

EXAMPLE 2

*Throughout the book, dashed boxes—called think boxes—are used to represent steps that may be

performed mentally.

Z Additional Exponential Properties

Exponential functions whose domains include irrational numbers obey the familiar
laws of exponents for rational exponents. We summarize these exponent laws here and
add two other important and useful properties.

If 64x � 62x�4, then 4x � 2x � 4, and x � 2.

If a4 � 34, then a � 3.

*
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Z Base e Exponential Function

Surprisingly, among the exponential functions it is not the function g(x) � 2x with base
2 or the function h(x) � 10x with base 10 that is used most frequently in mathematics.
Instead, it is the function f(x) � ex with base e, where e is the limit of the expression

(1)

as x gets larger and larger.

a1 �
1
x
bx

S E C T I O N  5–1 Exponential Functions 459

CA

Technology
Connections

As an alternative to the algebraic method of Ex-
ample 2, you can use a graphing calculator to solve
the equation 4x�3 � 8. Graph y1 � 4x�3 and

y2 � 8, then use the intersect command to obtain
x � 4.5 (Fig. 4).

Z Figure 4

�10

�10

10

10

MATCHED PROBLEM 2

Solve 27x�1 � 9 for x. �

ZZZ EXPLORE-DISCUSS 2

(A) Calculate the values of [1 � (1�x)]x for x � 1, 2, 3, 4, and 5. Are the values
increasing or decreasing as x gets larger?

(B) Graph y � [1 � (1�x)]x and discuss the behavior of the graph as x
increases without bound.

By calculating the value of expression (1) for larger and larger values of x
(Table 1), it appears that [1 � (1�x)]x approaches a number close to 2.7183. In a cal-
culus course we can show that as x increases without bound, the value of [1 � (1�x)]x

�

Table 1

x

1 2

10 2.593 74 . . .

100 2.704 81 . . .

1,000 2.716 92 . . .

10,000 2.718 14 . . .

100,000 2.718 27 . . .

1,000,000 2.718 28 . . .

a1 �
1

x
bx
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approaches an irrational number that we call e. Just as irrational numbers such as 

and have unending, nonrepeating decimal representations, e also has an unend-
ing, nonrepeating decimal representation (see Section R-1). To 12 decimal places,

e � 2.718 281 828 459

Exactly who discovered e is still being debated. It is named after the great Swiss
mathematician Leonhard Euler (1707–1783), who computed e to 23 decimal places
using [1 � (1�x)]x.

The constant e turns out to be an ideal base for an exponential function because
in calculus and higher mathematics many operations take on their simplest form using
this base. This is why you will see e used extensively in expressions and formulas
that model real-world phenomena.

0�2 �1 21 3 4

�2 �e

12
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Z DEFINITION 2 Exponential Function with Base e

For x a real number, the equation

f(x) � ex

defines the exponential function with base e.

The exponential function with base e is used so frequently that it is often referred to
as the exponential function. The graphs of y � ex and y � e�x are shown in Figure 5.

y

5�5

10

20

x

y � e�x y � ex

Z Figure 5
Exponential functions with 
base e.

ZZZ EXPLORE-DISCUSS 3

A graphing calculator was used to graph the functions f(x) � 3x, g(x) � 2x,
and h(x) � ex in Figure 6. Where do the graphs intersect? Which graph
lies between the others? Which graph is above the others when x � 0? When
x � 0? Discuss the behavior of the three functions as x S � and as x S ��.

0

�2

3

2

Z Figure 6
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Z Figure 7 �

Analyzing a Graph

Let g(x) � 4 � ex�2. Use transformations to explain how the graph of g is related to
the graph of f1(x) � ex. Determine whether g is increasing or decreasing, find any
asymptotes, and sketch the graph of g.

SOLUTION

The graph of g can be obtained from the graph of f1 by a sequence of three trans-
formations:

f1(x) � ex S f2(x) � ex�2 S f3(x) � �ex�2 S g(x) � 4 � ex�2

Horizontal Reflection Vertical 
stretch in x axis translation

[See Fig. 7(a) for the graphs of f1, f2, and f3, and Fig. 7(b) for the graph of g.] The
function g is decreasing for all x. Because ex�2 S 0 as x S ��, it follows that
g(x) � 4 � ex�2 S 4 as x S ��. Therefore, the line y � 4 is a horizontal asymptote
[indicated by the dashed line in Fig. 7(b)]; there are no vertical asymptotes. [To check
that the graph of g (as obtained by graph transformations) is correct, plot a few
points.]

EXAMPLE 3

x

y

�5

5�5

5

f1 f2

f3

x

y

�5

5�5

5
y � 4

g(x) � 4 � ex/2

(a) (b)

MATCHED PROBLEM 3

Let g(x) � 2ex�2 � 5. Use transformations to explain how the graph of g is related to
the graph of f1(x) � ex. Describe the increasing/decreasing behavior, find any asymp-
totes, and sketch the graph of g. �

Z Compound Interest

The fee paid to use another’s money is called interest. It is usually computed as a
percentage, called the interest rate, of the principal over a given time. If, at the end
of a payment period, the interest due is reinvested at the same rate, then the interest
earned as well as the principal will earn interest during the next payment period. Inter-
est paid on interest reinvested is called compound interest.
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Suppose you deposit $1,000 in a savings and loan that pays 8% compounded
semiannually. How much will the savings and loan owe you at the end of 2 years?
Compounded semiannually means that interest is paid to your account at the end of
each 6-month period, and the interest will in turn earn interest. The interest rate per
period is the annual rate, 8% � 0.08, divided by the number of compounding peri-
ods per year, 2. If we let A1, A2, A3, and A4 represent the new amounts due at the end
of the first, second, third, and fourth periods, respectively, then

Factor out 1,000.

Substitute for A1.

Associative law

Substitute for A2.

Associative law

Substitute for A3.

Associative law

What do you think the savings and loan will owe you at the end of 6 years? If
you guessed

A � $1,000(1 � 0.04)12

you have observed a pattern that is generalized in the following compound interest
formula:

P a1 �
r
n
b4 � $1,000 (1 � 0.04)4

 � [$1,000 (1 � 0.04)3](1 � 0.04)

 A4 � A3(1 � 0.04)

P a1 �
r
n
b3 � $1,000 (1 � 0.04)3

 � [$1,000 (1 � 0.04)2](1 � 0.04)

 A3 � A2(1 � 0.04)

P a1 �
r
n
b2 � $1,000 (1 � 0.04)2

 � [$1,000 (1 � 0.04)](1 � 0.04)

 A2 � A1(1 � 0.04)

P a1 �
r
n
b � $1,000 (1 � 0.04)

 A1 � $1,000 � $1,000 a0.08

2
b
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Z COMPOUND INTEREST

If a principal P is invested at an annual rate r compounded m times a year,
then the amount A in the account at the end of n compounding periods is
given by

The annual rate r is expressed in decimal form.

A � P a1 �
r
m
bn
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Compound Interest

If you deposit $5,000 in an account paying 9% compounded daily,* how much will
you have in the account in 5 years? Compute the answer to the nearest cent.

SOLUTION

We use the compound interest formula with P � 5,000, r � 0.09, m � 365, and 
n � 5(365) � 1,825:

Let P � 5,000, r � 0.09, m � 365, n � 5(365)

Calculate to nearest cent.

� � $7,841.13

 � 5,000 a1 �
0.09

365
b1825

 A � P a1 �
r
m
bn

EXAMPLE 4

MATCHED PROBLEM 4

If $1,000 is invested in an account paying 10% compounded monthly, how much will be
in the account at the end of 10 years? Compute the answer to the nearest cent. �

Comparing Investments

If $1,000 is deposited into an account earning 10% compounded monthly and, at the
same time, $2,000 is deposited into an account earning 4% compounded monthly, will
the first account ever be worth more than the second? If so, when?

SOLUTION

Let y1 and y2 represent the amounts in the first and second accounts, respectively,
then

where x is the number of compounding periods (months). Examining the graphs of
y1 and y2 [Fig. 8(a)], we see that the graphs intersect at x � 139.438 months. Because
compound interest is paid at the end of each compounding period, we compare the
amount in the accounts after 139 months and after 140 months [Fig. 8(b)]. Thus, the
first account is worth more than the second for x � 140 months or 11 years and
8 months.

 y2 � 2,000(1 � 0.04	12)x

 y1 � 1,000(1 � 0.10	12)x

EXAMPLE 5

*In all problems involving interest that is compounded daily, we assume a 365-day year.
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Z Continuous Compound Interest

If $100 is deposited in an account that earns compound interest at an annual rate of
8% for 2 years, how will the amount A change if the number of compounding peri-
ods is increased? If m is the number of compounding periods per year, then

The amount A is computed for several values of m in Table 2. Notice that the largest
gain appears in going from annually to semiannually. Then, the gains slow down as
m increases. In fact, it appears that A might be tending to something close to $117.35
as m gets larger and larger.

A � 100 a1 �
0.08

m
b2m
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0

0

5,000

240

(a) (b)

Z Figure 8 �

MATCHED PROBLEM 5

If $4,000 is deposited into an account earning 10% compounded quarterly and, at the
same time, $5,000 is deposited into an account earning 6% compounded quarterly,
when will the first account be worth more than the second? �

Table 2 Effect of Compounding Frequency

Compounding Frequency m

Annually 1 $116.6400

Semiannually 2 116.9859

Quarterly 4 117.1659

Weekly 52 117.3367

Daily 365 117.3490

Hourly 8,760 117.3501

A � 100 a1 �
0.08

m
b2m
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We now return to the general problem to see if we can determine what happens
to A � P[1 � (r�m)]mt as m increases without bound. A little algebraic manipulation
of the compound interest formula will lead to an answer and a significant result in
the mathematics of finance:

Change algebraically.

Let x � m�r.

The expression within the square brackets should look familiar. Recall from the
first part of this section that

as

Because r is fixed, x � m�r S � as m S �. Thus,

as

and we have arrived at the continuous compound interest formula, a very impor-
tant and widely used formula in business, banking, and economics.

m S �P a1 �
r
m
bmt

S Pert

x S �a1 �
1
x
bx

S e

 � P c a1 �
1
x
bx d rt

 � P a1 �
1

m	r
b(m	r)rt

 A � P a1 �
r
m
bmt
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Z CONTINUOUS COMPOUND INTEREST FORMULA

If a principal P is invested at an annual rate r compounded continuously, then
the amount A in the account at the end of t years is given by

A � Pert

The annual rate r is expressed as a decimal.

Continuous Compound Interest

If $100 is invested at an annual rate of 8% compounded continuously, what amount,
to the nearest cent, will be in the account after 2 years?

SOLUTION

Use the continuous compound interest formula to find A when P � $100, r � 0.08,
and t � 2:

A � Pert
8% is equivalent to r � 0.08.

= $100e(0.08)(2)
Calculate to nearest cent.

= $117.35

Compare this result with the values calculated in Table 2. �

EXAMPLE 6
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MATCHED PROBLEM 6

What amount will an account have after 5 years if $100 is invested at an annual rate
of 12% compounded annually? Quarterly? Continuously? Compute answers to the
nearest cent. �

ANSWERS TO MATCHED PROBLEMS

1. The graph of g is the same as the graph of f reflected in the y axis and vertically
shrunk by a factor of 
x intercepts: none
y intercept: 
horizontal asymptote: y � 0 (x axis)
vertical asymptotes: none

2.

3. The graph of g is the same as the graph of f1 stretched horizontally by a factor of 2,
stretched vertically by a factor of 2, and shifted 5 units down; g is increasing.
horizontal asymptote: y � �5
vertical asymptote: none

4. $2,707.04
5. After 23 quarters
6. Annually: $176.23; quarterly: $180.61; continuously: $182.21

x

y

�10

5�5

10

g

y � �5

x � �1
3

5�5

40

30

20

x

y

10

1

1 2 3

1
2

1
2.
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5-1 Exercises

1. Match each equation with the graph of f, g, m, or n in the
figure.
(A) y � (0.2)x (B) y � 2x

(C) (D) y � 4x

2. Match each equation with the graph of f, g, m, or n in the
figure.
(A) y � e�1.2x (B) y � e0.7x

(C) y � e�0.4x (D) y � e1.3x

In Problems 3–10, compute answers to four significant digits.

3. 4.

5. 6.

7. 8.

9. 10.

In Problems 11–22, simplify.

11. 2e5e 12. e2e5

13. 14.

15. 103x�1104�x 16. (43x)2y

17. 18.
5x�3

5x�4

3x

31�x

16
	4

2
(e12)12

3
 � 3�


2

2
 � 2�


2

e121e

e � e�1e2 � e�2

3�12513

0

�4

6

4

f

g m n

0

�2

6

2

f g m

n

y � (1
3)

x

19. 20. (2x3y)z

21. 22.

In Problems 23–32, find the equations of any horizontal
asymptotes without graphing.

23. y � 4x 24. y � 5�x

25. y � 2 � e�x 26. y � ex � 4

27. f(t) � 2e3t � 5 28. g(t) � 6 � 7e2t

29. M(x) � 1 � e�x2

30. N(x) � ex2

� 3

31. R(t) � 3et2 � 8 32. S(t) � 9 � 5e�t2

In Problems 33–42, use transformations to explain how the
graph of g is related to the graph of f(x) � ex. Determine
whether g is increasing or decreasing, find the asymptotes, and
sketch the graph of g.

33. g(x) � 3ex 34. g(x) � 2e�x

35. 36.

37. g(x) � 2 � ex 38. g(x) � �4 � ex

39. g(x) � �2ex 40. g(x) � �3ex

41. g(x) � ex�2 42. g(x) � ex�1

In Problems 43–66, solve for x.

43. 53x � 54x�2 44. 102�3x � 105x�6

45. � 72x�3 46. 45x�x2

� 4
�6

47. 48.

49. 50.

51. (1 � x)5 � (2x � 1)5 52. 53 � (x � 2)3

53. 2xe�x � 0 54. (x � 3)ex � 0

55. x2ex � 5xex � 0 56. 3xe�x � x2e�x � 0

57. 9x2

� 33x�1 58. 4x2

� 2x�3

59. 25x�3 � 125x 60. 45x�1 � 162x�1

(7
3)

2�x � 3
7(4

5)
6x�1 � 5

4

(1
3)

2x�1 � (1
3)

3�x(1
2)

x�4 � (1
2)

3x�5

7x2

g(x) � 1
5 e 

xg(x) � 1
3 e�x

e4�3x

e2�5x

e5x

e2x�1

a4x

5yb
3z
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61. 42x�7 � 8x�2 62. 1002x�3 � 1,000x�5

63. 100x2

� 1,00010 64. 274x � 81100

65. 66.

67. Find all real numbers a such that a2 � a�2. Explain why
this does not violate the second exponential function
property in the box on page 458.

68. Find real numbers a and b such that a � b but a4 � b4.
Explain why this does not violate the third exponential
function property in the box on page 458.

69. Examine the graph of y � 1x on a graphing utility and ex-
plain why 1 cannot be the base for an exponential function.

70. Examine the graph of y � 0x on a graphing utility and ex-
plain why 0 cannot be the base for an exponential func-
tion. [Hint: Turn the axes off before graphing.]

Graph each function in Problems 71–78 using the graph of f
shown in the figure.

71. y � f(x) � 2 72. y � f(x) � 1

73. y � f(x � 2) 74. y � f(x � 1)

75. y � 2f(x) � 4 76. y � 3 � 5f(x)

77. y � 2 � 3f(x � 4) 78. y � 2f(x � 1) � 1

In Problems 79–88, use transformations to explain how the
graph of g is related to the graph of the given exponential
function f. Determine whether g is increasing or decreasing,
find any asymptotes, and sketch the graph of g.

79.

80.

81.

82.

83. g(x) � 500(1.04)x; f(x) � 1.04x

84. g(x) � 1,000(1.03)x; f(x) � 1.03x

f (x) � (2
3)

xg(x) � 5 � (2
3)

3x;

f (x) � (1
4)

xg(x) � (1
4)

x	2 � 3;

f (x) � (1
3)

xg(x) � �(1
3)

�x;

f (x) � (1
2)

xg(x) � �(1
2)

x;

x

f(x)

�5 5�5

�5

5

(1
8)

4x � 16x�3(1
9)

5x�1 � 27

85. g(x) � 1 � 2ex�3; f(x) � ex

86. g(x) � 4ex�1 � 7; f(x) � ex

87. g(x) � 3 � 4e2�x; f(x) � ex

88. g(x) � �2 � 5e4�x; f(x) � ex

In Problems 89–92, simplify.

89. 90.

91. (ex � e�x)2 � (ex � e�x)2

92. ex(e�x � 1) � e�x(ex � 1)

In Problems 93–104, use a graphing calculator to find local
extrema, y intercepts, and x intercepts. Investigate the behavior
as x S � and as x �� and identify and horizontal asymptotes.
Round any approximate values to two decimal places.

93. f(x) � 2 � ex�2 94. g(x) � �3 � e1�x

95. m(x) � e�x� 96. n(x) � e��x�

97. s(x) � 98. r(x) � ex2

99. 100.

101. m(x) � 2x(3�x) � 2 102. h(x) � 3x(2�x) � 1

103. 104.

105. Use a graphing calculator to investigate the behavior of
f(x) � (1 � x)1�x as x approaches 0.

106. Use a graphing calculator to investigate the behavior of
f(x) � (1 � x)1�x as x approaches �.

It is common practice in many applications of mathematics to
approximate nonpolynomial functions with appropriately
selected polynomials. For example, the polynomials in
Problems 107–110, called Taylor polynomials, can be used to
approximate the exponential function f(x) � e x. To illustrate
this approximation graphically, in each problem graph
f(x) � ex and the indicated polynomial in the same viewing
window, �4 � x � 4 and �5 � y � 50.

107.

108. 

109.

110. P4(x) � 1 � x � 1
2x

2 � 1
6x

3 � 1
24x

4 � 1
120 

x5

P3(x) � 1 � x � 1
2x

2 � 1
6x

3 � 1
24x

4

P2(x) � 1 � x � 1
2x

2 � 1
6x

3

P1(x) � 1 � x � 1
2x

2

g(x) �
3x � 3�x

2
f (x) �

2x � 2�x

2

G(x) �
100

1 � e�xF(x) �
200

1 � 3e�x

e�x2

5x4e5x � 4x3e5x

x8

�2x3e�2x � 3x2e�2x

x6
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111. Investigate the behavior of the functions f1(x) � x�e x,
f2(x) � x2�ex, and f3(x) � x3�ex as x S � and as x S ��,
and find any horizontal asymptotes. Generalize to
functions of the form fn(x) � xn�ex, where n is any positive
integer.

112. Investigate the behavior of the functions g1(x) � xe x,
g2(x) � x2ex, and g3(x) � x3ex as x S � and as x S ��,
and find any horizontal asymptotes. Generalize to func-
tions of the form gn(x) � xnex, where n is any positive
integer.

113. Explain why the graph of an exponential function cannot
be the graph of a polynomial function.

114. Explain why the graph of an exponential function cannot
be the graph of a rational function.

APPLICATIONS*
★115. FINANCE A couple just had a new child. How much should

they invest now at 8.25% compounded daily to have $40,000 for
the child’s education 17 years from now? Compute the answer to
the nearest dollar.

★116. FINANCE A person wishes to have $15,000 cash for a new
car 5 years from now. How much should be placed in an account
now if the account pays 9.75% compounded weekly? Compute
the answer to the nearest dollar.

117. MONEY GROWTH If you invest $5,250 in an account pay-
ing 11.38% compounded continuously, how much money will
be in the account at the end of
(A) 6.25 years? (B) 17 years?

118. MONEY GROWTH If you invest $7,500 in an account
paying 8.35% compounded continuously, how much money will
be in the account at the end of
(A) 5.5 years? (B) 12 years?

★119. FINANCE If $3,000 is deposited into an account earn-
ing 8% compounded daily and, at the same time, $5,000 is
deposited into an account earning 5% compounded daily,
will the first account be worth more than the second?
If so, when?

★120. FINANCE If $4,000 is deposited into an account earning
9% compounded weekly and, at the same time, $6,000 is
deposited into an account earning 7% compounded weekly,

will the first account be worth more than the second? If
so, when?

★121. FINANCE Will an investment of $10,000 at 8.9% com-
pounded daily ever be worth more at the end of any quarter than
an investment of $10,000 at 9% compounded quarterly?
Explain.

★122. FINANCE A sum of $5,000 is invested at 13% com-
pounded semiannually. Suppose that a second investment of
$5,000 is made at interest rate r compounded daily. Both in-
vestments are held for 1 year. For which values of r, to the
nearest tenth of a percent, is the second investment better than
the first? Discuss.

★123. PRESENT VALUE A promissory note will pay $30,000 at
maturity 10 years from now. How much should you pay for the
note now if the note gains value at a rate of 9% compounded
continuously?

★124. PRESENT VALUE A promissory note will pay $50,000 at
maturity years from now. How much should you pay for the
note now if the note gains value at a rate of 10% compounded
continuously?

125. MONEY GROWTH Barron’s, a national business and finan-
cial weekly, published the following “Top Savings Deposit
Yields” for -year certificate of deposit accounts:

Gill Savings 8.30% (CC)
Richardson Savings and Loan 8.40% (CQ)
USA Savings 8.25% (CD)

where CC represents compounded continuously, CQ com-
pounded quarterly, and CD compounded daily. Compute the
value of $1,000 invested in each account at the end of years.

126. MONEY GROWTH Refer to Problem 125. In another issue
of Barron’s, 1-year certificate of deposit accounts included:

Alamo Savings 8.25% (CQ)
Lamar Savings 8.05% (CC)

Compute the value of $10,000 invested in each account at the
end of 1 year.

127. FINANCE Suppose $4,000 is invested at 11% compounded
weekly. How much money will be in the account in
(A) year? (B) 10 years?

Compute answers to the nearest cent.

128. FINANCE Suppose $2,500 is invested at 7% compounded
quarterly. How much money will be in the account in
(A) year? (B) 15 years?

Compute answers to the nearest cent.

3
4

1
2

21
2

21
2

51
2
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*Round monetary amounts to the nearest cent unless specified

otherwise. In all problems involving interest that is compounded

daily, assume a 365-day year.
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5-2 Exponential Models

Z Mathematical Modeling

Z Data Analysis and Regression

Z A Comparison of Exponential Growth Phenomena

In Section 5-2 we use exponential functions to model a wide variety of real-world
phenomena, including growth of populations of people, animals, and bacteria;
radioactive decay; spread of epidemics; propagation of rumors; light intensity;
atmospheric pressure; and electric circuits. The regression techniques introduced in
Chapters 2 and 3 to construct linear and quadratic models are extended to construct
exponential models.

Z Mathematical Modeling

Populations tend to grow exponentially and at different rates. A convenient and easily
understood measure of growth rate is the doubling time—that is, the time it takes for
a population to double. Over short periods the doubling time growth model is often
used to model population growth:

where

Note that when t � d,

P � P02d�d � P02

and the population is double the original, as it should be. We use this model to solve
a population growth problem in Example 1.

 d � Doubling time

 P0 � Population at time t � 0

P � Population at time t

P � P02t�d

Population Growth

Nicaragua has a population of approximately 6 million and it is estimated that the
population will double in 36 years. If population growth continues at the same rate,
what will be the population:

(A) 15 years from now? (B) 40 years from now?

EXAMPLE 1
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SOLUTIONS

We use the doubling time growth model:

P � P02t�d

Substituting P0 � 6 and d � 36, we obtain

Figure 1P � 6(2t�36)
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20

4

5010
t

Years

8

12

16

20 30 40

Z Figure 1
P � 6(2t�36).

MATCHED PROBLEM 1

The bacterium Escherichia coli (E. coli) is found naturally in the intestines of many
mammals. In a particular laboratory experiment, the doubling time for E. coli is found
to be 25 minutes. If the experiment starts with a population of 1,000 E. coli and there
is no change in the doubling time, how many bacteria will be present:

(A) In 10 minutes? (B) In 5 hours?

Write answers to three significant digits. �

(A) Find P when t � 15 years:

(B) Find P when t � 40 years:

�P � 6(240�36) � 13 million

P � 6(215�36) � 8 million

bar67388_ch05_470-486  12/1/06  19:32  Page 471



ZZZ EXPLORE-DISCUSS 1

The doubling time growth model would not be expected to give accurate
results over long periods. According to the doubling time growth model of
Example 1, what was the population of Nicaragua 500 years ago when it was
settled as a Spanish colony? What will the population of Nicaragua be
200 years from now? Explain why these results are unrealistic. Discuss
factors that affect human populations that are not taken into account by the
doubling time growth model.

As an alternative to the doubling time growth model, we can use the equation

y � cekt

where y � Population at time t

c � Population at time 0

k � Relative growth rate

The relative growth rate k has the following interpretation: Suppose that y � cekt

models the population growth of a country, where y is the number of persons and t
is time in years. If the relative growth rate is k � 0.03, then at any time t, the popu-
lation is growing at a rate of 0.03y persons (that is, 3% of the population) per year.
Example 2 illustrates this approach.
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Medicine—Bacteria Growth

Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies expo-
nentially by cell division as modeled by

N � N0e1.386t

where N is the number of bacteria present after t hours and N0 is the number of
bacteria present at t � 0. If we start with 1 bacterium, how many bacteria will be
present in

(A) 5 hours? (B) 12 hours?

Compute the answers to three significant digits.

SOLUTIONS

(A) Use N0 � 1 and t � 5:

N � N0e1.386t
Let N0 � 1 and t � 5.

� e1.386(5)
Calculate to three significant digits.

� 1,020

EXAMPLE 2
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Exponential functions can also be used to model radioactive decay, which is
sometimes referred to as negative growth. Radioactive materials are used extensively
in medical diagnosis and therapy, as power sources in satellites, and as power sources
in many countries. If we start with an amount A0 of a particular radioactive isotope,
the amount declines exponentially in time. The rate of decay varies from isotope to
isotope. A convenient and easily understood measure of the rate of decay is the
half-life of the isotope—that is, the time it takes for half of a particular material to
decay. We use the following half-life decay model:

where

Note that when t � h,

and the amount of isotope is half the original amount, as it should be.

A � A02�h�h � A02�1 �
A0

2

 h � Half-life

 A0 � Amount at time t � 0

 A � Amount at time t

 � A02�t�h
 A � A0(1

2)
t�h
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(B) Use N0 � 1 and t � 12:

N � N0e1.386t
Let N0 � 1 and t � 12.

� e1.386(12)
Calculate to three significant digits.

� 16,700,000 �

Radioactive Decay

The radioactive isotope gallium 67 (67Ga), used in the diagnosis of malignant tumors,
has a biological half-life of 46.5 hours. If we start with 100 milligrams of the isotope,
how many milligrams will be left after

(A) 24 hours? (B) 1 week?

Compute answers to three significant digits.

EXAMPLE 3

MATCHED PROBLEM 2

Repeat Example 2 if N � N0e0.783t and all other information remains the same. �
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(A) Find A when t � 24 hours:

A � 100(2�24/46.5) Calculate to three significant digits.

� 69.9 milligrams

(B) Find A when t � 168 hours
(1 week � 168 hours):

A � 100(2�168/46.5) Calculate to three significant digits.

� 8.17 milligrams �
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Hours
200100

100

50

t

A (milligrams)

Z Figure 2
A � 100(2�t�46.5).

MATCHED PROBLEM 3

Radioactive gold 198 (198Au), used in imaging the structure of the liver, has a half-
life of 2.67 days. If we start with 50 milligrams of the isotope, how many milligrams
will be left after:

(A) day? (B) 1 week?

Compute answers to three significant digits. �

1
2

SOLUTIONS

We use the half-life decay model:

Using A0 � 100 and h � 46.5, we obtain

A � 100(2�t�46.5) Figure 2

A � A0(1
2)

t�h � A02�t�h

As an alternative to the half-life decay model, we can use the equation y � ce�kt,
where c and k are positive constants, to model radioactive decay. Example 4 illustrates
this approach.
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Carbon-14 Dating

Cosmic-ray bombardment of the atmosphere produces neutrons, which in turn react
with nitrogen to produce radioactive carbon-14. Radioactive carbon-14 enters all living
tissues through carbon dioxide, which is first absorbed by plants. As long as a plant
or animal is alive, carbon-14 is maintained in the living organism at a constant level.
Once the organism dies, however, carbon-14 decays according to the equation

A � A0e�0.000124t

where A is the amount of carbon-14 present after t years and A0 is the amount pres-
ent at time t � 0. If 1,000 milligrams of carbon-14 are present at the start, how many
milligrams will be present in

(A) 10,000 years? (B) 50,000 years?

Compute answers to three significant digits.

SOLUTIONS

Substituting A0 � 1,000 in the decay equation, we have

A � 1,000e�0.000124t
Figure 3

EXAMPLE 4

t
50,000

1,000

500

A

Z Figure 3

(A) Solve for A when t � 10,000:

A � 1,000e�0.000124(10,000)
Calculate to three significant digits.

� 289 milligrams

(B) Solve for A when t � 50,000:

A � 1,000e�0.000124(50,000)
Calculate to three significant digits.

� 2.03 milligrams

More will be said about carbon-14 dating in Exercise 5-5, where we will be inter-
ested in solving for t after being given information about A and A0. �
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(A) How many boards can an average employee produce after 3 days of training?
After 5 days of training? Round answers to the nearest integer.

(B) Does N approach a limiting value as t increases without bound? Explain.
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Learning Curve

People assigned to assemble circuit boards for a computer manufacturing company
undergo on-the-job training. From past experience, it was found that the learning curve
for the average employee is given by

N � 40(1 � e�0.12t)

where N is the number of boards assembled per day after t days of training (Fig. 4).

EXAMPLE 5

Z Figure 4
N � 40(1 � e�0.12t).

50

10

5010
t

N

Days

20

30

40

20 30 40

MATCHED PROBLEM 4

Referring to Example 4, how many milligrams of carbon-14 would have to be pres-
ent at the beginning to have 10 milligrams present after 20,000 years? Compute the
answer to four significant digits. �

We can model phenomena such as learning curves, for which growth has an
upper bound, by the equation y � c(1 � e�kt), where c and k are positive constants.
Example 5 illustrates such limited growth.
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SOLUTION

(A) When t � 3,

N � 40(1 � e�0.12(3)) � 12 Rounded to nearest integer

so the average employee can produce 12 boards after 3 days of training.
Similarly, when t � 5,

N � 40(1 � e�0.12(5)) � 18 Rounded to nearest integer

Because e�0.12t approaches 0 as t increases without bound,

N � 40(1 � e�0.12t ) S 40(1 � 0) � 40

So the limiting value of N is 40 boards per day. (Note the horizontal asymptote
with equation N � 40 that is indicated by the dashed line in Fig. 4.) �

Logistic Growth in an Epidemic

A community of 1,000 individuals is assumed to be homogeneously mixed. One indi-
vidual who has just returned from another community has influenza. Assume the
community has not had influenza shots and all are susceptible. The spread of the dis-
ease in the community is predicted to be given by the logistic curve

where N is the number of people who have contracted influenza after t days (Fig. 5).

N(t) �
1,000

1 � 999e�0.3t

EXAMPLE 6

MATCHED PROBLEM 5

A company is trying to expose as many people as possible to a new product through
television advertising in a large metropolitan area with 2 million potential viewers. 
A model for the number of people N, in millions, who are aware of the product after
t days of advertising was found to be

N � 2(1 � e�0.037t)

(A) How many viewers are aware of the product after 2 days? After 10 days?
Express answers as integers, rounded to three significant digits.

(B) Does N approach a limiting value as t increases without bound? Explain. �
We can model phenomena such as the spread of an epidemic or the propagation

of a rumor by the logistic equation.

where M, c, and k are positive constants. Logistic growth, illustrated in Example 6,
approaches a limiting value as t increases without bound.

y �
M

(1 � ce�kt )

bar67388_ch05_470-486  11/30/06  21:14  Page 477



478 C H A P T E R  5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

CA

MATCHED PROBLEM 6

A group of 400 parents, relatives, and friends are waiting anxiously at Kennedy
Airport for a charter flight returning students after a year in Europe. It is stormy and
the plane is late. A particular parent thought he had heard that the plane’s radio had

Z Figure 5

N �
1,000

1 � 999e�0.3t
.

1,500

300

5010
t

N

Days

600

900

1,200

20 30 40

(A) How many people have contracted influenza after 10 days? After 20 days?
Round answers to the nearest integer?

(B) Does N approach a limiting value as t increases without bound? Explain.

SOLUTIONS

(A) When t � 10,

Rounded to nearest integer

so 20 people have contracted influenza after 10 days. Similarly, when t � 20,

Rounded to nearest integer

so 288 people have contracted influenza after 20 days.

(B) Because e�0.3t approaches 0 as t increases without bound,

So the limiting value is 1,000 individuals (all in the community will eventually
contract influenza). (Note the horizontal asymptote with equation N � 1,000
that is indicated by the dashed line in Fig. 5.) �

N �
1,000

1 � 999e�0.3t  S  
1,000

1 � 999(0)
� 1,000

N �
1,000

1 � 999e�0.3(20) � 288

N �
1,000

1 � 999e�0.3(10) � 20
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gone out and related this news to some friends, who in turn passed it on to others.
The propagation of this rumor is predicted to be given by

where N is the number of people who have heard the rumor after t minutes.

(A) How many people have heard the rumor after 10 minutes? After 20 minutes?
Round answers to the nearest integer.

(B) Does N approach a limiting value as t increases without bound? Explain. �

N(t) �
400

1 � 399e�0.4t
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Infectious Diseases

The U.S. Department of Health and Human Services published the data in Table 1.

EXAMPLE 7

Table 1 Reported Cases of Infectious Diseases

Year Mumps Rubella

1970 104,953 56,552

1980 8,576 3,904

1990 5,292 1,125

1995 906 128

2000 323 152

An exponential model for the data on mumps is given by

N � 91,400(0.835)t

where N is the number of reported cases of mumps and t is time in years with t � 0
representing 1970.

(A) Use the model to predict the number of reported cases of mumps in 2010.

(B) Compare the actual number of cases of mumps reported in 1980 to the number
given by the model.

Z Data Analysis and Regression

We use exponential regression to fit a function of the form y � abx to a set of data
points, and logistic regression to fit a function of the form

to a set of data points. The techniques are similar to those introduced in Chapters 2
and 3 for linear and quadratic functions.

y �
c

1 � ae�bx
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Technology
Connections

Figure 6 shows the details of constructing the
exponential model of Example 7 on a graphing
calculator.

Z Figure 6

(a) Entering the data (b) Finding the model

�10,000

�5

110,000

45

(c) Graphing the data
     and the model

MATCHED PROBLEM 7

An exponential model for the data on rubella in Table 1 is given by

N � 44,500(0.815)t

where N is the number of reported cases of rubella and t is time in years with t � 0
representing 1970.

(A) Use the model to predict the number of reported cases of rubella in 2010.

(B) Compare the actual number of cases of rubella reported in 1980 to the
number given by the model. �

SOLUTIONS

(A) The year 2010 is represented by t � 40. Evaluating N � 91,400(0.835)t at
t � 40 gives a prediction of 67 cases of mumps in 2010.

(B) The year 1980 is represented by t � 10. Evaluating N � 91,400(0.835)t at
t � 10 gives 15,060 cases in 1980. The actual number of cases reported in
1980 was 8,576, nearly 6,500 less than the number given by the model.

�
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A logistic model for the data on AIDS cases is given by

where N is the number of AIDS cases diagnosed by year t with t � 0 representing 1985.

(A) Use the model to predict the number of AIDS cases diagnosed by 2010.

(B) Compare the actual number of AIDS cases diagnosed by 2003 to the number
given by the model.

SOLUTIONS

(A) The year 2010 is represented by t � 25. Evaluating

at t � 25 gives a prediction of approximately 942,000 cases of AIDS diagnosed
by 2010.

(B) The year 2003 is represented by t � 18. Evaluating

at t � 18 gives 895,013 cases in 2003. The actual number of cases diagnosed by
2003 was 929,985, nearly 35,000 greater than the number given by the model.

N �
948,000

1 � 17.8e�0.317t

N �
948,000

1 � 17.8e�0.317t

N �
948,000

1 � 17.8e�0.317t
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AIDS Cases and Deaths

The U.S. Department of Health and Human Services published the data in Table 2.

EXAMPLE 8

Table 2 Acquired Immunodeficiency Syndrome (AIDS)
Cases and Deaths in the United States

Cases Known
Diagnosed Deaths

Year to Date to Date

1985 23,185 12,648

1988 107,755 62,468

1991 261,259 159,294

1994 493,713 296,507

1997 672,970 406,179

2000 774,467 447,648

2003 929,985 524,060
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Technology
Connections

Figure 7 shows the details of constructing the
logistic model of Example 7 on a graphing calculator.

Z Figure 7

(a) Entering the data (b) Finding the model (c) Graphing the data and the
model

MATCHED PROBLEM 8

A logistic model for the data on deaths from AIDS in Table 2 is given by

where N is the number of known deaths from AIDS by year t with t � 0 represent-
ing 1985.

(A) Use the model to predict the number of known deaths from AIDS by 2010.

(B) Compare the actual number of known deaths from AIDS by 2003 to the
number given by the model. �

Z A Comparison of Exponential Growth Phenomena

The equations and graphs given in Table 3 compare the growth models discussed in
Examples 1 through 8. Following each equation and graph is a short, incomplete list
of areas in which the models are used. In the first case (unlimited growth), y S � as
t S �. In the other three cases (exponential decay, limited growth, and logistic growth),
the graph approaches a horizontal asymptote as t S �; these asymptotes (y � 0, y � c,
and y � M, respectively) are easily deduced from the given equations. Table 3 only
touches on a subject that you are likely to study in greater depth in the future.

N �
520,000

1 � 19.3e�0.353t

�

0

�5

1,000,000

20
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Table 3 Exponential Growth and Decay

Description Equation Graph Uses

Unlimited growth y � cekt

c, k � 0
Short-term population growth (people, bacteria. etc.);
growth of money at continuous compound interest

t

y

0

c

Exponential decay y � ce�kt

c, k � 0
Radioactive decay; light absorption in water, glass,
and the like; atmospheric pressure; electric circuits

Limited growth y � c(1 � e�kt)
c, k � 0

Learning skills; sales fads; company growth; electric
circuits

Logistic growth

c, k, M 7 0

y �
M

1 � ce�kt
Long-term population growth; epidemics; sales of
new products; company growth

ANSWERS TO MATCHED PROBLEMS

1. (A) 1,320 bacteria (B) 4,100,100 � 4.10 � 106 bacteria
2. (A) 50 bacteria (B) 12,000 bacteria
3. (A) 43.9 milligrams (B) 8.12 milligrams 4. 119.4 milligrams
5. (A) 143,000 viewers; 619,000 viewers

(B) N approaches an upper limit of 2 million, the number of potential viewers
6. (A) 48 individuals; 353 individuals

(B) N approaches an upper limit of 400, the number of people in the entire group.
7. (A) 12 cases

(B) The actual number of cases was 1,850 less than the number given by the model.
8. (A) 519,000 deaths

(B) The actual number of known deaths was approximately 21,000 greater than the
number given by the model.
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5-2 Exercises

APPLICATIONS
1. GAMING A person bets on red and black on a roulette wheel

using a Martingale strategy. That is, a $2 bet is placed on red,
and the bet is doubled each time until a win occurs. The process
is then repeated. If black occurs n times in a row, then L � 2n

dollars is lost on the nth bet. Graph this function for 1 	 n 	 10.
Although the function is defined only for positive integers,
points on this type of graph are usually joined with a smooth
curve as a visual aid.

2. BACTERIAL GROWTH If bacteria in a certain culture double
every hour, write an equation that gives the number of bacte-
ria N in the culture after t hours, assuming the culture has
100 bacteria at the start. Graph the equation for 0 	 t 	 5.

3. POPULATION GROWTH Because of its short life span and
frequent breeding, the fruit fly Drosophila is used in some ge-
netic studies. Raymond Pearl of Johns Hopkins University, for
example, studied 300 successive generations of descendants of
a single pair of Drosophila flies. In a laboratory situation with
ample food supply and space, the doubling time for a particular
population is 2.4 days. If we start with 5 male and 5 female flies,
how many flies should we expect to have in
(A) 1 week? (B) 2 weeks?

4. POPULATION GROWTH If Kenya has a population of about
34,000,000 people and a doubling time of 27 years and if the
growth continues at the same rate, find the population in
(A) 10 years (B) 30 years

Compute answers to 2 significant digits.

5. INSECTICIDES The use of the insecticide DDT is no longer
allowed in many countries because of its long-term adverse
effects. If a farmer uses 25 pounds of active DDT, assuming
its half-life is 12 years, how much will still be active after
(A) 5 years? (B) 20 years?

Compute answers to two significant digits.

6. RADIOACTIVE TRACERS The radioactive isotope
technetium-99m (99mTc) is used in imaging the brain. The
isotope has a half-life of 6 hours. If 12 milligrams are used, how
much will be present after
(A) 3 hours? (B) 24 hours?

Compute answers to three significant digits.

1
2

7. POPULATION GROWTH If the world population is about
6.5 billion people now and if the population grows continuously
at a relative growth rate of 1.14%, what will the population be in
10 years? Compute the answer to two significant digits.

8. POPULATION GROWTH If the population in Mexico is
around 106 million people now and if the population grows con-
tinuously at a relative growth rate of 1.17%, what will the popu-
lation be in 8 years? Compute the answer to three significant
digits.

9. POPULATION GROWTH In 2005 the population of Russia
was 143 million and the population of Nigeria was 129 mil-
lion. If the populations of Russia and Nigeria grow continu-
ously at relative growth rates of �0.37% and 2.56%, respec-
tively, in what year will Nigeria have a greater population than
Russia?

10. POPULATION GROWTH In 2005 the population of Germany
was 82 million and the population of Egypt was 78 million. If
the populations of Germany and Egypt grow continuously at
relative growth rates of 0% and 1.78%, respectively, in what
year will Egypt have a greater population than Germany?

11. SPACE SCIENCE Radioactive isotopes, as well as solar
cells, are used to supply power to space vehicles. The isotopes
gradually lose power because of radioactive decay. On a partic-
ular space vehicle the nuclear energy source has a power output
of P watts after t days of use as given by

P � 75e�0.0035t

Graph this function for 0 	 t 	 100.

12. EARTH SCIENCE The atmospheric pressure P, in pounds
per square inch, decreases exponentially with altitude h, in
miles above sea level, as given by

P � 14.7e�0.21h

Graph this function for 0 	 h 	 10.

13. MARINE BIOLOGY Marine life is dependent upon the
microscopic plant life that exists in the photic zone, a zone
that goes to a depth where about 1% of the surface light still
remains. Light intensity I relative to depth d, in feet, for one
of the clearest bodies of water in the world, the Sargasso Sea in
the West Indies, can be approximated by

I � I0e�0.00942d
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where I0 is the intensity of light at the surface. To the nearest
percent, what percentage of the surface light will reach a
depth of
(A) 50 feet? (B) 100 feet?

14. MARINE BIOLOGY Refer to Problem 13. In some waters
with a great deal of sediment, the photic zone may go down only
15 to 20 feet. In some murky harbors, the intensity of light d feet
below the surface is given approximately by

I � I0e�0.23d

What percentage of the surface light will reach a depth of
(A) 10 feet? (B) 20 feet?

15. AIDS EPIDEMIC The World Health Organization estimated
that 39.4 million people worldwide were living with HIV in
2004. Assuming that number continues to increase at a relative
growth rate of 3.2% compounded continuously, estimate the
number of people living with HIV in
(A) 2010 (B) 2015

16. AIDS EPIDEMIC The World Health Organization estimated
that there were 3.1 million deaths worldwide from HIV/AIDS
during the year 2004. Assuming that number continues to
increase at a relative growth rate of 4.3% compounded
continuously, estimate the number of deaths from HIV/AIDS
during the year
(A) 2008 (B) 2012

17. NEWTON’S LAW OF COOLING This law states that the rate
at which an object cools is proportional to the difference in tem-
perature between the object and its surrounding medium. The
temperature T of the object t hours later is given by

where Tm is the temperature of the surrounding medium and T0

is the temperature of the object at t � 0. Suppose a bottle of
wine at a room temperature of 72°F is placed in the refrigerator
to cool before a dinner party. If the temperature of in the refrig-
erator is kept at 40°F and k � 0.4, find the temperature of the
wine, to the nearest degree, after 3 hours. (In Exercise 5-5 we
will find out how to determine k.)

18. NEWTON’S LAW OF COOLING Refer to Problem 17. What
is the temperature, to the nearest degree, of the wine after
5 hours in the refrigerator?

19. PHOTOGRAPHY An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament of
wire. After the flash is triggered, and the capacitor is discharged,
the circuit (see the figure) is connected and the battery pack gen-
erates a current to recharge the capacitor. The time it takes for
the capacitor to recharge is called the recycle time. For a partic-
ular flash unit using a 12-volt battery pack, the charge q, in

T � Tm � (T0 � Tm)e�kt

coulombs, on the capacitor t seconds after recharging has
started is given by

q � 0.0009(1 � e�0.2t)

Find the value that q approaches as t increases without bound
and interpret.

20. MEDICINE An electronic heart pacemaker uses the same
type of circuit as the flash unit in Problem 19, but it is designed
so that the capacitor discharges 72 times a minute. For a partic-
ular pacemaker, the charge on the capacitor t seconds after it
starts recharging is given by

q � 0.000 008(1 � e�2t)

Find the value that q approaches as t increases without bound
and interpret.

21. WILDLIFE MANAGEMENT A herd of 20 white-tailed deer is
introduced to a coastal island where there had been no deer be-
fore. Their population is predicted to increase according to the
logistic curve

where N is the number of deer expected in the herd after t years.
(A) How many deer will be present after 2 years? After 6 years?
Round answers to the nearest integer.
(B) How many years will it take for the herd to grow to 50 deer?
Round answer to the nearest integer.
(C) Does N approach a limiting value as t increases without
bound? Explain.

22. TRAINING A trainee is hired by a computer manufacturing
company to learn to test a particular model of a personal com-
puter after it comes off the assembly line. The learning curve for
an average trainee is given by

(A) How many computers can an average trainee be expected to
test after 3 days of training? After 6 days? Round answers to the
nearest integer.
(B) How many days will it take until an average trainee can test
30 computers per day? Round answer to the nearest integer.
(C) Does N approach a limiting value as t increases without
bound? Explain.

N �
200

4 � 21e�0.1t

N �
100

1 � 4e�0.14t

I

R

V

C

S
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Problems 23–26 require a graphing calculator or a computer
that can calculate exponential and logistic regression models
for a given data set.

23. DEPRECIATION Table 4 gives the market value of a mini-
van (in dollars) x years after its purchase. Find an exponential
regression model of the form y � abx for this data set. Esti-
mate the purchase price of the van. Estimate the value of the
van 10 years after tis purchase. Round answers to the nearest
dollar.

Table 4

x Value ($)

1 12,575

2 9,455

3 8,115

4 6,845

5 5,225

6 4,485

Source: Kelley Blue Book

24. DEPRECIATION Table 5 gives the market value of a luxury
sedan (in dollars) x years after its purchase. Find an exponen-
tial regression model of the form y � abx for this data set.
Estimate the purchase price of the sedan. Estimate the value of
the sedan 10 years after its purchase. Round answers to the
nearest dollar.

Table 5

x Value ($)

1 23,125

2 19,050

3 15,625

4 11,875

5 9,450

6 7,125

Source: Kelley Blue Book

25. NUCLEAR POWER Table 6 gives data on nuclear power gen-
eration by region for the years 1980–1999.

Table 6 Nuclear Power Generation

(Billion Kilowatt-Hours)

North Central and
Year America South America

1980 287.0 2.2

1985 440.8 8.4

1990 649.0 9.0

1995 774.4 9.5

1998 750.2 10.3

1999 807.5 10.5

Source: U.S. Energy Information Administration

(A) Let x represent time in years with x � 0 representing 1980.
Find a logistic regression model for the genera-
tion of nuclear power in North America. (Round the constants a,
b, and c to three significant digits.)
(B) Use the logistic regression model to predict the generation
of nuclear power in North America in 2010.

26. NUCLEAR POWER Refer to Table 6.
(A) Let x represent time in years with x � 0 representing 1980.
Find a logistic regression model for the genera-
tion of nuclear power in Central and South America. (Round the
constants a, b, and c to three significant digits.)
(B) Use the logistic regression model to predict the generation
of nuclear power in Central and South America in 2010.

( y � c
1 � ae�bx)

( y � c
1 � ae�bx)
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5-3 Logarithmic Functions

Z Logarithmic Functions and Graphs

Z From Logarithmic Form to Exponential Form, and Vice Versa

Z Properties of Logarithmic Functions

Z Common and Natural Logarithms

Z Change of Base

In Section 5-3 we introduce the inverses of the exponential functions—the logarithmic
functions—and study their properties and graphs.

Z Logarithmic Functions and Graphs

The exponential function f(x) � bx, where b � 0, b � 1, is a one-to-one function, and
therefore has an inverse. Its inverse, denoted f �1(x) � logb x (read “log to the base b
of x”), is called the logarithmic function with base b. A point (x, y) lies on the graph
of f �1 if and only if the point (y, x) lies on the graph of f; in other words,

x if and only if 

We can use this fact to deduce information about the logarithmic functions from our
knowledge of exponential functions. For example, the graph of f �1 is the graph of f
reflected in the line y � x; and the domain and range of f �1 are, respectively, the
range and domain of f.

Consider the exponential function f(x) � 2x and its inverse f �1(x) � log2 x. Figure 1
shows the graphs of both functions and a table of selected points on those graphs. Because

if and only if 

log2 x is the exponent to which 2 must be raised to obtain x: 2log2x � 2y � x.

x � 2yy � log2 x

x � b 
yy � logb 

Z Figure 1
Logarithmic function with 
base 2.

�5

5 10�5

10

5

x

y
f

y � 2x
y � x

f�1

x � 2y

or
y � log2 x

f

x y � 2x

�3

�2

�1

0 1

1 2

2 4

3 8

1
2

1
4

1
8

f �1

x � 2y y

�3

�2

�1

1 0

2 1

4 2

8 3

1
2

1
4

1
8

DOMAIN of f � (��, �) � RANGE of f�1

RANGE of f � (0, �) � DOMAIN of f�1

Ordered
pairs 
reversed

▲ ▲
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It is very important to remember that y � logb x and x � b y define the same
function, and as such can be used interchangeably.

Because the domain of an exponential function includes all real numbers and its
range is the set of positive real numbers, the domain of a logarithmic function is the set
of all positive real numbers and its range is the set of all real numbers. Thus, log10 3 is
defined, but log10 0 and log10 (�5) are not defined. That is, 3 is a logarithmic domain
value, but 0 and �5 are not. Typical logarithmic curves are shown in Figure 2.

The graphs of logarithmic functions have the properties stated in Theorem 1.
These properties, suggested by the graphs in Figure 2, can be deduced from corre-
sponding properties of the exponential functions.
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Z DEFINITION 1 Logarithmic Function

For b � 0, b � 1, the inverse of f(x) � bx, denoted f �1(x) � logb x, is the
logarithmic function with base b.

Logarithmic form Exponential form

y � logb x is equivalent to x � by

The log to the base b of x is the exponent to which b must be raised to
obtain x.

y � log10 x is equivalent to x � 10 y

y � loge x is equivalent to x � ey

Remember: A logarithm is an exponent.

x

y

0 1

DOMAIN � (0, �)
RANGE � (��, �)

y � logb x
0 � b � 1

x

y

y � logb x
b � 1

DOMAIN � (0, �)
RANGE � (��, �)

0 1

Z Figure 2
Typical logarithmic graphs.

Z THEOREM 1 Properties of Graphs of Logarithmic Functions

Let f(x) � logb x be a logarithmic function, b � 0, b � 1. Then the graph
of f(x):

1. Is continuous on its domain (0, �).

2. Has no sharp corners.

3. Passes through the point (1, 0).

4. Lies to the right of the y axis, which is a vertical asymptote.

5. Increases as x increases if b � 0; decreases as x increases if 0 � b � 1.

6. Intersects any horizontal line exactly once, so is one-to-one.

Transformations of Logarithmic Functions

Let g(x) � 1 � log2 (x � 3).

(A) Use transformations to explain how the graph of g is related to the graph of
the logarithmic function f(x) � log2 x. Determine whether g is increasing or
decreasing, find its domain and asymptote, and sketch the graph of g.

(B) Find the inverse of g.

EXAMPLE 1

(a)

(b)
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ZZZ EXPLORE-DISCUSS 1

For the exponential function graph f and y � x on the
same coordinate system. Then sketch the graph of f �1. Discuss the domains
and ranges of f and its inverse. By what other name is f �1 known?

f � 5(x, y) | y � (2
3) 

x6,

SOLUTIONS

(A) The graph of g can be obtained from the graph of f by a horizontal translation
(left 3 units) followed by a vertical translation (up 1 unit) (see Fig. 3). The
graph of g is increasing. The domain of g is the set of real numbers x such that
x � 3 � 0, namely (�3, �). The line x � �3 is a vertical asymptote (indicated
by the dashed line in Fig. 3).
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�5

5 10�5

10

5

x

y

f

x � �3

g

MATCHED PROBLEM 1

Let g(x) � �2 � log2 (x � 4).

(A) Use transformations to explain how the graph of g is related to the graph of
the logarithmic function f(x) � log2 x. Determine whether g is increasing or
decreasing, find its domain and asymptote, and sketch the graph of g.

(B) Find the inverse of g. �

Z Figure 3
f(x) � log2 x, g(x) � 1 � log2 (x � 3).

(B) Subtract 1 from both sides.

Write in exponential form.

Subtract 3 from both sides.

Interchange x and y.

Therefore the inverse of g is g�1(x) � 2x�1 � 3. �
 y � 2x�1 � 3

 x � 2y�1 � 3

 x � 3 � 2y�1

 y � 1 � log2 (x � 3)

 y � 1 � log2 (x � 3)
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Z From Logarithmic Form to Exponential Form,
and Vice Versa

We now look into the matter of converting logarithmic forms to equivalent exponen-
tial forms, and vice versa.
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Logarithmic–Exponential Conversions

Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) 

SOLUTIONS

(A) is equivalent to

(B) is equivalent to

(C) is equivalent to �1
4 � 2�2.log2 (1

4) � �2

5 � 251	2.log25 5 � 1
2

8 � 23.log2 8 � 3

log2 (1
4) � �2log25 5 � 1

2log2 8 � 3

EXAMPLE 2

MATCHED PROBLEM 2

Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) �log3 (1
9) � �2log36 6 � 1

2log3 27 � 3

Logarithmic–Exponential Conversions

Change each exponential form to an equivalent logarithmic form.

(A) 49 � 72 (B) (C) 

SOLUTIONS

(A) 49 � 72 is equivalent to log7 49 � 2.

(B) is equivalent to

(C) is equivalent to �log5 (1
5) � �1.1

5 � 5�1

log9 3 � 1
2.3 � 19

1
5 � 5�13 � 19

EXAMPLE 3

MATCHED PROBLEM 3

Change each exponential form to an equivalent logarithmic form.

(A) (B) (C) �1
16 � 4�22 � 23 864 � 43
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To gain a little deeper understanding of logarithmic functions and their relation-
ship to the exponential functions, we consider a few problems where we want to find
x, b, or y in y � logb x, given the other two values. All values were chosen so that
the problems can be solved without a calculator.

Solutions of the Equation y � logb x

Find x, b, or y as indicated.

(A) Find y: y � log4 8. (B) Find x: log3 x � �2.

(C) Find b: logb 1,000 � 3.

SOLUTIONS

(A) Write y � log4 8 in equivalent exponential form:

Write each number to the same base 2.

Recall that bm � bn if and only if m � n.

Divide both sides by 2.

Thus, 

(B) Write log3 x � �2 in equivalent exponential form:

Simplify.

Thus, 

(C) Write logb 1,000 � 3 in equivalent exponential form:

Write 1,000 as a third power.

Take cube roots.

Thus, log10 1,000 � 3. �
 b � 10

 103 � b3

 1,000 � b3

log3 (1
9) � �2.

 �
1

32 �
1

9

 x � 3�2

3
2 � log4 8.

 y � 3
2

 2y � 3

 23 � 22y

 8 � 4y

EXAMPLE 4

MATCHED PROBLEM 4

Find x, b, or y as indicated.

(A) Find y: y � log9 27. (B) Find x: log2 x � �3.

(C) Find b: logb 100 � 2. �
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Z THEOREM 2 Properties of Logarithmic Functions

If b, M, and N are positive real numbers, and p and x are real numbers,
then

1. logb 1 � 0 5. logb MN � logb M � logb N

2. logb b � 1 6.

3. logb bx � x 7. logb Mp � p logb M

4. 8. logb M � logb N if and only if M � Nblogb x � x, x 7 0

logb 
M

N
� logb M � logb N

b � 1,

ZZZ EXPLORE-DISCUSS 2

Discuss the connection between the exponential equation and the logarithmic
equation, and explain why each equation is valid.

(A) 24 27 � 211; log2 24 � log2 27 � log2 211

(B) 213�25 � 28; log2 213 � log2 25 � log2 28

(C) (26)9 � 254; 9 log2 26 � log2 254

Several of the powerful and useful properties of logarithmic functions are listed
in Theorem 2.
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The first two properties in Theorem 2 follow directly from the definition of a
logarithmic function:

logb 1 � 0 because b0 � 1

logb b � 1 because b1 � b

The third and fourth properties are “inverse properties.” They follow directly from the
fact that exponential and logarithmic functions are inverses of each other. Recall from
Section 3-6 that if f is one-to-one, then f �1 is a one-to-one function satisfying

for all x in the domain of f

for all x in the domain of f �1 f ( f �1(x)) � x

 f �1( f (x)) � x

Z Properties of Logarithmic Functions

The familiar properties of exponential functions imply corresponding properties of
logarithmic functions.
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Applying these general properties to f(x) � bx and f �1(x) � logb x, we see that

Properties 5 to 7 enable us to convert multiplication into addition, division into
subtraction, and power and root problems into multiplication. The proofs of these
properties are based on properties of exponents. A sketch of a proof of the fifth prop-
erty follows: To bring exponents into the proof, we let

u � logb M and v � logb N

and convert these to the equivalent exponential forms

M � bu and N � bv

Now, see if you can provide the reasons for each of the following steps:

logb MN � logb bubv � logb bu � v � u � v � logb M � logb N

The other properties are established in a similar manner (see Problems 125 and 126
in Exercise 5-3.)

Finally, the eighth property follows from the fact that logarithmic functions are
one-to-one.

 blogb x � x logb bx � x

 b f �1(x) � x logb ( f (x)) � x

 f ( f �1(x)) � x f �1( f (x)) � x
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Using Logarithmic Properties

Simplify, using the properties in Theorem 2.

(A) (B) (C) 

(D) (E) 10log
10
7 (F) eloge x2

SOLUTIONS

(A) loge 1 � 0 (B) log10 10 � 1

(C) loge e2x � 1 � 2x � 1 (D) log10 0.01 � log10 10�2 � �2

(E) 10log
10

7 � 7 (F) eloge x2

� x2 �

log10 0.01

loge e
2x�1log10 10loge 1

EXAMPLE 5

MATCHED PROBLEM 5

Simplify, using the properties in Theorem 2.

(A) log10 10�5 (B) log5 25 (C) log10 1

(D) loge em � n (E) 10log
10

4 (F) eloge (x4 � 1) �
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ZZZ EXPLORE-DISCUSS 3

(A) Sketch the graph of and in the same coordinate
system and state the domain and range of the common logarithmic function.

(B) Sketch the graph of and in the same coordinate
system and state the domain and range of the natural logarithmic function.

y � xy � ln  x,y � e 
x,

y � xy � log x,y � 10 
x,

Z Common and Natural Logarithms

John Napier (1550–1617) is credited with the invention of logarithms, which evolved
out of an interest in reducing the computational strain in research in astronomy. This
new computational tool was immediately accepted by the scientific world. Now, with
the availability of inexpensive calculators, logarithms have lost most of their impor-
tance as a computational device. However, the logarithmic concept has been greatly
generalized since its conception, and logarithmic functions are used widely in both
theoretical and applied sciences.

Of all possible logarithmic bases, the base e and the base 10 are used almost
exclusively. To use logarithms in certain practical problems, we need to be able to
approximate the logarithm of any positive number to either base 10 or base e. And
conversely, if we are given the logarithm of a number to base 10 or base e, we need
to be able to approximate the number. Historically, tables were used for this purpose,
but now calculators are used because they are faster and can find far more values than
any table can possibly include.

Common logarithms, also called Briggsian logarithms, are logarithms with
base 10. Natural logarithms, also called Napierian logarithms, are logarithms with
base e. Most calculators have a function key labeled “log” and a function key labeled
“ln.” The former represents the common logarithmic function and the latter the natural
logarithmic function. In fact, “log” and “ln” are both used extensively in mathematical
literature, and whenever you see either used in this book without a base indicated,
they should be interpreted as in the box.
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Z LOGARITHMIC FUNCTIONS

Common logarithmic function

Natural logarithmic functiony � ln x � loge x

y � log x � log10 x

Calculator Evaluation of Logarithms

Use a calculator to evaluate each to six decimal places.

(A) log 3,184 (B) ln 0.000 349 (C) log (�3.24)

EXAMPLE 6
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SOLUTIONS

(A) log 3,184 � 3.502 973

(B) ln 0.000 349 � �7.960 439

(C) log (�3.24) � Error

Why is an error indicated in part C? Because �3.24 is not in the domain of the log
function. [Note: Calculators display error messages in various ways. Some calculators
use a more advanced definition of logarithmic functions that involves complex num-
bers. They will display an ordered pair, representing a complex number, as the value
of log (�3.24), rather than an error message. You should interpret such a display as
indicating that the number entered is not in the domain of the logarithmic function as
we have defined it.] �
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MATCHED PROBLEM 6

Use a calculator to evaluate each to six decimal places.

(A) log 0.013 529 (B) ln 28.693 28 (C) ln (�0.438) �
When working with common and natural logarithms, we follow the common prac-

tice of using the equal sign “�” where it might be more appropriate to use the approx-
imately equal sign “�.” No harm is done as long as we keep in mind that in a state-
ment such as log 3.184 � 0.503, the number on the right is only assumed accurate
to three decimal places and is not exact.

ZZZ EXPLORE-DISCUSS 4

Graphs of the functions f (x) � log x and g(x) � ln x are shown in the graph-
ing utility display of Figure 4. Which graph belongs to which function? It
appears from the display that one of the functions may be a constant multiple
of the other. Is that true? Find and discuss the evidence for your answer.

�2

0

2

5

Z Figure 4
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SOLUTIONS

(A) (B) 

(C) Note that but 

(see Theorem 1). �log 
2

1.1
� log 2 � log 1.1

log 2

log 1.1
� log 2 � log 1.1,log 2 � log 1.1 � 0.260.

log 
2

1.1
� 0.260

log 2

log 1.1
� 7.273
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MATCHED PROBLEM 7

Use a calculator to evaluate each to three decimal places.

(A) (B) (C) �ln 3 � ln 1.08ln 
3

1.08

ln 3

ln 1.08

We now turn to the second problem: Given the logarithm of a number, find the
number. To solve this problem, we make direct use of the logarithmic–exponential
relationships.

Z LOGARITHMIC–EXPONENTIAL RELATIONSHIPS

is equivalent to

is equivalent to x � e 
y ln x � y

x � 10 
y log x � y

Solving logb x � y for x

Find x to three significant digits, given the indicated logarithms.

(A) log x � �9.315 (B) ln x � 2.386

SOLUTIONS

(A) Change to exponential form (Definition 1).

Calculate to three significant digits.

Notice that the answer is displayed in scientific notation in the calculator.

 � 4.84 
 10�10

 x � 10�9.315

 log x � �9.315

EXAMPLE 8

Calculator Evaluation of Logarithms

Use a calculator to evaluate each expression to three decimal places.

(A) (B) (C) log 2 � log 1.1log 
2

1.1

log 2

log 1.1

EXAMPLE 7
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MATCHED PROBLEM 8

Find x to four significant digits, given the indicated logarithms.

(A) ln x � �5.062 (B) log x � 12.0821 �

Technology
Connections

Example 8 was solved algebraically using the
logarithmic–exponential relationships. Use the inter-
section routine on a graphing utility to solve this
problem graphically. Discuss the relative merits of
the two approaches.

Z Change of Base

How would you find the logarithm of a positive number to a base other than 10 or e?
For example, how would you find log3 5.2? In Example 9 we evaluate this logarithm
using a direct process. Then we develop a change-of-base formula to find such loga-
rithms in general. You may find it easier to remember the process than the formula.

Evaluating a Base 3 Logarithm

Evaluate log3 5.2 to four decimal places.

SOLUTIONS

Let and proceed as follows:

Change to exponential form.

Take the natural log (or common log) of each side.

logb Mp � p logb M

Divide both sides by ln 3.

 y �
ln 5.2

ln 3

 � y ln 3

 ln 5.2 � ln 3y

 5.2 � 3y

 log3 5.2 � y

y � log3 5.2

EXAMPLE 9

(B) Change to exponential form (Definition 1).

Calculate to three significant digits.

� � 10.9

 x � e2.386

 ln x � 2.386
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To develop a change-of-base formula for arbitrary positive bases, with neither
base equal to 1, we proceed as in Example 9. Let y � logb N, where N and b are pos-
itive and Then

Write in exponential form.

Take the log of each side to another positive base a, a � 1.

loga Mp � p loga M

Divide both sides by loga b.

Replacing y with logb N from the first step, we obtain the change-of-base formula:

In words, this formula states that the logarithm of a number to a given base is the
logarithm of that number to a new base divided by the logarithm of the old base to
the new base. In practice, we usually choose either e or 10 for the new base so that
a calculator can be used to evaluate the necessary logarithms:

or

We used the first of these options in Example 9.

logb N �
log N

log b
logb N �

ln N

ln b

logb N �
loga N

loga b

 y �
loga N

loga b

 loga N � y loga b

 loga N � loga by

 N � by

 logb N � y

b � 1.
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ZZZ EXPLORE-DISCUSS 5

If b is any positive real number different from 1, the change-of-base formula
implies that the function y � logb x is a constant multiple of the natural log-
arithmic function; that is, logb x � k ln x for some k.

(A) Graph the functions y � ln x, y � 2 ln x, y � 0.5 ln x, and y � �3 ln x.

(B) Write each function of part A in the form y � logb x by finding the base
b to two decimal places.

(C) Is every exponential function y � bx a constant multiple of y � ex? Explain.

MATCHED PROBLEM 9

Evaluate to four decimal places. �log0.5 0.0372

Replace y with from the first step, and use a calculator to evaluate the right
side:

�log3 5.2 �
ln 5.2

ln 3
� 1.5007

log3 5.2
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5-3 Exercises
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ZZZ CAUTION ZZZ

We conclude this section by noting two common errors:

1.

2. logb (M � N ) � logb M � logb N

logb M

logb N
� logb M � logb N

cannot be simplified.

logb M � logb N � logb MN;

cannot be simplified.logb (M � N)

logb M

logb N

logb M � logb N � logb 
M
N

;

ANSWERS TO MATCHED PROBLEMS

1. (A) The graph of g is the same as the graph of f shifted 4 units to the right and
2 units down; g is increasing; domain: vertical asymptote: x � 4(4, �);

x

y

10�2

�5

5

x � 4

(B) 
2. (A) (B) (C) 
3. (A) (B) (C) 
4. (A) (B) (C) 
5. (A) (B) 2 (C) 0 (D) (E) 4 (F) 
6. (A) (B) 3.356 663 (C) Not possible
7. (A) 14.275 (B) 1.022 (C) 1.022
8. (A) (B) 
9. 4.7486

x � 1.208 
 1012x � 0.006 333

�1.868 734
x4 � 1m � n�5

b � 10x � 1
8y � 3

2

log4 ( 1
16) � �2log8 2 � 1

3log4 64 � 3

1
9 � 3�26 � 361	227 � 33

g�1(x) � 4 � 2x�2

Rewrite Problems 1–10 in equivalent exponential form.

1. 2.

3. 4. log10 1,000 � 3log10 0.001 � �3

log5 125 � 3log3 81 � 4

5. 6. 

7. 8. 

9. 10. log1	3 27 � �3log1	2 16 � �4

log2  1
64 � �6log6  1

36 � �2

log4 2 � 1
2log81 3 � 1

4
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Rewrite Problems 11–20 in equivalent logarithmic form.

11. 12. 

13. 14. 

15. 16. 

17. 18. 

19. 20. 

In Problems 21–40, simplify each expression using Theorem 2.

21. 22. 

23. 24. 

25. 26. 

27. 28. 

29. 30. 

31. 32. 

33. 34. 

35. 36. 

37. 38. 

39. 40. 

In Problems 41–48, evaluate to four decimal places.

41. 42. 

43. 44. 

45. 46. 

47. 48. 

In Problems 49–56, evaluate x to four significant digits, given:

49. 50. 

51. 52. 

53. 54. 

55. 56. 

Find x, y, or b, as indicated in Problems 57–74.

57. 58. 

59. 60. 

61. 62. 

63. 64. logb b � 1logb 1 � 0

logb 10�3 � �3logb 16 � 2

log8 64 � ylog4 16 � y

log3 x � 3log2 x � 2

ln x � �4.1083ln x � �0.3916

ln x � 5.0884ln x � 3.8655

log x � �2.0411log x � �3.1773

log x � 1.9168log x � 5.3027

log17 304.66log5 120.24

log9 78log7 13

ln 19.722ln 54.081

log 691,450log 49,236

10�3 log10 ue2 loge x

eloge (x�1)eloge 1x

log2 18log5 23 5

eloge 10eloge 5

log1/5  1
25log1/2 2

log4 256log3 27

log10 100log10 0.01

log10 105loge e
4

log7 7log0.5 0.5

log25 1log16 1

(5
2)

�2 � 0.16(2
3)

3 � 8
27

4 � 641	37 � 491	2

1
8 � 2�31

2 � 32�1	



In Problems 95–98, evaluate to five significant digits.

95.

96.

97. 

98.

In Problems 99–106, use transformations to explain how the
graph of g is related to the graph of the given logarithmic func-
tion f. Determine whether g is increasing or decreasing, find its
domain and asymptote, and sketch the graph of g.

99. 

100. 

101. 

102. 

103. g(x) � �1 � log x; f (x) � log x

104. g(x) � 2 � log x; f (x) � log x

105. g(x) � 5 � 3 ln x; f (x) � ln x

106. g(x) � �3 � 2 ln x; f (x) � ln x

In Problems 107–114, find 

107. 

108. 

109.

110. 

111. 

112. 

113. 

114. 

115. Let 
(A) Find 
(B) Graph 
(C) Reflect the graph of in the line y � x to obtain the

graph of f.

116. Let 
(A) Find 
(B) Graph 
(C) Reflect the graph of in the line y � x to obtain

the graph of f.
f �1

f �1.
f �1.

f (x) � log2 (�3 � x).

f �1
f �1.

f �1.
f (x) � log3 (2 � x).

f (x) � 6 � 2
3 ln (x � 1)

f (x) � �1 � 1
2 ln (x � 5)

f (x) � �3 � 5 log (x � 2)

f (x) � 4 � 2 log (x � 1)

f (x) � 2 log2 (x � 5)

f (x) � 4 log3 (x � 3)

f (x) � log1	3  x

f (x) � log5  x

f �1.

f (x) � log1	2  xg(x) � log1	2 (x � 3);

f (x) � log1	3  xg(x) � log1	3 (x � 2);

f (x) � log3  xg(x) � �4 � log3  x;

f (x) � log2  xg(x) � 3 � log2  x;

ln (4.0304 
 10�8)

ln (6.7917 
 10�12)

log (2.0991 
 1017)

log (5.3147 
 1012)

117. Find the fallacy.

Divide both sides by 27.

Divide both sides by 

118. Find the fallacy.

Multiply both sides by log .

Multiply both sides by 8.

119. The function f (x) � log x increases extremely slowly
as but the composite function g(x) � log (log x)
increases still more slowly.
(A) Illustrate this fact by computing the values of both

functions for several large values of x.
(B) Determine the domain and range of the function g.
(C) Discuss the graphs of both functions.

120. The function f (x) � ln x increases extremely slowly as
but the composite function g(x) � ln(ln x)

increases still more slowly.
(A) Illustrate this fact by computing the values of both

functions for several large values of x.
(B) Determine the domain and range of the function g.
(C) Discuss the graphs of both functions.

The polynomials in Problems 121–124, called Taylor polynomi-

als, can be used to approximate the function g(x) � ln (1 � x).
To illustrate this approximation graphically, in each problem,
graph g(x) � ln (1 � x) and the indicated polynomial in the
same viewing window, and 

121. 

122. 

123. 

124. 

125. Prove that under the
hypotheses of Theorem 2.

126. Prove that under the hypotheses of
Theorem 2.

logb  M
p � p logb  M

logb (M	N ) � logb  M � logb  N

P4(x) � x � 1
2 x

2 � 1
3 x

3 � 1
4 x

4 � 1
5 x

5

P3(x) � x � 1
2 x

2 � 1
3 x

3 � 1
4 x

4

P2(x) � x � 1
2 x

2 � 1
3 x

3

P1(x) � x � 1
2 x

2

�2 � y � 2.�1 � x � 3

x S �,

x S �,

 1 7 2
 18 7 1

4

 (1
2)

3 7 (1
2)

2

 log (1
2)

3 7 log (1
2)

2

 3 log 12 7 2 log 12

1
2 3 7 2

 3 6 2

log 13. 3 log 13 6 2 log 13

 log (1
3)

3 6 log (1
3)

2

 (1
3)

3 6 (1
3)

2

 127 6 1
9

 127 6 3
27

 1 6 3
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In Section 5-4 we study the logarithmic scales that are used to compare intensities of
sounds, magnitudes of earthquakes, and the brightness of stars. We construct loga-
rithmic models using regression techniques.

Z Logarithmic Scales

SOUND INTENSITY The human ear is able to hear sound over an incredible
range of intensities. The loudest sound a healthy person can hear without damage to
the eardrum has an intensity 1 trillion (1,000,000,000,000) times that of the softest
sound a person can hear. Working directly with numbers over such a wide range is
very cumbersome. Because the logarithm, with base greater than 1, of a number
increases much more slowly than the number itself, logarithms are often used to cre-
ate more convenient compressed scales. The decibel scale for sound intensity is an
example of such a scale. The decibel, named after the inventor of the telephone,
Alexander Graham Bell (1847–1922), is defined as follows:

(1)

where D is the decibel level of the sound, I is the intensity of the sound measured
in watts per square meter (W/m2), and I0 is the intensity of the least audible sound
that an average healthy young person can hear. The latter is standardized to be I0 � 10�12

watts per square meter. Table 1 lists some typical sound intensities from familiar
sources.

Table 1 Typical Sound Intensities

Sound Intensity (W/m2) Sound

Threshold of hearing

Whisper

Normal conversation

Heavy traffic

Jackhammer

Threshold of pain

Jet plane with afterburner8.3 � 102

1.0 � 100

3.2 � 10�3

8.5 � 10�4

3.2 � 10�6

5.2 � 10�10

1.0 � 10�12

D � 10 log 
I

I0
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5-4 Logarithmic Models

Z Logarithmic Scales

Z Data Analysis and Regression

Decibel scale
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EARTHQUAKE INTENSITY The energy released by the largest earthquake
recorded, measured in joules, is about 100 billion (100,000,000,000) times the energy
released by a small earthquake that is barely felt. Over the past 150 years several peo-
ple from various countries have devised different types of measures of earthquake mag-
nitudes so that their severity could be easily compared. In 1935 the California seismol-
ogist Charles Richter devised a logarithmic scale that bears his name and is still widely
used in the United States. The magnitude M on the Richter scale* is given as follows:

(2)M �
2

3
 log 

E

E0
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Richter scale

Sound Intensity

Find the number of decibels from a whisper with sound intensity watts
per square meter. Compute the answer to two decimal places.

SOLUTION

We use the decibel formula (1):

� � 27.16 decibels

 � 10 log 520

 � 10 log 
5.2 � 10�10

10�12

 D � 10 log 
I

I0

5.20 � 10�10

EXAMPLE 1

Let and 

Simplify.

Calculate to two decimal places.

I0 � 10�12.I � 5.20 � 10�10

MATCHED PROBLEM 1

Find the number of decibels from a jackhammer with sound intensity watts
per square meter. Compute the answer to two decimal places. �

3.2 � 10�3

ZZZ EXPLORE-DISCUSS 1

Imagine using a large sheet of graph paper, ruled with horizontal and vertical
lines apart, to plot the sound intensities of Table 1 on the x axis and
the corresponding decibel levels on the y axis. Suppose that each unit
on the x axis represents the intensity of the least audible sound (10�12 W/m2),
and each unit on the y axis represents 1 decibel. If the point corre-
sponding to a jet plane with afterburner is plotted on the graph paper, how
far is it from the x axis? From the y axis? (Give the first answer in inches
and the second in miles!) Discuss.

1
8-inch

1
8-inch

1
8-inch

*Originally, Richter defined the magnitude of an earthquake in terms of logarithms of the maximum

seismic wave amplitude, in thousandths of a millimeter, measured on a standard seismograph. Formula

(2) gives essentially the same magnitude that Richter obtained for a given earthquake but in terms of

logarithms of the energy released by the earthquake.
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where E is the energy released by the earthquake, measured in joules, and E0 is the energy
released by a very small reference earthquake, which has been standardized to be

E0 � 104.40 joules

The destructive power of earthquakes relative to magnitudes on the Richter scale is
indicated in Table 2.

Table 2 The Richter Scale

Magnitude on Richter Scale Destructive Power

Small

Moderate

Large

Major

Greatest 7.5 6 M

 6.5 6 M 6 7.5

 5.5 6 M 6 6.5

 4.5 6 M 6 5.5

 M 6 4.5

504 C H A P T E R  5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

CA

Earthquake Intensity

The 1906 San Francisco earthquake released approximately joules
of energy. What was its magnitude on the Richter scale? Compute the answer to two
decimal places.

SOLUTION

We use the magnitude formula (2):

� � 8.25

 �
2

3
 log 

5.96 � 1016

104.40

 M �
2

3
 log 

E

E0

5.96 � 1016

EXAMPLE 2

Let and 

Calculate to two decimal places.

E0 � 104.40.E � 5.96 � 1016

MATCHED PROBLEM 2

The 1985 earthquake in central Chile released approximately of
energy. What was its magnitude on the Richter scale? Compute the answer to two
decimal places. �

1.26 � 1016 joules

bar67388_ch05_502-510  11/30/06  21:33  Page 504



ROCKET FLIGHT The theory of rocket flight uses advanced mathematics and
physics to show that the velocity v of a rocket at burnout (depletion of fuel supply)
is given by

(3)

where c is the exhaust velocity of the rocket engine, Wt is the takeoff weight (fuel,
structure, and payload), and Wb is the burnout weight (structure and payload).

v � c ln 
Wt

Wb
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Earthquake Intensity

If the energy release of one earthquake is 1,000 times that of another, how much larger
is the Richter scale reading of the larger than the smaller?

SOLUTION

Let

and

be the Richter equations for the smaller and larger earthquakes, respectively. Substi-
tuting E2 � 1,000E1 into the second equation, we obtain

Thus, an earthquake with 1,000 times the energy of another has a Richter scale read-
ing of 2 more than the other. �

 � 2 � M1

 �
2

3
 (3) �

2

3
 log 

E1

E0

 �
2

3
 a3 � log 

E1

E0
b

 �
2

3
 alog 103 � log 

E1

E0
b

 M2 �
2

3
 log 

1,000E1

E0

M2 �
2

3
 log 

E2

E0
M1 �

2

3
 log 

E1

E0

EXAMPLE 3

Distributive property

Simplify.

log 10x � x

log MN � log M � log N

MATCHED PROBLEM 3

If the energy release of one earthquake is 10,000 times that of another, how much
larger is the Richter scale reading of the larger than the smaller? �

Rocket equation
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Z Data Analysis and Regression

We use logarithmic regression to fit a function of the form to a set of
data points, making use of the techniques introduced earlier for linear, quadratic,
exponential, and logistic functions.

y � a � b ln x
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Rocket Flight Theory

A typical single-stage, solid-fuel rocket may have a weight ratio Wt /Wb � 18.7 and an
exhaust velocity c � 2.38 kilometers per second. Would this rocket reach a launch
velocity of 9.0 kilometers per second?

SOLUTION

We use the rocket equation (3):

The velocity of the launch vehicle is far short of the 9.0 kilometers per second
required to achieve orbit. This is why multiple-stage launchers are used—the dead-
weight from a preceding stage can be jettisoned into the ocean when the next stage
takes over. �

 � 6.97 kilometers per second

 � 2.38 ln 18.7

 v � c ln 
Wt

Wb

EXAMPLE 4

Let and 

Calculate to two decimal places.

Wt�Wb � 18.7.c � 2.38

MATCHED PROBLEM 4

A launch vehicle using liquid fuel, such as a mixture of liquid hydrogen and liquid
oxygen, can produce an exhaust velocity of c � 4.7 kilometers per second. How-
ever, the weight ratio Wt �Wb must be low—around 5.5 for some vehicles—because
of the increased structural weight to accommodate the liquid fuel. How much more
or less than the 9.0 kilometers per second required to reach orbit will be achieved
by this vehicle? �

Because of the Earth’s atmospheric resistance, a launch vehicle velocity of at least
9.0 kilometers per second is required to achieve the minimum altitude needed for a
stable orbit. It is clear that to increase velocity v, either the weight ratio Wt�Wb must
be increased or the exhaust velocity c must be increased. The weight ratio can be
increased by the use of solid fuels, and the exhaust velocity can be increased by
improving the fuels, solid or liquid.
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Home Ownership Rates

The U.S. Census Bureau published the data in Table 3 on home ownership rates.

Table 3 Home Ownership Rates

Year Home Ownership Rate (%)

1940 43.6

1950 55.0

1960 61.9

1970 62.9

1980 64.4

1990 64.2

2000 67.4

A logarithmic model for the data is given by

R � �36.7 � 23.0 ln t

where R is the home ownership rate and t is time in years with t � 0 representing 1900.

(A) Use the model to predict the home ownership rate in 2010.

(B) Compare the actual home ownership rate in 1950 to the rate given by the 
model.

SOLUTIONS

(A) The year 2010 is represented by t � 110. Evaluating

R � �36.7 � 23.0 ln t

at t � 110 predicts a home ownership rate of 71.4% in 2010.

(B) The year 1950 is represented by t � 50. Evaluating

R � �36.7 � 23.0 ln t

at t � 50 gives a home ownership rate of 53.3% in 1950. The actual home
ownership rate in 1950 was 55%, approximately 1.7% greater than the number
given by the model.

EXAMPLE 5
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Technology
Connections

Figure 1 shows the details of constructing the loga-
rithmic model of Example 5 on a graphing calculator.

0

0

100

120

Z Figure 1

MATCHED PROBLEM 5

Refer to Example 5. The home ownership rate in 1995 was 64.7%. If this data is
added to Table 3, a logarithmic model for the expanded data is given by

R � �31.5 � 21.7 ln t

where R is the home ownership rate and t is time in years with t � 0 representing 1900.

(A) Use the model to predict the home ownership rate in 2010.

(B) Compare the actual home ownership rate in 1950 to the rate given by the 
model. �

ANSWERS TO MATCHED PROBLEMS

1. 95.05 decibels 2. 7.80 3. 2.67 4. 1 kilometer per second less
5. (A) 70.5% (B) The actual rate was 1.6% greater than the rate given by 

the model.

(a) Entering the data (b) Finding the model (c) Graphing the data and the model

�
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APPLICATIONS
1. SOUND What is the decibel level of

(A) The threshold of hearing, per square
meter?
(B) The threshold of pain, 1.0 watt per square meter?

Compute answers to two significant digits.

2. SOUND What is the decibel level of
(A) A normal conversation, per square
meter?
(B) A jet plane with an afterburner, watts per square
meter?

Compute answers to two significant digits.

3. SOUND If the intensity of a sound from one source is 1,000
times that of another, how much more is the decibel level of the
louder sound than the quieter one?

4. SOUND If the intensity of a sound from one source is
10,000 times that of another, how much more is the decibel level
of the louder sound than the quieter one?

5. EARTHQUAKES The strongest recorded earthquake to 
date was in Colombia in 1906, with an energy release of

What was its magnitude on the Richter
scale? Compute the answer to one decimal place.

6. EARTHQUAKES Anchorage, Alaska, had a major earth-
quake in 1964 that released of energy. What
was its magnitude on the Richter scale? Compute the answer to
one decimal place.

★★ 7. EARTHQUAKES The 1933 Long Beach, California, earth-
quake had a Richter scale reading of 6.3, and the 1964 Anchor-
age, Alaska, earthquake had a Richter scale reading of 8.3. How
many times more powerful was the Anchorage earthquake than
the Long Beach earthquake?

★★ 8. EARTHQUAKES Generally, an earthquake requires a magni-
tude of over 5.6 on the Richter scale to inflict serious damage.
How many times more powerful than this was the great 1906
Colombia earthquake, which registered a magnitude of 8.6 on
the Richter scale?

9. SPACE VEHICLES A new solid-fuel rocket has a weight
ratio Wt�Wb � 19.8 and an exhaust velocity c � 2.57 kilometers
per second. What is its velocity at burnout? Compute the answer
to two decimal places.

7.08 � 1016 joules

1.99 � 1017 joules.

8.3 � 102

3.2 � 10�6 watts

1.0 � 10�12 watts

10. SPACE VEHICLES A liquid-fuel rocket has a weight ratio
Wt�Wb � 6.2 and an exhaust velocity c � 5.2 kilometers per
second. What is its velocity at burnout? Compute the answer to
two decimal places.

11. CHEMISTRY The hydrogen ion concentration of a sub-
stance is related to its acidity and basicity. Because hydrogen
ion concentrations vary over a very wide range, logarithms
are used to create a compressed pH scale, which is defined as
follows:

pH � �log [H�]

where [H�] is the hydrogen ion concentration, in moles per liter.
Pure water has a pH of 7, which means it is neutral. Substances
with a pH less than 7 are acidic, and those with a pH greater
than 7 are basic. Compute the pH of each substance listed, given
the indicated hydrogen ion concentration.
(A) Seawater, 
(B) Vinegar, 

Also, indicate whether each substance is acidic or basic. Com-
pute answers to one decimal place.

12. CHEMISTRY Refer to Problem 11. Compute the pH of each
substance, given the indicated hydrogen ion concentration.
Also, indicate whether it is acidic or basic. Compute answers to
one decimal place.
(A) Milk, 
(B) Garden mulch, 

★13. ECOLOGY Refer to Problem 11. Many lakes in Canada and
the United States will no longer sustain some forms of wildlife
because of the increase in acidity of the water from acid rain and
snow caused by sulfur dioxide emissions from industry. If the
pH of a sample of rainwater is 5.2, what is its hydrogen ion
concentration in moles per liter? Compute the answer to two
significant digits.

★14. ECOLOGY Refer to Problem 11. If normal rainwater has a
pH of 5.7, what is its hydrogen ion concentration in moles per
liter? Compute the answer to two significant digits.

★★15. ASTRONOMY The brightness of stars is expressed in terms
of magnitudes on a numerical scale that increases as the bright-
ness decreases. The magnitude m is given by the formula

m � 6 � 2.5 log 
L

L0

3.78 � 10�6
2.83 � 10�7

9.32 � 10�4
4.63 � 10�9
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where L is the light flux of the star and L0 is the light flux of the
dimmest stars visible to the naked eye.
(A) What is the magnitude of the dimmest stars visible to the
naked eye?
(B) How many times brighter is a star of magnitude 1 than a star
of magnitude 6?

16. ASTRONOMY An optical instrument is required to observe
stars beyond the sixth magnitude, the limit of ordinary vision.
However, even optical instruments have their limitations. The
limiting magnitude L of any optical telescope with lens diame-
ter D, in inches, is given by

L � 8.8 � 5.1 log D

(A) Find the limiting magnitude for a homemade 6-inch reflect-
ing telescope.
(B) Find the diameter of a lens that would have a limiting mag-
nitude of 20.6.

Compute answers to three significant digits.

Problems 17 and 18 require a graphing calculator or a
computer that can calculate a logarithmic regression model for
a given data set.

17. AGRICULTURE Table 4 shows the yield (bushels per acre)
and the total production (millions of bushels) for corn in the
United States for selected years since 1950. Let x represent
years since 1900.

Table 4 United States Corn Production

Yield Total Production
Year x (Bushels per Acre) (Million Bushels)

1950 50 37.6 2,782

1960 60 55.6 3,479

1970 70 81.4 4,802

1980 80 97.7 6,867

1990 90 115.6 7,802

2000 100 137.0 9,915

Source: U.S. Department of Agriculture.

18. AGRICULTURE Refer to Table 4.
(A) Find a logarithmic regression model ( y � a � b ln x) for the
total production. Estimate (to the nearest million) the produc-
tion in 2003 and in 2010.
(B) The actual production in 2003 was 10,114 million bushels.
How does this compare with the estimated production in part A?
What effect will this 2003 production information have on the
estimate for 2010? Explain.
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(A) Find a logarithmic regression model ( y � a � b ln x) for the
yield. Estimate (to one decimal place) the yield in 2003 and in
2010.
(B) The actual yield in 2003 was 142 bushels per acre. How
does this compare with the estimated yield in part A? What
effect with this additional 2003 information have on the
estimate for 2010? Explain.
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Equations involving exponential and logarithmic functions, for example

and

are called exponential and logarithmic equations, respectively. We solve such equa-
tions to find the x intercepts of a function, or more generally, to find where the graphs
of two functions intersect. Logarithmic properties play a central role in the solution
of both exponential and logarithmic equations.

Z Exponential Equations

Examples 1–4 illustrate the use of logarithmic properties in solving exponential
equations.

log (x � 3) � log x � 123x�2 � 5

5-5 Exponential and Logarithmic Equations

Z Exponential Equations

Z Logarithmic Equations

Finding x Intercepts

Find the x intercept(s) of to four decimal places.

SOLUTION

The x intercepts are the solutions of the equation or equivalently,
How can we get the variable x out of the exponent? Use logs!

� � 1.4406

 x �
1

3
 a2 �

log 5

log 2
b

 3x � 2 �
log 5

log 2

 3x � 2 �
log 5

log 2

 (3x � 2) log 2 � log 5

 log 23x�2 � log 5

 23x�2 � 5

23x�2 � 5.
23x�2 � 5 � 0,

f (x) � 23x�2 � 5

EXAMPLE 1

MATCHED PROBLEM 1

Solve for x to four decimal places. �351�2x � 7

Take the common or natural log of both sides.

Use to get out of the exponent position.

Divide both sides by log 2.

Add 2 to both sides.

Divide both sides by 3.

Remember:

To four decimal places

log 5

log 2
� log 5 � log 2.

3x � 2logb Np � p logb N
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Compound Interest

A certain amount of money P (principal) is invested at an annual rate r compounded
annually. The amount of money A in the account after n years, assuming no with-
drawals, is given by

How many years to the nearest year will it take the money to double if it is invested
at 6% compounded annually?

SOLUTION

To find the doubling time, we replace A in A � P(1.06)n with 2P and solve for n.

� � 12 years

 n �
log 2

log 1.06

 log 2 � n log 1.06

 log 2 � log 1.06n

 2 � 1.06n

 2P � P(1.06)n

A � P a1 �
r
m
bn

� P(1 � r)n

EXAMPLE 2

m � 1 for annual compounding.

Divide both sides by P.

Take the common or natural log of both sides.

Note how log properties are used to get n out of the exponent position.

Divide both sides by log 1.06.

Calculate to the nearest year.

MATCHED PROBLEM 2

Repeat Example 2, changing the interest rate to 9% compounded annually. �

Atmospheric Pressure

The atmospheric pressure P, in pounds per square inch, at x miles above sea level is
given approximately by

P � 14.7e�0.21x

At what height will the atmospheric pressure be half the sea-level pressure? Compute
the answer to two significant digits.

SOLUTION

Sea-level pressure is the pressure at x � 0. Thus,

P � 14.7e0 � 14.7

EXAMPLE 3
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One-half of sea-level pressure is 14.7�2 � 7.35. Now our problem is to find x so that
P � 7.35; that is, we solve 7.35 � 14.7e�0.21x for x:

� � 3.3 miles

 x �
ln 0.5

�0.21

 ln 0.5 � �0.21x

 ln 0.5 � ln e�0.21x

 0.5 � e�0.21x

 7.35 � 14.7e�0.21x
Divide both sides by 14.7 to simplify.

Because the base is e, take the natural log of both sides.

In ea � a

Divide both sides by �0.21.

Calculate to two significant digits.

MATCHED PROBLEM 3

Using the formula in Example 3, find the altitude in miles so that the atmospheric
pressure will be one-eighth that at sea level. Compute the answer to two significant
digits. �
The graph of

(1)

is a curve called a catenary (Fig. 1). A uniform cable suspended between two fixed
points is a physical example of such a curve.

y �
ex � e�x

2x

y

5�5

5

10

y � ex � e�x

2

Z Figure 1
Catenary.

Solving an Exponential Equation

Given equation (1), find x for y � 2.5. Compute the answer to four decimal places.

SOLUTION

 e2x � 5ex � 1 � 0

 5ex � e2x � 1

 5 � ex � e�x

 2.5 �
ex � e�x

2

 y �
ex � e�x

2

EXAMPLE 4

Let y � 2.5.

Multiply both sides by 2.

Multiply both sides by ex.

Subtract 5ex from both sides.

This is a quadratic in ex.
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Let then

Note that the method produces exact solutions, an important consideration in certain
calculus applications (see Problems 61–64 of Exercises 5-5). �

 � �1.5668, 1.5668

 x � ln 
5 � 121

2

 ln ex � ln 
5 � 121

2

 ex �
5 � 121

2

 �
5 � 121

2

 u �
5 � 125 � 4(1)(1)

2

 u2 � 5u � 1 � 0

u � ex,

Use the quadratic formula.

Simplify.

Replace u with ex and solve for x.

Take the natural log of both sides 
(both values on the right are positive).

logb bx � x.

Exact solutions

Rounded to four decimal places.

MATCHED PROBLEM 4

Given find x for Compute the answer to three decimal
places. �

y � 1.5.y � (e 
x � e�x)�2,

Technology
Connections

Let y � e2x � 3ex � e�x

(A) Try to find x when y � 7 using the method of
Example 4. Explain the difficulty that arises.

(B) Use a graphing utility to find x when y � 7.

Z Logarithmic Equations

We now illustrate the solution of several types of logarithmic equations.
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Solving a Logarithmic Equation

Solve log (x � 3) � log x � 1, and check.

SOLUTION

First use properties of logarithms to express the left side as a single logarithm, then
convert to exponential form and solve for x.

log (x � 3) � log x � 1

log [x(x � 3)] � 1

x(x � 3) � 101

x2 � 3x � 10 � 0

(x � 5)(x � 2) � 0

x � �5, 2

CHECK

x � �5: log (�5 � 3) � log (�5) is not defined 
because the domain of the log function is 

x � 2: log (2 � 3) � log 2 � log 5 � log 2

Thus, the only solution to the original equation is x � 2. Remember, answers should
be checked in the original equation to see whether any should be discarded. �

� log (5 � 2) � log 10 �
✓

1

(0, �).

EXAMPLE 5

Combine left side using log M � log N � log MN.

Change to equivalent exponential form.

Write in ax2 � bx � c � 0 form and solve.

Factor.

If ab � 0, then a � 0 or b � 0.

MATCHED PROBLEM 5

Solve log (x � 15) � 2 � log x, and check. �

Solving a Logarithmic Equation

Solve (ln x)2 � ln x2.

SOLUTION

There are no logarithmic properties for simplifying (ln x)2. However, we can simplify
ln x2, obtaining an equation involving ln x and (ln x)2.

Checking that both x � 1 and x � e2 are solutions to the original equation is left
to you. �

 � 1  x � e2

 x � e0  ln x � 2

 ln x � 0  or   ln x � 2 � 0

 (ln x)(ln x � 2) � 0

 (ln x)2 � 2 ln x � 0

 (ln x)2 � 2 ln x

 (ln x)2 � ln x2

EXAMPLE 6

ln Mp � p ln M

This is a quadratic equation in ln x. Move all nonzero terms to the left.

Factor.

If ab � 0, then a � 0 or b � 0.
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MATCHED PROBLEM 6

Solve �log x2 � (log x)2.

ZZZ CAUTION ZZZ

Note that

(logb x)2 � logb x2
(logb x)2 � (logb x)(logb x)

logb x2 � 2 logb x

Earthquake Intensity

Recall from Section 5-4 that the magnitude of an earthquake on the Richter scale is
given by

Solve for E in terms of the other symbols.

SOLUTION

� E � E0103M�2

 
E

E0
� 103M�2

 log 

E

E0
�

3M

2

 M �
2

3
 log 

E

E0

M �
2

3
 log 

E

E0

EXAMPLE 7

MATCHED PROBLEM 7

Solve the rocket equation from Section 5-4 for in terms of the other symbols:

�v � c ln 
Wt

Wb

Wb

ANSWERS TO MATCHED PROBLEMS

1. 2. More than double in 9 years, but not quite double in 8 years
3. 9.9 miles 4. x � 1.195 5. x � 20 6. x � 1,100 7. Wb � Wt e�v�c

x � 0.2263

Multiply both sides by and switch sides.

Change to exponential form.

Multiply both sides by E0.

3
2
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In Problems 1–12, solve to three significant digits.

1. 2.

3. 4. 

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–18, solve exactly.

13. 14.

15. 

16.

17. 

18. 

In Problems 19–26, solve to three significant digits.

19. 20. 

21. 22. 

23. 24.

25. 26. 

In Problems 27–42, solve exactly.

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 1 � log (x � 2) � log (3x � 1)

log (2x � 1) � 1 � log (x � 1)

ln (x � 1) � ln (3x � 1) � ln x

ln x � ln (2x � 1) � ln (x � 2)

log (6x � 5) � log 3 � log 2 � log x

log x � log 5 � log 2 � log (x � 3)

log (x � 3) � log (6 � 4x)

log (5 � 2x) � log (3x � 1)

ex2

� 125e�x2

� 0.23

438 � 200e0.25x123 � 500e�0.12x

e0.32x � 0.47 � 0e�1.4x � 5 � 0

3 � 1.06x2 � 1.05x

log (2x � 1) � 1 � log (x � 2)

log (x � 1) � log (x � 1) � 1

log (x � 9) � log 100x � 3

log x � log (x � 3) � 1

log x � log 8 � 1log 5 � log x � 2

343�x � 0.089232�x � 0.426

3x � 2x�15x � 42x�1

13 � e3x�5 � 23e2x�1 � 68 � 207

e�x � 0.0142e 
x � 3.65

105x�2 � 348103x�1 � 92

10x � 14.310�x � 0.0347

35. 

36. 

37. 38. 

39. 40. 

41. 42. 

In Problems 43–52, find the x and y intercepts of each function
without graphing.

43. 44. 

45. 46. 

47. 48. 

49. 50. 

51. 

52. 

Solve Problems 53–60 for the indicated variable in terms of
the remaining symbols. Use the natural log for solving
exponential equations.

53. A � Pert for r (finance)

54. for t (finance)

55. for I (sound)

56. for A (decay)

57. for I (astronomy)

58. L � 8.8 � 5.1 log D for D (astronomy)

59. for t (circuitry)

60. for n (annuity)S � R 

(1 � i)n � 1

i

I �
E

R
 (1 � e�Rt�L)

M � 6 � 2.5 log 
I

I0

t �
�1

k
 (ln A � ln A0)

D � 10 log 
I

I0

A � P a1 �
r

n
bnt

m(x) � 1 � 2 log x � log (x � 1)

m(x) � log (x � 8) � log (2x � 1)

k(x) � log1�2 x � 7k(x) � log1�3 x � 5

h(x) � 34�x � 2h(x) � 2x�3 � 1

g(x) � �8 � ln (x � 3)g(x) � 2 � ln (x � 1)

f (x) � e3x � 5f (x) � 4 � ex�2

3log x � 3xxlog x � 100x

log (log x) � 1ln (ln x) � 1

(log x)3 � log x4(ln x)3 � ln x4

1 � ln (x � 1) � ln (x � 1)

ln (x � 1) � ln (3x � 3)

 

bar67388_ch05_511-518  11/30/06  21:34  Page 517



518 C H A P T E R  5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

CA

The following combinations of exponential functions define
four of six hyperbolic functions, an important class of
functions in calculus and higher mathematics. Solve Problems
61–64 for x in terms of y. The results are used to define inverse

hyperbolic functions, another important class of functions in
calculus and higher mathematics.

61. 62. 

63. 64. 

In Problems 65–76, use a graphing utility to approximate to
two decimal places any solutions of the equation in the interval
0 	 x 	 1. None of these equations can be solved exactly
using any step-by-step algebraic process.

65. 66. 

67. 68. 

69. 70. 

71. 72.

73. 74. 

75. 76. 

APPLICATIONS
77. COMPOUND INTEREST How many years, to the nearest
year, will it take a sum of money to double if it is invested at 7%
compounded annually?

78. COMPOUND INTEREST How many years, to the nearest
year, will it take money to quadruple if it is invested at 6% com-
pounded annually?

79. COMPOUND INTEREST At what annual rate compounded
continuously will $1,000 have to be invested to amount to $2,500
in 10 years? Compute the answer to three significant digits.

80. COMPOUND INTEREST How many years will it take $5,000
to amount to $8,000 if it is invested at an annual rate of 9% com-
pounded continuously? Compute the answer to three significant
digits.

81. WORLD POPULATION A mathematical model for world
population growth over short periods is given by

P � P0ert

where P is the population after t years, P0 is the population at
t � 0, and the population is assumed to grow continuously at the
annual rate r. How many years, to the nearest year, will it take
the world population to double if it grows continuously at an
annual rate of 1.14%?

ln x � x � 0ln x � e 
x � 0

ln x � x2 � 0ln x � 2x � 0

e�x � 2x � 0xex � 2 � 0

xe2x � 1 � 0e�x � x � 0

x2x � 1 � 0x3x � 1 � 0

3�x � 3x � 02�x � 2x � 0

y �
e 

x � e�x

e 
x � e�xy �

e 
x � e�x

e 
x � e�x

y �
e 

x � e�x

2
y �

e 
x � e�x

2

★82. WORLD POPULATION Refer to Problem 81. Starting with a
world population of 6.5 billion people and assuming that the
population grows continuously at an annual rate of 1.14%, how
many years, to the nearest year, will it be before there is only
1 square yard of land per person? Earth contains approximately

square yards of land.

★83. ARCHAEOLOGY—CARBON-14 DATING As long as a plant
or animal is alive, carbon-14 is maintained in a constant amount
in its tissues. Once dead, however, the plant or animal ceases
taking in carbon, and carbon-14 diminishes by radioactive de-
cay according to the equation

A � A0e�0.000124t

where A is the amount after t years and A0 is the amount when
t � 0. Estimate the age of a skull uncovered in an archaeologi-
cal site if 10% of the original amount of carbon-14 is still pres-
ent. Compute the answer to three significant digits.

★84. ARCHAEOLOGY—CARBON-14 DATING Refer to Problem 83.
What is the half-life of carbon-14? That is, how long will it take
for half of a sample of carbon-14 to decay? Compute the answer
to three significant digits.

★85. PHOTOGRAPHY An electronic flash unit for a camera is
activated when a capacitor is discharged through a filament of
wire. After the flash is triggered and the capacitor is discharged,
the circuit (see the figure) is connected and the battery pack
generates a current to recharge the capacitor. The time it takes
for the capacitor to recharge is called the recycle time. For a
particular flash unit using a 12-volt battery pack, the charge q,
in coulombs, on the capacitor t seconds after recharging has
started is given by

q � 0.0009(1 � e�0.2t)

How many seconds will it take the capacitor to reach a charge
of 0.0007 coulomb? Compute the answer to three significant
digits.

★86. ADVERTISING A company is trying to expose as many peo-
ple as possible to a new product through television advertising
in a large metropolitan area with 2 million possible viewers. A
model for the number of people N, in millions, who are aware of
the product after t days of advertising was found to be

N � 2(1 – e�0.037t)

How many days, to the nearest day, will the advertising cam-
paign have to last so that 80% of the possible viewers will be
aware of the product?

I

R

V

C

S

1.7 
 1014
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5-1 Exponential Functions

The equation f(x) � bx, b � 0, b � 1, defines an exponential
function with base b. The domain of f is (��, �) and the range
is (0, �). The graph of f is a continuous curve that has no sharp
corners; passes through (0, 1); lies above the x axis, which is a
horizontal asymptote; increases as x increases if b � 1; de-
creases as x increases if b � 1; and intersects any horizontal line
at most once. The function f is one-to-one and has an inverse.
We have the following exponential function properties:

1. axay � ax�y (ax)y � axy (ab)x � axbx

2. ax � ay if and only if x � y.

3. For x � 0, ax � bx if and only if a � b.

As x approaches �, the expression [1 � (1�x)]x approaches
the irrational number e � 2.718 281 828 459. The function
f(x) � ex is called the exponential function with base e. The
growth of money in an account paying compound interest is
described by A � P(1 � r�m)n, where P is the principal, r is
the annual rate, m is the number of compounding periods in
1 year, and A is the amount in the account after n compounding
periods.

If the account pays continuous compound interest, the
amount A in the account after t years is given by A � Pert.

ax

ay � ax�yaa

b
bx

�
ax

bx

5-2 Exponential Models

Exponential functions are used to model various types of growth
(see Table 3 on p. 483):

1. Population growth can be modeled by using the doubling
time growth model P � P02t�d, where P is population at
time t. P0 is the population at time t � 0, and d is the
doubling time—the time it takes for the population to
double. Another model of population growth, y � cekt,
where c and k are positive constants, uses the exponential
function with base e; k is the relative growth rate.

2. Radioactive decay can be modeled by using the half-life
decay model where A is the
amount at time t, A0 is the amount at time t � 0, and h is the
half-life—the time it takes for half the material to decay.
Another model of radioactive decay, y � ce�kt, where c and
k are positive constants, uses the exponential function with
base e.

3. Limited growth—the growth of a company or proficiency
at learning a skill, for example—can often be modeled by
the equation y � c(1 � e�kt), where c and k are positive
constants.

4. Logistic growth—the spread of an epidemic or sales of a
new product, for example—can often be modeled by the
equation y � M�(1 � ce�kt) where c, k, and M are positive
constants.

A � A0(1
2)

t	h � A02�t	h,
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★★87. NEWTON’S LAW OF COOLING This law states that the rate
at which an object cools is proportional to the difference in tem-
perature between the object and its surrounding medium. The
temperature T of the object t hours later is given by

T � Tm � (T0 � Tm)e�kt

where Tm is the temperature of the surrounding medium and
T0 is the temperature of the object at t � 0. Suppose a bottle of
wine at a room temperature of is placed in a refrigerator at

to cool before a dinner party. After an hour the temperature
of the wine is found to be Find the constant k, to two
decimal places, and the time, to one decimal place, it will take
the wine to cool from 72 to 50°F.

61.5°F.
40°F

72°F

★88. MARINE BIOLOGY Marine life is dependent upon the mi-
croscopic plant life that exists in the photic zone, a zone that
goes to a depth where about 1% of the surface light still re-
mains. Light intensity is reduced according to the exponential
function

I � I0e�kd

where I is the intensity d feet below the surface and I0 is the in-
tensity at the surface. The constant k is called the coefficient of
extinction. At Crystal Lake in Wisconsin it was found that half
the surface light remained at a depth of 14.3 feet. Find k, and
find the depth of the photic zone. Compute answers to three
significant digits.
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5-3 Logarithmic Functions

The logarithmic function with base b is defined to be the in-
verse of the exponential function with base b and is denoted by
y � logbx. Thus, y � logbx if and only if x � by, b � 0, b � 1.
The domain of a logarithmic function is (0, �) and the range is
(��, �). The graph of a logarithmic function is a continuous
curve that always passes through the point (1, 0) and has the
y axis as a vertical asymptote. We have the following properties
of logarithmic functions:

1. logb 1 � 0

2. logb b � 1

3. logb bx � x

4. blogbx � x, x � 0

5. logb MN � logb M � logb N

6.

7. logb Mp � p logb M

8. logb M � logb N if and only if M � N

Logarithms to the base 10 are called common logarithms
and are denoted by log x. Logarithms to the base e are called
natural logarithms and are denoted by ln x. Thus, log x � y is
equivalent to x � 10 y, and ln x � y is equivalent to x � ey.

logb 
M

N
� logb M � logb N

The change-of-base formula, logb N � (loga N)�(loga b),
relates logarithms to two different bases and can be used, along
with a calculator, to evaluate logarithms to bases other than e or 10.

5-4 Logarithmic Models

The following applications involve logarithmic functions:

1. The decibel is defined by D � 10 log (I�I0), where D is the
decibel level of the sound I is the intensity of the sound,
and I0 � 10�12 watts per square meter is a standardized
sound level.

2. The magnitude M of an earthquake on the Richter scale is
given by where E is the energy released
by the earthquake and E0 � 104.40 joules is a standardized
energy level.

3. The velocity v of a rocket at burnout is given by the rocket
equation v � c ln (Wt�Wb), where c is the exhaust velocity,
Wt is the takeoff weight, and Wb is the burnout weight.

Logarithmic regression is used to fit a function of the form
y � a � b ln x to a set of data points.

5-5 Exponential and Logarithmic Equations

Various techniques for solving exponential equations, such as
23x�2 � 5, and logarithmic equations, such as log (x � 3) �
log x � 1, are illustrated by examples.

M � 2
3 log (E	E0),
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Work through all the problems in this chapter review and
check answers in the back of the book. Answers to all review
problems are there, and following each answer is a number in
italics indicating the section in which that type of problem is
discussed. Where weaknesses show up, review appropriate
sections in the text.

1. Match each equation with the graph of f, g, m, or n in the
figure.
(A) y � log2 x (B) y � 0.5x

(C) y � log0.5 x (D) y � 2x

�3

�4.5

3

4.5

f g

m

n

2. Write in logarithmic form using base 10: m � 10n.

3. Write in logarithmic form using base e: x � ey.

Write Problems 4 and 5 in exponential form.

4. log x � y 5. ln y � x

In Problems 6 and 7, simplify.

6. 7.

Solve Problems 8–10 for x exactly. Do not use a calculator or
table.

8. log2 x � 3 9. logx 25 � 2 10. log3 27 � x

a e 
x

e�xb
x7x�2

72�x
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Solve Problems 11–14 for x to three significant digits.

11. 10x � 17.5 12. ex � 143,000

13. ln x � �0.015 73 14. log x � 2.013

Evaluate Problems 15–18 to four significant digits using a
calculator.

15. ln 
 16. log (�e)

17. 
ln 2 18. 

Solve Problems 19–29 for x exactly. Do not use a calculator or
table.

19. ln (2x � 1) � ln (x � 3)

20. log (x2 � 3) � 2 log (x � 1)

21. ex2�3 � e2x 22. 4x�1 � 21�x

23. 2x2e�x � 18e�x 24. log1�4 16 � x

25. logx 9 � �2 26.

27. logx e5 � 5 28. 10log10x � 33

29. ln x � 0

Solve Problems 30–39 for x to three significant digits.

30. x � 2(101.32) 31. x � log5 23

32. ln x � �3.218 33. x � log (2.156 � 10�7)

34. 35. 25 � 5(2x)

36. 4,000 � 2,500(e0.12x) 37. 0.01 � e�0.05x

38. 52x�3 � 7.08 39.

Solve Problems 40–45 for x exactly. Do not use a calculator.

40. log 3x2 � log 9x � 2

41. log x � log 3 � log 4 � log (x � 4)

42. ln (x � 3) � ln x � 2 ln 2

43. ln (2x � 1) � ln (x � 1) � ln x

44. (log x)3 � log x9 45. ln (log x) � 1

In Problems 46 and 47, simplify.

46. (ex � 1)(e�x � 1) � ex(e�x � 1)

47. (ex � e�x)(ex � e�x) � (ex � e�x)2

ex � e�x

2
� 1

x �
ln 4

ln 2.31

log16 x � 3
2

e
 � e�


2

In Problems 48–51, use transformations to explain how the
graph of g is related to the graph of the given logarithmic
function f. Determine whether g is increasing or decreasing,
find its domain and any asymptotes, and sketch the graph of g.

48.

49. g(x) � 2ex � 4; f(x) � ex

50. g(x) � �2 � log4 x; f(x) � log4 x

51. g(x) � 1 � 2 log1�3 x; f(x) � log1�3 x

52. If the graph of y � ex is reflected in the line y � x, the graph
of the function y � ln x is obtained. Discuss the functions
that are obtained by reflecting the graph of y � ex in the
x axis and the y axis.

53. (A) Explain why the equation e�x�3 � 4 ln (x � 1) has ex-
actly one solution.

(B) Find the solution of the equation to three decimal places.

54. Approximate all real zeros of f(x) � 4 � x2 � ln x to three
decimal places.

55. Find the coordinates of the points of intersection of
f(x) � 10x�3 and g(x) � 8 log x to three decimal places.

Solve Problems 56–59 for the indicated variable in terms of the
remaining symbols.

56. for I (sound intensity)

57. for x (probability)

58. for I (X-ray intensity)

59. for n (finance)

60. Write ln y � �5i � ln c in an exponential form free of log-
arithms; then solve for y in terms of the remaining symbols.

61. For graph f and on the same
coordinate system. What are the domains and ranges for 
f and 

62. Explain why 1 cannot be used as a logarithmic base.

63. Prove that logb (M�N) � logb M � logb N.

APPLICATIONS
64. POPULATION GROWTH Many countries have a population
growth rate of 3% (or more) per year. At this rate, how many
years will it take a population to double? Use the annual com-
pounding growth model P � P0(1 � r)t. Compute the answer to
three significant digits.

f  
�1?

f  
�1f � 5(x, y) �  y � log2 x6,

r � P 
i

1 � (1 � i)�n

x � �
1

k
 ln 

I

I0

y �
112


 e�x2	2

D � 10 log 
I

I0

g (x) � 3 � 1
3 2

x; f (x) � 2x
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65. POPULATION GROWTH Repeat Problem 64 using the con-
tinuous compounding growth model P � P0ert.

66. CARBON 14-DATING How many years will it take for
carbon-14 to diminish to 1% of the original amount after the death
of a plant or animal? Use the formula A � A0e�0.000124t. Compute
the answer to three significant digits.

*67. MEDICINE One leukemic cell injected into a healthy mouse
will divide into two cells in about At the end of the day
these two cells will divide into four. This doubling continues
until 1 billion cells are formed; then the animal dies with leukemic
cells in every part of the body.
(A) Write an equation that will give the number N of leukemic
cells at the end of t days.
(B) When, to the nearest day, will the mouse die?

68. MONEY GROWTH Assume $1 had been invested at an an-
nual rate 3% compounded continuously at the birth of Christ.
What would be the value of the account in the year 2000? Com-
pute the answer to two significant digits.

69. PRESENT VALUE Solving A � Pert for P, we obtain
P � Ae�rt, which is the present value of the amount A due in
t years if money is invested at a rate r compounded continuously.
(A) Graph P � 1,000(e�0.08t), 0 
 t 
 30.
(B) What does it appear that P tends to as t tends to infinity?
[Conclusion: The longer the time until the amount A is due, the
smaller its present value, as we would expect.]

70. EARTHQUAKES The 1971 San Fernando, California, earth-
quake released 1.99 � 1014 joules of energy. Compute its mag-
nitude on the Richter scale using the formula 
where E0 � 104.40 joules. Compute the answer to one decimal
place.

71. EARTHQUAKES Refer to Problem 70. If the 1906 San
Francisco earthquake had a magnitude of 8.3 on the Richter
scale, how much energy was released? Compute the answer to
three significant digits.

*72. SOUND If the intensity of a sound from one source is
100,000 times that of another, how much more is the decibel
level of the louder sound than the softer one? Use the formula
D � 10 log (I�I0).

**73. MARINE BIOLOGY The intensity of light entering water is
reduced according to the exponential function

where I is the intensity d feet below the surface, I0 is the
intensity at the surface, and k is the coefficient of extinction.

I � I0e�kd

M � 2
3 log (E	E0),

1
2 day.

Measurements in the Sargasso Sea in the West Indies have indi-
cated that half the surface light reaches a depth of 73.6 feet.
Find k, and find the depth at which 1% of the surface light
remains. Compute answers to three significant digits.

*74. WILDLIFE MANAGEMENT A lake formed by a newly con-
structed dam is stocked with 1,000 fish. Their population is
expected to increase according to the logistic curve

where N is the number of fish, in thousands, expected after
t years. The lake will be open to fishing when the number of fish
reaches 20,000. How many years, to the nearest year, will this
take?

Problems 75 and 76 require a graphing calculator or a
computer that can calculate exponential and logarithmic
regression models for a given data set.

75. MEDICARE The annual expenditures for Medicare (in bil-
lions of dollars) by the U.S. government for selected years since
1980 are shown in Table 1 (Bureau of the Census). Let x repre-
sent years since 1975.
(A) Find an exponential regression model of the form y � abx

for these data. Estimate (to the nearest billion) the total expen-
ditures in 2010.
(B) When (to the nearest year) will the total expenditures reach
$500 billion?

Table 1 Medicare Expenditures

Year Billion $

1980 37

1985 72

1990 111

1995 181

2000 225

Source: U.S. Census Bureau.

76. (A) Refer to Problem 75. Find a logarithmic regression
model of the form y � a � b ln x for the data in Table 1. Use the
model to estimate the total Medicare expenditures in 2010.
(B) Which regression model, exponential or logarithmic, better
fits the data? Justify your answer.

N �
30

1 � 29e�1.35x
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CHAPTER 5

ZZZ GROUP ACTIVITY Comparing Regression Models

We have used polynomial, exponential, and logarithmic regression models to fit curves to data sets. How can we
determine which equation provides the best fit for a given set of data? There are two principal ways to select mod-
els. The first is to use information about the type of data to help make a choice. For example, we expect the weight
of a fish to be related to the cube of its length. And we expect most populations to grow exponentially, at least over
the short term. The second method for choosing among equations involves developing a measure of how closely
an equation fits a given data set. This is best introduced through an example. Consider the data set in Figure 1,
where L1 represents the x coordinates and L2 represents the y coordinates. The graph of this data set is shown in
Figure 2. Suppose we arbitrarily choose the equation y1 � 0.6x � 1 to model these data (Fig. 3).

Z Figure 1

Z Figure 4 Z Figure 5 Here � is L2 and � is L3.

Z Figure 2 Z Figure 3 y1 � 0.6x � 1.

0

0

10

10

0

0

10

10

To measure how well the graph of y1 fits these data, we examine the difference between the y coordinates in
the data set and the corresponding y coordinates on the graph of y1 (L3 in Figs. 4 and 5).

0

0

10

10

Each of these differences is called a residual. Note that three of the residuals are positive and one is negative
(three of the points lie above the line, one lies below). The most commonly accepted measure of the fit provided
by a given model is the sum of the squares of the residuals (SSR). When squared, each residual (whether pos-
itive or negative or zero) makes a nonnegative contribution to the SSR.

 � 9.8

 � (1.8)2 � (1.6)2 � (�1.6)2 � (1.2)2

 SSR � (4 � 2.2)2 � (5 � 3.4)2 � (3 � 4.6)2 � (7 � 5.8)2
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(A) A linear regression model for the data in Figure 1 is given by

Compute the SSR for the data and y2, and compare it to the one we computed for y1.
It turns out that among all possible linear polynomials, the linear regression model minimizes the sum

of the squares of the residuals. For this reason, the linear regression model is often called the least-squares
line. A similar statement can be made for polynomials of any fixed degree. That is, the quadratic regression
model minimizes the SSR over all quadratic polynomials, the cubic regression model minimizes the SSR
over all cubic polynomials, and so on. The same statement cannot be made for exponential or logarithmic
regression models. Nevertheless, the SSR can still be used to compare exponential, logarithmic, and
polynomial models.

(B) Find the exponential and logarithmic regression models for the data in Figure 1, compute their SSRs, and
compare with the linear model.

(C) National annual advertising expenditures for selected years since 1950 are shown in Table 1 where x is years
since 1950 and y is total expenditures in billions of dollars. Which regression model would fit this data best:
a quadratic model, a cubic model, or an exponential model? Use the SSRs to support your choice.

y2 � 0.35x � 3

Technology
Connections

Calculating the SSR for a data set and model in-
volves only basic arithmetic. But a graphing calcu-

lator makes the computation especially easy (see
Fig. 6)

Z Figure 6 Two ways to calculate SSR.

Table 1 Annual Advertising Expenditures, 1950–2000

x (years) 0 10 20 30 40 50

y (billion $) 5.7 12.0 19.6 53.6 128.6 247.5

Source: U.S. Bureau of the Census.
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Work through all the problems in this cumulative review and
check answers in the back of the book. Answers to all review
problems are there, and following each answer is a number in
italics indicating the section in which that type of problem is
discussed. Where weaknesses show up, review appropriate
sections in the text.

1. Let P(x) be the polynomial whose graph is shown in the
figure.
(A) Assuming that P(x) has integer zeros and leading coef-

ficient 1, find the lowest-degree equation that could
produce this graph.

(B) Describe the left and right behavior of P(x).

2. Match each equation with the graph of f, g, m, or n in the
figure.
(A) (B) 
(C) (D) 

3. For P(x) � 3x3 � 5x2 � 18x � 3 and D(x) � x � 3, use
synthetic division to divide P(x) by D(x), and write the an-
swer in the form P(x) � D(x)Q(x) � R.

4. Let P(x) � 2(x � 2)(x � 3)(x � 5). What are the zeros of
P(x)?

5. Let P(x) � 4x3 � 5x2 � 3x � 1. How do you know that
P(x) has at least one real zero between 1 and 2?

�3

�4.5

3

4.5

m

f

n

g

y � (4
3)

x � (3
4)

xy � (3
4)

x � (4
3)

x
y � (4

3)
xy � (3

4)
x

x

�5

5�5

5

P(x)

6. Let P(x) � x3 � x2 � 10x � 8. Find all rational zeros for
P(x).

7. Solve for x.
(A) y � 10x (B) y � ln x

8. Simplify.

(A) (2ex)3 (B) 

9. Solve for x exactly. Do not use a calculator or a table.
(A) log3 x � 2
(B) log3 81 � x
(C) logx 4 � �2

10. Solve for x to three significant digits.
(A) 10x � 2.35 (B) ex � 87,500
(C) log x � �1.25 (D) ln x � 2.75

In Problems 11 and 12, translate each statement into an
equation using k as the constant of proportionality.

11. E varies directly as p and inversely as the cube of x.

12. F is jointly proportional to q1 and q2 and inversely propor-
tional to the square of r.

13. Explain why the graph in the figure is not the graph of a
polynomial function.

14. Explain why the graph in the figure is not the graph of a ra-
tional function.

15. The function f subtracts the square root of the domain
element from three times the natural log of the domain ele-
ment. Write an algebraic definition of f.

16. Write a verbal description of the function f (x) �
100e0.5x � 50.

x

y

�5

5�5

5

e3x

e�2x
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17. Let 

(A) Find the domain and the intercepts for f.
(B) Find the vertical and horizontal asymptotes for f.
(C) Sketch the graph of f. Draw vertical and horizontal as-

ymptotes with dashed lines.

18. Find all zeros of P(x) � (x3 � 4x)(x � 4), and specify
those zeros that are x intercepts.

19. Solve (x3 � 4x)(x � 4) 
 0.

20. If P(x) � 2x3 � 5x2 � 3x � 2, find using the remain-
der theorem and synthetic division.

21. Which of the following is a factor of

(A) x � 1 (B) x � 1

22. Let P(x) � x4 � 8x2 � 3.
(A) Graph P(x) and describe the graph verbally, including

the number of x intercepts, the number of turning
points, and the left and right behavior.

(B) Approximate the largest x intercept to two decimal places.

23. Let P(x) � x5 � 8x4 � 17x3 � 2x2 � 20x � 8.
(A) Approximate the zeros of P(x) to two decimal places

and state the multiplicity of each zero.
(B) Can any of these zeros be approximated with the bisec-

tion method? A maximum routine? A minimum rou-
tine? Explain.

24. Let P(x) � x4 � 2x3 � 20x2 � 30.
(A) Find the smallest positive and largest negative integers

that, by Theorem 1 in Section 4-2, are upper and lower
bounds, respectively, for the real zeros of P(x).

(B) If (k, k � 1), k an integer, is the interval containing the
largest real zero of P(x), determine how many addi-
tional intervals are required in the bisection method to
approximate this zero to one decimal place.

(C) Approximate the real zeros of P(x) to two decimal places.

25. Find all zeros (rational, irrational, and imaginary) exactly
for P(x) � 4x3 � 20x2 � 29x � 15.

26. Final all zeros (rational, irrational, and imaginary) exactly
for P(x) � x4 � 5x3 � x2 � 15x � 12, and factor P(x) into
linear factors.

Solve Problems 27–36 for x exactly. Do not use a calculator or
a table.

27. 2x2

� 4x�4 28. 2x2e�x � xe�x � e�x

29. eln x � 2.5 30. logx 104 � 4

31. log9 x � �3
2

P(x) � x25 � x20 � x15 � x10 � x5 � 1

P(1
2)

f (x) �
2x � 8

x � 2
.

32. ln (x � 4) � ln (x � 4) � 2 ln 3

33. ln (2x2 � 2) � 2 ln (2x � 4)

34. log x � log (x � 15) � 2

35. log (ln x) � �1 36. 4 (ln x)2 � ln x2

Solve Problems 37–41 for x to three significant digits.

37. x � log3 41 38. ln x � 1.45

39. 4(2 x) � 20 40. 10e�0.5x � 1.6

41.

42. G is directly proportional to the square of x. If G � 10 when
x � 5, find G when x � 7.

43. H varies inversely as the cube of r. If H � 162 when r � 2,
find H when r � 3.

In Problems 44–50, find the domain, range, and the equations
of any horizontal or vertical asymptotes.

44. f(x) � 3 � 2x

45. f(x) � 2 � log3 (x � 1)

46. f(x) � 5 � 4x3

47. f(x) � 3 � 2x4

48.

49. f(x) � 20e�x � 15

50. f(x) � 8 � ln (x � 2)

51. If the graph of y � ln x is reflected in the line y � x, the
graph of the function y � ex is obtained. Discuss the func-
tions that are obtained by reflecting the graph of y � ln x in
the x axis and in the y axis.

52. (A) Explain why the equation e�x � ln x has exactly one
solution.

(B) Approximate the solution of the equation to two
decimal places.

In Problems 53 and 54, factor each polynomial in two ways:
(A) As a product of linear factors (with real coefficients) and
quadratic factors (with real coefficients and imaginary zeros)
(B) As a product of linear factors with complex coefficients

53. P(x) � x4 � 9x2 � 18

54. P(x) � x4 � 23x2 � 50

f (x) �
5

x � 3

e 
x � e�x

e 
x � e�x �

1

2
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55. Graph f and indicate any horizontal, vertical, or oblique
asymptotes with dashed lines:

56. Let P(x) � x4 � 28x3 � 262x2 � 922x � 1.083. Approxi-
mate (to two decimal places) the x intercepts and the local
extrema.

57. Find a polynomial of lowest degree with leading coefficient
1 that has zeros �1 (multiplicity 2), 0 (multiplicity 3),
3 � 5i, and 3 � 5i. Leave the answer in factored form.
What is the degree of the polynomial?

58. If P(x) is a fourth-degree polynomial with integer coefficients
and if i is a zero of P(x), can P(x) have any irrational zeros?
Explain.

59. Let P(x) � x4 � 9x3 � 500x2 � 20,000.
(A) Find the smallest positive integer multiple of 10 and the

largest negative integer multiple of 10 that, by Theorem
1 in Section 4-2, are upper and lower bounds, respec-
tively, for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal places.

60. Find all zeros (rational, irrational, and imaginary) exactly
for

P(x) � x5 � 4x4 � 3x3 � 10x2 � 10x � 12

and factor P(x) into linear factors.

61. Find rational roots exactly and irrational roots to two deci-
mal places for

P(x) � x5 � 4x4 � x3 � 11x2 � 8x � 4

62. Give an example of a rational function f(x) that satisfies the
following conditions: the real zeros of f are 5 and 8; x � 1
is the only vertical asymptote; and the line y � 3 is a hori-
zontal asymptote.

63. Use natural logarithms to solve for n.

64. Solve ln y � 5x � ln A for y. Express the answer in a form
that is free of logarithms.

65. Solve for x.

66. Solve 
x3 � x

x3 � 8
� 0.

y �
ex � 2e�x

2

A � P 

(1 � i)n � 1

i

f (x) �
x2 � 4x � 8

x � 2

67. Solve (to three decimal places)

APPLICATIONS
68. SHIPPING A mailing service provides customers with
rectangular shipping containers. The length plus the girth of one
of these containers is 10 feet (see the figure). If the end of
the container is square and the volume is 8 cubic feet, find the
side length of the end. Find solutions exactly; round irrational
solutions to two decimal places.

69. GEOMETRY The diagonal of a rectangle is 2 feet longer than
one of the sides, and the area of the rectangle is 6 square feet.
Find the dimensions of the rectangle to two decimal places.

70. POPULATION GROWTH If the Democratic Republic of the
Congo has a population of about 60 million people and a dou-
bling time of 23 years, find the population in
(A) 5 years (B) 30 years

Compute answers to three significant digits.

71. COMPOUND INTEREST How long will it take money
invested in an account earning 7% compounded annually to
double? Use the annual compounding growth model
P � P0(1 � r)t, and compute the answer to three significant
digits.

72. COMPOUND INTEREST Repeat Problem 71 using the con-
tinuous compound interest model P � P0ert.

73. EARTHQUAKES If the 1906 and 1989 San Francisco earth-
quakes registered 8.3 and 7.1, respectively, on the Richter scale,
how many times more powerful was the 1906 earthquake than
the 1989 earthquake? Use the formula where
E0 � 104.40 joules, and compute the answer to one decimal place.

74. SOUND If the decibel level at a rock concert is 88, find
the intensity of the sound at the concert. Use the formula
D � 10 log (I�I0), where I0 � 10�12 watts per square meter, and
compute the answer to two significant digits.

M � 2
3 log (E	E0),

Length

x

x
y

Girth

4x

x2 � 1
6 3
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75. ASTRONOMY The square of the time t required for a planet
to make one orbit around the sun varies directly as the cube of
its mean (average) distance d from the sun. Write the equation
of variation, using k as the constant of variation.

★76. PHYSICS Atoms and molecules that make up the air con-
stantly fly about like microscopic missiles. The velocity v of a
particular particle at a fixed temperature varies inversely as the
square root of its molecular weight w. If an oxygen molecule in
air at room temperature has an average velocity of 0.3 mile/second,
what will be the average velocity of a hydrogen molecule, given
that the hydrogen molecule is one-sixteenth as heavy as the
oxygen molecule?

Problems 77 and 78 require a graphing calculator or a
computer that can calculate linear, quadratic, cubic, and
exponential regression models for a given data set.

77. Table 1 shows the life expectancy (in years) at birth for res-
idents of the United States from 1970 to 2000. Let x represent
years since 1970. Use the indicated regression model to esti-
mate the life expectancy (to the nearest tenth of a year) for a
U.S. resident born in 2010.
(A) Linear regression (B) Quadratic regression
(C) Cubic regression (D) Exponential regression

Table 1

Year Life Expectancy

1970 70.8

1975 72.6

1980 73.7

1985 74.7

1990 75.4

1995 75.9

2000 77.0

Source: U.S Census Bureau.

78. Refer to Problem 77. The Census Bureau projected the life
expectancy for a U.S. resident born in 2010 to be 77.6 years.
Which of the models in Problem 77 is closest to the Census
Bureau projection?
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