Data Structures
& Algorithms

SECOND EDITION

MicHAEL T. GoobricH * RoBerTo TAMASSIA * DaviD MounTt

This page intentionally left blank

Data Structures and
Algorithms in C++

Second Edition

This page intentionally left blank

Data Structures and
Algorithms in C++

Second Edition

Michael T. Goodrich

Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science
Brown University

David M. Mount

Department of Computer Science
University of Maryland

John Wiley & Sons, Inc.

ACQUISITIONS EDITOR Beth Lang Golub

MARKETING MANAGER Chris Ruel
EDITORIAL ASSISTANT Elizabeth Mills
MEDIA EDITOR Thomas Kulesa
SENIOR DESIGNER Jim O’Shea
CONTENT MANAGER Micheline Frederick
PRODUCTION EDITOR Amy Weintraub
PHOTO EDITOR Sheena Goldstein

This book was set in IATEX by the authors and printed and bound by Malloy Lithographers.
The cover was printed by Malloy Lithographers. The cover image is from Wuta Wuta Tjan-
gala, “Emu dreaming” (©) estate of the artist 2009 licensed by Aboriginal Artists Agency.
Jennifer Steele/Art Resource, NY.

This book is printed on acid free paper. oo

Trademark Acknowledgments: Java is a trademark of Sun Microsystems, Inc. UNIX® is
a registered trademark in the United States and other countries, licensed through X/Open
Company, Ltd. PowerPoint® is a trademark of Microsoft Corporation. All other product
names mentioned herein are the trademarks of their respective owners.

Copyright (©) 2011, John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax (978)646-8600.

Requests to the Publisher for permission should be addressed to the Permissions Depart-
ment, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)748-6011, fax
(201)748-6008, E-Mail: PERMREQ@WILEY . COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and
understanding for more than 200 years, helping people around the world meet their needs
and fulfill their aspirations. Our company is built on a foundation of principles that include
responsibility to the communities we serve and where we live and work. In 2008, we
launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we
are addressing are carbon impact, paper specifications and procurement, ethical conduct
within our business and among our vendors, and community and charitable support. For
more information, please visit our website: www.wiley.com/go/citizenship.

Library of Congress Cataloging in Publication Data
ISBN-13 978-0-470-38327-8

Printed in the United States of America

10987654321

www.wiley.com/go/citizenship

To Karen, Paul, Anna, and Jack
— Michael T. Goodrich

To Isabel
— Roberto Tamassia

To Jeanine
— David M. Mount

This page intentionally left blank

Preface

This second edition of Data Structures and Algorithms in C++ is designed to pro-
vide an introduction to data structures and algorithms, including their design, analy-
sis, and implementation. In terms of curricula based on the IEEE/ACM 2001 Com-
puting Curriculum, this book is appropriate for use in the courses CS102 (I/O/B
versions), CS103 (I/0/B versions), CS111 (A version), and CS112 (A/I/O/F/H ver-
sions). We discuss its use for such courses in more detail later in this preface.

The major changes in the second edition are the following:

We added more examples of data structure and algorithm analysis.

We enhanced consistency with the C++ Standard Template Library (STL).

We incorporated STL data structures into many of our data structures.

We added a chapter on arrays, linked lists, and iterators (Chapter 3).

We added a chapter on memory management and B-trees (Chapter 14).

We enhanced the discussion of algorithmic design techniques, like dynamic

programming and the greedy method.

We simplified and reorganized the presentation of code fragments.

e We have introduced STL-style iterators into our container classes, and have
presented C++ implementations for these iterators, even for complex struc-
tures such as hash tables and binary search trees.

e We have modified our priority-queue interface to use STL-style comparator
objects.

e We expanded and revised exercises, continuing our approach of dividing

them into reinforcement, creativity, and project exercises.

This book is related to the following books:

e M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java,
John Wiley & Sons, Inc. This book has a similar overall structure to the
present book, but uses Java as the underlying language (with some modest,
but necessary pedagogical differences required by this approach).

e M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis,
and Internet Examples, John Wiley & Sons, Inc. This is a textbook for a more
advanced algorithms and data structures course, such as CS210 (T/W/C/S
versions) in the IEEE/ACM 2001 curriculum.

While this book retains the same pedagogical approach and general structure
as Data Structures and Algorithms in Java, the code fragments have been com-
pletely redesigned. We have been careful to make full use of C++’s capabilities and
design code in a manner that is consistent with modern C++ usage. In particular,
whenever appropriate, we make extensive use of C++ elements that are not part of
Java, including the C++ Standard Template Library (STL), C++ memory allocation

vii

viii Preface

and deallocation (and the associated issues of destructors), virtual functions, stream
input and output, operator overloading, and C++’s safe run-time casting.

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as a
vital subject in computing, because the study of data structures is part of the core
of every collegiate computer science and computer engineering major program we
are familiar with. Typically, the introductory courses are presented as a two- or
three-course sequence. Elementary data structures are often briefly introduced in
the first programming course or in an introduction to computer science course and
this is followed by a more in-depth introduction to data structures in the courses that
follow after this. Furthermore, this course sequence is typically followed at a later
point in the curriculum by a more in-depth study of data structures and algorithms.
We feel that the central role of data structure design and analysis in the curriculum
is fully justified, given the importance of efficient data structures in most software
systems, including the Web, operating systems, databases, compilers, and scientific
simulation systems.

With the emergence of the object-oriented paradigm as the framework of choice
for building robust and reusable software, we have tried to take a consistent object-
oriented viewpoint throughout this text. One of the main ideas behind the object-
oriented approach is that data should be presented as being encapsulated with the
methods that access and modify them. That is, rather than simply viewing data
as a collection of bytes and addresses, we think of data objects as instances of an
abstract data type (ADT), which includes a repertoire of methods for performing
operations on data objects of this type. Likewise, object-oriented solutions are often
organized utilizing common design patterns, which facilitate software reuse and
robustness. Thus, we present each data structure using ADTs and their respective
implementations and we introduce important design patterns as a way to organize
those implementations into classes, methods, and objects.

For most of the ADTs presented in this book, we provide a description of the
public interface in C++. Also, concrete data structures realizing the ADTs are
discussed and we often give concrete C++ classes implementing these interfaces.
We also give C++ implementations of fundamental algorithms, such as sorting and
graph searching. Moreover, in addition to providing techniques for using data struc-
tures to implement ADTs, we also give sample applications of data structures, such
as HTML tag matching and a simple system to maintain a play list for a digital
audio system. Due to space limitations, however, we only show code fragments of
some of the implementations in this book and make additional source code avail-
able on the companion web site.

Preface ix

Online Resources

This book is accompanied by an extensive set of online resources, which can be
found at the following web site:

www.wiley.com/college /goodrich

Included on this Web site is a collection of educational aids that augment the
topics of this book, for both students and instructors. Students are encouraged to
use this site along with the book, to help with exercises and increase understand-
ing of the subject. Instructors are likewise welcome to use the site to help plan,
organize, and present their course materials. Because of their added value, some of
these online resources are password protected.

For the Student

For all readers, and especially for students, we include the following resources:

All the C++ source code presented in this book.
e PDF handouts of Powerpoint slides (four-per-page) provided to instructors.
e A database of hints to all exercises, indexed by problem number.
e An online study guide, which includes solutions to selected exercises.
The hints should be of considerable use to anyone needing a little help getting
started on certain exercises, and the solutions should help anyone wishing to see
completed exercises. Students who have purchased a new copy of this book will

get password access to the hints and other password-protected online resources at
no extra charge. Other readers can purchase password access for a nominal fee.

For the Instructor

For instructors using this book, we include the following additional teaching aids:

Solutions to over 200 of the book’s exercises.

A database of additional exercises, suitable for quizes and exams.
Additional C++ source code.

Slides in Powerpoint and PDF (one-per-page) format.

Self-contained, special-topic supplements, including discussions on convex
hulls, range trees, and orthogonal segment intersection.

The slides are fully editable, so as to allow an instructor using this book full free-
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.

www.wiley.com/college/goodrich

Preface

A Resource for Teaching Data Structures and Algorithms

This book contains many C++-code and pseudo-code fragments, and hundreds of
exercises, which are divided into roughly 40% reinforcement exercises, 40% cre-
ativity exercises, and 20% programming projects.

This book can be used for the CS2 course, as described in the 1978 ACM Com-
puter Science Curriculum, or in courses CS102 (I/O/B versions), CS103 (I/O/B ver-
sions), CS111 (A version), and/or CS112 (A/I/O/F/H versions), as described in the
IEEE/ACM 2001 Computing Curriculum, with instructional units as outlined in

Table O.1.

Instructional Unit

Relevant Material

PL1. Overview of Programming Languages

Chapters 1 and 2

PL2. Virtual Machines

Sections 14.1.1 and 14.1.2

PL3. Introduction to Language Translation

Section 1.7

PL4. Declarations and Types

Sections 1.1.2, 1.1.3, and 2.2.5

PL5. Abstraction Mechanisms

Sections 2.2.5,5.1-5.3,6.1.1, 6.2.1, 6.3,
7.1,7.3.1,8.1,9.1,9.5,11.4,and 13.1.1

PL6. Object-Oriented Programming

Chapters 1 and 2 and Sections 6.2.1,
7.3.7,8.1.2,and 13.3.1

PF1. Fundamental Programming Constructs

Chapters 1 and 2

PF2. Algorithms and Problem-Solving

Sections 1.7 and 4.2

PF3. Fundamental Data Structures

Sections 3.1, 3.2, 5.1-5.3, 6.1-6.3, 7.1,
7.3,8.1,8.3,9.1-9.4,10.1, and 13.1.1

PF4. Recursion

Section 3.5

SE1. Software Design

Chapter 2 and Sections 6.2.1, 7.3.7,
8.1.2,and 13.3.1

SE2. Using APIs

Sections 2.2.5,5.1-5.3,6.1.1, 6.2.1, 6.3,
7.1,7.3.1,8.1,9.1,9.5,11.4,and 13.1.1

AL1. Basic Algorithmic Analysis

Chapter 4

AL2. Algorithmic Strategies

Sections 11.1.1, 11.5.1,12.2, 12.3.1, and
12.4.2

AL3. Fundamental Computing Algorithms

Sections 8.1.5, 8.2.2, 8.3.5, 9.2, and
9.3.1, and Chapters 11, 12, and 13

DS1. Functions, Relations, and Sets

Sections 4.1, 8.1, and 11.4

DS3. Proof Techniques

Sections 4.3, 6.1.3,7.3.3, 8.3, 10.2-10.5,
11.2.1, 11.3.1, 11.4.3, 13.1.1, 13.3.1,
13.4, and 13.5

DS4. Basics of Counting

Sections 2.2.3 and 11.1.5

DSS5. Graphs and Trees

Chapters 7, 8, 10, and 13

DSé6. Discrete Probability

Appendix A and Sections 9.2, 9.4.2,
11.2.1,and 11.5

Table 0.1: Material for units in the IEEE/ACM 2001 Computing Curriculum.

Preface

xi

Contents and Organization

The chapters for this course are organized to provide a pedagogical path that starts
with the basics of C++ programming and object-oriented design. We provide an
early discussion of concrete structures, like arrays and linked lists, in order to pro-
vide a concrete footing to build upon when constructing other data structures. We
then add foundational techniques like recursion and algorithm analysis, and, in the
main portion of the book, we present fundamental data structures and algorithms,
concluding with a discussion of memory management (that is, the architectural
underpinnings of data structures). Specifically, the chapters for this book are orga-
nized as follows:

A C++ Primer

. Object-Oriented Design
. Arrays, Linked Lists, and Recursion

1
2
3
4. Analysis Tools
5.
6
7
8
9

Stacks, Queues, and Deques

. List and Iterator ADTs

. Trees

. Heaps and Priority Queues

. Hash Tables, Maps, and Skip Lists
10.
11.
12.
13.
14.
A.

Search Trees

Sorting, Sets, and Selection
Strings and Dynamic Programming
Graph Algorithms

Memory Management and B-Trees

Useful Mathematical Facts

A more detailed listing of the contents of this book can be found in the table of
contents.

Preface

Prerequisites

We have written this book assuming that the reader comes to it with certain knowl-
edge. We assume that the reader is at least vaguely familiar with a high-level pro-
gramming language, such as C, C++, Python, or Java, and that he or she understands
the main constructs from such a high-level language, including:

e Variables and expressions.

e Functions (also known as methods or procedures).

e Decision structures (such as if-statements and switch-statements).

e [teration structures (for-loops and while-loops).

For readers who are familiar with these concepts, but not with how they are ex-
pressed in C++, we provide a primer on the C++ language in Chapter 1. Still, this
book is primarily a data structures book, not a C++ book; hence, it does not provide
a comprehensive treatment of C++. Nevertheless, we do not assume that the reader
is necessarily familiar with object-oriented design or with linked structures, such
as linked lists, since these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil-
iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix A.

About the Authors

Professors Goodrich, Tamassia, and Mount are well-recognized researchers in al-
gorithms and data structures, having published many papers in this field, with ap-
plications to Internet computing, information visualization, computer security, and
geometric computing. They have served as principal investigators in several joint
projects sponsored by the National Science Foundation, the Army Research Of-
fice, the Office of Naval Research, and the Defense Advanced Research Projects
Agency. They are also active in educational technology research.

Michael Goodrich received his Ph.D. in Computer Science from Purdue Uni-
versity in 1987. He is currently a Chancellor’s Professor in the Department of Com-
puter Science at University of California, Irvine. Previously, he was a professor at
Johns Hopkins University. He is an editor for a number of journals in computer
science theory, computational geometry, and graph algorithms. He is an ACM Dis-
tinguished Scientist, a Fellow of the American Association for the Advancement of
Science (AAAS), a Fulbright Scholar, and a Fellow of the IEEE. He is a recipient of
the IEEE Computer Society Technical Achievement Award, the ACM Recognition
of Service Award, and the Pond Award for Excellence in Undergraduate Teaching.

Preface

xiii

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech
Professor of Computer Science and the Chair of the Department of Computer Sci-
ence at Brown University. He is also the Director of Brown’s Center for Geometric
Computing. His research interests include information security, cryptography, anal-
ysis, design, and implementation of algorithms, graph drawing, and computational
geometry. He is an IEEE Fellow and a recipient of the Technical Achievement
Award from the IEEE Computer Society for pioneering the field of graph drawing.
He is an editor of several journals in geometric and graph algorithms. He previously
served on the editorial board of IEEE Transactions on Computers.

David Mount received his Ph.D. in Computer Science from Purdue University
in 1983. He is currently a professor in the Department of Computer Science at
the University of Maryland with a joint appointment in the University of Mary-
land’s Institute for Advanced Computer Studies. He is an associate editor for ACM
Transactions on Mathematical Software and the International Journal of Compu-
tational Geometry and Applications. He is the recipient of two ACM Recognition
of Service Awards.

In addition to their research accomplishments, the authors also have extensive
experience in the classroom. For example, Dr. Goodrich has taught data structures
and algorithms courses, including Data Structures as a freshman-sophomore level
course and Introduction to Algorithms as an upper-level course. He has earned sev-
eral teaching awards in this capacity. His teaching style is to involve the students in
lively interactive classroom sessions that bring out the intuition and insights behind
data structuring and algorithmic techniques. Dr. Tamassia has taught Data Struc-
tures and Algorithms as an introductory freshman-level course since 1988. One
thing that has set his teaching style apart is his effective use of interactive hyper-
media presentations integrated with the Web. Dr. Mount has taught both the Data
Structures and the Algorithms courses at the University of Maryland since 1985.
He has won a number of teaching awards from Purdue University, the University of
Maryland, and the Hong Kong University of Science and Technology. His lecture
notes and homework exercises for the courses that he has taught are widely used as
supplementary learning material by students and instructors at other universities.

Acknowledgments

There are a number of individuals who have made contributions to this book.

We are grateful to all our research collaborators and teaching assistants, who
provided feedback on early drafts of chapters and have helped us in developing
exercises, software, and algorithm animation systems. There have been a number of
friends and colleagues whose comments have lead to improvements in the text. We
are particularly thankful to Michael Goldwasser for his many valuable suggestions.

Xiv

Preface

We are also grateful to Karen Goodrich, Art Moorshead, Scott Smith, and Ioannis
Tollis for their insightful comments.

We are also truly indebted to the outside reviewers and readers for their co-
pious comments, emails, and constructive criticism, which were extremely use-
ful in writing this edition. We specifically thank the following reviewers for their
comments and suggestions: Divy Agarwal, University of California, Santa Bar-
bara; Terry Andres, University of Manitoba; Bobby Blumofe, University of Texas,
Austin; Michael Clancy, University of California, Berkeley; Larry Davis, Univer-
sity of Maryland; Scott Drysdale, Dartmouth College; Arup Guha, University of
Central Florida; Chris Ingram, University of Waterloo; Stan Kwasny, Washington
University; Calvin Lin, University of Texas at Austin; John Mark Mercer, McGill
University; Laurent Michel, University of Connecticut; Leonard Myers, California
Polytechnic State University, San Luis Obispo; David Naumann, Stevens Institute
of Technology; Robert Pastel, Michigan Technological University; Bina Rama-
murthy, SUNY Buffalo; Ken Slonneger, University of Iowa; C.V. Ravishankar,
University of Michigan; Val Tannen, University of Pennsylvania; Paul Van Ar-
ragon, Messiah College; and Christopher Wilson, University of Oregon.

We are grateful to our editor, Beth Golub, for her enthusiastic support of this
project. The team at Wiley has been great. Many thanks go to Mike Berlin, Lil-
ian Brady, Regina Brooks, Paul Crockett, Richard DelLorenzo, Jen Devine, Simon
Durkin, Micheline Frederick, Lisa Gee, Katherine Hepburn, Rachael Leblond, An-
dre Legaspi, Madelyn Lesure, Frank Lyman, Hope Miller, Bridget Morrisey, Chris
Ruel, Ken Santor, Lauren Sapira, Dan Sayre, Diana Smith, Bruce Spatz, Dawn
Stanley, Jeri Warner, and Bill Zobrist.

The computing systems and excellent technical support staff in the departments
of computer science at Brown University, University of California, Irvine, and Uni-
versity of Maryland gave us reliable working environments. This manuscript was
prepared primarily with the I&TEX typesetting package.

Finally, we would like to warmly thank Isabel Cruz, Karen Goodrich, Jeanine
Mount, Giuseppe Di Battista, Franco Preparata, Ioannis Tollis, and our parents for
providing advice, encouragement, and support at various stages of the preparation
of this book. We also thank them for reminding us that there are things in life
beyond writing books.

Michael T. Goodrich
Roberto Tamassia
David M. Mount

Contents

1 A C++ Primer

1.1

1
Basic C++ Programming Elements 2
1.1.1 A Simple C++ Program 2
1.1.2 Fundamental Types 4
1.1.3 Pointers, Arrays, and Structures 7

3

1.1.4 Named Constants, Scope, and Namespaces 1
1.2 Expressions 16
1.2.1 Changing Types through Casting 20
1.3 Control Flow 23
1.4 Functions 26
1.41 Argument Passing 28
1.42 Overloading and Inlining 30
1.5 Classes 32
1.5.1 Class Structure 33
1.5.2 Constructors and Destructors 37
1.5.3 Classes and Memory Allocation 40
1.5.4 Class Friends and Class Members 43
1.5.5 The Standard Template Library 45
1.6 C++ Program and File Organization 47
1.6.1 An Example Program 48
1.7 Writing a C++ Program 53
1.7.1 Design 54
1.72 Pseudo-Code, 54
173 Coding 55
1.7.4 Testing and Debugging 57
1.8 Exercises 60
2 Object-Oriented Design 65
2.1 Goals, Principles, and Patterns 66
2.1.1 Object-Oriented Design Goals 66
2.1.2 Object-Oriented Design Principles 67
2.1.3 Design Patterns 70

Xvi

2.2 Inheritance and Polymorphism
2.2.1 Inheritance in C++.
2.2.2 Polymorphism
2.2.3 Examples of Inheritance in C++
2.2.4 Multiple Inheritance and Class Casting
2.2.5 Interfaces and Abstract Classes

23 Templates.
2.3.1 Function Templates
232 Class Templates

2.4 Exceptions
2.4.1 Exception Objects
2.4.2 Throwing and Catching Exceptions
2.4.3 Exception Specification

25 Exercises

Arrays, Linked Lists, and Recursion

3.1 Using Arrays
3.1.1 Storing Game Entries in an Array
3.1.2 Sortingan Array

3.1.3 Two-Dimensional Arrays and Positional Games

3.2 Singly Linked Lists
3.2.1 Implementing a Singly Linked List

3.2.2 Insertion to the Front of a Singly Linked List
3.2.3 Removal from the Front of a Singly Linked List

3.2.4 Implementing a Generic Singly Linked List
3.3 Doubly Linked Lists
3.3.1 Insertion into a Doubly Linked List
3.3.2 Removal from a Doubly Linked List
3.3.3 A C++ Implementation
3.4 Circularly Linked Lists and List Reversal
3.4.1 Circularly Linked Lists
3.4.2 Reversing a Linked List
3.5 Recursion
3.5.1 Linear Recursion
3.5.2 Binary Recursion
3.5.3 Multiple Recursion
3.6 Exercises

Analysis Tools

4.1 The Seven Functions Used in This Book
41.1 The Constant Function
4.1.2 The Logarithm Function

Contents

Contents

413
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8

The Linear Function
The N-Log-N Function
The Quadratic Function
The Cubic Function and Other Polynomials
The Exponential Function
Comparing Growth Rates

4.2 Analysis of Algorithms

421 Experimental Studies
4.2.2 Primitive Operations
4.2.3 Asymptotic Notation
424 Asymptotic Analysis
425 Using the Big-Oh Notation
4.2.6 A Recursive Algorithm for Computing Powers
4.2.7 Some More Examples of Algorithm Analysis
4.3 Simple Justification Techniques
431 ByExampleo
432 The "Contra” Attack
4.3.3 Induction and Loop Invariants
4.4 Exercises
Stacks, Queues, and Deques
5.1 Stacks
5.1.1 The Stack Abstract Data Type
512 The STL Stack
5.1.3 A C++ Stack Interface
5.1.4 A Simple Array-Based Stack Implementation
5.1.5 Implementing a Stack with a Generic Linked List
5.1.6 Reversing a Vector Using a Stack
5.1.7 Matching Parentheses and HTML Tags
5.2 Queues
5.2.1 The Queue Abstract Data Type
522 The STLQueue
5.2.3 A C++ Queue Interface
5.2.4 A Simple Array-Based Implementation
5.2.5 Implementing a Queue with a Circularly Linked List . . .

5.3 Double-Ended Queues

531
5.3.2
5.3.3
53.4

The Deque Abstract Data Type
The STLDeque
Implementing a Deque with a Doubly Linked List
Adapters and the Adapter Design Pattern

5.4 Exercises

Xvii
156
156
156
158
159
161
162
163
164
166
170
172
176
177
181
181
181
182
185

xviii

Contents

6 List and lterator ADTs

6.1 Vectors
6.1.1 The Vector Abstract Data Type
6.1.2 A Simple Array-Based Implementation
6.1.3 An Extendable Array Implementation
6.1.4 STL Vectors

6.2 Lists
6.2.1 Node-Based Operations and lterators.
6.2.2 The List Abstract Data Type
6.2.3 Doubly Linked List Implementation
6.24 STL Lists
6.2.5 STL Containers and lterators

6.3 Sequences.
6.3.1 The Sequence Abstract Data Type
6.3.2 Implementing a Sequence with a Doubly Linked List
6.3.3 Implementing a Sequence with an Array

6.4 Case Study: Bubble-Sort on a Sequence
6.4.1 The Bubble-Sort Algorithm
6.4.2 A Sequence-Based Analysis of Bubble-Sort

6.5 Exercises

Trees

7.1 General Trees.
7.1.1 Tree Definitions and Properties
7.1.2 Tree Functions.
713 AC++ Treelnterface
7.1.4 A Linked Structure for General Trees

7.2 Tree Traversal Algorithms
7.2.1 Depthand Height
7.2.2 Preorder Traversal
7.2.3 Postorder Traversal

7.3 Binary Trees
7.3.1 The Binary Tree ADT
7.3.2 A C++ Binary Tree Interface
7.3.3 Properties of Binary Trees
7.3.4 A Linked Structure for Binary Trees
7.3.5 A Vector-Based Structure for Binary Trees
7.3.6 Traversals of a Binary Tree
7.3.7 The Template Function Pattern
7.3.8 Representing General Trees with Binary Trees

7.4 Exercises

227
228
228
229
231
236
238
238
240
242
247
248
255
255

. 255

257
259
259
260
262

267

Contents

8 Heaps and Priority Queues

8.1 The Priority Queue Abstract Data Type
8.1.1 Keys, Priorities, and Total Order Relations
8.1.2 Comparators
8.1.3 The Priority Queue ADT
8.1.4 A C++ Priority Queue Interface
8.1.5 Sorting with a Priority Queue
8.1.6 The STL priority_queue Class

8.2 Implementing a Priority Queue with a List
8.2.1 A C++ Priority Queue Implementation using a List
8.2.2 Selection-Sort and Insertion-Sort

8.3 Heaps
8.3.1 The Heap Data Structure
8.3.2 Complete Binary Trees and Their Representation ..
8.3.3 Implementing a Priority Queue with a Heap
8.3.4 C++ Implementation
8.35 Heap-Sort
8.3.6 Bottom-Up Heap Construction %

8.4 Adaptable Priority Queues
8.4.1 A List-Based Implementation
8.4.2 Location-Aware Entries L.

8.5 Exercises

Hash Tables, Maps, and Skip Lists

9.1 Maps
9.1.1 The Map ADT
9.1.2 AC++ Map Interface
9.13 TheSTLmapClass
9.1.4 A Simple List-Based Map Implementation

9.2 Hash Tables
9.2.1 Bucket Arrayso
9.2.2 Hash Functions
923 Hash Codes
9.2.4 Compression Functions
9.2.,5 Collision-Handling Schemes
9.2.6 Load Factors and Rehashing
9.2.7 A C++ Hash Table Implementation

9.3 Ordered Maps
9.3.1 Ordered Search Tables and Binary Search
9.3.2 Two Applications of Ordered Maps

9.4 Skip Lists

Xix
321
322
322
324
327
328
329
330
331

. 333

335
337
337

. 340

344
349
351
353
357
358
360
361

XX Contents
9.4.1 Search and Update Operations in a Skip List 404
9.4.2 A Probabilistic Analysis of Skip Lists x 408

9.5 Dictionaries 411
9.5.1 The Dictionary ADT 411
9.5.2 A C++ Dictionary Implementation 413
9.5.3 Implementations with Location-Aware Entries 415

9.6 Exercises 417

10 Search Trees 423

10.1 Binary Search Trees 424
10.1.1 Searching 426
10.1.2 Update Operations 428
10.1.3 C++ Implementation of a Binary Search Tree 432

10.2 AVL Trees. 438
10.2.1 Update Operations 440
10.2.2 C++ Implementation of an AVL Tree 446

10.3 Splay Trees 450
10.3.1 Splaying 450
10.3.2 WhentoSplay L. 454
10.3.3 Amortized Analysis of Splaying % 456

104 (2,4) Trees 461
10.4.1 Multi-Way Search Trees 461
10.4.2 Update Operations for (2,4) Trees 467

10.5 Red-Black Trees, 473
10.5.1 Update Operations 475
10.5.2 C++ Implementation of a Red-Black Tree 488

10.6 Exercises 492

11 Sorting, Sets, and Selection 499

11.1 Merge-Sort 500
11.1.1 Divide-and-Conquer 500
11.1.2 Merging Arrays and Lists 505
11.1.3 The Running Time of Merge-Sort 508
11.1.4 C++ Implementations of Merge-Sort 509
11.1.5 Merge-Sort and Recurrence Equations % 511

11.2 Quick-Sort 513
11.2.1 Randomized Quick-Sort 521
11.2.2 C++ Implementations and Optimizations 523

11.3 Studying Sorting through an Algorithmic Lens 526
11.3.1 A Lower Bound for Sorting 526
11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 528

11.3.3 Comparing Sorting Algorithms 531

Contents

11.4 Sets and Union/Find Structures
1141 TheSet ADT
11.4.2 Mergable Sets and the Template Method Pattern
11.4.3 Partitions with Union-Find Operations

11.5 Selection
11.5.1 Prune-and-Search
11.5.2 Randomized Quick-Select
11.5.3 Analyzing Randomized Quick-Select

11.6 Exercises

12 Strings and Dynamic Programming
12.1 String Operations
12.1.1 The STL String Class
12.2 Dynamic Programming
12.2.1 Matrix Chain-Product
12.2.2 DNA and Text Sequence Alignment
12.3 Pattern Matching Algorithms
1231 BruteForce
12.3.2 The Boyer-Moore Algorithm
12.3.3 The Knuth-Morris-Pratt Algorithm
12.4 Text Compression and the Greedy Method
12.4.1 The Huffman-Coding Algorithm
12.4.2 The Greedy Method
12.5 Tries
12.5.1 Standard Tries
12.5.2 Compressed Tries
12.5.3 Suffix Tries
12.5.4 Search Engines
12.6 Exercises

13 Graph Algorithms
13.1 Graphs
13.1.1 The Graph ADT
13.2 Data Structures for Graphs
13.2.1 The Edge List Structure.
13.2.2 The Adjacency List Structure
13.2.3 The Adjacency Matrix Structure
13.3 Graph Traversals
13.3.1 Depth-First Search
13.3.2 Implementing Depth-First Search
13.3.3 A Generic DFS Implementation in C++
13.3.4 Polymorphic Objects and Decorator Values x

xxii Contents

13.3.,5 Breadth-First Search 623

13.4 Directed Graphs 626
13.4.1 Traversing a Digraph 628

13.4.2 Transitive Closure 630

13.4.3 Directed Acyclic Graphs 633

13.5 Shortest Paths 637
13.5.1 Weighted Graphs 637

13.5.2 Dijkstra’s Algorithm 639

13.6 Minimum Spanning Trees 645
13.6.1 Kruskal's Algorithm 647

13.6.2 The Prim-Jarnik Algorithm 651

13.7 Exercises 654

14 Memory Management and B-Trees 665
14.1 Memory Management 666
14.1.1 Memory Allocationin C++ 669

14.1.2 Garbage Collection 671

14.2 External Memory and Caching 673
14.2.1 The Memory Hierarchy 673

14.2.2 Caching Strategies 674

14.3 External Searching and B-Trees 679
1431 (a,b) Trees 630

1432 B-Trees 682

14.4 External-Memory Sorting 683
1441 Multi-Way Merging 684

14.5 Exercises 685

A Useful Mathematical Facts 689
Bibliography 697

Index 702

Chapter

A C++ Primer

o2 .o. *e
o.ooggg sooog ;0.
000 040
e 00 :..088:
©500%02 0
0.0.0 00g ®
Contents oo
1.1 Basic C++ Programming Elements 2
1.1.1 A Simple C++ Program 2
1.1.2 Fundamental Types 4
1.1.3 Pointers, Arrays, and Structures 7
1.1.4 Named Constants, Scope, and Namespaces 13
1.2 Expressionso 16
1.2.1 Changing Types through Casting 20
1.3 ControlFlow 23
1.4 Functions 26
141 Argument Passing 28
1.4.2 Overloading and Inlining 30
1.5 Classes i i i i i it 32
1.5.1 Class Structure 33
1.5.2 Constructors and Destructors 37
1.5.3 Classes and Memory Allocation 40
1.5.4 Class Friends and Class Members 43
1.5.5 The Standard Template Library 45
1.6 C++ Program and File Organization 47
1.6.1 An Example Program 48
1.7 Writinga C++ Program 53
1.7.1 Design 54
1.72 Pseudo-Code 54
173 Coding 55
1.7.4 Testing and Debugging 57

1.8 Exercises i i i i i ittt e e 60

Chapter 1. A C++ Primer

1.1

Basic C++ Programming Elements

Building data structures and algorithms requires communicating instructions to a
computer, and an excellent way to perform such communication is using a high-
level computer language, such as C++. C++ evolved from the programming lan-
guage C, and has, over time, undergone further evolution and development from
its original definition. It has incorporated many features that were not part of C,
such as symbolic constants, in-line function substitution, reference types, paramet-
ric polymorphism through templates, and exceptions (which are discussed later).
As a result, C++ has grown to be a complex programming language. Fortunately,
we do not need to know every detail of this sophisticated language in order to use
it effectively.

In this chapter and the next, we present a quick tour of the C++ programming
language and its features. It would be impossible to present a complete presentation
of the language in this short space, however. Since we assume that the reader is
already familiar with programming with some other language, such as C or Java,
our descriptions are short. This chapter presents the language’s basic features, and
in the following chapter, we concentrate on those features that are important for
object-oriented programming.

C++ is a powerful and flexible programming language, which was designed to
build upon the constructs of the C programming language. Thus, with minor ex-
ceptions, C++ is a superset of the C programming language. C++ shares C’s ability
to deal efficiently with hardware at the level of bits, bytes, words, addresses, etc.
In addition, C++ adds several enhancements over C (which motivates the name
“C++7), with the principal enhancement being the object-oriented concept of a
class.

A class is a user-defined type that encapsulates many important mechanisms
such as guaranteed initialization, implicit type conversion, control of memory man-
agement, operator overloading, and polymorphism (which are all important topics
that are discussed later in this book). A class also has the ability to hide its un-
derlying data. This allows a class to conceal its implementation details and allows
users to conceptualize the class in terms of a well-defined interface. Classes enable
programmers to break an application up into small, manageable pieces, or objects.
The resulting programs are easier to understand and easier to maintain.

1.1.1 A Simple C++ Program

Like many programming languages, creating and running a C++ program requires
several steps. First, we create a C++ source file into which we enter the lines of our
program. After we save this file, we then run a program, called a compiler, which

1.1. Basic C++ Programming Elements 3

creates a machine-code interpretation of this program. Another program, called
a linker (which is typically invoked automatically by the compiler), includes any
required library code functions needed and produces the final machine-executable
file. In order to run our program, the user requests that the system execute this file.

Let us consider a very simple program to illustrate some of the language’s basic
elements. Don’t worry if some elements in this example are not fully explained. We
discuss them in greater depth later in this chapter. This program inputs two integers,
which are stored in the variables x and y. It then computes their sum and stores the
result in a variable sum, and finally it outputs this sum. (The line numbers are not
part of the program; they are just for our reference.)

1 #include <cstdlib>
2 #include <iostream>
3 /* This program inputs two numbers x and y and outputs their sum */

4 int main() {

5 int x,vy;

6 std::cout << "Please enter two numbers: ";

7 stdicin >> x >>y; // input x and y

8 intsum =x+y; // compute their sum

9 std::cout << "Their sum is " << sum << std::endl;

10 return EXIT_SUCCESS; // terminate successfully
11 }

A few things about this C++ program should be fairly obvious. First, comments
are indicated with two slashes (//). Each such comment extends to the end of the
line. Longer block comments are enclosed between /* and */. Block comments
may extend over multiple lines. The quantities manipulated by this program are
stored in three integer variables, X, y, and sum. The operators “>>” and “<<” are
used for input and output, respectively.

Program Elements

Let us consider the elements of the above program in greater detail. Lines 1 and
2 input the two header files, “cstdlib” and “iostream.” Header files are used to
provide special declarations and definitions, which are of use to the program. The
first provides some standard system definitions, and the second provides definitions
needed for input and output.

The initial entry point for C++ programs is the function main. The statement
“int main()” on line 4 declares main to be a function that takes no arguments and
returns an integer result. (In general, the main function may be called with the
command-line arguments, but we don’t discuss this.) The function body is given
within curly braces ({...}), which start on line 4 and end on line 11. The program
terminates when the return statement on line 10 is executed.

Chapter 1. A C++ Primer

By convention, the function main returns the value zero to indicate success
and returns a nonzero value to indicate failure. The include file cstdlib defines the
constant EXIT_SUCCESS to be 0. Thus, the return statement on line 10 returns 0,
indicating a successful termination.

The statement on line 6 prints a string using the output operator (“<<”). The
statement on line 7 inputs the values of the variables x and y using the input operator
(“>>”). These variable values could be supplied, for example, by the person running
our program. The name std::cout indicates that output is to be sent to the standard
output stream. There are two other important I/O streams in C++: standard input
is where input is typically read, and standard error is where error output is written.
These are denoted std::cin and std::cerr, respectively.

The prefix “std::” indicates that these objects are from the system’s standard
library. We should include this prefix when referring to objects from the standard
library. Nonetheless, it is possible to inform the compiler that we wish to use
objects from the standard library—and so omit this prefix—by utilizing the “using”
statement as shown below.

#include <iostream>

using namespace std; // makes std:: available
cout << "Please enter two numbers: "; // (std:: is not needed)

cin >> x >>v;

We discuss the using statement later in Section 1.1.4. In order to keep our
examples short, we often omit the include and using statements when displaying
C++ code. We also use “ //...” to indicate that some code has been omitted.

Returning to our simple example C++ program, we note that the statement on
line 9 outputs the value of the variable sum, which in this case stores the computed
sum of x and y. By default, the output statement does not produce an end of line.
The special object std::endl generates a special end-of-line character. Another way
to generate an end of line is to output the newline character, ’\n’.

If run interactively, that is, with the user inputing values when requested to
do so, this program’s output would appear as shown below. The user’s input is
indicated below in blue.

Please enter two numbers: 7 35
Their sum is 42

1.1.2 Fundamental Types

We continue our exploration of C++ by discussing the language’s basic data types
and how these types are represented as constants and variables. The fundamental

1.1. Basic C++ Programming Elements 5

types are the basic building blocks from which more complex types are constructed.
They include the following.

bool Boolean value, either true or false
char character

short short integer

int integer

long long integer

float single-precision floating-point number

double double-precision floating-point number

There is also an enumeration, or enum, type to represent a set of discrete val-
ues. Together, enumerations and the types bool, char, and int are called integral
types. Finally, there is a special type void, which explicitly indicates the absence
of any type information. We now discuss each of these types in greater detail.

Characters

A char variable holds a single character. A char in C++ is typically 8-bits, but the
exact number of bits used for a char variable is dependent on the particular imple-
mentation. By allowing different implementations to define the meaning of basic
types, such as char, C++ can tailor its generated code to each machine architecture
and so achieve maximum efficiency. This flexibility can be a source of frustration
for programmers who want to write machine-independent programs, however.

A literal is a constant value appearing in a program. Character literals are
enclosed in single quotes, as in *a’, ’Q’, and >+’. A backslash () is used to
specify a number of special character literals as shown below.

’\n’ newline ’\t’ tab
’\b’ backspace ’\0’ null
’\’’ single quote >’\"’> double quote

’\\’ backslash

The null character, ’\0’, is sometimes used to indicate the end of a string of
characters. Every character is associated with an integer code. The function int(ch)
returns the integer value associated with a character variable ch.

Integers

An int variable holds an integer. Integers come in three sizes: short int, (plain)
int, and long int. The terms “short” and “long” are synonyms for “short int” and
“long int,” respectively. Decimal numbers such as 0, 25, 98765, and -3 are of type
int. The suffix “I” or “L” can be added to indicate a long integer, as in 123456789L.
Octal (base 8) constants are specified by prefixing the number with the zero digit,
and hexadecimal (base 16) constants can be specified by prefixing the number with

Chapter 1. A C++ Primer

“Ox.” For example, the literals 256, 0400, and 0x100 all represent the integer value
256 (in decimal).

When declaring a variable, we have the option of providing a definition, or
initial value. If no definition is given, the initial value is unpredictable, so it is
important that each variable be assigned a value before being used. Variable names
may consist of any combination of letters, digits, or the underscore (_) character,
but the first character cannot be a digit. Here are some examples of declarations of
integral variables.

short n; // n's value is undefined
int octalNumber = 0400; // 400 (base 8) = 256 (base 10)
char newline_character = ’\n’;

long BlIGnumber = 314159265L;
short _aSTRANGE__1234_variABIE_NaMe;

Although it is legal to start a variable name with an underscore, it is best to avoid
this practice, since some C++ compilers use this convention for defining their own
internal identifiers.

C++ does not specify the exact number of bits in each type, but a short is at least
16 bits, and a long is at least 32 bits. In fact, there is no requirement that long be
strictly longer than short (but it cannot be shorter!). Given a type T, the expression
sizeof (T) returns the size of type T, expressed as some number of multiples of the
size of char. For example, on typical systems, a char is 8 bits long, and an int is
32 bits long, and hence sizeof (int) is 4.

Enumerations

An enumeration is a user-defined type that can hold any of a set of discrete values.
Once defined, enumerations behave much like an integer type. A common use
of enumerations is to provide meaningful names to a set of related values. Each
element of an enumeration is associated with an integer value. By default, these
values count up from 0, but it is also possible to define explicit constant values as
shown below.

enum Day { SUN, MON, TUE, WED, THU, FRI, SAT };
enum Mood { HAPPY = 3, SAD = 1, ANXIOUS = 4, SLEEPY = 2 };

Day today = THU; // today may be any of MON ... SAT
Mood myMood = SLEEPY; // myMood may be HAPPY, ..., SLEEPY

Since we did not specify values, SUN would be associated with 0, MON with 1,
and so on. As a hint to the reader, we write enumeration names and other constants
with all capital letters.

1.1. Basic C++ Programming Elements 7
Floating Point

A variable of type float holds a single-precision floating-point number, and a vari-
able of type double holds a double-precision floating-point number. As it does
with integers, C++ leaves undefined the exact number of bits in each of the floating
point types. By default, floating point literals, such as 3.14159 and -1234.567 are
of type double. Scientific or exponential notation may by specified using either
“e” or “E” to separate the mantissa from the exponent, as in 3.14E5, which means
3.14 x 10°. To force a literal to be a float, add the suffix “f’ or “F,” as in 2.0f or

1.234e-3F.

1.1.3 Pointers, Arrays, and Structures

We next discuss how to combine fundamental types to form more complex ones.

Pointers

Each program variable is stored in the computer’s memory at some location, or
address. A pointer is a variable that holds the value of such an address. Given a
type T, the type T* denotes a pointer to a variable of type T. For example, int*
denotes a pointer to an integer.

Two essential operators are used to manipulate pointers. The first returns the
address of an object in memory, and the second returns the contents of a given
address. In C++ the first task is performed by the address-of operator, &. For
example if x is an integer variable in your program &x is the address of x in memory.
Accessing an object’s value from its address is called dereferencing. This is done
using the * operator. For example, if we were to declare q to be a pointer to an
integer (that is, int*) and then set q = &x, we could access x’s value with *q.
Assigning an integer value to *q effectively changes the value of x.

Consider, for example, the code fragment below. The variable p is declared to
be a pointer to a char, and is initialized to point to the variable ch. Thus, *p is
another way of referring to ch. Observe that when the value of ch is changed, the
value of *p changes as well.

char ch = ’Q’;

char* p = &ch; // p holds the address of ch
cout << *p; // outputs the character 'Q’
ch =27 // ch now holds 'Z'

cout << *p; // outputs the character 'Z’
*p =X, // ch now holds 'X'

cout << ch; // outputs the character "X’

We shall see that pointers are very useful when building data structures where ob-
jects are linked to one another through the use of pointers. Pointers need not point

Chapter 1. A C++ Primer

only to fundamental types, such as char and int—they may also point to complex
types and even to functions. Indeed, the popularity of C++ stems in part from its
ability to handle low-level entities like pointers.

It is useful to have a pointer value that points to nothing, that is, a null pointer.
By convention, such a pointer is assigned the value zero. An attempt to dereference
a null pointer results in a run-time error. All C++ implementations define a special
symbol NULL, which is equal to zero. This definition is activated by inserting the
statement “#include <cstdlib>” in the beginning of a program file.

We mentioned earlier that the special type void is used to indicate no type
information at all. Although we cannot declare a variable to be of type void, we
can declare a pointer to be of type void*. Such a pointer can point to a variable of
any type. Since the compiler is unable to check the correctness of such references,
the use of void* pointers is strongly discouraged, except in unusual cases where
direct access to the computer’s memory is needed.

Beware when declaring two or more pointers on the same line. The * operator
binds with the variable name, not with the type name. Consider the following
misleading declaration.

int* x, y, z; // same as: int* x; int y; int z;

This declares one pointer variable x, but the other two variables are plain integers.
The simplest way to avoid this confusion is to declare one variable per statement.

Arrays

An array is a collection of elements of the same type. Given any type T and a
constant N, a variable of type T[N] holds an array of N elements, each of type T.
Each element of the array is referenced by its index, that is, a number from 0 to
N — 1. The following statements declare two arrays; one holds three doubles and
the other holds 10 double pointers.

double f[5]; // array of 5 doubles: f[0], ..., f[4]
int m[10]; // array of 10 ints: m[0], ..., m[9]
f[4] = 2.5;

m[2] = 4,

cout << f[m[2]]; // outputs f[4], which is 2.5

Once declared, it is not possible to increase the number of elements in an array.
Also, C++ provides no built-in run-time checking for array subscripting out of
bounds. This decision is consistent with C++’s general philosophy of not intro-
ducing any feature that would slow the execution of a program. Indexing an array
outside of its declared bounds is a common programming error. Such an error of-
ten occurs “silently,” and only much later are its effects noticed. In Section 1.5.5,

1.1. Basic C++ Programming Elements 9

we see that the vector type of the C++ Standard Template Library (STL) provides
many of the capabilities of a more complete array type, including run-time index
checking and the ability to dynamically change the array’s size.

A two-dimensional array is implemented as an “array of arrays.” For example
“int A[15][30]” declares A to be an array of 30 objects, each of which is an array
of 15 integers. An element in such an array is indexed as A[i][j], where i is in the
range 0 to 14 and j is in the range O to 29.

When declaring an array, we can initialize its values by enclosing the elements
in curly braces ({...}). When doing so, we do not have to specify the size of the
array, since the compiler can figure this out.

int a[] = {10, 11, 12, 13}; // declares and initializes a[4]
bool b[] = {false, true}; // declares and initializes b|[2]
char c[] = {’¢’, ’a’, ’t’ }; // declares and initializes c[3]

Just as it is possible to declare an array of integers, it is possible to declare an
array of pointers to integers. For example, int* r[17] declares an array r consist-
ing of 17 pointers to objects of type int. Once initialized, we can dereference an
element of this array using the * operator, for example, *r[16] is the value of the
integer pointed to by the last element of this array.

Pointers and Arrays

There is an interesting connection between arrays and pointers, which C++ inher-
ited from the C programming language—the name of an array is equivalent to a
pointer to the array’s initial element and vice versa. In the example below, c is
an array of characters, and p and q are pointers to the first element of c. They all
behave essentially the same, however.

char c[] = {’c’, ’a’, ’t’};

char* p = ¢; // p points to c[0]
char* q = &c[0]; // q also points to c[0]
cout << c[2] << p[2] << q[2]; // outputs “ttt”

This equivalence between array names and pointers can be confusing, but it helps
to explain many of C++’s apparent mysteries. For example, given two arrays ¢ and
d, the comparison (c == d) does not test whether the contents of the two arrays are
equal. Rather it compares the addresses of their initial elements, which is probably
not what the programmer had in mind. If there is a need to perform operations
on entire arrays (such as copying one array to another) it is a good idea to use the
vector class, which is part of C++’s Standard Template Library. We discuss these
concepts in Section 1.5.5.

10

Chapter 1. A C++ Primer
Strings

A string literal, such as "Hello World", is represented as a fixed-length array of
characters that ends with the null character. Character strings represented in this
way are called C-style strings, since they were inherited from C. Unfortunately,
this representation alone does not provide many string operations, such as concate-
nation and comparison. It also possesses all the peculiarities of C++ arrays, as
mentioned earlier.

For this reason, C++ provides a string type as part of its Standard Template
Library (STL). When we need to distinguish, we call these STL strings. In order
to use STL strings it is necessary to include the header file <string>. Since STL
strings are part of the standard namespace (see Section 1.1.4), their full name is
std::string. By adding the statement “using std::string,” we inform the compiler
that we want to access this definition directly, so we can omit the “std::” prefix.
STL strings may be concatenated using the + operator, they may be compared with
each other using lexicographic (or dictionary) order, and they may be input and
output using the >> and << operators, respectively. For example:

#include <string>
using std::string;

string s = "to be";

string t = "not " + s; // t = "not to be"

string u =s 4+ " or " + t; // u = "“to be or not to be"

if (s >t) // true: “to be" > “not to be”
cout << u; // outputs “to be or not to be’

There are other STL string operations, as well. For example, we can append one
string to another using the += operator. Also, strings may be indexed like arrays
and the number of characters in a string s is given by s.size(). Since some library
functions require the old C-style strings, there is a conversion function s.c_str(),
which returns a pointer to a C-style string. Here are some examples:

string s = "John"; // s = "“John"

int i = s.size(); /] i=14

char ¢ = s[3]; // c="n

s += " Smith"; // now s = “John Smith”

The C++ STL provides many other string operators including operators for ex-
tracting, searching for, and replacing substrings. We discuss some of these in Sec-
tion 1.5.5.

C-Style Structures

A structure is useful for storing an aggregation of elements. Unlike an array, the
elements of a structure may be of different types. Each member, or field, of a

1.1. Basic C++ Programming Elements 11

structure is referred to by a given name. For example, consider the following struc-
ture for storing information about an airline passenger. The structure includes the
passenger’s name, meal preference, and information as to whether this passenger
is in the frequent flyer program. We create an enumerated type to handle meal
preferences.

enum MealType { NO_PREF, REGULAR, LOW_FAT, VEGETARIAN };

struct Passenger {

string name; // passenger name

MealType mealPref; // meal preference

bool isFreqFlyer; // in the frequent flyer program?
string freqFlyerNo; // the passenger’s freq. flyer number

¥

This defines a new type called Passenger. Let us declare and initialize a variable
named “pass” of this type.

Passenger pass = { "John Smith", VEGETARIAN, true, "293145" };

The individual members of the structure are accessed using the member selection
operator, which has the form struct_name.member. For example, we could change
some of the above fields as follows.

pass.name = "Pocahontas"; // change name
pass.mealPref = REGULAR; // change meal preference

Structures of the same type may be assigned to one another. For example, if pl and
p2 are of type Passenger, then p2 = pl copies the elements of pl to p2.

What we have discussed so far might be called a C-style structure. C++ pro-
vides a much more powerful and flexible construct called a class, in which both
data and functions can be combined. We discuss classes in Section 1.5.

Pointers, Dynamic Memory, and the “new” Operator

We often find it useful in data structures to create objects dynamically as the need
arises. The C++ run-time system reserves a large block of memory called the free
store, for this reason. (This memory is also sometimes called heap memory, but
this should not be confused with the heap data structure, which is discussed in
Chapter 8.) The operator new dynamically allocates the correct amount of storage
for an object of a given type from the free store and returns a pointer to this object.
That is, the value of this pointer is the address where this object resides in memory.
Indeed, C++ allows for pointer variables to any data type, even to other pointers or
to individual cells in an array.

12

Chapter 1. A C++ Primer

For example, suppose that in our airline system we encounter a new passenger.
We would like to dynamically create a new instance using the new operator. Let
p be a pointer to a Passenger structure. This implies that *p refers to the actual
structure; hence, we could access one of its members, say the mealPref field, using
the expression (*p).mealPref. Because complex objects like structures are often
allocated dynamically, C++ provides a shorter way to access members using the
“=>” operator.

pointer_name->member is equivalent to (*pointer_name).member

For example, we could allocate a new passenger object and initialize its members
as follows.

Passenger *p;

p = new Passenger; // p points to the new Passenger
p—>name = "Pocahontas"; // set the structure members

p—>mealPref = REGULAR,;
p—>isFreqFlyer = false;
p—>freqFlyerNo = "NONE";

It would be natural to wonder whether we can initialize the members using the curly
brace ({...}) notation used above. The answer is no, but we will see another more
convenient way of initializing members when we discuss classes and constructors
in Section 1.5.2.

This new passenger object continues to exist in the free store until it is explicitly
deleted—a process that is done using the delete operator, which destroys the object
and returns its space to the free store.

delete p; // destroy the object p points to

The delete operator should only be applied to objects that have been allocated
through new. Since the object at p’s address was allocated using the new operator,
the C++ run-time system knows how much memory to deallocate for this delete
statement. Unlike some programming languages such as Java, C++ does not pro-
vide automatic garbage collection. This means that C++ programmers have the
responsibility of explicitly deleting all dynamically allocated objects.

Arrays can also be allocated with new. When this is done, the system allocator
returns a pointer to the first element of the array. Thus, a dynamically allocated
array with elements of type T would be declared being of type *T. Arrays allocated
in this manner cannot be deallocated using the standard delete operator. Instead,
the operator delete| | is used. Here is an example that allocates a character buffer
of 500 elements, and then later deallocates it.

char* buffer = new char[500]; // allocate a buffer of 500 chars
buffer[3] = ’a’; // elements are still accessed using]
delete [] buffer; // delete the buffer

1.1. Basic C++ Programming Elements 13

Memory Leaks

Failure to delete dynamically allocated objects can cause problems. If we were
to change the (address) value of p without first deleting the structure to which it
points, there would be no way for us to access this object. It would continue to
exist for the lifetime of the program, using up space that could otherwise be used
for other allocated objects. Having such inaccessible objects in dynamic memory
is called a memory leak. We should strongly avoid memory leaks, especially in
programs that do a great deal of memory allocation and deallocation. A program
with memory leaks can run out of usable memory even when there is a sufficient
amount of memory present. An important rule for a disciplined C++ programmer
is the following:

R b
If an object is allocated with new, it should eventually be deallocated with

delete.

References

Pointers provide one way to refer indirectly to an object. Another way is through
references. A reference is simply an alternative name for an object. Given a type
T, the notation T& indicates a reference to an object of type T. Unlike pointers,
which can be NULL, a reference in C++ must refer to an actual variable. When a
reference is declared, its value must be initialized. Afterwards, any access to the
reference is treated exactly as if it is an access to the underlying object.

string author = "Samuel Clemens";

string& penName = author; // penName is an alias for author
penName = "Mark Twain"; // now author = “Mark Twain”
cout << author; // outputs “Mark Twain"

References are most often used for passing function arguments and are also often
used for returning results from functions. These uses are discussed later.

1.1.4 Named Constants, Scope, and Namespaces

We can easily name variables without concern for naming conflicts in small prob-
lems. It is much harder for us to avoid conflicts in large software systems, which
may consist of hundreds of files written by many different programmers. C++ has
a number of mechanisms that aid in providing names and limiting their scope.

14

Chapter 1. A C++ Primer
Constants and Typedef

Good programmers commonly like to associate names with constant quantities.
By adding the keyword const to a declaration, we indicate that the value of the
associated object cannot be changed. Constants may be used virtually anywhere
that literals can be used, for example, in an array declaration. As a hint to the
reader, we will use all capital letters when naming constants.

const double PI = 3.14159265;

const int CUT_OFF[] = {90, 80, 70, 60};

const int N_DAYS =7

const int N_HOURS = 24*N_DAYS; // using a constant expression
int counter[N_HOURS]; // an array of 168 ints

Note that enumerations (see Section 1.1.2) provide another convenient way to de-
fine integer-valued constants, especially within structures and classes.

In addition to associating names with constants, it is often useful to associate a
name with a type. This association can be done with a typedef declaration. Rather
than declaring a variable, a typedef defines a new type name.

typedef char* BufferPtr; // type BufferPtr is a pointer to char
typedef double Coordinate; // type Coordinate is a double
BufferPtr p; // p is a pointer to char

Coordinate x, vy; // x and y are of type double

By using typedef we can provide shorter or more meaningful synonyms for
various types. The type name Coordinate provides more of a hint to the reader
of the meaning of variables x and y than does double. Also, if later we decide
to change our coordinate representation to int, we need only change the typedef
statement. We will follow the convention of indicating user-defined types by capi-
talizing the first character of their names.

Local and Global Scopes

When a group of C++ statements are enclosed in curly braces ({...}), they define
a block. Variables and types that are declared within a block are only accessible
from within the block. They are said to be local to the block. Blocks can be nested
within other blocks. In C++, a variable may be declared outside of any block.
Such a variable is global, in the sense that it is accessible from everywhere in the
program. The portions of a program from which a given name is accessible are
called its scope.

Two variables of the same name may be defined within nested blocks. When
this happens, the variable of the inner block becomes active until leaving the block.

1.1. Basic C++ Programming Elements 15

Thus a local variable “hides” any global variables of the same name as shown in
the following example.

const int Cat = 1; // global Cat
int main() {
const int Cat = 2; // this Cat is local to main
cout << Cat; // outputs 2 (local Cat)
return EXIT_SUCCESS;
}
int dog = Cat; // dog = 1 (from the global Cat)
Namespaces

Global variables present many problems in large software systems because they
can be accessed and possibly modified anywhere in the program. They also can
lead to programming errors, since an important global variable may be hidden by a
local variable of the same name. As a result, it is best to avoid global variables. We
may not be able to avoid globals entirely, however. For example, when we perform
output, we actually use the system’s global standard output stream object, cout. If
we were to define a variable with the same name, then the system’s cout stream
would be inaccessible.

A namespace is a mechanism that allows a group of related names to be defined
in one place. This helps organize global objects into natural groups and minimizes
the problems of globals. For example, the following declares a namespace myglob-
als containing two variables, cat and dog.

namespace myglobals {
int cat;
string dog = "bow wow";

}

Namespaces may generally contain definitions of more complex objects, including
types, classes, and functions. We can access an object x in namespace group, us-
ing the notation group::x, which is called its fully qualified name. For example,
myglobals::cat refers to the copy of variable cat in the myglobals namespace.

We have already seen an example of a namespace. Many standard system ob-
jects, such as the standard input and output streams cin and cout, are defined in a
system namespace called std. Their fully qualified names are std::cin and std::cout,
respectively.

16

Chapter 1. A C++ Primer
The Using Statement

If we are repeatedly using variables from the same namespace, it is possible to
avoid entering namespace specifiers by telling the system that we want to “use” a
particular specifier. We communicate this desire by utilizing the using statement,
which makes some or all of the names from the namespace accessible, without
explicitly providing the specifier. This statement has two forms that allow us to
list individual names or to make every name in the namespace accessible as shown
below.

using std::string; // makes just std::string accessible

using std::cout; // makes just std::cout accessible

using namespace myglobals; // makes all of myglobals accessible
1.2 Expressions

An expression combines variables and literals with operators to create new values.
In the following discussion, we group operators according to the types of objects
they may be applied to. Throughout, we use var to denote a variable or anything
to which a value may be assigned. (In official C++ jargon, this is called an Ivalue.)
We use exp to denote an expression and type to denote a type.

Member Selection and Indexing

Some operators access a member of a structure, class, or array. We let class_name
denote the name of a structure or class; pointer denotes a pointer to a structure or
class and array denotes an array or a pointer to the first element of an array.
class_name . member class/structure member selection
pointer —> member class/structure member selection
array [exp | array subscripting

Arithmetic Operators

The following are the binary arithmetic operators:
exp + exp addition
exp — exp subtraction
exp ¥ exp multiplication
exp / exp division
exp % exp modulo (remainder)
There are also unary minus (—x) and unary plus (4x) operations. Division be-
tween two integer operands results in an integer result by truncation, even if the

1.2. Expressions 17

result is being assigned to a floating point variable. The modulo operator n%m
yields the remainder that would result from the integer division n/m.

Increment and Decrement Operators

The post-increment operator returns a variable’s value and then increments it by
1. The post-decrement operator is analogous but decreases the value by 1. The
pre-increment operator first increments the variables and then returns the value.
var ++ post increment
var —— post decrement
++ var pre increment
—— var pre decrement
The following code fragment illustrates the increment and decrement operators.

int a[] = {0, 1, 2, 3};

inti =2;

int j = i++; // i =2and nowi=3

int k = ——i; // now i =2and k =2

cout << a[k++]; // a[2] (= 2) is output; now k = 3

Relational and Logical Operators

C++ provides the usual comparison operators.

exp < exp less than
exp > exp greater than
exp <= exp less than or equal
exp >= exp greater than or equal
exp == exp equal to
exp |=exp notequal to
These return a Boolean result—either true or false. Comparisons can be made
between numbers, characters, and STL strings (but not C-style strings). Pointers
can be compared as well, but it is usually only meaningful to test whether pointers
are equal or not equal (since their values are memory addresses).
The following logical operators are also provided.
I exp logical not
exp && exp logical and
exp || exp logical or

The operators && and || evaluate sequentially from left to right. If the left
operand of &4& is false, the entire result is false, and the right operand is not eval-
uated. The || operator is analogous, but evaluation stops if the left operand is true.

This “short circuiting” is quite useful in evaluating a chain of conditional ex-
pressions where the left condition guards against an error committed by the right

18

Chapter 1. A C++ Primer

condition. For example, the following code first tests that a Passenger pointer p is
non-null before accessing it. It would result in an error if the execution were not
stopped if the first condition is not satisfied.

if ((p != NULL) && p—>isFreqFlyer) ...

Bitwise Operators

The following operators act on the representations of numbers as binary bit strings.
They can be applied to any integer type, and the result is an integer type.

~ exp bitwise complement
exp & exp bitwise and
exp " exp bitwise exclusive-or
exp | exp bitwise or

expl << exp2 shift expl left by exp2 bits
expl >> exp2 shift expl right by exp2 bits

The left shift operator always fills with zeros. How the right shift fills depends
on a variable’s type. In C++ integer variables are “signed” quantities by default,
but they may be declared as being “unsigned,” as in “unsigned int x.” If the left
operand of a right shift is unsigned, the shift fills with zeros and otherwise the right
shift fills with the number’s sign bit (0 for positive numbers and 1 for negative
numbers). Note that the input (>>) and output (<<) operators are not in this group.
They are discussed later.

Assignment Operators

In addition to the familiar assignment operator (=), C++ includes a special form
for each of the arithmetic binary operators (+, —, *, /, %) and each of the bit-
wise binary operators (&, |, =, <<, >>), that combines a binary operation with
assignment. For example, the statement “n += 2” means “n = n + 2. Some
examples are shown below.

int i = 10;

int j=05;

string s = "yes";

i = 4 J)i=i-4=6

o= 2 //J=17%(-2)=-10

s += " orno"; // s =s+ "“orno” = "yes or no"

These assignment operators not only provide notational convenience, but they
can be more efficient to execute as well. For example, in the string concatenation
example above, the new text can just be appended to s without the need to generate
a temporary string to hold the intermediate result.

1.2. Expressions 19

Take care when performing assignments between aggregate objects (arrays,
strings, and structures). Typically the programmer intends such an assignment to
copy the contents of one object to the other. This works for STL strings and C-
style structures (provided they have the same type). However, as discussed earlier,
C-style strings and arrays cannot be copied merely through a single assignment
statement.

Other Operators

Here are some other useful operators.

class_name :: member class scope resolution
namespace_name :: member namespace resolution
bool_exp 7 true_exp : false_exp conditional expression

We have seen the namespace resolution operator in Section 1.1.4. The condi-
tional expression is a variant of “if-then-else” for expressions. If bool_exp evaluates
to true, the value of true_exp is returned, and otherwise the value of false_exp is re-
turned.

The following example shows how to use this to return the minimum of two
numbers, x and y.

smaller = (x <y 7 x:y); // smaller = min(x,y)

We also have the following operations on input/output streams.

stream >> var stream input
stream << exp stream output

Although they look like the bitwise shift operators, the input (>>) and output
(<<) stream operators are quite different. They are examples of C++’s powerful ca-
pability, called operator overloading, which are discussed in Section 1.4.2. These
operators are not an intrinsic part of C++, but are provided by including the file
<iostream>. We refer the reader to the references given in the chapter notes for
more information on input and output in C++.

The above discussion provides a somewhat incomplete list of all the C++ oper-
ators, but it nevertheless covers the most common ones. Later we introduce others,
including casting operators.

Operator Precedence

Operators in C++ are assigned a precedence that determines the order in which
operations are performed in the absence of parentheses. In Table 1.1, we show the
precedence of some of the more common C++ operators, with the highest listed
first. Unless parentheses are used, operators are evaluated in order from highest

20

Chapter 1. A C++ Primer

to lowest. For example, the expression 0 < 4 + x * 3 would be evaluated as if it
were parenthesized as 0 < (4 + (x * 3)). If p is an array of pointers, then *p[2] is
equivalent to *(p[2]). Except for && and ||, which guarantee left-to-right evalua-
tion, the order of evaluation of subexpressions is dependent on the implementation.
Since these rules are complex, it is a good idea to add parentheses to complex
expressions to make your intent clear to someone reading your program.

Operator Precedences

Type Operators

scope resolution namespace_name :: member

selection/subscripting class_name.member pointer—>member array[exp]
function call function(args)

postfix operators var++ var——

prefix operators ++var ——var +4exp —exp “exp lexp
dereference/address *pointer &var

multiplication/division | * /%

addition/subtraction + -

shift << >>

comparison < <= > >=

equality == I=

bitwise and &

bitwise exclusive-or -

bitwise or |

logical and &&

logical or [

conditional bool_exp 7 true_exp : false_exp

assignment = += —=F= /= Y= >>= <<= &= "= |=

Table 1.1: The C++ precedence rules. The notation “exp” denotes any expression.

1.2.1 Changing Types through Casting

Casting is an operation that allows us to change the type of a variable. In essence,
we can take a variable of one type and cast it into an equivalent variable of another
type. Casting is useful in many situations. There are two fundamental types of
casting that can be done in C++. We can either cast with respect to the fundamental
types or we can cast with respect to class objects and pointers. We discuss casting
with fundamental types here, and we consider casting with objects in Section 2.2.4.
We begin by introducing the traditional way of casting in C++, and later we present
C++’s newer casting operators.

1.2. Expressions 21
Traditional C-Style Casting

Let exp be some expression, and let T be a type. To cast the value of the expression
to type T we can use the notation “(T)exp.” We call this a C-style cast. If the
desired type is a type name (as opposed to a type expression), there is an alternate
functional-style cast. This has the form “T(exp).” Some examples are shown
below. In both cases, the integer value 14 is cast to a double value 14.0.

int cat = 14;
double dog = (double) cat; // traditional C-style cast
double pig = double(cat); // C++ functional cast

Both forms of casting are legal, but some authors prefer the functional-style cast.

Casting to a type of higher precision or size is often needed in forming expres-
sions. The results of certain binary operators depend on the variable types involved.
For example, division between integers always produces an integer result by trun-
cating the fractional part. If a floating-point result is desired, we must cast the
operands before performing the operation as shown below.

int i1 =18;

int i2 = 16;

double dvl =il / i2; // dvl has value 1.0
double dv2 = double(il) / double(i2); // dv2 has value 1.125
double dv3 = double(i1 / i2); // dv3 has value 1.0

When il and i2 are cast to doubles, double-precision division is performed.
When i1 and i2 are not cast, truncated integer division is performed. In the case of
dv3, the cast is performed after the integer division, so precision is still lost.

Explicit Cast Operators

Casting operations can vary from harmless to dangerous, depending on how similar
the two types are and whether information is lost. For example, casting a short to
an int is harmless, since no information is lost. Casting from a double to an int is
more dangerous because the fractional part of the number is lost. Casting from a
double* to char* is dangerous because the meaning of converting such a pointer
will likely vary from machine to machine. One important element of good software
design is that programs be portable, meaning that they behave the same on different
machines.

For this reason, C++ provides a number of casting operators that make the
safety of the cast much more explicit. These are called the static_cast, dynamic_cast,
const_cast, and reinterpret_cast. We discuss only the static_cast here and con-
sider the others as the need arises.

22

Chapter 1. A C++ Primer
Static Casting

Static casting is used when a conversion is made between two related types, for
example numbers to numbers or pointers to pointers. Its syntax is given below.

static_cast < desired_type > (expression)

The most common use is for conversions between numeric types. Some of these
conversions may involve the loss of information, for example a conversion from
a double to an int. This conversion is done by truncating the fractional part (not
rounding). For example, consider the following:

double dl = 3.2;

double d2 = 3.9999;

int il = static_cast<int>(d1); // il has value 3
int i2 = static_cast<int>(d2); // i2 has value 3

This type of casting is more verbose than the C-style and functional-style casts
shown earlier. But this form is appropriate, because it serves as a visible warning to
the programmer that a potentially unsafe operation is taking place. In our examples
in this book, we use the functional style for safe casts (such as integer to double)
and these newer cast operators for all other casts. Some older C++ compilers may
not support the newer cast operators, but then the traditional C-style and functional-
style casts can be used instead.

Implicit Casting

There are many instances where the programmer has not requested an explicit cast,
but a change of types is required. In many of these cases, C++ performs an implicit
cast. That is, the compiler automatically inserts a cast into the machine-generated
code. For example, when numbers of different types are involved in an operation,
the compiler automatically casts to the stronger type. C++ allows an assignment
that implicitly loses information, but the compiler usually issues a warning mes-
sage.

int i =3

double d = 4.8;

double d3 =i / d; // d3 = 0.625 = double(i)/d
int i3 = d3; // i3 = 0 = int(d3)

// Warning! Assignment may lose information

A general rule with casting is to “play it safe.” If a compiler’s behavior regarding
the implicit casting of a value is uncertain, then we are safest in using an explicit
cast. Doing so makes our intentions clear.

1.3. Control Flow 23

1.3

Control Flow

Control flow in C++ is similar to that of other high-level languages. We review the
basic structure and syntax of control flow in C++ in this section, including method
returns, if statements, switch statements, loops, and restricted forms of “jumps”
(the break and continue statements).

If Statement

Every programming language includes a way of making choices, and C++ is no
exception. The most common method of making choices in a C++ program is
through the use of an if statement. The syntax of an if statement in C++ is shown
below, together with a small example.

if (condition)
true_statement
else if (condition)
else_if_statement
else
else_statement

Each of the conditions should return a Boolean result. Each statement can either
be a single statement or a block of statements enclosed in braces ({...}). The “else
if” and “else” parts are optional, and any number of else-if parts may be given.
The conditions are tested one by one, and the statement associated with the first
true condition is executed. All the other statements are skipped. Here is a simple
example.

if (snowLevel < 2) {
goToClass()

; // do this if snow level is less than 2
comeHome();

else if (snowlLevel < 5)

haveSnowballFight(); // if level is at least 2 but less than 5
else if (snowlLevel < 10)

goSkiing(); // if level is at least 5 but less than 10
else

stayAtHome(); // if snow level is 10 or more

Switch Statement

A switch statement provides an efficient way to distinguish between many different
options according to the value of an integral type. In the following example, a

24

Chapter 1. A C++ Primer

single character is input, and based on the character’s value, an appropriate editing
function is called. The comments explain the equivalent if-then-else structure, but
the compiler is free to select the most efficient way to execute the statement.

char command;

cin >> command,; // input command character
switch (command) { // switch based on command value
case ’I’ : // if (command == "I
editlnsert();
break;
case ’D’ : // else if (command == 'D")
editDelete();
break;
case 'R’ : // else if (command == 'R’")
editReplace();
break;
default : // else
cout << "Unrecognized command\n";
break;
}

The argument of the switch can be any integral type or enumeration. The
“default” case is executed if none of the cases equals the switch argument.

Each case in a switch statement should be terminated with a break statement,
which, when executed, exits the switch statement. Otherwise, the flow of control
“falls through” to the next case.

While and Do-While Loops

C++ has two kinds of conditional loops for iterating over a set of statements as
long as some specified condition holds. These two loops are the standard while
loop and the do-while loop. One loop tests a Boolean condition before performing
an iteration of the loop body and the other tests a condition after. Let us consider
the while loop first.

while (condition)
loop_body _statement

At the beginning of each iteration, the loop tests the Boolean expression and then
executes the loop body only if this expression evaluates to true. The loop body
statement can also be a block of statements.

Consider the following example. It computes the sum of the elements of an
array, until encountering the first negative value. Note the use of the += operator to
increment the value of sum and the ++ operator which increments i after accessing

1.3. Control Flow 25

the current array element.

int a[100];
inti =0;

int sum = 0;

while (i < 100 && a[i] >= 0) {
sum += afi++];

}

The do-while loop is similar to the while loop in that the condition is tested at
the end of the loop execution rather than before. It has the following syntax.

do
loop_body _statement
while (condition)

For Loop

Many loops involve three common elements: an initialization, a condition under
which to continue execution, and an increment to be performed after each execution
of the loop’s body. A for loop conveniently encapsulates these three elements.

for (initialization ; condition ; increment)
loop_body _statement

The initialization indicates what is to be done before starting the loop. Typ-
ically, this involves declaring and initializing a loop-control variable or counter.
Next, the condition gives a Boolean expression to be tested in order for the loop to
continue execution. It is evaluated before executing the loop body. When the con-
dition evaluates to false, execution jumps to the next statement after the for loop.
Finally, the increment specifies what changes are to be made at the end of each
execution of the loop body. Typically, this involves incrementing or decrementing
the value of the loop-control variable.

Here is a simple example, which prints the positive elements of an array, one
per line. Recall that ’\n’ generates a newline character.

const int NUM_ELEMENTS = 100;
double b[NUM_ELEMENTS];
for (int i = 0; i < NUM_ELEMENTS; i++) {
if (b[i] > 0)
cout << b[i] << ’\n’;

In this example, the loop variable i was declared as int i = 0. Before each iteration,
the loop tests the condition “i < NUM_ELEMENTS” and executes the loop body

26

Chapter 1. A C++ Primer

only if this is true. Finally, at the end of each iteration the loop uses the statement
i+ to increment the loop variable i before testing the condition again. Although
the loop variable is declared outside the curly braces of the for loop, the compiler
treats it as if it were a local variable within the loop. This implies that its value is
not accessible outside the loop.

Break and Continue Statements

C++ provides statements to change control flow, including the break, continue,
and return statements. We discuss the first two here, and leave the return state-
ment for later. A break statement is used to “break™ out of a loop or switch state-
ment. When it is executed, it causes the flow of control to immediately exit the
innermost switch statement or loop (for loop, while loop, or do-while loop). The
break statement is useful when the condition for terminating the loop is determined
inside the loop. For example, in an input loop, termination often depends on a
specific value that has been input. The following example provides a different
implementation of an earlier example, which sums the elements of an array until
finding the first negative value.

int a[100];

int sum = 0;

for (int i = 0; i < 100; i++) {
if (ali] < 0) break;
sum += ali];

}

The other statement that is often useful for altering loop behavior is the con-
tinue statement. The continue statement can only be used inside loops (for, while,
and do-while). The continue statement causes the execution to skip to the end of
the loop, ready to start a new iteration.

1.4

Functions

A function is a chunk of code that can be called to perform some well-defined task,
such as calculating the area of a rectangle, computing the weekly withholding tax
for a company employee, or sorting a list of names in ascending order. In order to
define a function, we need to provide the following information to the compiler:

Return type. This specifies the type of value or object that is returned by the func-
tion. For example, a function that computes the area of a rectangle might re-
turn a value of type double. A function is not required to return a value. For
example, it may simply produce some output or modify some data structure.

1.4. Functions 27

If so, the return type is void. A function that returns no value is sometimes
called a procedure.

Function name. This indicates the name that is given to the function. Ideally, the
function’s name should provide a hint to the reader as to what the function
does.

Argument list. This serves as a list of placeholders for the values that will be
passed into the function. The actual values will be provided when the func-
tion is invoked. For example, a function that computes the area of a polygon
might take four double arguments; the x- and y-coordinates of the rectan-
gle’s lower left corner and the x- and y-coordinates of the rectangle’s upper
right corner. The argument list is given as a comma-separated list enclosed
in parentheses, where each entry consists of the name of the argument and its
type. A function may have any number of arguments, and the argument list
may even be empty.

Function body. This is a collection of C++ statements that define the actual com-
putations to be performed by the function. This is enclosed within curly
braces. If the function returns a value, the body will typically end with a
return statement, which specifies the final function value.

Function specifications in C++ typically involve two steps, declaration and def-
inition. A function is declared, by specifying three things: the function’s return
type, its name, and its argument list. The declaration makes the compiler aware
of the function’s existence, and allows the compiler to verify that the function is
being used correctly. This three-part combination of return type, function name,
and argument types is called the function’s signature or prototype.

For example, suppose that we wanted to create a function, called evenSum, that
is given two arguments, an integer array a and its length n. It determines whether
the sum of array values is even, and if so it returns the value true. Otherwise,
it returns false. Thus, it has a return value of type bool. The function could be
declared as follows:

bool evenSum(int a[], int n); // function declaration

Second, the function is defined. The definition consists both of the function’s
signature and the function body. The reason for distinguishing between the decla-
ration and definition involves the manner in which large C++ programs are written.
They are typically spread over many different files. The function declaration must
appear in every file that invokes the function, but the definition must appear only

28

Chapter 1. A C++ Primer

once. Here is how our evenSum function might be defined.

bool evenSum(int a[], int n) { // function definition
int sum = 0;
for (inti =0;i < n;i++) // sum the array elements
sum += ali];
return (sum % 2) == 0; // returns true if sum is even
}

The expression in the return statement may take a minute to understand. We use
the mod operator (%) to compute the remainder when sum is divided by 2. If the
sum is even, the remainder is 0, and hence the expression “(sum % 2) == 07
evaluates to true. Otherwise, it evaluates to false, which is exactly what we want.

To complete the example, let us provide a simple main program, which first
declares the function, and then invokes it on an actual array.

bool evenSum(int a[], int n); // function declaration
int main() {
int list[] = {4, 2, 7, 8, 5, 1};
bool result = evenSum(list, 6); // invoke the function
if (result) cout << "the sum is even\n";
else cout << "the sum is odd\n";
return EXIT_SUCCESS;
}

Let us consider this example in greater detail. The names “a” and “n” in the
function definition are called formal arguments since they serve merely as place-
holders. The variable “list” and literal ““6” in the function call in the main program
are the actual arguments. Thus, each reference to “a” in the function body is trans-
lated into a reference to the actual array “list.” Similarly, each reference to “n” can
be thought of as taking on the actual value 6 in the function body. The types of the
actual arguments must agree with the corresponding formal arguments. Exact type
agreement is not always necessary, however, for the compiler may perform implicit
type conversions in some cases, such as casting a short actual argument to match
an int formal argument.

When we refer to function names throughout this book, we often include a pair
of parentheses following the name. This makes it easier to distinguish function
names from variable names. For example, we would refer to the above function as
evenSum.

1.4.1 Argument Passing

By default, arguments in C++ programs are passed by value. When arguments
are passed by value, the system makes a copy of the variable to be passed to the

1.4. Functions 29

function. In the above example, the formal argument “n” is initialized to the actual
value 6 when the function is called. This implies that modifications made to a
formal argument in the function do not alter the actual argument.

Sometimes it is useful for the function to modify one of its arguments. To do
so, we can explicitly define a formal argument to be a reference type (as introduced
in Section 1.1.3). When we do this, any modifications made to an argument in the
function modifies the corresponding actual argument. This is called passing the
argument by reference. An example is shown below, where one argument is passed
by value and the other is passed by reference.

void f(int value, int& ref) { // one value and one reference
value++; // no effect on the actual argument
ref++; // modifies the actual argument
cout << value << endl; // outputs 2
cout << ref << endl; // outputs 6

}

int main() {
int cat = 1;
int dog = b;
f(cat, dog); // pass cat by value, dog by ref
cout << cat << endl; // outputs 1
cout << dog << endl; // outputs 6
return EXIT_SUCCESS;

}

Observe that altering the value argument had no effect on the actual argument,
whereas modifying the reference argument did.

Modifying function arguments is felt to be a rather sneaky way of passing in-
formation back from a function, especially if the function returns a nonvoid value.
Another way to modify an argument is to pass the address of the argument, rather
than the argument itself. Even though a pointer is passed by value (and, hence, the
address of where it is pointing cannot be changed), we can access the pointer and
modify the variables to which it points. Reference arguments achieve essentially
the same result with less notational burden.

Constant References as Arguments

There is a good reason for choosing to pass structure and class arguments by ref-
erence. In particular, passing a large structure or class by value results in a copy
being made of the entire structure. All this copying may be quite inefficient for
large structures and classes. Passing such an argument by reference is much more
efficient, since only the address of the structure need be passed.

Since most function arguments are not modified, an even better practice is to
pass an argument as a “‘constant reference.” Such a declaration informs the compiler

30

Chapter 1. A C++ Primer

that, even though the argument is being passed by reference, the function cannot
alter its value. Furthermore, the function is not allowed to pass the argument to
another function that might modify its value. Here is an example using the Passen-
ger structure, which we defined earlier in Section 1.1.3. The attempt to modify the
argument would result in a compiler error message.

void someFunction(const Passenger& pass) {
pass.name = "new name"; // ILLEGAL! pass is declared const

}

When writing small programs, we can easily avoid modifying the arguments
that are passed by reference for the sake of efficiency. But in large programs, which
may be distributed over many files, enforcing this rule is much harder. Fortunately,
passing class and structure arguments as a constant reference allows the compiler
to do the checking for us. Henceforth, when we pass a class or structure as an
argument, we typically pass it as a reference, usually a constant reference.

Array Arguments

We have discussed passing large structures and classes by reference, but what about
large arrays? Would passing an array by value result in making a copy of the entire
array? The answer is no. When an array is passed to a function, it is converted to a
pointer to its initial element. That is, an object of type T[| is converted to type T*.
Thus, an assignment to an element of an array within a function does modify the
actual array contents. In short, arrays are not passed by value.

By the same token, it is not meaningful to pass an array back as the result of
a function call. Essentially, an attempt to do so will only pass a pointer to the
array’s initial element. If returning an array is our goal, then we should either
explicitly return a pointer or consider returning an object of type vector from the
C++ Standard Template Library.

1.4.2 Overloading and Inlining

Overloading means defining two or more functions or operators that have the same
name, but whose effect depends on the types of their actual arguments.

Function Overloading

Function overloading occurs when two or more functions are defined with the
same name but with different argument lists. Such definitions are useful in situa-
tions where we desire two functions that achieve essentially the same purpose, but
do it with different types of arguments.

1.4. Functions 31

One convenient application of function overloading is in writing procedures
that print their arguments. In particular, a function that prints an integer would be
different from a function that prints a Passenger structure from Section 1.1.3, but
both could use the same name, print, as shown in the following example.

void print(int x) // print an integer
{ cout << x; }

void print(const Passenger& pass) { // print a Passenger

cout << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer)
cout << " " << pass.freqFlyerNo;

When the print function is used, the compiler considers the types of the actual ar-
gument and invokes the appropriate function, that is, the one with signature closest
to the actual arguments.

Operator Overloading

C++ also allows overloading of operators, such as +, *, +=, and <<. Not
surprisingly, such a definition is called operator overloading. Suppose we would
like to write an equality test for two Passenger objects. We can denote this in a
natural way by overloading the == operator as shown below.

bool operator==(const Passenger& x, const Passenger& y) {

return x.name —= y.name
&& x.mealPref == y.mealPref
&& x.isFreqFlyer == y.isFreqFlyer
&& x.freqFlyerNo == y.freqFlyerNo;

This definition is similar to a function definition, but in place of a function name we
use “operator==._" In general, the == is replaced by whatever operator is being
defined. For binary operators we have two arguments, and for unary operators we
have just one.

There are several useful applications of function and operator overloading. For
example, overloading the == operator allows us to naturally test for the equality of
two objects, pl and p2, with the expression “pl==p2.” Another useful application
of operator overloading is for defining input and output operators for classes and
structures. Here is how to define an output operator for our Passenger structure.
The type ostream is the system’s output stream type. The standard output, cout is

32

Chapter 1. A C++ Primer

of this type.

ostream& operator<<(ostream& out, const Passenger& pass) {

out << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer) {
out << " " << pass.freqFlyerNo;
¥
return out;
¥

The output in this case is not very pretty, but we could easily modify our output
operator to produce nicer formatting.

There is much more that could be said about function and operator overload-
ing, and indeed C++ functions in general. We refer the reader to a more complete
reference on C++ for this information.

Operator overloading is a powerful mechanism, but it is easily abused. It can be
very confusing for someone reading your program to find that familiar operations
such as “4” and “/” have been assigned new and possibly confusing meanings.
Good programmers usually restrict operator overloading to certain general purpose
operators such as “ <<” (output), “="" (assignment), “=="(equality), “[]” (index-
ing, for sequences).

In-line Functions

Very short functions may be defined to be “inline.” This is a hint to the compiler
it should simply expand the function code in place, rather than using the system’s
call-return mechanism. As a rule of thumb, in-line functions should be very short
(at most a few lines) and should not involve any loops or conditionals. Here is an
example, which returns the minimum of two integers.

inline int min(int x, int y) { return (x <y ? x :y); }

1.5

Classes

The concept of a class is fundamental to C++, since it provides a way to define new
user-defined types, complete with associated functions and operators. By restrict-
ing access to certain class members, it is possible to separate out the properties that
are essential to a class’s correct use from the details needed for its implementation.
Classes are fundamental to programming that uses an object-oriented approach,
which is a programming paradigm we discuss in the next chapter.

1.5. Classes 33

1.5.1 Class Structure

A class consists of members. Members that are variables or constants are data
members (also called member variables) and members that are functions are called
member functions (also called methods). Data members may be of any type, and
may even be classes themselves, or pointers or references to classes. Member func-
tions typically act on the member variables, and so define the behavior of the class.

We begin with a simple example, called Counter. It implements a simple
counter stored in the member variable count. It provides three member functions.
The first member function, called Counter, initializes the counter. The second,
called getCount, returns the counter’s current value. The third, called increaseBy,
increases the counter’s value.

class Counter { // a simple counter
public:

Counter(); // initialization

int getCount(); // get the current count

void increaseBy(int x); // add x to the count
private:

int count; // the counter's value
h

Let’s explore this class definition in a bit more detail. Observe that the class
definition is separated into two parts by the keywords public and private. The
public section defines the class’s public interface. These are the entities that users
of the class are allowed to access. In this case, the public interface has the three
member functions (Counter, getCount, and increaseBy). In contrast, the private
section declares entities that cannot be accessed by users of the class. We say more
about these two parts below.

So far, we have only declared the member functions of class Counter. Next,
we present the definitions of these member functions. In order to make clear to
the compiler that we are defining member functions of Counter (as opposed to
member functions of some other class), we precede each function name with the
scoping specifier “Counter::”.

Counter::Counter() // constructor
{ count = 0; }

int Counter::getCount() // get current count
{ return count; }

void Counter::increaseBy(int x) // add x to the count

{ count += x; }

The first of these functions has the same name as the class itself. This is a special
member function called a constructor. A constructor’s job is to initialize the values

34

Chapter 1. A C++ Primer

of the class’s member variables. The function getCount is commonly referred to
as a “getter” function. Such functions provide access to the private members of the
class.

Here is an example how we might use our simple class. We declare a new object
of type Counter, called ctr. This implicitly invokes the class’s constructor, and thus
initializes the counter’s value to 0. To invoke one of the member functions, we use
the notation ctr.function_name().

Counter ctr; // an instance of Counter
cout << ctr.getCount() << endl; // prints the initial value (0)
ctr.increaseBy(3); // increase by 3

cout << ctr.getCount() << endl; // prints 3
ctr.increaseBy(5); // increase by 5

cout << ctr.getCount() << endl; // prints 8

Access Control

One important feature of classes is the notion of access control. Members may
be declared to be public, which means that they are accessible from outside the
class, or private, which means that they are accessible only from within the class.
(We discuss two exceptions to this later: protected access and friend functions.) In
the previous example, we could not directly access the private member count from
outside the class definition.

Counter ctr; // ctris an instance of Counter
cout << ctr.count << endl; // ILLEGAL - count is private

Why bother declaring members to be private? We discuss the reasons in detail
in Chapter 2 when we discuss object-oriented programming. For now, suffice it to
say that it stems from the desire to present users with a clean (public) interface from
which to use the class, without bothering them with the internal (private) details of
its implementation. All external access to class objects takes place through the
public members, or the public interface as it is called. The syntax for a class is as
follows.

class (class_name) {
public:
public_members
private:
private_members
b

Note that if no access specifier is given, the default is private for classes and
public for structures. (There is a third specifier, called protected, which is dis-
cussed later in the book.) There is no required order between the private and public

1.5. Classes 35

sections, and in fact, it is possible to switch back and forth between them. Most
C++ style manuals recommend that public members be presented first, since these
are the elements of the class that are relevant to a programmer who wishes to use
the class. We sometimes violate this convention in this book, particularly when we
want to emphasize the private members.

Member Functions

Let us return to the Passenger structure, which was introduced earlier in Sec-
tion 1.1.3, but this time we define it using a class structure. We provide the same
member variables as earlier, but they are now private members. To this we add
a few member functions. For this short example, we provide just a few of many
possible member functions. The first member function is a constructor. Its job is
to guarantee that each instance of the class is properly initialized. Notice that the
constructor does not have a return type. The member function isFrequentFlyer tests
whether the passenger is a frequent flyer, and the member function makeFrequent-
Flyer makes a passenger a frequent flyer and assigns a frequent flyer number. This
is only a partial definition, and a number of member functions have been omitted.

As usual we use “ //...” to indicate omitted code.
class Passenger { // Passenger (as a class)
public:
Passenger(); // constructor
bool isFrequentFlyer() const; // is this a frequent flyer?

// make this a frequent flyer
void makeFrequentFlyer(const string& newFreqFlyerNo);

// ... other member functions
private:
string name; // passenger name
MealType mealPref; // meal preference
bool isFreqFlyer; // is a frequent flyer?
string freqFlyerNo; // frequent flyer number
h

Class member functions can be placed in two major categories: accessor func-
tions, which only read class data, and update functions, which may alter class
data. The keyword “const” indicates that the member function isFrequentFlyer is
an accessor. This informs the user of the class that this function will not change
the object contents. It also allows the compiler to catch a potential error should we
inadvertently attempt to modify any class member variables.

We have declared two member functions, but we still need to define them.
Member functions may either be defined inside or outside the class body. Most
C++ style manuals recommend defining all member functions outside the class, in

36

Chapter 1. A C++ Primer

order to present a clean public interface in the class’s definition. As we saw above
in the Counter example, when a member function is defined outside the class body,
it is necessary to specify which class it belongs to, which is done by preceding the
function name with the scoping specifier class_name::member_name.

bool Passenger::isFrequentFlyer() const {
return isFreqFlyer;

}

void Passenger::makeFrequentFlyer(const string& newFreqFlyerNo) {
isFreqFlyer = true;
freqFlyerNo = newFreqFlyerNo;

}

Notice that when we are within the body of a member function, the member vari-
ables (such as isFreqFlyer and freqFlyerNo) are given without reference to a par-
ticular object. These functions will be invoked on a particular Passenger object.
For example, let pass be a variable of type Passenger. We may invoke these public
member functions on pass using the same member selection operator we introduced
with structures as shown below. Only public members may be accessed in this way.

Passenger pass; // pass is a Passenger

if (!pass.isFrequentFlyer()) { // not already a frequent flyer?
pass.makeFrequentFlyer("392953"); // set pass’s freq flyer number

}

pass.name = "Joe Blow"; // ILLEGAL! name is private

In-Class Function Definitions

In the above examples, we have shown member functions being defined outside of
the class body. We can also define members within the class body. When a member
function is defined within a class it is compiled ir line (recall Section 1.4.2). As
with in-line functions, in-class function definitions should be reserved for short
functions that do not involve loops or conditionals. Here is an example of how the
isFrequentFlyer member function would be defined from within the class.

class Passenger {

public:
/] ...
bool isFrequentFlyer() const { return isFreqFlyer; }
/] ..

h

1.5. Classes 37

1.5.2 Constructors and Destructors

The above declaration of the class variable pass suffers from the shortcoming that
we have not initialized any of its classes members. An important aspect of classes
is the capability to initialize a class’s member data. A constructor is a special
member function whose task is to perform such an initialization. It is invoked
when a new class object comes into existence. There is an analogous destructor
member function that is called when a class object goes out of existence.

Constructors

A constructor member function’s name is the same as the class, and it has no return
type. Because objects may be initialized in different ways, it is natural to define
different constructors and rely on function overloading to determine which one is
to be called.

Returning to our Passenger class, let us define three constructors. The first con-
structor has no arguments. Such a constructor is called a default constructor, since
it is used in the absence of any initialization information. The second constructor
is given the values of the member variables to initialize. The third constructor is
given a Passenger reference from which to copy information. This is called a copy
constructor.

class Passenger {
private:

public:
Passenger(); // default constructor
Passenger(const string& nm, MealType mp, const string& ffn = "NONE");
Passenger(const Passenger& pass); // copy constructor

/)
¥

Look carefully at the second constructor. The notation ffn="NONE" indicates that
the argument for ffn is a default argument. That is, an actual argument need not
be given, and if so, the value "NONE" is used instead. If a newly created passenger
is not a frequent flyer, we simply omit this argument. The constructor tests for this
special value and sets things up accordingly. Default arguments can be assigned
any legal value and can be used for more than one argument. It is often useful
to define default values for all the arguments of a constructor. Such a constructor
is the default constructor because it is called if no arguments are given. Default
arguments can be used with any function (not just constructors). The associated
constructor definitions are shown below. Note that the default argument is given in

38 Chapter 1. A C++ Primer

the declaration, but not in the definition.

Passenger::Passenger() { // default constructor
name = "--NO NAME--";
mealPref = NO_PREF;
isFreqFlyer = false;
freqFlyerNo = "NONE";

}
// constructor given member values
Passenger::Passenger(const string& nm, MealType mp, const string& ffn) {
name = nm;
mealPref = mp;
isFreqFlyer = (ffn != "NONE"); // true only if ffn given
freqFlyerNo = ffn;

}
// copy constructor
Passenger::Passenger(const Passenger& pass) {
name = pass.name;
mealPref = pass.mealPref;
isFreqFlyer = pass.isFreqFlyer;
freqFlyerNo = pass.freqFlyerNo;

}

Here are some examples of how the constructors above can be invoked to de-
fine Passenger objects. Note that in the cases of p3 and pp2 we have omitted the
frequent flyer number.

Passenger pl; // default constructor
Passenger p2("John Smith", VEGETARIAN, 293145); // 2nd constructor
Passenger p3("Pocahontas", REGULAR); // not a frequent flyer

Passenger p4(p3); // copied from p3

Passenger p5 = p2; // copied from p2

Passenger* ppl = new Passenger; // default constructor
Passenger* pp2 = new Passenger("Joe Blow", NO_PREF); // 2nd constr.
Passenger pa[20]; // uses the default constructor

Although they look different, the declarations for p4 and p5 both call the copy
constructor. These declarations take advantage of a bit of notational magic, which
C++ provides to make copy constructors look more like the type definitions we
have seen so far. The declarations for ppl and pp2 create new passenger objects
from the free store, and return a pointer to each. The declaration of pa declares
an array of Passenger. The individual members of the array are always initialized
from the default constructor.

1.5. Classes 39

Initializing Class Members with Initializer Lists

There is a subtlety that we glossed over in our presentations of the constructors.
Recall that a string is a class in the standard template library. Our initialization
using “name=nm’ above relied on the fact that the string class has an assignment
operator defined for it. If the type of name is a class without an assignment opera-
tor, this type of initialization might not be possible. In order to deal with the issue
of initializing member variables that are themselves classes, C++ provides an alter-
nate method of initialization called an initializer list. This list is placed between
the constructor’s argument list and its body. It consists of a colon (:) followed by
a comma-separated list of the form member_name(initial_value). To illustrate the
feature, let us rewrite the second Passenger constructor so that its first three mem-
bers are initialized by an initializer list. The initializer list is executed before the
body of the constructor.

// constructor using an initializer list
Passenger::Passenger(const string& nm, MealType mp, string ffn)
: name(nm), mealPref(mp), isFreqFlyer(ffn != "NONE")
{ freqFlyerNo = ffn; }

Destructors

A constructor is called when a class object comes into existence. A destructor is
a member function that is automatically called when a class object ceases to exist.
If a class object comes into existence dynamically using the new operator, the
destructor will be called when this object is destroyed using the delete operator.
If a class object comes into existence because it is a local variable in a function
that has been called, the destructor will be called when the function returns. The
destructor for a class T is denoted ~T. It takes no arguments and has no return type.
Destructors are needed when classes allocate resources, such as memory, from the
system. When the object ceases to exist, it is the responsibility of the destructor to
return these resources to the system.

Let us consider a class Vect, shown in the following code fragment, which
stores a vector by dynamically allocating an array of integers. The dynamic array
is referenced by the member variable data. (Recall from Section 1.1.3 that a dy-
namically allocated array is represented by a pointer to its initial element.) The
member variable size stores the number of elements in the vector. The constructor
for this class allocates an array of the desired size. In order to return this space to
the system when a Vect object is removed, we need to provide a destructor to deal-
locate this space. (Recall that when an array is deleted we use “delete[|,” rather
than “delete.”)

40

Chapter 1. A C++ Primer

class Vect { // a vector class
public:
Vect(int n); // constructor, given size
“Vect(); // destructor
// ... other public members omitted
private:
int* data; // an array holding the vector
int size; // number of array entries
%
Vect::Vect(int n) { // constructor
size = n;
data = new int|[n]; // allocate array
}
Vect::"Vect() { // destructor
delete [] data; // free the allocated array
}

We are not strictly required by C++ to provide our own destructor. Nonetheless,
if our class allocates memory, we should write a destructor to free this memory. If
we did not provide the destructor in the example above, the deletion of an object
of type Vect would cause a memory leak. (Recall from Section 1.1.3 that this is
an inaccessible block of memory that cannot be removed). The job of explicitly
deallocating objects that were allocated is one of the chores that C++ programmers
must endure.

1.5.3 Classes and Memory Allocation

When a class performs memory allocation using new, care must be taken to avoid
a number of common programming errors. We have shown above that failure to
deallocate storage in a class’s destructor can result in memory leaks. A somewhat
more insidious problem occurs when classes that allocate memory fail to provide a
copy constructor or an assignment operator. Consider the following example, using
our Vect class.

Vect a(100); // ais a vector of size 100

Vect b = a; // initialize b from a (DANGER!)
Vect c; // cis a vector (default size 10)
c=a // assign a to ¢ (DANGER!)

It would seem that we have just created three separate vectors, all of size 100,
but have we? In reality all three of these vectors share the same 100-element array.
Let us see why this has occurred.

1.5. Classes 41

The declaration of object a invokes the vector constructor, which allocates an
array of 100 integers and a.data points to this array. The declaration “Vect b=a”
initializes b from a. Since we provided no copy constructor in Vect, the system
uses its default, which simply copies each member of a to b. In particular it sets
“b.data=a.data.” Notice that this does not copy the contents of the array; rather it
copies the pointer to the array’s initial element. This default action is sometimes
called a shallow copy.

The declaration of c invokes the constructor with a default argument value of
10, and hence allocates an array of 10 elements in the free store. Because we have
not provided an assignment operator, the statement “c=a,” also does a shallow copy
of a to c. Only pointers are copied, not array contents. Worse yet, we have lost the
pointer to c’s original 10-element array, thus creating a memory leak.

Now, a, b, and c all have members that point to the same array in the free store.
If the contents of the arrays of one of the three were to change, the other two would
mysteriously change as well. Worse yet, if one of the three were to be deleted
before the others (for example, if this variable was declared in a nested block), the
destructor would delete the shared array. When either of the other two attempts to
access the now deleted array, the results would be disastrous. In short, there are
many problems here.

Fortunately, there is a simple fix for all of these problems. The problems arose
because we allocated memory and we used the system’s default copy constructor
and assignment operator. If a class allocates memory, you should provide a copy
constructor and assignment operator to allocate new memory for making copies. A
copy constructor for a class T is typically declared to take a single argument, which
is a constant reference to an object of the same class, that is, T(const T& t). As
shown in the code fragment below, it copies each of the data members from one
class to the other while allocating memory for any dynamic members.

Vect::Vect(const Vect& a) { // copy constructor from a
size = a.size; // copy sizes
data = new int[size]; // allocate new array
for (int i = 0; i < size; i++) { // copy the vector contents
data[i] = a.data]i];
}

The assignment operator is handled by overloading the = operator as shown
in the next code fragment. The argument “a” plays the role of the object on the
right side of the assignment operator. The assignment operator deletes the existing
array storage, allocates a new array of the proper size, and copies elements into
this new array. The if statement checks against the possibility of self assignment.
(This can sometimes happen when different variables reference the same object.)

We perform this check using the keyword this. For any instance of a class object,

42 Chapter 1. A C++ Primer

“this” is defined to be the address of this instance. If this equals the address of a,
then this is a case of self assignment, and we ignore the operation. Otherwise, we
deallocate the existing array, allocate a new array, and copy the contents over.

Vect& Vect::operator=(const Vect& a) { // assignment operator from a

if (this |= &a) { // avoid self-assignment
delete [] data; // delete old array
size = a.size; // set new size
data = new int[size]; // allocate new array
for (int i=0; i < size; i++) { // copy the vector contents
data[i] = a.data]i];
}
}
return *this;

}

Notice that in the last line of the assignment operator we return a reference to
the current object with the statement “return *this.” Such an approach is useful
for assignment operators, since it allows us to chain together assignments, as in
“a=b=c.” The assignment “b=c” invokes the assignment operator, copying vari-
able c to b and then returns a reference to b. This result is then assigned to variable
a.

The only other changes needed to complete the job would be to add the appro-
priate function declarations to the Vect class. By using the copy constructor and
assignment operator, we avoid the above memory leak and the dangerous shared
array. The lessons of the last two sections can be summarized in the following rule.

Remember

Every class that allocates its own objects using new should:
e Define a destructor to free any allocated objects.
e Define a copy constructor, which allocates its own new member stor-
age and copies the contents of member variables.
e Define an assignment operator, which deallocates old storage, allo-
cates new storage, and copies all member variables.

Some programmers recommend that these functions be included for every class,
even if memory is not allocated, but we are not so fastidious. In rare instances, we
may want to forbid users from using one or more of these operations. For example,
we may not want a huge data structure to be copied inadvertently. In this case,
we can define empty copy constructors and assignment functions and make them
private members of the class.

1.5. Classes 43

1.5.4 Class Friends and Class Members

Complex data structures typically involve the interaction of many different classes.
In such cases, there are often issues coordinating the actions of these classes to
allow sharing of information. We discuss some of these issues in this section.

We said private members of a class may only be accessed from within the class,
but there is an exception to this. Specifically, we can declare a function as a friend,
which means that this function may access the class’s private data. There are a
number of reasons for defining friend functions. One is that syntax requirements
may forbid us from defining a member function. For example, consider a class
SomeClass. Suppose that we want to define an overloaded output operator for this
class, and this output operator needs access to private member data. To handle this,
the class declares that the output operator is a friend of the class as shown below.

class SomeClass {

private:
int secret;

public:
/] ... // give << operator access to secret
friend ostream& operator<<(ostream& out, const SomeClass& x);

b

ostream& operator<<(ostream& out, const SomeClass& x)
{ cout << x.secret; }

Another time when it is appropriate to use friends is when two different classes
are closely related. For example, Code Fragment 1.1 shows two cooperating classes
Vector and Matrix. The former stores a three-dimensional vector and the latter
stores a 3 X 3 matrix. In this code fragment, we show just one example of the
usefulness of class friendship. The class Vector stores is coordinates in a private
array, called coord. The Matrix class defines a function that multiplies a matrix
times a vector. Because coord is a private member of Vector, members of the class
Matrix would not have access to coord. However, because Vector has declared
Matrix to be a friend, class Matrix can access all the private members of class
Vector.

The ability to declare friendship relationships between classes is useful, but the
extensive use of friends often indicates a poor class structure design. For example, a
better solution would be to have class Vector define a public subscripting operator.
Then the multiply function could use this public member to access the vector class,
rather than access private member data.

Note that “friendship” is not transitive. For example, if a new class Tensor
was made a friend of Matrix, Tensor would not be a friend of Vector, unless class
Vector were to explicitly declare it to be so.

44

Chapter 1. A C++ Primer

class Vector { // a 3-element vector
public: // ... public members omitted
private:
double coord[3]; // storage for coordinates
friend class Matrix; // give Matrix access to coord
i
class Matrix { // a 3x3 matrix
public:
Vector multiply(const Vector& v); // multiply by vector v
// ... other public members omitted
private:
double a[3][3]; // matrix entries

Vector Matrix::multiply(const Vector& v) { // multiply by vector v
Vector w;
for (inti =0;i < 3; i++)
for (int j =0;j < 3; j++)
w.coord[i] += ali][j] * v.coord][j]; // access to coord allowed
return w;

}

Code Fragment 1.1: An example of class friendship.

Nesting Classes and Types within Classes

We know that classes may define member variables and member functions. Classes
may also define their own types as well. In particular, we can nest a class definition
within another class. Such a nested class is often convenient in the design of data
structures. For example, suppose that we want to design a data structure, called
Book, and we want to provide a mechanism for placing bookmarks to identify par-
ticular locations within our book. We could define a nested class, called Bookmark,
which is defined within class Book.

class Book {
public:
class Bookmark {
// ... (Bookmark definition here)

I
// ... (Remainder of Book definition)

}

We might define a member function that returns a bookmark within the book, say,
to the start of some chapter. Outside the class Book, we use the scope-resolution
operator, Book::Bookmark, in order to refer to this nested class. We shall see many
other examples of nested classes later in the book.

1.5. Classes 45

1.5.5 The Standard Template Library

The Standard Template Library (STL) is a collection of useful classes for common
data structures. In addition to the string class, which we have seen many times, it
also provides data structures for the following standard containers. We discuss
many of these data structures later in this book, so don’t worry if their names seem

unfamiliar.
stack Container with last-in, first-out access
queue Container with first-in, first-out access
deque Double-ended queue
vector Resizeable array
list Doubly linked list
priority_queue Queue ordered by value
set Set
map Associative array (dictionary)

Templates and the STL Vector Class

One of the important features of the STL is that each such object can store objects
of any one type. Contrast this with the Vect class of Section 1.5.2, which can
only hold integers. Such a class whose definition depends on a user-specified type
is called a template. We discuss templates in greater detail in Chapter 2, but we
briefly mention how they are used with container objects here.

We specify the type of the object being stored in the container in angle brackets
(<...>). For example, we could define vectors to hold 100 integers, 500 characters,
and 20 passengers as follows:

#include <vector>

using namespace std; // make std accessible
vector<int> scores(100); // 100 integer scores
vector<char> buffer(500); // buffer of 500 characters

vector<Passenger> passenList(20); // list of 20 Passengers

As usual, the include statement provides the necessary declarations for using
the vector class. Each instance of an STL vector can only hold objects of one type.

STL vectors are superior to standard C++ arrays in many respects. First, as
with arrays, individual elements can be indexed using the usual index operator ([]).
They can also be accessed by the at member function. The advantage of the latter
is that it performs range checking and generates an error exception if the index is
out of bounds. (We discuss exceptions in Section 2.4.) Recall that standard arrays
in C++ do not even know their size, and hence range checking is not even possible.
In contrast, a vector object’s size is given by its size member function. Unlike

46

Chapter 1. A C++ Primer

standard arrays, one vector object can be assigned to another, which results in the
contents of one vector object being copied to the other. A vector can be resized
dynamically by calling the resize member function. We show several examples of
uses of the STL vector class below.

inti=//...

cout << scores[il; // index (range unchecked)
buffer.at(i) = buffer.at(2 * i); // index (range checked)
vector<int> newScores = scores; // copy scores to newScores
scores.resize(scores.size() + 10); // add room for 10 more elements

We discuss the STL further in Chapter 3.

More on STL Strings

In Section 1.1.3, we introduced the STL string class. This class provides a number
of useful utilities for manipulating character strings. Earlier, we discussed the use
of the addition operator (“ +") for concatenating strings, the operator *“ +="" for
appending a string to the end of an existing string, the function size for determining
the length of a string, and the indexing operator (“[]”) for accessing individual
characters of a string.

Let us present a few more string functions. In the table below, let s be an STL
string, and let p be either an STL string or a standard C++ string. Let i and m be
nonnegative integers. Throughout, we use i to denote the index of a position in a
string and we use m to denote the number of characters involved in the operation.
(A string’s first character is at index i = 0.)

s.find(p) Return the index of first occurrence of string p in s

s.find(p, i) Return the index of first occurrence of string p in s
on or after position i

s.substr(i,m) Return the substring starting at position i of s
and consisting of m characters

s.insert(i, p) Insert string p just prior to index i in s

s.erase(i, m) Remove the substring of length m starting at index i

s.replace(i, m, p) Replace the substring of length m starting at index i
with p

getline(is, s) Read a single line from the input stream is and store

the result in s

In order to indicate that a pattern string p is not found, the find function returns
the special value string::npos. Strings can also be compared lexicographically,
using the C++ comparison operators: <, <=, >, >=, ==, and |=.

1.6. C++ Program and File Organization 47

Here are some examples of the use of these functions.

string s = "a dog"; // “a dog"

s += " is a dog"; // “a dog is a dog"
cout << s.find("dog"); /] 2

cout << s.find("dog", 3); // 11

if (s.find("doug") == string::npos) { } // true

cout << s.substr(7, 5); // “sad"
s.replace(2, 3, "frog"); // “a frog is a dog"
s.erase(6, 3); // “a frog a dog”
s.insert(0, "is "); // “is a frog a dog”
if (s == "is a frog a dog") { } // true

if (s < "is a frog a toad") { } // true

if (s < "is a frog a cat") { } // false

1.6

C++ Program and File Organization

Let us now consider the broader issue of how to organize an entire C++ program.
A typical large C++ program consists of many files, with related pieces of code
residing within each file. For example, C++ programmers commonly place each
major class in its own file.

Source Files

There are two common file types, source files and header files. Source files typi-
cally contain most of the executable statements and data definitions. This includes
the bodies of functions and definitions of any global variables.

Different compilers use different file naming conventions. Source file names
typically have distinctive suffixes, such as “.cc”, “.cpp”, and “.C”. Source files may
be compiled separately by the compiler, and then these files are combined into one
program by a system program called a linker.

Each nonconstant global variable and function may be defined only once. Other
source files may share such a global variable or function provided they have a
matching declaration. To indicate that a global variable is defined in another file,
the type specifier “extern” is added. This keyword is not needed for functions.
For example, consider the declarations extracted from two files below. The file
Sourcel.cpp defines a global variable cat and function foo. The file Source2.cpp
can access these objects by including the appropriate matching declarations and
adding “extern” for variables.

File: Sourcel.cpp

int cat = 1; // definition of cat
int foo(int x) { return x+1; } // definition of foo

48

Chapter 1. A C++ Primer

File: Source2.cpp

extern int cat; // cat is defined elsewhere
int foo(int x); // foo is defined elsewhere

Header Files

Since source files using shared objects must provide identical declarations, we com-
monly store these shared declarations in a header file, which is then read into each
such source file using an #include statement. Statements beginning with # are
handled by a special program, called the preprocessor, which is invoked automati-
cally by the compiler. A header file typically contains many declarations, including
classes, structures, constants, enumerations, and typedefs. Header files generally
do not contain the definition (body) of a function. In-line functions are an excep-
tion, however, as their bodies are given in a header file.

Except for some standard library headers, the convention is that header file
names end with a “.h” suffix. Standard library header files are indicated with angle
brackets, as in <iostream>, while other local header files are indicated using quotes,
as in "mylncludes.h”.

#include <iostream> // system include file
#include "myIncludes.h" // user-defined include file

As a general rule, we should avoid including namespace using directives in
header files, because any source file that includes such a header file has its names-
pace expanded as a result. We make one exception to this in our examples, however.
Some of our header files include a using directive for the STL string class because
it is so useful.

1.6.1 An Example Program

To make this description more concrete, let us consider an example of a simple
yet complete C++ program. Our example consists of one class, called CreditCard,
which defines a credit card object and a procedure that uses this class.

The CreditCard Class

The credit card object defined by CreditCard is a simplified version of a traditional
credit card. It has an identifying number, identifying information about the owner,
and information about the credit limit and the current balance. It does not charge
interest or late payments, but it does restrict charges that would cause a card’s
balance to go over its spending limit.

The main class structure is presented in the header file CreditCard.h and is
shown in Code Fragment 1.2.

1.6. C++ Program and File Organization 49

#ifndef CREDIT_CARD_H // avoid repeated expansion
#define CREDIT_CARD_H

#include <string> // provides string

#include <iostream> // provides ostream

class CreditCard {
public:
CreditCard(const std::string& no, // constructor
const std::string& nm, int lim, double bal=0);
// accessor functions

std:istring getNumber() const { return number; }

std::string getName() const { return name; }

double getBalance() const { return balance; }

int getLimit() const { return limit; }

bool chargelt(double price); // make a charge

void makePayment(double payment); // make a payment
private: // private member data

std:istring number; // credit card number

std:istring name; // card owner's name

int limit; // credit limit

double balance; // credit card balance

h

// print card information
std::ostream& operator<<(std::ostream& out, const CreditCard& c);
#endif

Code Fragment 1.2: The header file CreditCard.h, which contains the definition of
class CreditCard.

50

Chapter 1. A C++ Primer

Before discussing the class, let us say a bit about the general file structure.
The first two lines (containing #ifndef and #define) and the last line (containing
#endif) are used to keep the same header file from being expanded twice. We
discuss this later. The next lines include the header files for strings and standard
input and output.

This class has four private data members. We provide a simple constructor to
initialize these members. There are four accessor functions, which provide access
to read the current values of these member variables. Of course, we could have
alternately defined the member variables as being public and saved the work of
providing these accessor functions. However, this would allow users to modify any
of these member variables directly. We usually prefer to restrict the modification of
member variables to special update functions. We include two such update func-
tions, chargelt and makePayment. We have also defined a stream output operator
for the class.

The accessor functions and makePayment are short, so we define them within
the class body. The other member functions and the output operator are defined
outside the class in the file CreditCard.cpp, shown in Code Fragment 1.3. This
approach of defining a header file with the class definition and an associated source
file with the longer member function definitions is common in C++.

The Main Test Program

Our main program is in the file TestCard.cpp. It consists of a main function, but this
function does little more than call the function testCard, which does all the work.
We include CreditCard.h to provide the CreditCard declaration. We do not need to
include iostream and string, since CreditCard.h does this for us, but it would not
have hurt to do so.

The testCard function declares an array of pointers to CreditCard. We allocate
three such objects and initialize them. We then perform a number of payments and
print the associated information. We show the complete code for the Test class in
Code Fragment 1.4.

The output of the Test class is sent to the standard output stream. We show this
output in Code Fragment 1.5.

Avoiding Multiple Header Expansions

A typical C++ program includes many different header files, which often include
other header files. As a result, the same header file may be expanded many times.
Such repeated header expansion is wasteful and can result in compilation errors
because of repeated definitions. To avoid this repeated expansion, most header
files use a combination of preprocessor commands. Let us explain the process,
illustrated in Code Fragment 1.2.

1.6. C++ Program and File Organization 51

#include "CreditCard.h" // provides CreditCard

using namespace std,; // make std:: accessible
// standard constructor
CreditCard::CreditCard(const string& no, const string& nm, int lim, double bal) {
number = no;
name = nm;
balance = bal;
limit = lim;

}

bool CreditCard::chargelt(double price) {
if (price + balance > double(limit))

// make a charge

return false; // over limit
balance 4= price;
return true; // the charge goes through
}
void CreditCard::makePayment(double payment) { // make a payment
balance —= payment;
}

// print card information
ostream& operator<<(ostream& out, const CreditCard& c) {

out << "Number = " << c.getNumber() << "\n"
<< "Name = " << c.getName() << "\n"
<< "Balance = " << c.getBalance() << "\n"
<< "Limit =" << c.getLimit() << "\n";
return out;

}

Code Fragment 1.3: The file CreditCard.cpp, which contains the definition of the
out-of-class member functions for class CreditCard.

52

Chapter 1. A C++ Primer

#include <vector> // provides STL vector
#include "CreditCard.h" // provides CreditCard, cout, string
using namespace std; // make std accessible
void testCard() { // CreditCard test function
vector< CreditCard*> wallet(10); // vector of 10 CreditCard pointers

// allocate 3 new cards
wallet[0] = new CreditCard("5391 0375 9387 5309", "John Bowman", 2500);
wallet[1] = new CreditCard("3485 0399 3395 1954", "John Bowman", 3500);
wallet[2] = new CreditCard("6011 4902 3294 2994", "John Bowman", 5000);

for (int j=1; j <= 16; j++) { // make some charges
wallet[0]—>chargelt(double(j)); // explicitly cast to double
wallet[1]—>chargelt(2 * j); // implicitly cast to double
wallet[2] —>chargelt(double(3 * j));

}

cout << "Card payments:\n";

for (int i=0; i < 3; i++) { // make more charges

cout << *wallet][i];
while (wallet[i]—>getBalance() > 100.0) {
wallet[i]—>makePayment(100.0);

cout << "New balance = " << wallet[i]—>getBalance() << "\n";
}
cout << "\n";
delete wallet]i]; // deallocate storage
}
int main() { // main function
testCard();
return EXIT_SUCCESS; // successful execution
}

Code Fragment 1.4: The file TestCard.cpp.

Let us start with the second line. The #define statement defines a preprocessor
variable CREDIT_CARD_H. This variable’s name is typically based on the header
file name, and by convention, it is written in all capitals. The name itself is not
important as long as different header files use different names. The entire file is
enclosed in a preprocessor “if” block starting with #ifndef on top and ending with
#endif at the bottom. The “ifndef” is read “if not defined,” meaning that the header
file contents will be expanded only if the preprocessor variable CREDIT_CARD_H
is not defined.

Here is how it works. The first time the header file is encountered, the variable

1.7. Writing a C++ Program 53

Card payments:

Number = 5391 0375 9387 5309
Name = John Bowman

Balance = 136

Limit = 2500

New balance = 36

Number = 3485 0399 3395 1954
Name = John Bowman

Balance = 272

Limit = 3500

New balance = 172

New balance = 72

Number = 6011 4902 3294 2994
Name = John Bowman

Balance = 408

Limit = 5000

New balance = 308

New balance = 208

New balance = 108

New balance = 8

Code Fragment 1.5: Sample program output.

CREDIT_CARD_H has not yet been seen, so the header file is expanded by the
preprocessor. In the process of doing this expansion, the second line defines the
variable CREDIT_CARD_H. Hence, any attempt to include the header file will find
that CREDIT_CARD_H is defined, so the file will not be expanded.

Throughout this book we omit these preprocessor commands from our exam-
ples, but they should be included in each header file we write.

1.7

Writing a C++ Program

As with any programming language, writing a program in C++ involves three fun-
damental steps:

1. Design
2. Coding
3. Testing and Debugging.

We briefly discuss each of these steps in this section.

Chapter 1. A C++ Primer

1.7.1 Design

The design step is perhaps the most important in the process of writing a program.
In this step, we decide how to divide the workings of our program into classes, we
decide how these classes will interact, what data each will store, and what actions
each will perform. Indeed, one of the main challenges that beginning C++ pro-
grammers face is deciding what classes to define to do the work of their program.
While general prescriptions are hard to come by, there are some general rules of
thumb that we can apply when determining how to define our classes.

e Responsibilities: Divide the work into different actors, each with a different
responsibility. Try to describe responsibilities using action verbs. These
actors form the classes for the program.

e Independence: Define the work for each class to be as independent from
other classes as possible. Subdivide responsibilities between classes so that
each class has autonomy over some aspect of the program. Give data (as
member variables) to the class that has jurisdiction over the actions that re-
quire access to this data.

e Behaviors: Define the behaviors for each class carefully and precisely, so
that the consequences of each action performed by a class are well under-
stood by other classes with which it interacts. These behaviors define the
member functions that this class performs. The set of behaviors for a class is
sometimes referred to as a protocol, since we expect the behaviors for a class
to hold together as a cohesive unit.

Defining the classes, together with their member variables and member func-
tions, determines the design of a C++ program. A good programmer will naturally
develop greater skill in performing these tasks over time, as experience teaches him
or her to notice patterns in the requirements of a program that match patterns that
he or she has seen before.

1.7.2 Pseudo-Code

Programmers are often asked to describe algorithms in a way that is intended for
human eyes only, prior to writing actual code. Such descriptions are called pseudo-
code. Pseudo-code is not a computer program, but is more structured than usual
prose. Pseudo-code is a mixture of natural language and high-level programming
constructs that describe the main ideas behind a generic implementation of a data
structure or algorithm. There really is no precise definition of the pseudo-code lan-
guage, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard program-
ming language constructs. The programming language constructs we choose are
those consistent with modern high-level languages such as C, C++, and Java.

1.7. Writing a C++ Program 55

These constructs include the following:

e Expressions: We use standard mathematical symbols to express numeric
and Boolean expressions. We use the left arrow sign («+—) as the assignment
operator in assignment statements (equivalent to the = operator in C++) and
we use the equal sign (=) as the equality relation in Boolean expressions
(equivalent to the “=="relation in C++).

e Function declarations: Algorithm name(argl,arg2, ...) declares a new
function “name” and its arguments.

e Decision structures: if condition then true-actions [else false-actions]. We
use indentation to indicate what actions should be included in the true-actions
and false-actions.

e While-loops: while condition do actions. We use indentation to indicate
what actions should be included in the loop actions.

e Repeat-loops: repeat actions until condition. We use indentation to indicate
what actions should be included in the loop actions.

e For-loops: for variable-increment-definition do actions. We use indentation
to indicate what actions should be included among the loop actions.

e Array indexing: Ali] represents the ith cell in the array A. The cells of an
n-celled array A are indexed from A[0] to A[n — 1] (consistent with C++).

o Member function calls: object.method(args) (object is optional if it is un-
derstood).

e Function returns: return value. This operation returns the value specified
to the method that called this one.

o Comments: { Comment goes here. }. We enclose comments in braces.

When we write pseudo-code, we must keep in mind that we are writing for a
human reader, not a computer. Thus, we should strive to communicate high-level
ideas, not low-level implementation details. At the same time, we should not gloss
over important steps. Like many forms of human communication, finding the right
balance is an important skill that is refined through practice.

1.7.3 Coding

As mentioned above, one of the key steps in coding up an object-oriented pro-
gram is coding up the descriptions of classes and their respective data and member
functions. In order to accelerate the development of this skill, we discuss vari-
ous design patterns for designing object-oriented programs (see Section 2.1.3) at
various points throughout this text. These patterns provide templates for defining
classes and the interactions between these classes.

Many programmers do their initial coding not on a computer, but by using CRC
cards. Class-Responsibility-Collaborator (CRC) cards are simple index cards that
subdivide the work required of a program. The main idea behind this tool is to

56

Chapter 1. A C++ Primer

have each card represent a component, which will ultimately become a class in our
program. We write the name of each component on the top of an index card. On
the left-hand side of the card, we begin writing the responsibilities for this com-
ponent. On the right-hand side, we list the collaborators for this component, that
is, the other components that this component will have to interact with to perform
its duties. The design process iterates through an action/actor cycle, where we first
identify an action (that is, a responsibility), and we then determine an actor (that
is, a component) that is best suited to perform that action. The design is complete
when we have assigned all actions to actors.

By the way, in using index cards to begin our coding, we are assuming that
each component will have a small set of responsibilities and collaborators. This
assumption is no accident, since it helps keep our programs manageable.

An alternative to CRC cards is the use of UML (Unified Modeling Language)
diagrams to express the organization of a program, and the use of pseudo-code to
describe the algorithms. UML diagrams are a standard visual notation to express
object-oriented software designs. Several computer-aided tools are available to
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is
a technique that we utilize throughout this book.

Once we have decided on the classes and their respective responsibilities for
our programs, we are ready to begin coding. We create the actual code for the
classes in our program by using either an independent text editor (such as emacs,
notepad, or vi), or the editor embedded in an integrated development environment
(IDE), such as Microsoft’s Visual Studio and Eclipse.

Once we have completed coding for a program (or file), we then compile this
file into working code by invoking a compiler. If our program contains syntax
errors, they will be identified, and we will have to go back into our editor to fix the
offending lines of code. Once we have eliminated all syntax errors and created the
appropriate compiled code, we then run our program.

Readability and Style

Programs should be made easy to read and understand. Good programmers should
therefore be mindful of their coding style and develop a style that communicates
the important aspects of a program’s design for both humans and computers. Much
has been written about good coding style. Here are some of the main principles.

e Use meaningful names for identifiers. Try to choose names that can be read
aloud and reflect the action, responsibility, or data each identifier is nam-
ing. The tradition in most C++ circles is to capitalize the first letter of each
word in an identifier, except for the first word in an identifier for a variable
or method. So, in this tradition, “Date,” “Vector,” and “DeviceManager”

1.7. Writing a C++ Program 57

| 99 ¢ 99 ¢
>

would identify classes, and “isFul insertltem,” “studentName,” and “‘stu-
dentHeight” would respectively identify member functions and variables.
Use named constants and enumerations instead of embedded values. Read-
ability, robustness, and modifiability are enhanced if we include a series of
definitions of named constant values in a class definition. These can then be
used within this class and others to refer to special values for this class. Our
convention is to fully capitalize such constants as shown below.

const int MIN_CREDITS = 12; // min. credits in a term

const int MAX_CREDITS = 24; // max. credits in a term

// enumeration for year
enum Year { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };

Indent statement blocks. Typically programmers indent each statement block
by four spaces. (In this book, we typically use two spaces to avoid having
our code overrun the book’s margins.)

Organize each class in a consistent order. In the examples in this book, we
usually use the following order:

1. Public types and nested classes

2. Public member functions

3. Protected member functions (internal utilities)
4. Private member data

Our class organizations do not always follow this convention. In particular,
when we wish to emphasize the implementation details of a class, we present
the private members first and the public functions afterwards.

Use comments that add meaning to a program and explain ambiguous or
confusing constructs. In-line comments are good for quick explanations and
do not need to be sentences. Block comments are good for explaining the
purpose of a method and complex code sections.

1.7.4

Testing and Debugging

Testing is the process of verifying the correctness of a program, while debugging
is the process of tracking the execution of a program and discovering the errors
in it. Testing and debugging are often the most time-consuming activity in the
development of a program.

Testing

A careful testing plan is an essential part of writing a program. While verifying
the correctness of a program over all possible inputs is usually not feasible, we
should aim at executing the program on a representative subset of inputs. At the
very minimum, we should make sure that every method in the program is tested

58

Chapter 1. A C++ Primer

at least once (method coverage). Even better, each code statement in the program
should be executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to
be carefully identified and tested. For example, when testing a method that sorts
an array of integers (that is, arranges them in ascending order), we should consider
the following inputs:

e The array has zero length (no elements)

e The array has one element

e All the elements of the array are the same
e The array is already sorted

e The array is reverse sorted

In addition to special inputs to the program, we should also consider special
conditions for the structures used by the program. For example, if we use an array
to store data, we should make sure that boundary cases, such as inserting/removing
at the beginning or end of the subarray holding data, are properly handled. While it
is essential to use hand-crafted test suites, it is also advantageous to run the program
on a large collection of randomly generated inputs.

There is a hierarchy among the classes and functions of a program induced by
the “caller-callee” relationship. Namely, a function A is above a function B in the
hierarchy if A calls B. There are two main testing strategies, top-down and bottom-
up, which differ in the order in which functions are tested.

Bottom-up testing proceeds from lower-level functions to higher-level func-
tions. Namely, bottom-level functions, which do not invoke other functions, are
tested first, followed by functions that call only bottom-level functions, and so on.
This strategy ensures that errors found in a method are not likely to be caused by
lower-level functions nested within it.

Top-down testing proceeds from the top to the bottom of the method hierarchy.
It is typically used in conjunction with stubbing, a boot-strapping technique that
replaces a lower-level method with a stub, a replacement for the method that simu-
lates the output of the original method. For example, if function A calls function B
to get the first line of a file, we can replace B with a stub that returns a fixed string
when testing A.

Debugging

The simplest debugging technique consists of using print statements (typically us-
ing the stream output operator, “<<”) to track the values of variables during the
execution of the program. The problem with this approach is that the print state-
ments need to be removed or commented out before the program can be executed
as part of a “production” software system.

1.7. Writing a C++ Program 59

A better approach is to run the program within a debugger, which is a special-
ized environment for controlling and monitoring the execution of a program. The
basic functionality provided by a debugger is the insertion of breakpoints within
the code. When the program is executed within the debugger, it stops at each
breakpoint. While the program is stopped, the current value of variables can be
inspected. In addition to fixed breakpoints, advanced debuggers allow for specifi-
cation of conditional breakpoints, which are triggered only if a given expression is
satisfied.

Many IDEs, such as Microsoft Visual Studio and Eclipse provide built-in de-
buggers.

60

Chapter 1. A C++ Primer

1.8 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-1.1

R-1.2

R-1.3

R-1.5

R-1.7

R-1.8

Which of the following is not a valid C++ variable name? (There may be
more than one.)

a. i_think_i_am_valid
i_may_have_2_many_digits_2_be_valid
_l_start_and_end_with_underscores_
I_Have_A_Dollar_$ign
I_.AM_LONG_AND_HAVE _NO_LOWER_CASE_LETTERS

Write a pseudo-code description of a method for finding the smallest and
largest numbers in an array of integers and compare that to a C++ function
that would do the same thing.

oo o

Give a C++ definition of a struct called Pair that consists of two mem-
bers. The first is an integer called first, and the second is a double called
second.

What are the contents of string s after executing the following statements.

string s = "abc";
string t = "cde";
s +=s+ t[1] + s;

Consider the expressiony + 2 * z +4 < 3 - w / 5. Add parentheses
to show the precise order of evaluation given the C++ rules for operator
precedence.

Consider the following attempt to allocate a 10-element array of pointers
to doubles and initialize the associated double values to 0.0. Rewrite the
following (incorrect) code to do this correctly. (Hint: Storage for the
doubles needs to be allocated.)

double* dp[10]
for (int i = 0; i < 10; i++) dp[i] = 0.0;

Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

Write a short C++ function, isMultiple, that takes two positive long values,
n and m, and returns true if and only if n is a multiple of m, that is, n = mi
for some integer i.

www.wiley.com/college/goodrich

1.8. Exercises

R-1.9

R-1.10

R-1.11

R-1.12

R-1.13

R-1.14

R-1.15

R-1.16

R-1.17

R-1.18

R-1.19

61

Write a C++ function printArray(A, m, n) that prints an m X n two-
dimensional array A of integers, declared to be “int** A.” to the standard
output. Each of the m rows should appear on a separate line.

What (if anything) is different about the behavior of the following two
functions f and g that increment a variable and print its value?

void f(int x)
{ std:icout << ++x; }
void g(int& x)
{ std:icout << ++x; }
Write a C++ class, Flower, that has three member variables of type string,
int, and float, which respectively represent the name of the flower, its
number of pedals, and price. Your class must include a constructor method
that initializes each variable to an appropriate value, and your class should
include functions for setting the value of each type, and getting the value
of each type.

Modify the CreditCard class from Code Fragment 1.3 to check that the
price argument passed to function chargelt and the payment argument
passed to function makePayment are positive.

Modify the CreditCard class from Code Fragment 1.2 to charge interest
on each payment.

Modify the CreditCard class from Code Fragment 1.2 to charge a late fee
for any payment that is past its due date.

Modify the CreditCard class from Code Fragment 1.2 to include modifier
Junctions that allow a user to modify internal variables in a CreditCard
class in a controlled manner.

Modify the declaration of the first for loop in the Test class in Code Frag-
ment 1.4 so that its charges will eventually cause exactly one of the three
credit cards to go over its credit limit. Which credit card is it?

Write a C++ class, AllKinds, that has three member variables of type int,
long, and float, respectively. Each class must include a constructor func-
tion that initializes each variable to a nonzero value, and each class should
include functions for setting the value of each type, getting the value of
each type, and computing and returning the sum of each possible combi-
nation of types.

Write a short C++ function, isMultiple, that takes two long values, n and
m, and returns true if and only if n is a multiple of m, that is, n = m - i for
some integer i.

Write a short C++ function, isTwoPower, that takes an int i and returns
true if and only if i is a power of 2. Do not use multiplication or division,
however.

62

R-1.20

R-1.21

R-1.22

Chapter 1. A C++ Primer

Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

Write a short C++ function that takes an integer n and returns the sum of
all the odd integers smaller than n.

Write a short C++ function that takes a positive double value x and returns
the number of times we can divide x by 2 before we get a number less
than 2.

Creativity

C-1.1

C-1.2

C-13

C-14

C-1.5

C-1.9

Write a pseudo-code description of a method that reverses an array of n
integers, so that the numbers are listed in the opposite order than they were
before, and compare this method to an equivalent C++ method for doing
the same thing.

Write a short C++ function that takes an array of int values and determines
if there is a pair of numbers in the array whose product is even.

Write a C++ function that takes an STL vector of int values and deter-
mines if all the numbers are different from each other (that is, they are
distinct).

Write a C++ function that takes an STL vector of int values and prints all
the odd values in the vector.

Write a C++ function that takes an array containing the set of all integers
in the range 1 to 52 and shuffles it into random order. Use the built-in func-
tion rand, which returns a pseudo-random integer each time it is called.
Your function should output each possible order with equal probability.
Write a short C++ program that outputs all possible strings formed by
using each of the characters ’a’, *b’, ’c’, ’d’, ’e’, and ’f’ exactly
once.

Write a short C++ program that takes all the lines input to standard input
and writes them to standard output in reverse order. That is, each line is
output in the correct order, but the ordering of the lines is reversed.

Write a short C++ program that takes two arguments of type STL vec-
tor<double>, a and b, and returns the element-by-element product of a
and b. That is, it returns a vector ¢ of the same length such that c[i] =
ali] - bli].

Write a C++ class Vector2, that stores the (x,y) coordinates of a two-
dimensional vector, where x and y are of type double. Show how to
override various C++ operators in order to implement the addition of two
vectors (producing a vector result), the multiplication of a scalar times
a vector (producing a vector result), and the dot product of two vectors
(producing a double result).

1.8. Exercises

C-1.10

C-1.11

63

Write an efficient C++ function that takes any integer value i and returns
2', as a long value. Your function should nof multiply 2 by itself i times;
there are much faster ways of computing 2'.

The greatest common divisor, or GCD, of two positive integers n and m is
the largest number j, such that n and m are both multiples of j. Euclid pro-
posed a simple algorithm for computing GCD(n,m), where n > m, which
is based on a concept known as the Chinese Remainder Theorem. The
main idea of the algorithm is to repeatedly perform modulo computations
of consecutive pairs of the sequence that starts (n,m,...), until reaching
zero. The last nonzero number in this sequence is the GCD of n and m.
For example, for n = 80,844 and m = 25,320, the sequence is as follows:

80,844 mod 25,320 = 4,884
25,320 mod 4,884 = 900
4,884 mod 900 = 384

900 mod 384 = 132
384 mod 132 = 120
132 mod 120 = 12

120mod 12 = O

So, GCD of 80,844 and 25,320 is 12. Write a short C++ function to
compute GCD(n,m) for two integers n and m.

Projects

P-1.1

P-1.3

A common punishment for school children is to write out the same sen-
tence multiple times. Write a C++ stand-alone program that will write
out the following sentence one hundred times: “I will always use object-
oriented design.” Your program should number each of the sentences and
it should “accidentally” make eight different random-looking typos at var-
ious points in the listing, so that it looks like a human typed it all by hand.

Write a C++ program that, when given a starting day (Sunday through
Saturday) as a string, and a four-digit year, prints a calendar for that year.
Each month should contain the name of the month, centered over the dates
for that month and a line containing the names of the days of the week,
running from Sunday to Saturday. Each week should be printed on a sep-
arate line. Be careful to check for a leap year.

The birthday paradox says that the probability that two people in a room
will have the same birthday is more than half as long as the number of

64 Chapter 1. A C++ Primer

people in the room (n), is more than 23. This property is not really a para-
dox, but many people find it surprising. Design a C++ program that can
test this paradox by a series of experiments on randomly generated birth-
days, which test this paradox for n = 5,10, 15,20,...,100. You should run
at least 10 experiments for each value of n and it should output, for each
n, the number of experiments for that n, such that two people in that test
have the same birthday.

Chapter Notes

For more detailed information about the C++ programming language and the Standard
Template Library, we refer the reader to books by Stroustrup [91], Lippmann and La-
joie [67], Musser and Saini [81], and Horstmann [47]. Lippmann also wrote a short in-
troduction to C++ [66]. For more advanced information of how to use C++’s features in
the most effective manner, consult the books by Meyers [77, 76]. For an introduction to
C++ assuming a background of C see the book by Pohl [84]. For an explanation of the
differences between C++ and Java see the book by Budd [17].

Chapter

Object-Oriented Design

Contents
2.1 Goals, Principles, and Patterns 66
2.1.1 Object-Oriented Design Goals 66
2.1.2 Object-Oriented Design Principles 67
2.1.3 Design Patterns L. 70
2.2 Inheritance and Polymorphism 71
2.2.1 Inheritance in C++. 71
2.2.2 Polymorphism 78
2.2.3 Examples of Inheritance in C++ 79
2.2.4 Multiple Inheritance and Class Casting 84
2.2.5 Interfaces and Abstract Classes 87
23 Templates 90
2.3.1 Function Templates 90
232 Class Templates 91
2.4 Exceptions 93
2.4.1 Exception Objects 93
2.4.2 Throwing and Catching Exceptions 94
2.4.3 Exception Specification L. 96
25 EXErciSes« v v v it e e e e e e 98

66

Chapter 2. Object-Oriented Design

2.1

Goals, Principles, and Patterns

As the name implies, the main “actors” in the object-oriented design paradigm are
called objects. An object comes from a class, which is a specification of the data
members that the object contains, as well as the member functions (also called
methods or operations) that the object can execute. Each class presents to the out-
side world a concise and consistent view of the objects that are instances of this
class, without going into too much unnecessary detail or giving others access to the
inner workings of the objects. This view of computing is intended to fulfill several
goals and incorporate several design principles, which we discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusabil-
ity. (See Figure 2.1.)

Robustness Adaptability Reusability
Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means
that a program produces the right output for all the anticipated inputs in the pro-
gram’s application. In addition, we want software to be robust, that is, capable of
handling unexpected inputs that are not explicitly defined for its application. For
example, if a program is expecting a positive integer (for example, representing the
price of an item) and instead is given a negative integer, then the program should be
able to recover gracefully from this error. More importantly, in life-critical appli-
cations, where a software error can lead to injury or loss of life, software that is not
robust could be deadly. This point was driven home in the late 1980s in accidents
involving Therac-25, a radiation-therapy machine, which severely overdosed six
patients between 1985 and 1987, some of whom died from complications resulting
from their radiation overdose. All six accidents were traced to software errors.

2.1. Goals, Principles, and Patterns 67
Adaptability

Modern software applications, such as Web browsers and Internet search engines,
typically involve large programs that are used for many years. Software therefore
needs to be able to evolve over time in response to changing conditions in its envi-
ronment. Thus, another important goal of quality software is that it achieves adapt-
ability (also called evolvability). Related to this concept is portability, which is the
ability of software to run with minimal change on different hardware and operat-
ing system platforms. An advantage of writing software in C++ is the portability
provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that
is, the same code should be usable as a component of different systems in various
applications. Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that makes it easily
reusable in future applications. Such reuse should be done with care, however, for
one of the major sources of software errors in the Therac-25 came from inappropri-
ate reuse of Therac-20 software (which was not object-oriented and not designed
for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to
facilitate the goals outlined above, are the following (see Figure 2.2):

e Abstraction
e Encapsulation
e Modularity.

N
%
1

== oo PHPRRERH|

dE= ol
FPadrw g 1
ORGa B

EE

Abstraction Encapsulation Modularity

Figure 2.2: Principles of object-oriented design.

68

Chapter 2. Object-Oriented Design

Abstraction

The notion of abstraction is to distill a complicated system down to its most fun-
damental parts and describe these parts in a simple, precise language. Typically,
describing the parts of a system involves naming them and explaining their func-
tionality. Applying the abstraction paradigm to the design of data structures gives
rise to abstract data types (ADTs). An ADT is a mathematical model of a data
structure that specifies the type of the data stored, the operations supported on them,
and the types of the parameters of the operations. An ADT specifies what each op-
eration does, but not kow it does it. In C++, the functionality of a data structure
is expressed through the public interface of the associated class or classes that de-
fine the data structure. By public interface, we mean the signatures (names, return
types, and argument types) of a class’s public member functions. This is the only
part of the class that can be accessed by a user of the class.

An ADT is realized by a concrete data structure, which is modeled in C++
by a class. A class defines the data being stored and the operations supported by
the objects that are instances of the class. Also, unlike interfaces, classes specify
how the operations are performed in the body of each function. A C++ class is
said to implement an interface if its functions include all the functions declared
in the interface, thus providing a body for them. However, a class can have more
functions than those of the interface.

Encapsulation

Another important principle of object-oriented design is the concept of encapsula-
tion, which states that different components of a software system should not reveal
the internal details of their respective implementations. One of the main advantages
of encapsulation is that it gives the programmer freedom in implementing the de-
tails of a system. The only constraint on the programmer is to maintain the abstract
interface that outsiders see.

Modularity

In addition to abstraction and encapsulation, a fundamental principle of object-
oriented design is modularity. Modern software systems typically consist of sev-
eral different components that must interact correctly in order for the entire system
to work properly. Keeping these interactions straight requires that these different
components be well organized. In object-oriented design, this code structuring
approach centers around the concept of modularity. Modularity refers to an orga-
nizing principle for code in which different components of a software system are
divided into separate functional units.

2.1. Goals, Principles, and Patterns 69

Hierarchical Organization

The structure imposed by modularity helps to enable software reusability. If soft-
ware modules are written in an abstract way to solve general problems, then mod-
ules can be reused when instances of these same general problems arise in other
contexts.

For example, the structural definition of a wall is the same from house to house,
typically being defined in terms of vertical studs, spaced at fixed-distance intervals,
etc. Thus, an organized architect can reuse his or her wall definitions from one
house to another. In reusing such a definition, some parts may require redefinition,
for example, a wall in a commercial building may be similar to that of a house, but
the electrical system and stud material might be different.

A natural way to organize various structural components of a software package
is in a hierarchical fashion, which groups similar abstract definitions together in
a level-by-level manner that goes from specific to more general as one traverses
up the hierarchy. A common use of such hierarchies is in an organizational chart
where each link going up can be read as “is a,” as in “a ranch is a house is a
building.” This kind of hierarchy is useful in software design, for it groups together
common functionality at the most general level, and views specialized behavior as
an extension of the general one.

Building

Apartment House Commercial

Building

| Low-rise I | High-rise I | Two-story I | I | . I
Apartment Apartment House Ranch Skyscraper

Figure 2.3: An example of an “is a” hierarchy involving architectural buildings.

Chapter 2. Object-Oriented Design

2.1.3 Design Patterns

One of the advantages of object-oriented design is that it facilitates reusable, ro-
bust, and adaptable software. Designing good code takes more than simply under-
standing object-oriented methodologies, however. It requires the effective use of
object-oriented design techniques.

Computing researchers and practitioners have developed a variety of organiza-
tional concepts and methodologies for designing quality object-oriented software
that is concise, correct, and reusable. Of special relevance to this book is the con-
cept of a design pattern, which describes a solution to a “typical” software design
problem. A pattern provides a general template for a solution that can be applied in
many different situations. It describes the main elements of a solution in an abstract
way that can be specialized for a specific problem at hand. It consists of a name,
which identifies the pattern, a context, which describes the scenarios for which this
pattern can be applied, a template, which describes how the pattern is applied, and
a result, which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be
consistently applied to implementations of data structures and algorithms. These
design patterns fall into two groups—patterns for solving algorithm design prob-
lems and patterns for solving software engineering problems. Some of the algo-
rithm design patterns we discuss include the following:

Recursion (Section 3.5)

Amortization (Section 6.1.3)

Divide-and-conquer (Section 11.1.1)

Prune-and-search, also known as decrease-and-conquer (Section 11.5.1)
Brute force (Section 12.3.1)

The greedy method (Section 12.4.2)

Dynamic programming (Section 12.2)

Likewise, some of the software engineering design patterns we discuss include:

Position (Section 6.2.1)

Adapter (Section 5.3.4)

Iterator (Section 6.2.1)

Template method (Sections 7.3.7, 11.4, and 13.3.3)
Composition (Section 8.1.2)

Comparator (Section 8.1.2)

Decorator (Section 13.3.1)

Rather than explain each of these concepts here, however, we introduce them
throughout the text as noted above. For each pattern, be it for algorithm engineering
or software engineering, we explain its general use and we illustrate it with at least
one concrete example.

2.2, Inheritance and Polymorphism 71

2.2 Inheritance and Polymorphism

To take advantage of hierarchical relationships, which are common in software
projects, the object-oriented design approach provides ways of reusing code.

2.2.1 Inheritance in C++

The object-oriented paradigm provides a modular and hierarchical organizing struc-
ture for reusing code through a technique called inheritance. This technique allows
the design of generic classes that can be specialized to more particular classes, with
the specialized classes reusing the code from the generic class. For example, sup-
pose that we are designing a set of classes to represent people at a university. We
might have a generic class Person, which defines elements common to all people.
We could then define specialized classes such as Student, Administrator, and In-
structor, each of which provides specific information about a particular type of
person.

A generic class is also known as a base class, parent class, or superclass.
It defines “generic” members that apply in a multitude of situations. Any class
that specializes or extends a base class need not give new implementations for the
general functions, for it inherits them. It should only define those functions that
are specialized for this particular class. Such a class is called a derived class, child
class, or subclass.

Let us consider an example to illustrate these concepts. Suppose that we are
writing a program to deal with people at a university. Below we show a partial
implementation of a generic class for a person. We use “// ...” to indicate code
that is irrelevant to the example and so has been omitted.

class Person { // Person (base class)
private:
string name; // name
string idNum; // university ID number
public:
void print(); // print information
string getName(); // retrieve name
h

Suppose we next wish to define a student object. We can derive our class Stu-

72

Chapter 2. Object-Oriented Design

dent from class Person as shown below.

class Student : public Person { // Student (derived from Person)
private:

string major; // major subject

int gradYear; // graduation year
public:

void print(); // print information

void changeMajor(const string& newMajor); // change major

h

The “public Person” phrase indicates that the Student is derived from the Per-
son class. (The keyword “public” specifies public inheritance. We discuss other
types of inheritance later.) When we derive classes in this way, there is an implied
“is a” relationship between them. In this case, a Student “is a” Person. In partic-
ular, a Student object inherits all the member data and member functions of class
Person in addition to providing its own members. The relationship between these
two classes is shown graphically in a class inheritance diagram in Figure 2.4.

Person(]

-name : string(’

-ssn : string[’]
+print() : void[
+getName() : string(|

T

Student(]

-major : string[’

-gradYear : int(

+print() : void(

+changeMajor(in newMajor : string) : void!

Figure 2.4: A class inheritance diagram, showing a base class Person and derived
class Student. Entries tagged with “~” are private and entries tagged with “+” are
public. Each block of the diagram consists of three parts: the class name, the class
member variables, and the class member functions. The type (or return type) of

each member is indicated after the colon (“:”). The arrow indicates that Student is
derived from Person.

2.2, Inheritance and Polymorphism 73
Member Functions

An object of type Person can access the public members of Person. An object of
type Student can access the public members of both classes. If a Student object
invokes the shared print function, it will use its own version by default. We use
the class scope operator (::) to specify which class’s function is used, as in Per-
son::print and Student::print. Note that an object of type Person cannot access
members of the base type, and thus it is not possible for a Person object to invoke
the changeMajor function of class Student.

Person person("Mary", "12-345"); // declare a Person
Student student("Bob", "98-764", "Math", 2012); // declare a Student

cout << student.getName() << endl; // invokes Person::getName()

person.print(); // invokes Person::print()
student.print(); // invokes Student::print()
person.changeMajor("Physics"); // ERROR!
student.changeMajor("English"); // okay

C++ programmers often find it useful for a derived class to explicitly invoke a
member function of a base class. For example, in the process of printing informa-
tion for a student, it is natural to first print the information of the Person base class,
and then print information particular to the student. Performing this task is done
using the class scope operator.

void Person::print() { // definition of Person print

cout << "Name " << name << endl;
cout << "IDnum " << idNum << endl;

}

void Student::print() { // definition of Student print
Person::print(); // first print Person information
cout << "Major " << major << endl;
cout << "Year " << gradYear << endl;

}

Without the “Person::” specifier used above, the Student::print function would
call itself recursively, which is not what we want.

Protected Members

Even though class Student is inherited from class Person, member functions of
Student do not have access to private members of Person. For example, the fol-
lowing is illegal.

void Student::printName() {
cout << name << ’\n’; // ERROR! name is private to Person

}

74

Chapter 2. Object-Oriented Design

Special access privileges for derived classes can be provided by declaring mem-
bers to be “protected.” A protected member is “public” to all classes derived from
this one, but “private” to all other functions. From a syntactic perspective, the key-
word protected behaves in the same way as the keyword private and public. In
the class example above, had we declared name to be protected rather than private,
the above function printName would work fine.

Although C++ makes no requirements on the order in which the various sec-
tions of a class appear, there are two common ways of doing it. The first is to
declare public members first and private members last. This emphasizes the ele-
ments that are important to a user of the class. The other way is to present private
members first and public members last. This tends to be easier to read for an im-
plementor. Of course, clarity is a more important consideration than adherence to
any standard.

[llustrating Class Protection

Consider for example, three classes: a base class Base, a derived class Derived, and
an unrelated class Unrelated. The base class defines three integer members, one of
each access type.

class Base {

private: int priv;
protected: int prot;

public: int publ;

I

class Derived: public Base {
void someMemberFunction() {

cout << priv; // ERROR: private member
cout << prot; // okay
cout << publ; // okay
}
I8
class Unrelated {
Base X;
void anotherMemberFunction() {
cout << X.priv; // ERROR: private member
cout << X.prot; // ERROR: protected member
cout << X.publ; // okay

}
¥

When designing a class, we should give careful thought to the access privi-
leges we give each member variable or function. Member variables are almost

2.2, Inheritance and Polymorphism 75

always declared to be private or at least protected, since they determine the details
of the class’s implementation. A user of the class can access only the public class
members, which consist of the principal member functions for accessing and ma-
nipulating class objects. Finally, protected members are commonly used for utility
functions, which may be useful to derived classes. We will see many examples of
these three access types in the examples appearing in later chapters.

Constructors and Destructors

We saw in Section 1.5.2, that when a class object is created, the class’s constructor
is called. When a derived class is constructed, it is the responsibility of this class’s
constructor to take care that the appropriate constructor is called for its base class.
Class hierarchies in C++ are constructed bottom-up: base class first, then its mem-
bers, then the derived class itself. For this reason, the constructor for a base class
needs to be called in the initializer list (see Section 1.5.2) of the derived class. The
example below shows how constructors might be implemented for the Person and
Student classes.

Person::Person(const string& nm, const string& id)
: name(nm), // initialize name
idNum(id) { } // initialize ID number

Student::Student(const string& nm, const string& id,
const string& maj, int year)

. Person(nm, id), // initialize Person members
major(maj), // initialize major
gradYear(year) { } // initialize graduation year

Only the Person(nm, id) call has to be in the initializer list. The other initializations
could be placed in the constructor function body ({...}), but putting class initializa-
tions in the initialization list is generally more efficient. Suppose that we create a
new student object.

Student* s = new Student("Carol", "34-927", "Physics", 2014);

Note that the constructor for the Student class first makes a function call to Per-
son(" Carol”, "34-927") to initialize the Person base class, and then it initializes
the major to " Physics” and the year to 2014.

Classes are destroyed in the reverse order from their construction, with derived
classes destroyed before base classes. For example, suppose that we declared de-
structors for these two classes. (Note that destructors are not really needed in this
case, because neither class allocates storage or other resources.)

Person::"Person() { ... } // Person destructor
Student::"Student() { ... } // Student destructor

76

Chapter 2. Object-Oriented Design

If we were to destroy our student object, the Student destructor would be called
first, followed by the Person destructor. Unlike constructors, the Student destructor
does not need to (and is not allowed to) call the Person destructor. This happens
automatically.

delete s; // calls “Student() then ~Person()

Static Binding

When a class is derived from a base class, as with Student and Person, the derived
class becomes a subtype of the base class, which means that we can use the derived
class wherever the base class is acceptable. For example, suppose that we create an
array of pointers to university people.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(...); // add a Person (details omitted)
pp[l] = new Student(...); // add a Student (details omitted)

Since getName is common to both classes, it can be invoked on either elements
of the array. A more interesting issue arises if we attempt to invoke print. Since
pp[1] holds the address of a Student object, we might think that the function Stu-
dent::print would be called. Surprisingly, the function Person::print is called in
both cases, in spite of the apparent difference in the two objects. Furthermore, ppli]
is not even allowed to access Student member functions.

cout << pp[l]—>getName() << ’\n’; // okay

pp[0]—>print(); // calls Person::print()
pp[1]—>print(); // also calls Person::print() (!)
pp[1]—>changeMajor("English"); // ERROR!

The reason for this apparently anomalous behavior is called static binding—when
determining which member function to call, C++’s default action is to consider an
object’s declared type, not its actual type. Since pp[l1] is declared to be a pointer to
a Person, the members for that class are used. Nonetheless, C++ provides a way to
achieve the desired dynamic effect using the technique we describe next.

Dynamic Binding and Virtual Functions

As we saw above, C++ uses static binding by default to determine which member
function to call for a derived class. Alternatively, in dynamic binding, an object’s
contents determine which member function is called. To specify that a member
function should use dynamic binding, the keyword “virtual” is added to the func-
tion’s declaration. Let us redefine our Person and Student, but this time we will

2.2, Inheritance and Polymorphism 77

declare the print function to be virtual.

class Person { // Person (base class)
virtual void print() { ... } // print (details omitted)

h

class Student : public Person { // Student (derived from Person)
virtual void print() { ... } // print (details omitted)

¥

Let us consider the effect of this change on our array example, thereby illus-
trating the usefulness of dynamic binding.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(...); // add a Person (details omitted)
pp[l] = new Student(...); // add a Student (details omitted)
pp[0]—>print(); // calls Person::print()
pp[1]—>print(); // calls Student::print()

In this case, pp[1] contains a pointer to an object of type Student, and by the
power of dynamic binding with virtual functions, the function Student::print will
be called. The decision as to which function to call is made at run-time, hence the
name dynamic binding.

Virtual Destructors

There is no such thing as a virtual constructor. Such a concept does not make any
sense. Virtual destructors, however, are very important. In our array example, since
we store objects of both types Person and Student in the array, it is important that
the appropriate destructor be called for each object. However, if the destructor is
nonvirtual, then only the Person destructor will be called in each case. In our ex-
ample, this choice is not a problem. But if the Student class had allocated memory
dynamically, the fact that the wrong destructor is called would result in a memory
leak (see Section 1.5.3).

When writing a base class, we cannot know, in general, whether a derived class
may need to implement a destructor. So, to be safe, when defining any virtual
functions, it is recommended that a virtual destructor be defined as well. This
destructor may do nothing at all, and that is fine. It is provided just in case a
derived class needs to define its own destructor. This principle is encapsulated in
the following rule of thumb.

Remember '

If a base class defines any virtual functions, it should define a virtual de-
structor, even if it is empty.

Chapter 2. Object-Oriented Design

Dynamic binding is a powerful technique, since it allows us to create an object,
such as the array pp above, whose behavior varies depending on its contents. This
technique is fundamental to the concept of polymorphism, which we discuss in the
next section.

2.2.2 Polymorphism

Literally, “polymorphism” means “many forms.” In the context of object-oriented
design, it refers to the ability of a variable to take different types. Polymorphism is
typically applied in C++ using pointer variables. In particular, a variable p declared
to be a pointer to some class S implies that p can point to any object belonging to
any derived class T of S.

Now consider what happens if both of these classes define a virtual member
function a, and let us consider which of these functions is called when we invoke
p->a(). Since dynamic binding is used, if p points to an object of type T, then
it invokes the function T::a. In this case, T is said to override function a from S.
Alternatively, if p points to an object of type S, it will invoke S::a.

Polymorphism such as this is useful because the caller of p->a() does not have
to know whether the pointer p refers to an instance of T or S in order to get the a
function to execute correctly. A pointer variable p that points to a class object that
has at least one virtual function is said to be polymorphic. That is, p can take many
forms, depending on the specific class of the object it is referring to. This kind of
functionality allows a specialized class T to extend a class S, inherit the “generic”
functions from class S, and redefine other functions from class S to account for
specific properties of objects of class T.

Inheritance, polymorphism, and function overloading support reusable soft-
ware. We can define classes that inherit generic member variables and functions
and can then define new, more specific variables and functions that deal with spe-
cial aspects of objects of the new class. For example, suppose that we defined a
generic class Person and then derived three classes Student, Administrator, and
Instructor. We could store pointers to all these objects in a list of type Personx.
When we invoke a virtual member function, such as print, to any element of the
list, it will call the function appropriate to the individual element’s type.

Specialization

There are two primary ways of using inheritance, one of which is specialization.
In using specialization, we are specializing a general class to a particular derived
class. Such derived classes typically possess an “is a” relationship to their base
class. The derived classes inherit all the members of the base class. For each
inherited function, if that function operates correctly, independent of whether it
is operating for a specialization, no additional work is needed. If, on the other

2.2, Inheritance and Polymorphism 79

hand, a general function of the base class would not work correctly on the derived
class, then we should override the function to have the correct functionality for the
derived class.

For example, we could have a general class, Dog, which has a function drink
and a function sniff. Specializing this class to a Bloodhound class would probably
not require that we override the drink function, as all dogs drink pretty much the
same way. But it could require that we override the sniff function, as a Bloodhound
has a much more sensitive sense of smell than a “generic” dog. In this way, the
Bloodhound class specializes the functions of its base class, Dog.

Extension

Another way of using inheritance is extension. In using extension, we reuse the
code written for functions of the base class, but we then add new functions that are
not present in the base class, so as to extend its functionality. For example, returning
to our Dog class, we might wish to create a derived class, BorderCollie, which
inherits all the generic functions of the Dog class, but then adds a new function,
herd, since Border Collies have a herding instinct that is not present in generic
dogs, thereby extending the functionality of a generic dog.

2.2.3 Examples of Inheritance in C++

To make the concepts of inheritance and polymorphism more concrete, let us con-
sider a simple example in C++. We consider an example of several classes that print
numeric progressions. A numeric progression is a sequence of numbers, where the
value of each number depends on one or more of the previous values. For example,
an arithmetic progression determines a next number by addition of a fixed incre-
ment. A geometric progression determines a next number by multiplication by a
fixed base value. In any case, a progression requires a way of defining its first value
and it needs a way of identifying the current value as well.

Arithmetic progression (increment 1) 0,1,2,3.4,5,...
Arithmetic progression (increment 3) 0,3,6,9,12,...
Geometric progression (base 2) 1,2,4,8,16,32,...
Geometric progression (base 3) 1,3,9,27,81,...

We begin by defining a class, Progression, which is declared in the code frag-
ment below. It defines the “generic” members and functions of a numeric progres-
sion. Specifically, it defines the following two long-integer variable members:

e first: first value of the progression

e cur: current value of the progression
Because we want these variables to be accessible from derived classes, we declare
them to be protected.

80 Chapter 2. Object-Oriented Design

We define a constructor, Progression, a destructor, ~Progression, and the fol-
lowing three member functions.

firstValue(): Reset the progression to the first value and return it.
nextValue(): Step the progression to the next value and return it.

printProgression(n): Reset the progression and print its first n values.

class Progression { // a generic progression
public:
Progression(long f = 0) // constructor
: first(f), cur(f) { }
virtual “Progression() { }; // destructor
void printProgression(int n); // print the first n values
protected:
virtual long firstValue(); // reset
virtual long nextValue(); // advance
protected:
long first; // first value
long cur; // current value
¥
The member function printProgression is public and is defined below.
void Progression::printProgression(int n) { // print n values
cout << firstValue(); // print the first
for (int i = 2;i <= n; i++) // print 2 through n
cout << ’ ? << nextValue();
cout << endl;
}

In contrast, the member functions firstValue and nextValue are intended as
utilities that will only be invoked from within this class or its derived classes. For
this reason, we declare them to be protected. They are defined below.

long Progression::firstValue() { // reset
cur = first;
return cur;

}

long Progression::nextValue() { // advance
return +-cur;

}

It is our intention that, in order to generate different progressions, derived
classes will override one or both of these functions. For this reason, we have de-
clared both to be virtual. Because there are virtual functions in our class, we have
also provided a virtual destructor in order to be safe. (Recall the discussion of vir-
tual destructors from Section 2.2.1.) At this point the destructor does nothing, but
this might be overridden by derived classes.

2.2, Inheritance and Polymorphism 81

Arithmetic Progression Class

Let us consider a class ArithProgression, shown below. We add a new member
variable inc, which provides the value to be added to each new element of the pro-
gression. We also override the member function nextValue to produce the desired
new behavior.

class ArithProgression : public Progression { // arithmetic progression

public:

ArithProgression(long i = 1); // constructor
protected:

virtual long nextValue(); // advance
protected:

long inc; // increment
¥

The constructor and the new member function nextValue are defined below.
Observe that the constructor invokes the base class constructor Progression to ini-
tialize the base object in addition to initializing the value of inc.

ArithProgression::ArithProgression(long i) // constructor
. Progression(), inc(i) { }

long ArithProgression::nextValue() { // advance by adding
cur += inc;
return cur;

}

Polymorphism is at work here. When a Progression pointer is pointing to an
ArithProgression object, it will use the ArithProgression functions firstValue and
nextValue. Even though the function printProgression is not virtual, it makes use of
this polymorphism. Its calls to the firstValue and nextValue functions are implicitly
for the “current” object, which will be of the ArithProgression class.

A Geometric Progression Class

Let us next define GeomProgression that implements a geometric progression. As
with the ArithProgression class, this new class inherits the member variables first
and cur, and the member functions firstValue and printProgression from Progres-
sion. We add a new member variable base, which holds the base value to be multi-
plied to form each new element of the progression. The constructor initializes the
base class with a starting value of 1 rather than 0. The function nextValue applies

82 Chapter 2. Object-Oriented Design

multiplication to obtain the next value.

class GeomProgression : public Progression { // geometric progression

public:

GeomProgression(long b = 2); // constructor
protected:

virtual long nextValue(); // advance
protected:

long base; // base value
h

GeomProgression::GeomProgression(long b) // constructor
. Progression(1), base(b) { }

long GeomProgression::nextValue() { // advance by multiplying
cur *= base;
return cur;

}

A Fibonacci Progression Class

As a further example, we define a FibonacciProgression class that represents an-
other kind of progression, the Fibonacci progression, where the next value is de-
fined as the sum of the current and previous values. We show the FibonacciPro-
gression class below. Recall that each element of a Fibonacci series is the sum of
the previous two elements.

Fibonacci progression (first =0, second =1): 0,1,1,2,3,5,8,...

In addition to the current value cur in the Progression base class, we also store
here the value of the previous element, denoted prev. The constructor is given the
first two elements of the sequence. The member variable first is inherited from the
base class. We add a new member variable second, to store this second element.
The default values for the first and second elements are 0 and 1, respectively.

class FibonacciProgression : public Progression { // Fibonacci progression

public:

FibonacciProgression(long f = 0, long s = 1); // constructor
protected:

virtual long firstValue(); // reset

virtual long nextValue(); // advance
protected:

long second; // second value

long prev; // previous value
h

The initialization process is a bit tricky because we need to create a “fictitious”
element that precedes the first element. Note that setting this element to the value

2.2, Inheritance and Polymorphism 83

second — first achieves the desired result. This change is reflected both in the con-
structor and the overridden member function firstValue. The overridden member
function nextValue copies the current value to the previous value. We need to store
the old previous value in a temporary variable.

FibonacciProgression::FibonacciProgression(long f, long s)

. Progression(f), second(s), prev(second — first) { }
long FibonacciProgression::firstValue() { // reset
cur = first;
prev = second — first; // create fictitious prev
return cur;
}

long FibonacciProgression::nextValue() {
long temp = prey;
prev = cur;
cur += temp;
return cur;

}

// advance

Combining the Progression Classes

In order to visualize how the three different progression classes are derived from
the generic Progression class, we give their inheritance diagram in Figure 2.5.

class: Progression

fields : long first

long cur

methods :
Progression()
long firstValue()

long nextValue()
void printProgression(int)

extends extends extends

class : ArithProgression

class : GeomProgression

class : FibonacciProgression

long nextValue()

long nextValue()

fields : long inc fields: long base fields : long prev
methods : methods : methods :
ArithProgression() GeomProgression() FibonacciProgression()
ArithProgression(long) GeomProgression(long) FibonacciProgression(long,long)

long nextVaIUe()

Figure 2.5: Inheritance diagram for class Progression and its subclasses.

84

Chapter 2. Object-Oriented Design

To complete our example, we define the main function shown in Code Frag-
ment 2.1, which performs a simple test of each of the three classes. In this class,
variable prog is a polymorphic array of pointers to class Progression. Since each of
its members points to an object of class ArithProgression, GeomProgression, or Fi-
bonacciProgression, the functions appropriate to the given progression are invoked
in each case. The output is shown in Code Fragment 2.2. Notice that this program
has a (unimportant) memory leak because we never deleted the allocated object.

The example presented in this section provides a simple illustration of inheri-
tance and polymorphism in C++. The Progression class, its derived classes, and the
tester program have a number of shortcomings, however, which might not be im-
mediately apparent. One problem is that the geometric and Fibonacci progressions
grow quickly, and there is no provision for handling the inevitable overflow of the
long integers involved. For example, since 30 > 263, a geometric progression with
base b = 3 will overflow a 64-bit long integer after 40 iterations. Likewise, the
94th Fibonacci number is greater than 2%%; hence, the Fibonacci progression will
overflow a 64-bit long integer after 94 iterations. Another problem is that we may
not allow arbitrary starting values for a Fibonacci progression. For example, do we
allow a Fibonacci progression starting with 0 and —1? Dealing with input errors or
error conditions that occur during the running of a C++ program requires that we
have some mechanism for handling them. We discuss this topic later in Section 2.4.

2.2.4 Multiple Inheritance and Class Casting

In the examples we have shown so far, a subclass has been derived from a single
base class and we didn’t have to deal with the problem of viewing an object of a
specific declared class as also being of an inherited type. We discuss some related,
more-advanced C++ programming issues in this section.

Multiple and Restricted Inheritance

In C++, we are allowed to derive a class from a number of base classes, that is, C++
allows multiple inheritance. Although multiple inheritance can be useful, espe-
cially in defining interfaces, it introduces a number of complexities. For example,
if both base classes provide a member variable with the same name or a member
function with the same declaration, the derived class must specify from which base
class the member should be used (which is complicated). For this reason, we use
single inheritance almost exclusively.

We have been using public inheritance in our previous examples, indicated by
the keyword public in specifying the base class. Remember that private base class
members are not accessible in a derived class. Protected and public members of the
base class become protected and public members of the derived class, respectively.

2.2, Inheritance and Polymorphism 85

/** Test program for the progression classes */
int main() {
Progression* prog;

// test ArithProgression
cout << "Arithmetic progression with default increment:\n";
prog = new ArithProgression();
prog—>printProgression(10);
cout << "Arithmetic progression with increment 5:\n";
prog = new ArithProgression(5);
prog—>printProgression(10);

// test GeomProgression
cout << "Geometric progression with default base:\n";
prog = new GeomProgression();
prog—>printProgression(10);
cout << "Geometric progression with base 3:\n";
prog = new GeomProgression(3);
prog—>printProgression(10);

// test FibonacciProgression
cout << "Fibonacci progression with default start values:\n";
prog = new FibonacciProgression();
prog—>printProgression(10);
cout << "Fibonacci progression with start values 4 and 6:\n";
prog = new FibonacciProgression(4, 6);
prog—>printProgression(10);
return EXIT_SUCCESS; // successful execution

Code Fragment 2.1: Program for testing the progression classes.

Arithmetic progression with default increment:
0123456789

Arithmetic progression with increment 5:

0 5 10 15 20 25 30 35 40 45

Geometric progression with default base:

1248 16 32 64 128 256 512

Geometric progression with base 3:

1 3 9 27 81 243 729 2187 6561 19683

Fibonacci progression with default start values:
01123581321 34

Fibonacci progression with start values 4 and 6:
4 6 10 16 26 42 68 110 178 288

Code Fragment 2.2: Output of TestProgression program from Code Fragment 2.1.

86

Chapter 2. Object-Oriented Design

C++ supports two other types of inheritance. These different types of inheritance
diminish the access rights for base class members. In protected inheritance, fields
declared to be public in the base class become protected in the child class. In
private inheritance, fields declared to be public and protected in the base class
become private in the derived class. An example is shown below.

class Base { // base class
protected: int foo;
public: int bar;

%

class Derivel : public Base { // public inheritance

// foo is protected and bar is public

class Derive2 : protected Base { // protected inheritance
// both foo and bar are protected

h

class Derive3 : private Base { // public inheritance

// both foo and bar are private

¥

Protected and private inheritance are not used as often as public inheritance. We
only use public inheritance in this book.

Casting in an Inheritance Hierarchy

An object variable can be viewed as being of various types, but it can be declared
as only one type. Thus, a variable’s declared type determines how it is used, and
even determines how certain functions will act on it. Enforcing that all variables
be typed and that operations declare the types they expect is called strong typing,
which helps prevent bugs. Nonetheless, we sometimes need to explicitly change, or
cast, a variable from one type to another. We have already introduced type casting
in Section 1.2.1. We now discuss how it works for classes.

To illustrate an example where we may want to perform a cast, recall our class
hierarchy consisting of a base class Person and derived class Student. Suppose
that we are storing pointers to objects of both types in an array pp. The following
attempt to change a student’s major would be flagged as an error by the compiler.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(...); // add a Person (details omitted)
pp[l] = new Student(...); // add a Student (details omitted)

pp[1]—>changeMajor("English"); // ERROR!

2.2, Inheritance and Polymorphism 87

The problem is that the base class Person does not have a function changeMajor.
Notice that this is different from the case of the function print because the print
function was provided in both classes. Nonetheless, we “know” that pp|[1] points to
an object of class Student, so this operation should be legal.

To access the changeMajor function, we need to cast the pp[1] pointer from
type Personx to type Student*. Because the contents of a variable are dynamic, we
need to use the C++ run-time system to determine whether this cast is legal, which
is what a dynamic cast does. The syntax of a dynamic cast is shown below.

dynamic_cast < desired_type > (expression)

Dynamic casting can only be applied to polymorphic objects, that is, objects
that come from a class with at least one virtual function. Below we show how to
use dynamic casting to change the major of pp[l1].

Student* sp = dynamic_cast<Student*>(pp[1]); // cast pp[l] to Student*
sp—>changeMajor("Chemistry"); // now changeMajor is legal

Dynamic casting is most often applied for casting pointers within the class
hierarchy. If an illegal pointer cast is attempted, then the result is a null pointer.
For example, we would get a NULL pointer from an attempt to cast pp[0] as above,
since it points to a Person object.

To illustrate the use of dynamic cast, we access all the elements of the pp array
and, for objects of (actual) type Student, change the major to “Undecided”

for (int i = 0; i < 100; i++) {
Student *sp = dynamic_cast<Student*>(pp][i]);
if (sp != NULL) // cast succeeded?
sp—>changeMajor("Undecided"); // change major
}

The casting we have discussed here could also have been done using the tradi-
tional C-style cast or through a static cast (recall Section 1.2.1). Unfortunately, no
error checking would be performed in that case. An attempt to cast a Person object
pointer to a Student pointer would succeed “silently,” but any attempt to use such
a pointer would have disastrous consequences.

2.2.5 Interfaces and Abstract Classes

For two objects to interact, they must “know” about each other’s member func-
tions. To enforce this “knowledge,” the object-oriented design paradigm asks that
classes specify the application programming interface (API), or simply interface,
that their objects present to other objects. In the ADT-based approach (see Sec-
tion 2.1.2) to data structures followed in this book, an interface defining an ADT

88

Chapter 2. Object-Oriented Design

is specified as a type definition and a collection of member functions for this type,
with the arguments for each function being of specified types.

Some programming languages provide a mechanism for defining ADTs. One
example is Java’s interface. An interface is a collection of function declarations
with no data and no bodies. That is, the member functions of an interface are
always empty. When a class implements an interface, it must implement all of the
member functions declared in the interface.

C++ does not provide a direct mechanism for specifying interfaces. Nonethe-
less, throughout this book we often provide informal interfaces, even though they
are not legal C++ structures. For example, a stack data structure (see Chapter 5)
is a container that supports various operations such as inserting (or pushing) an
element onto the top of the stack, removing (or popping) an element from the top
of the stack, and testing whether the stack is empty. Below we provide an example
of a minimal interface for a stack of integers.

class Stack { // informal interface — not a class
public:

bool isEmpty() const; // is the stack empty?

void push(int x); // push x onto the stack

int pop(); // pop the stack and return result

1

Abstract Classes

The above informal interface is not a valid construct in C++; it is just a documen-
tation aid. In particular, it does not contain any data members or definitions of
member functions. Nonetheless, it is useful, since it provides important informa-
tion about a stack’s public member functions and how they are called.

An abstract class in C++ is a class that is used only as a base class for inheri-
tance; it cannot be used to create instances directly. At first the idea of creating a
class that cannot be instantiated seems to be nonsense, but it is often very important.
For example, suppose that we want to define a set of geometric shape classes, say,
Circle, Rectangle, and Triangle. Tt is natural to derive these related classes from a
single generic base class, say, Shape. Each of the derived classes will have a virtual
member function draw, which draws the associated object. The rules of inheritance
require that we define such a function for the base class, but it is unclear what such
a function means for a generic shape.

One way to handle this would be to define Shape::draw with an empty function
body ({ }), which would be a rather unnatural solution. What is really desired
here is some way to inform the compiler that the class Shape is abstract; it is not
possible to create objects of type Shape, only its subclasses. In C++, we define
a class as being abstract by specifying that one or more members of its functions
are abstract, or pure virtual. A function is declared pure virtual by giving “=0" in

2.2, Inheritance and Polymorphism 89

place of its body. C++ does not allow the creation of an object that has one or more
pure virtual functions. Thus, any derived class must provide concrete definitions
for all pure virtual functions of the base class.

As an example, recall our Progression class and consider the member func-
tion nextValue, which computes the next value in the progression. The meaning
of this function is clear for each of the derived classes: ArithProgression, Geom-
Progression, and FibonacciProgression. However, in the base class Progression
we invented a rather arbitrary default for the nextValue function. (Go back and
check it. What progression does it compute?) It would be more natural to leave
this function undefined. We show below how to make it a pure virtual member

function.
class Progression { // abstract base class
// ...
virtual long nextValue() = 0; // pure virtual function
/] ...
h

As a result, the compiler will not allow the creation of objects of type Progres-
sion, since the function nextValue is “pure virtual.” However, its derived classes,
ArithProgression for example, can be defined because they provide a definition for
this member function.

Interfaces and Abstract Base Classes

We said above that C++ does not provide a direct mechanism for defining interfaces
for abstract data types. Nevertheless, we can use abstract base classes to achieve
much of the same purpose.

In particular, we may construct a class for an interface in which all the functions
are pure virtual as shown below for the example of a simple stack ADT.

class Stack { // stack interface as an abstract class
public:

virtual bool isEmpty() const = 0; // is the stack empty?

virtual void push(int x) = 0; // push x onto the stack

virtual int pop() = 0; // pop the stack and return result

1

A class that implements this stack interface can be derived from this abstract
base class, and then provide concrete definitions for all of these virtual functions as

90 Chapter 2. Object-Oriented Design
shown below.

class ConcreteStack : public Stack { // implements Stack
public:
virtual bool isEmpty() { ... } // implementation of members
virtual void push(int x) { ... } // ... (details omitted)
virtual int pop() { ... }
private:
/] .. // member data for the implementation

I

There are practical limitations to this method of defining interfaces, so we only
use informal interfaces for the purpose of illustrating ADTs.

2.3 Templates

Inheritance is only one mechanism that C++ provides in support of polymorphism.
In this section, we consider another way—using templates.

2.3.1 Function Templates

Let us consider the following function, which returns the minimum of two integers.

int integerMin(int a, int b) // returns the minimum of a and b
{return (a < b?a:b)}

Such a function is very handy, so we might like to define a similar function for
computing the minimum of two variables of other types, such as long, short, float,
and double. Each such function would require a different declaration and definition,
however, and making many copies of the same function is an error-prone solution,
especially for longer functions.

C++ provides an automatic mechanism, called the function template, to pro-
duce a generic function for an arbitrary type T. A function template provides a
well-defined pattern from which a concrete function may later be formally defined
or instantiated. The example below defines a genericMin function template.

template <typename T>
T genericMin(T a, T b) { // returns the minimum of a and b
return (a < b ? a: b);

}

The declaration takes the form of the keyword “template” followed by the notation
<typename T>, which is the parameter list for the template. In this case, there is

2.3. Templates 91

just one parameter T. The keyword “typename” indicates that T is the name of
some type. (Older versions of C++ do not support this keyword and instead the
keyword “class” must be used.) We can have other types of template parameters,
integers for example, but type names are the most common. Observe that the type
parameter T takes the place of “int” in the original definition of the genericMin
function.

We can now invoke our templated function to compute the minimum of objects
of many different types. The compiler looks at the argument types and determines
which form of the function to instantiate.

cout << genericMin(3, 4) << *> > // = genericMin<int>(3,4)
<< genericMin(1.1, 3.1) << * > // = genericMin<double>(1.1, 3.1)

<< genericMin(’t?, ’g’) << endl; // = genericMin<char>('t",'g")

The template type does not need to be a fundamental type. We could use any
type in this example, provided that the less than operator (<) is defined for this type.

2.3.2 Class Templates

In addition to function templates, C++ allows classes to be templated, which is a
powerful mechanism because it allows us to provide one data structure declaration
that can be applied to many different types. In fact, the Standard Template Library
uses class templates extensively.

Let us consider an example of a template for a restricted class BasicVector that
stores a vector of elements, which is a simplified version of a structure discussed in
greater detail in Chapter 6. This class has a constructor that is given the size of the
array to allocate. In order to access elements of the array, we overload the indexing
operator “[].”

We present a partial implementation of a class template for class BasicVector
below. We have omitted many of the other member functions, such as the copy
constructor, assignment operator, and destructor. The template parameter T takes
the place of the actual type that will be stored in the array.

template <typename T>

class BasicVector { // a simple vector class
public:
BasicVector(int capac = 10); // constructor
T& operator[](int i) // access element at index i
{ return a[i]; }
// ... other public members omitted
private:
T* g // array storing the elements
int capacity; // length of array a

I

92

Chapter 2. Object-Oriented Design

We have defined one member function (the indexing operator) within the class
body, and below we show how the other member function (the constructor) can
be defined outside the class body. The constructor initializes the capacity value and
allocates the array storage.

template <typename T> // constructor
BasicVector<T>::BasicVector(int capac) {

capacity = capac;

a = new T[capacity]; // allocate array storage

}

To instantiate a concrete instance of the class BasicVector, we provide the class
name followed by the actual type parameter enclosed in angled brackets (<...>). The
code fragment below shows how we would define three vectors, one of type int,
one of type double, and one of type string.

BasicVector<int> iv(5); // vector of 5 integers
BasicVector<double> dv(20); // vector of 20 doubles
BasicVector<string> sv(10); // vector of 10 strings

Since we have overloaded the indexing operator, we can access elements of each
array in the same manner as we would for any C++ array.

iv[3] = 8;
dv[14] = 2.5;
sv[7] = "hello";

Templated Arguments

The actual argument in the instantiation of a class template can itself be a templated
type. For example, we could create a BasicVector whose individual elements are
themselves of type BasicVector<int>.

BasicVector<BasicVector<int> > xv(5); // a vector of vectors
xv[2][8] = 15;

In this case, because no capacity argument could be provided to the constructor,
each element of the vector is constructed using the default capacity of 10. Thus the
above definition declares a BasicVector consisting of five elements, each of which
is a BasicVector consisting of 10 integers. Such a structure therefore behaves much
like a two-dimensional array of integers.

Note that in the declaration of xv above, we intentionally left a space after
“<int>.” The reason is that without the space, the character combination “>>”
would be interpreted as a bitwise right-shift operator by the compiler (see Sec-
tion 1.2).

2.4. Exceptions 93

2.4

Exceptions

Exceptions are unexpected events that occur during the execution of a program. An
exception can be the result of an error condition or simply an unanticipated input.
In C++, exceptions can be thought of as being objects themselves.

2.4.1 Exception Objects

In C++, an exception is “thrown” by code that encounters some unexpected condi-
tion. Exceptions can also be thrown by the C++ run-time environment should it en-
counter an unexpected condition like running out of memory. A thrown exception
is “caught’ by other code that “handles” the exception somehow, or the program is
terminated unexpectedly. (We say more about catching exceptions shortly.)

Exceptions are a relatively recent addition to C++. Prior to having exceptions,
errors were typically handled by having the program abort at the source of the
error or by having the involved function return some special value. Exceptions
provide a much cleaner mechanism for handling errors. Nevertheless, for historical
reasons, many of the functions in the C++ standard library do not throw exceptions.
Typically they return some sort of special error status, or set an error flag, which
can be tested.

Exceptions are thrown when a piece of code finds some sort of problem dur-
ing execution. Since there are many types of possible errors, when an exception is
thrown, it is identified by a type. Typically this type is a class whose members pro-
vide information as to the exact nature of the error, for example a string containing
a descriptive error message.

Exception types often form hierarchies. For example, let’s imagine a hypothet-
ical mathematics library, which may generate many different types of errors. The
library might begin by defining one generic exception, MathException, represent-
ing all types of mathematical errors, and then derive more specific exceptions for
particular error conditions. The errMsg member holds a message string with an
informative message. Here is a possible definition of this generic class.

class MathException { // generic math exception
public:
MathException(const string& err) // constructor
s errMsg(err) { }
string getError() { return errMsg; } // access error message
private:
string errMsg; // error message

I

94

Chapter 2. Object-Oriented Design
Using Inheritance to Define New Exception Types

The above MathException class would likely have other member functions, for
example, for accessing the error message. We may then add more specific excep-
tions, such as ZeroDivide, to handle division by zero, and NegativeRoot, to handle
attempts to compute the square root of a negative number. We could use class
inheritance to represent this hierarchical relationship, as follows.

class ZeroDivide : public MathException {

public:
ZeroDivide(const string& err) // divide by zero
. MathException(err) { }

¥

class NegativeRoot : public MathException {

public:

NegativeRoot(const string& err) // negative square root
: MathException(err) { }

¥

2.4.2 Throwing and Catching Exceptions

Exceptions are typically processed in the context of “try” and “catch” blocks. A
try block is a block of statements proceeded by the keyword try. After a try block,
there are one or more catch blocks. Each catch block specifies the type of exception
that it catches. Execution begins with the statements of the try block. If all goes
smoothly, then execution leaves the try block and skips over its associated catch
blocks. If an exception is thrown, then the control immediately jumps into the
appropriate catch block for this exception.

For example, suppose that we were to use our mathematical library as part of
the implementation of a numerical application. We would enclose the computations
of the application within a try block. After the try block, we would catch and deal
with any exceptions that arose in the computation.

try {
// ... application computations
if (divisor == 0) // attempt to divide by 07

throw ZeroDivide("Divide by zero in Module X");

catch (ZeroDivide& zde) {
// handle division by zero

catch (MathException& me) {
// handle any math exception other than division by zero

}

2.4. Exceptions 95

Processing the above try block is done as follows. The computations of the try
block are executed. When an attempt is discovered to divide by zero, ZeroDivide is
thrown, and execution jumps immediately to the associated catch statement where
corrective recovery and clean up should be performed.

Let us study the entire process in somewhat greater detail. The throw statement
is typically written as follows:

throw exception_name(argl,arg2,...)

where the arguments are passed to the exception’s constructor.

Exceptions may also be thrown by the C++ run-time system itself. For example,
if an attempt to allocate space in the free store using the new operator fails due to
lack of space, then a bad_alloc exception is thrown by the system.

When an exception is thrown, it must be caught or the program will abort. In
any particular function, an exception in that function can be passed through to the
calling function or it can be caught in that function. When an exception is caught,
it can be analyzed and dealt with. The general syntax for a try-catch block in C++
is as follows:

try
try_statements

catch (exception_type_1 identifier_1)
catch_statements_I

catch (exception_type_n identifier_n)
catch_statements_n

Execution begins in the “try_statements.” If this execution generates no excep-
tions, then the flow of control continues with the first statement after the last line of
the entire try-catch block. If, on the other hand, an exception is generated, execu-
tion in the try block terminates at that point and execution jumps to the first catch
block matching the exception thrown. Thus, an exception thrown for a derived
class will be caught by its base class. For example, if we had thrown NegativeRoot
in the example above, it would be caught by catch block for MathException. Note
that because the system executes the first matching catch block, exceptions should
be listed in order of most specific to least specific. The special form “catch(...)”
catches all exceptions.

The “identifier” for the catch statement identifies the exception object itself.
As we said before, this object usually contains additional information about the
exception, and this information may be accessed from within the catch block. As is
common in passing class arguments, the exception is typically passed as a reference
or a constant reference. Once execution of the catch block completes, control flow
continues with the first statement after the last catch block.

The recovery action taken in a catch block depends very much on the particular
application. It may be as simple as printing an error message and terminating the

96

Chapter 2. Object-Oriented Design

program. It may require complex clean-up operations, such as deallocating dynam-
ically allocated storage and restoring the program’s internal state. There are also
some interesting cases in which the best way to handle an exception is to ignore it
(which can be specified by having an empty catch block). Ignoring an exception
is usually done, for example, when the programmer does not care whether there
was an exception or not. Another legitimate way of handling exceptions is to throw
another exception, possibly one that specifies the exceptional condition more pre-
cisely.

2.4.3 Exception Specification

When we declare a function, we should also specify the exceptions it might throw.
This convention has both a functional and courteous purpose. For one, it lets users
know what to expect. It also lets the compiler know which exceptions to prepare
for. The following is an example of such a function definition.

void calculator() throw(ZeroDivide, NegativeRoot) {
// function body ...

This definition indicates that the function calculator (and any other functions it
calls) can throw these two exceptions or exceptions derived from these types, but
no others.

By specifying all the exceptions that might be thrown by a function, we prepare
others to be able to handle all of the exceptional cases that might arise from using
this function. Another benefit of declaring exceptions is that we do not need to
catch those exceptions in our function, which is appropriate, for example, in the
case where other code is responsible for causing the circumstances leading up to
the exception.

The following illustrates an exception that is “passed through.”

void getReadyForClass() throw(ShoppingListTooSmallException,
OutOfMoneyException) {
goShopping(); // | don't have to try or catch the exceptions
// which goShopping() might throw because
// getReadyForClass() will just pass these along.
makeCookiesForTA();

}

A function can declare that it throws as many exceptions as it likes. Such a
listing can be simplified somewhat if all exceptions that can be thrown are derived
classes of the same exception. In this case, we only have to declare that a function
throws the appropriate base class.

2.4. Exceptions 97

Suppose that a function does not contain a throw specification. It would be
natural to assume that such a function does not throw any exceptions. In fact, it has
quite a different meaning. If a function does not provide a throw specification, then
it may throw any exception. Although this is confusing, it is necessary to maintain
compatibility with older versions of C++. To indicate that a function throws no
exceptions, provide the throw specifier with an empty list of exceptions.

void funcl(); // can throw any exception
void func2() throw(); // can throw no exceptions

Generic Exception Class

We declare many different exceptions in this book. In order to structure these ex-
ceptions hierarchically, we need to have one generic exception class that serves as
the “mother of all exceptions.” C++ does not provide such a generic exception, so
we created one of our own. This class, called RuntimeException, is shown below.
It has an error message as its only member. It provides a constructor that is given
an informative error message as its argument. It also provides a member function
getMessage that allows us to access this message.

class RuntimeException { // generic run-time exception
private:
string errorMsg;
public:
RuntimeException(const string& err) { errorMsg = err; }
string getMessage() const { return errorMsg; }

¥

By deriving all of our exceptions from this base class, for any exception e, we
can output e’s error message by invoking the inherited getMessage function.

98

Chapter 2. Object-Oriented Design

2.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-2.1

R-2.2

R-2.3
R-2.4

R-2.5

R-2.6

R-2.7

R-2.8

R-2.9

What are some potential efficiency disadvantages of having very deep in-
heritance trees, that is, a large set of classes, A, B, C, and so on, such that
B extends A, C extends B, D extends C, etc.?

What are some potential efficiency disadvantages of having very shallow
inheritance trees, that is, a large set of classes, A, B, C, and so on, such
that all of these classes extend a single class, Z?

Give three examples of life-critical software applications.

Give an example of a software application where adaptability can mean
the difference between a prolonged sales lifetime and bankruptcy.

Describe a component from a text-editor GUI (other than an “edit” menu)
and the member functions that it encapsulates.

Draw a class inheritance diagram for the following set of classes.

e Class Goat extends Object and adds a member variable tail and
functions milk and jump.

e Class Pig extends Object and adds a member variable nose and func-
tions eat and wallow.

e Class Horse extends Object and adds member variables height and
color, and functions run and jump.

e Class Racer extends Horse and adds a function race.

e Class Equestrian extends Horse and adds a member variable weight
and functions trot and isTrained.

A derived class’s constructor explicitly invokes its base class’s constructor,
but a derived class’s destructor cannot invoke its base class’s destructor.
Why does this apparent asymmetry make sense?

Give a short fragment of C++ code that uses the progression classes from
Section 2.2.3 to find the 7th value of a Fibonacci progression that starts
with 3 and 4 as its first two values.

If we choose inc = 128, how many calls to the nextValue function from
the ArithProgression class of Section 2.2.3 can we make before we cause
a long-integer overflow, assuming a 64-bit long integer?

www.wiley.com/college/goodrich

2.5. Exercises

R-2.10

R-2.11

R-2.12

R-2.13

R-2.14

99

Suppose we have a variable p that is declared to be a pointer to an object
of type Progression using the classes of Section 2.2.3. Suppose further
that p actually points to an instance of the class GeomProgression that
was created with the default constructor. If we cast p to a pointer of type
Progression and call p—>firstValue(), what will be returned? Why?
Consider the inheritance of classes from Exercise R-2.6, and let d be an
object variable of type Horse. If d refers to an actual object of type Eques-
trian, can it be cast to the class Racer? Why or why not?

Generalize the Person-Student class hierarchy to include classes Faculty,
UndergraduateStudent, GraduateStudent, Professor, Instructor. Explain
the inheritance structure of these classes, and derive some appropriate
member variables for each class.

Give an example of a C++ code fragment that performs an array reference
that is possibly out of bounds, and if it is out of bounds, the program
catches that exception and prints an appropriate error message.

Consider the following code fragment:

class Object

{ public: virtual void printMe() = 0; };
class Place : public Object

{ public: virtual void printMe() { cout << "Buy it.\n"; } };
class Region : public Place

{ public: virtual void printMe() { cout << "Box it.\n"; } };
class State : public Region

{ public: virtual void printMe() { cout << "Ship it.\n"; } };
class Maryland : public State

{ public: virtual void printMe() { cout << "Read it.\n"; } };

int main() {
Region* mid = new State;
State* md = new Maryland,;
Object* obj = new Place;
Place* usa = new Region;
md—>printMe();
mid—>printMe();
(dynamic_cast<Place*>(obj))—>printMe();
obj = md;
(dynamic_cast<Maryland*>(obj))—>printMe();
obj = usa;
(dynamic_cast<Place*>(obj))—>printMe();
usa = md;
(dynamic_cast<Place*>(usa))—>printMe();
return EXIT_SUCCESS;

}

What is the output from calling the main function of the Maryland class?

100

R-2.15

R-2.16

R-2.17

R-2.18

Chapter 2. Object-Oriented Design

Write a short C++ function that counts the number of vowels in a given
character string.

Write a short C++ function that removes all the punctuation from a string s
storing a sentence. For example, this operation would transform the string
"Let’s try, Mike."to "Lets try Mike".

Write a short program that takes as input three integers, a, b, and ¢, and
determines if they can be used in a correct arithmetic formula (in the given
order), like “a+b=c,” “a=b—c” or “axb=c.

Write a short C++ program that creates a Pair class that can store two
objects declared as generic types. Demonstrate this program by creating
and printing Pair objects that contain five different kinds of pairs, such as
<int,string> and <float,long>.

Creativity

C-2.1

C-2.2

C-23

C-2.4

C-2.5

Give an example of a C++ program that outputs its source code when it is
run. Such a program is called a quine.

Suppose you are on the design team for a new e-book reader. What are the
primary classes and functions that the C++ software for your reader will
need? You should include an inheritance diagram for this code, but you
don’t need to write any actual code. Your software architecture should
at least include ways for customers to buy new books, view their list of
purchased book, and read their purchased books.

Most modern C++ compilers have optimizers that can detect simple cases
when it is logically impossible for certain statements in a program to ever
be executed. In such cases, the compiler warns the programmer about the
useless code. Write a short C++ function that contains code for which it
is provably impossible for that code to ever be executed, but your favorite
C++ compiler does not detect this fact.

Design a class Line that implements a line, which is represented by the for-
mula y = ax+ b. Your class should store a and b as double member vari-
ables. Write a member function intersect(¢) that returns the x coordinate
at which this line intersects line £. If the two lines are parallel, then your
function should throw an exception Parallel. Write a C++ program that
creates a number of Line objects and tests each pair for intersection. Your
program should print an appropriate error message for parallel lines.
Write a C++ class that is derived from the Progression class to produce a
progression where each value is the absolute value of the difference be-
tween the previous two values. You should include a default constructor
that starts with 2 and 200 as the first two values and a parametric construc-
tor that starts with a specified pair of numbers as the first two values.

2.5. Exercises

C-2.6

C-2.7

C-2.8

C-29

101

Write a C++ class that is derived from the Progression class to produce
a progression where each value is the square root of the previous value.
(Note that you can no longer represent each value with an integer.) You
should include a default constructor that starts with 65,536 as the first
value and a parametric constructor that starts with a specified (double)
number as the first value.

Write a program that consists of three classes, A, B, and C, such that B is a
subclass of A and C is a subclass of B. Each class should define a member
variable named “x” (that is, each has its own variable named x). Describe
a way for a member function in C to access and set A’s version of x to a
given value, without changing B or C’s version.

Write a set of C++ classes that can simulate an Internet application, where
one party, Alice, is periodically creating a set of packets that she wants to
send to Bob. The Internet process is continually checking if Alice has any
packets to send, and if so, it delivers them to Bob’s computer, and Bob is
periodically checking if his computer has a packet from Alice, and, if so,
he reads and deletes it.

Write a C++ program that can input any polynomial in standard algebraic
notation and outputs the first derivative of that polynomial.

Projects
P-2.1

pP-2.2

P-2.3

Write a C++ program that can take a positive integer greater than 2 as
input and write out the number of times one must repeatedly divide this
number by 2 before getting a value less than 2.

Write a C++ program that “makes change.” Your program should input
two numbers, one that is a monetary amount charged and the other that is
a monetary amount given. It should return the number of each kind of bill
and coin to give back as change for the difference between the amounts
given and charged. The values assigned to the bills and coins can be based
on the monetary system of any government. Try to design your program
so that it returns the fewest number of bills and coins as possible.
Implement a templated C++ class Vector that manipulates a numeric vec-
tor. Your class should be templated with any numerical scalar type T,
which supports the operations + (addition), — (subtraction), and * (mul-
tiplication). In addition, type T should have constructors 7'(0), which
produces the additive identity element (typically 0) and 7'(1), which pro-
duces the multiplicative identity (typically 1). Your class should provide a
constructor, which is given the size of the vector as an argument. It should
provide member functions (or operators) for vector addition, vector sub-
traction, multiplication of a scalar and a vector, and vector dot product.

102

p-2.4

P-2.5

P-2.6

p-2.7

Chapter 2. Object-Oriented Design

Write a class Complex that implements a complex number by overload-
ing the operators for addition, subtraction, and multiplication. Implement
three concrete instances of your class Vector with the scalar types int,
double, and Complex, respectively.

Write a simulator as in the previous project, but add a Boolean gender
field and a floating-point strength field to each Animal object. Now, if
two animals of the same type try to collide, then they only create a new
instance of that type of animal if they are of different genders. Otherwise,
if two animals of the same type and gender try to collide, then only the
one of larger strength survives.

Write a C++ program that has a Polygon interface that has abstract func-
tions, area(), and perimeter(). Implement classes for Triangle, Quadri-
lateral, Pentagon, Hexagon, and Octagon, which implement this inter-
face, with the obvious meanings for the area() and perimeter() functions.
Also implement classes, IsoscelesTriangle, EquilateralTriangle, Rectan-
gle, and Square, which have the appropriate inheritance relationships. Fi-
nally, write a simple user interface that allows users to create polygons of
the various types, input their geometric dimensions, and then output their
area and perimeter. For extra effort, allow users to input polygons by spec-
ifying their vertex coordinates and be able to test if two such polygons are
similar.

Write a C++ program that inputs a document and then outputs a bar-chart
plot of the frequencies of each alphabet character that appears in that doc-
ument.

Write a C++ program that inputs a list of words separated by whitespace,
and outputs how many times each word appears in the list. You need not
worry about efficiency at this point, however, as this topic is something
that will be addressed later in this book.

Chapter Notes

For a broad overview of developments in computer science and engineering, we refer the
reader to The Computer Science and Engineering Handbook [96]. For more information
about the Therac-25 incident, please see the paper by Leveson and Turner [63].

The reader interested in studying object-oriented programming further, is referred to

the books by Booch [13], Budd [16], and Liskov and Guttag [68]. Liskov and Guttag [68]
also provide a nice discussion of abstract data types, as does the survey paper by Cardelli
and Wegner [19] and the book chapter by Demurjian [27] in the The Computer Science
and Engineering Handbook [96]. Design patterns are described in the book by Gamma et
al. [35]. The class inheritance diagram notation we use is derived from the Gamma ez al.

Chapter
3 Arrays, Linked Lists, and Recursion

Contents
3.1 Using Arrays . . . v v v v v e e e e e e e e e 104
3.1.1 Storing Game Entries inan Array 104
3.1.2 SortinganArray 109
3.1.3 Two-Dimensional Arrays and Positional Games . . . 111
3.2 Singly Linked Lists 117
3.2.1 Implementing a Singly Linked List 117
3.2.2 Insertion to the Front of a Singly Linked List 119
3.2.3 Removal from the Front of a Singly Linked List . . . 119
3.2.4 Implementing a Generic Singly Linked List 121
3.3 Doubly Linked Lists 123
3.3.1 Insertion into a Doubly Linked List 123
3.3.2 Removal from a Doubly Linked List 124
3.3.3 A C++ Implementation 125
3.4 Circularly Linked Lists and List Reversal 129
3.4.1 Circularly Linked Lists 129
3.4.2 Reversing a Linked List 133
35 Recursion e 134
3.5.1 Linear Recursion L. 140
3.5.2 Binary Recursion 144
3.5.3 Multiple Recursion 147

3.6 Exercises i i ittt e e e e e e 149

104 Chapter 3. Arrays, Linked Lists, and Recursion

3.1 Using Arrays

In this section, we explore a few applications of arrays—the concrete data structures
introduced in Section 1.1.3 that access their entries using integer indices.

3.1.1 Storing Game Entries in an Array

The first application we study is for storing entries in an array; in particular, high
score entries for a video game. Storing objects in arrays is a common use for arrays,
and we could just as easily have chosen to store records for patients in a hospital or
the names of players on a football team. Nevertheless, let us focus on storing high
score entries, which is a simple application that is already rich enough to present
some important data structuring concepts.

Let us begin by thinking about what we want to include in an object represent-
ing a high score entry. Obviously, one component to include is an integer repre-
senting the score itself, which we call score. Another useful thing to include is the
name of the person earning this score, which we simply call name. We could go on
from here, adding fields representing the date the score was earned or game statis-
tics that led to that score. Let us keep our example simple, however, and just have
two fields, score and name. The class structure is shown in Code Fragment 3.1.

class GameEntry { // a game score entry
public:
GameEntry(const string& n="", int s=0); // constructor
string getName() const; // get player name
int getScore() const; // get score
private:
string name; // player's name
int score; // player's score
i

Code Fragment 3.1: A C++ class representing a game entry.

In Code Fragment 3.2, we provide the definitions of the class constructor and
two accessor member functions.

GameEntry::GameEntry(const string& n, int s) // constructor
: name(n), score(s) { }
// accessors
string GameEntry::getName() const { return name; }
int GameEntry::getScore() const { return score; }

Code Fragment 3.2: GameEntry constructor and accessors.

3.1. Using Arrays 105
A Class for High Scores

Let’s now design a class, called Scores, to store our game-score information. We
store the highest scores in an array entries. The maximum number of scores may
vary from instance to instance, so we create a member variable, maxEntries, stor-
ing the desired maximum. Its value is specified when a Scores object is first con-
structed. In order to keep track of the actual number of entries, we define a member
variable numEntries. It is initialized to zero, and it is updated as entries are added
or removed. We provide a constructor, a destructor, a member function for adding
a new score, and one for removing a score at a given index. The definition is given
in Code Fragment 3.3.

class Scores { // stores game high scores
public:
Scores(int maxEnt = 10); // constructor
“Scores(); // destructor
void add(const GameEntry& e); // add a game entry
GameEntry remove(int i) // remove the ith entry
throw(IndexOutOfBounds);
private:
int maxEntries; // maximum number of entries
int numEntries; // actual number of entries
GameEntry* entries; // array of game entries
i

Code Fragment 3.3: A C++ class for storing high game scores.

In Code Fragment 3.4, we present the class constructor, which allocates the
desired amount of storage for the array using the “new” operator. Recall from
Section 1.1.3 that C++ represents a dynamic array as a pointer to its first element,
and this command returns such a pointer. The class destructor, ~Scores, deletes this

array.

Scores::Scores(int maxEnt) { // constructor
maxEntries = maxEnt; // save the max size
entries = new GameEntry[maxEntries]; // allocate array storage
numEntries = 0; // initially no elements

}

Scores::"Scores() { // destructor
delete[] entries;

}

Code Fragment 3.4: A C++ class GameEntry representing a game entry.

The entries that have been added to the array are stored in indices O through
numEntries — 1. As more users play our video game, additional GameEntry objects

106

Chapter 3. Arrays, Linked Lists, and Recursion

are copied into the array. This is done using the class’s add member function, which
we describe below. Only the highest maxEntries scores are retained. We also
provide a member function, remove(i), which removes the entry at index i from
the array. We assume that 0 < i < numEntries — 1. If not, the remove function,
throws an IndexOutOfBounds exception. We do not define this exception here, but
it is derived from the class RuntimeException from Section 2.4.

In our design, we have chosen to order the GameEntry objects by their score
values, from highest to lowest. (In Exercise C-3.2, we explore an alternative design
in which entries are not ordered.) We illustrate an example of the data structure in
Figure 3.1.

Mike| Rob | Paul [Anna|Rose| Jack
1105 750 | 720 | 660 | 590 | 510
0 1 2 3 4 5 6 7 8 9

Figure 3.1: The entries array of length eight storing six GameEntry objects in the
cells from index O to 5. Here maxEntries is 10 and numEntries is 6.

Insertion

Next, let us consider how to add a new GameEntry e to the array of high scores. In
particular, let us consider how we might perform the following update operation on
an instance of the Scores class.

add(e): Insert game entry e into the collection of high scores. If
this causes the number of entries to exceed maxEntries,
the smallest is removed.

The approach is to shift all the entries of the array whose scores are smaller than
e’s score to the right, in order to make space for the new entry. (See Figure 3.2.)

Jill

740

P T A W
Mike| Rob Paul |Anna| Rose | Jack
1105] 750 720 | 660 | 590 | 510

o 1 2 3 4 5 6 7 8 9
Figure 3.2: Preparing to add a new GameEntry object (“Jill”,740) to the entries
array. In order to make room for the new entry, we shift all the entries with smaller
scores to the right by one position.

3.1. Using Arrays 107

Once we have identified the position in the entries array where the new game
entry, e, belongs, we copy e into this position. (See Figure 3.3.)

Mike| Rob | Jill | Paul|Anna|Rose| Jack
1105| 750 | 740 | 720 | 660 | 590 | 510
0 1 2 3 4 5 6 7 8 9
Figure 3.3: After adding the new entry at index 2.

The details of our algorithm for adding the new game entry e to the entries array
are similar to this informal description and are given in Code Fragment 3.5. First,
we consider whether the array is already full. If so, we check whether the score of
the last entry in the array (which is at entries[maxEntries — 1]) is at least as large
as e’s score. If so, we can return immediately since e is not high enough to replace
any of the existing highest scores. If the array is not yet full, we know that one new
entry will be added, so we increment the value of numEntries. Next, we identify all
the entries whose scores are smaller than e’s and shift them one entry to the right.
To avoid overwriting existing array entries, we start from the right end of the array
and work to the left. The loop continues until we encounter an entry whose score
is not smaller than e’s, or we fall off the front end of the array. In either case, the
new entry is added at index i+ 1.

void Scores::add(const GameEntry& e) { // add a game entry

int newScore = e.getScore(); // score to add
if (numEntries == maxEntries) { // the array is full

if (newScore <= entries[maxEntries—1].getScore())

return; // not high enough - ignore

}
else numEntries++; // if not full, one more entry
int i = numEntries—2; // start with the next to last
while (i >= 0 && newScore > entries[i].getScore()) {

entries[i+1] = entries|i]; // shift right if smaller

i——;
entries[i+1] = e; // put e in the empty spot

}

Code Fragment 3.5: C++ code for inserting a GameEntry object.

Check the code carefully to see that all the limiting cases have been handled
correctly by the add function (for example, largest score, smallest score, empty
array, full array). The number of times we perform the loop in this function depends
on the number of entries that we need to shift. This is pretty fast if the number of
entries is small. But if there are a lot to move, then this method could be fairly slow.

108

Chapter 3. Arrays, Linked Lists, and Recursion

Object Removal

Suppose some hot shot plays our video game and gets his or her name on our high
score list. In this case, we might want to have a function that lets us remove a game
entry from the list of high scores. Therefore, let us consider how we might remove
a GameEntry object from the entries array. That is, let us consider how we might
implement the following operation:

remove(i): Remove and return the game entry e at index i in the
entries array. If index i is outside the bounds of the
entries array, then this function throws an exception; oth-
erwise, the entries array is updated to remove the ob-
ject at index i and all objects previously stored at indices
higher than i are “shifted left” to fill in for the removed
object.

Our implementation of remove is similar to that of add, but in reverse. To
remove the entry at index i, we start at index i and move all the entries at indices
higher than i one position to the left. (See Figure 3.4.)

Return: | Paul

720
Tyt Ty
Mike| Rob | Jill [Anna|Rose|Jack
1105 750 | 740 | 660 | 590 | 510

0 1 2 3 4 5 6 7 8 9

Figure 3.4: Removal of the entry (“Paul”,720) at index 3.

The code for performing the removal is presented in Code Fragment 3.6.

GameEntry Scores::remove(int i) throw(IndexOutOfBounds) {

if (i <0) || (i >= numEntries)) // invalid index

throw IndexOutOfBounds("Invalid index");
GameEntry e = entries|i]; // save the removed object
for (int j = i+1; j < numEntries; j++)

entries[j—1] = entries][j]; // shift entries left
numEntries——; // one fewer entry
return e; // return the removed object

Code Fragment 3.6: C++ code for performing the remove operation.

3.1. Using Arrays 109

The removal operation involves a few subtle points. In order to return the value
of the removed game entry (let’s call it e), we must first save e in a temporary vari-
able. When we are done, the function will return this value. The shifting process
starts at the position just following the removal, j =i+ 1. We repeatedly copy the
entry at index j to index j— 1, and then increment j, until coming to the last ele-
ment of the set. Similar to the case of insertion, this left-to-right order is essential
to avoid overwriting existing entries. To complete the function, we return a copy of
the removed entry that was saved in e.

These functions for adding and removing objects in an array of high scores are
simple. Nevertheless, they form the basis of techniques that are used repeatedly
to build more sophisticated data structures. These other structures may be more
general than our simple array-based solution, and they may support many more
operations. But studying the concrete array data structure, as we are doing now, is
a great starting point for understanding these more sophisticated structures, since
every data structure has to be implemented using concrete means.

3.1.2 Sorting an Array

In the previous subsection, we worked hard to show how we can add or remove
objects at a certain index i in an array while keeping the previous order of the
objects intact. In this section, we consider how to rearrange objects of an array that
are ordered arbitrarily in ascending order. This is known as sorting.

We study several sorting algorithms in this book, most of which appear in Chap-
ter 11. As a warmup, we describe a simple sorting algorithm called insertion-sort.
In this case, we describe a specific version of the algorithm where the input is an ar-
ray of comparable elements. We consider more general kinds of sorting algorithms
later in this book.

We begin with a high-level outline of the insertion-sort algorithm. We start
with the first element in the array. One element by itself is already sorted. Then we
consider the next element in the array. If it is smaller than the first, we swap them.
Next we consider the third element in the array. We swap it leftward until it is in
its proper order with the first two elements. We continue in this manner with each
element of the array, swapping it leftward until it is in its proper position.

It is easy to see why this algorithm is called “insertion-sort”—each iteration
of the algorithm inserts the next element into the current sorted part of the array,
which was previously the subarray in front of that element. We may implement
the above outline using two nested loops. The outer loop considers each element
in the array in turn, and the inner loop moves that element to its proper location
with the (sorted) subarray of elements that are to its left. We illustrate the resulting
algorithm in Code Fragment 3.7.

This description is already quite close to actual C++ code. It indicates which

110 Chapter 3. Arrays, Linked Lists, and Recursion

Algorithm InsertionSort(A):
Input: An array A of n comparable elements
Output: The array A with elements rearranged in nondecreasing order

fori—1lton—1do
{Insert A[i] at its proper location in A[0],A[1],... ,A[i — 1]}
cur «— Ali]
j—i—1
while j > 0 and A[;] > cur do
Alj+1] < A[]]
Je—=Jj—1
A[j+ 1] < cur {cur is now in the right place}

Code Fragment 3.7: Algorithmic description of the insertion-sort algorithm.

temporary variables are needed, how the loops are structured, and what decisions
need to be made. We illustrate an example run in Figure 3.5.

We present C++ code for our insertion-sort algorithm in Code Fragment 3.8.
We assume that the array to be sorted consists of elements of type char, but it is easy
to generalize this to other data types. The array A in the algorithm is implemented
as a char array. Recall that each array in C++ is represented as a pointer to its first
element, so the parameter A is declared to be of type char*. We also pass the size
of the array in an integer parameter n. The rest is a straightforward translation of
the description given in Code Fragment 3.7 into C++ syntax.

void insertionSort(char* A, int n) { // sort an array of n characters
for (inti=1;,i<n; i++) { // insertion loop
char cur = A[i]; // current character to insert
intj =i -1, // start at previous character
while ((j >= 0) && (A[j] > cur)) { // while A[j] is out of order
Al + 1] = A[j]; // move A[j] right
i—; // decrement j
}
Alj + 1] = cur; // this is the proper place for cur
}
}

Code Fragment 3.8: C++ code implementing the insertion-sort algorithm.

An interesting thing happens in the insertion-sort algorithm if the array is al-
ready sorted. In this case, the inner loop does only one comparison, determines that
there is no swap needed, and returns back to the outer loop. Of course, we might
have to do a lot more work than this if the input array is extremely out of order.
Indeed, the worst case arises if the initial array is given in descending order.

3.1. Using Arrays 111

no move

' -'D|A|E|H|G|FU

2 3 45 6 7

no move

& |B|cl'A|E|H|e|FU

2 3 4 5 6 7 insert
/\move move .\ /\move
'|B|oﬁ4o|e|H|e|Fﬁ @cmewmwﬁ /—|B|C|D|E|H|G|Fﬁ
0 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

no move

. |A|B|C|D‘H|G|F
2 3 45 6 7

no move

o |A|B|c|D|EI'G|F
2 3 4 5 6 7 ' insert
/N

move
no move Y

€ (fsfciore{rFl (afsfclolellfrlr)
01234567 0123456 7 .jn

move move
no move 4

& (Afsfcfolefel{r]) (alelclolell{clH]) |A|B|c|o|e|j4e|H|j

01 2 3 45 6 7 01 23 4567 12 3 45 6 7

(Afe[coler c[r]) Dene
01 2 3 4 5 6 7

Figure 3.5: Execution of the insertion-sort algorithm on an array of eight characters.
We show the completed (sorted) part of the array in white, and we color the next
element that is being inserted into the sorted part of the array with light blue. We
also highlight the character on the left, since it is stored in the cur variable. Each
row corresponds to an iteration of the outer loop, and each copy of the array in a
row corresponds to an iteration of the inner loop. Each comparison is shown with
an arc. In addition, we indicate whether that comparison resulted in a move or not.

3.1.3 Two-Dimensional Arrays and Positional Games

Many computer games, be they strategy games, simulation games, or first-person
conflict games, use a two-dimensional “board.” Programs that deal with such po-
sitional games need a way of representing objects in a two-dimensional space. A
natural way to do this is with a two-dimensional array, where we use two indices,
say i and j, to refer to the cells in the array. The first index usually refers to a row
number and the second to a column number. Given such an array we can then main-
tain two-dimensional game boards, as well as perform other kinds of computations

112

Chapter 3. Arrays, Linked Lists, and Recursion

involving data that is stored in rows and columns.

Arrays in C++ are one-dimensional; we use a single index to access each cell
of an array. Nevertheless, there is a way we can define two-dimensional arrays in
C++—we can create a two-dimensional array as an array of arrays. That is, we can
define a two-dimensional array to be an array with each of its cells being another
array. Such a two-dimensional array is sometimes also called a matrix. In C++, we
declare a two-dimensional array as follows:

int M[8][10]; // matrix with 8 rows and 10 columns

This statement creates a two-dimensional “array of arrays,” M, which is 8 x 10,
having 8 rows and 10 columns. That is, M is an array of length 8 such that each
element of M is an array of length 10 of integers. (See Figure 3.6.)

0 1 2 3 4 5 6 7 8 9
22 (18 |709| 5 | 33| 10 | 4 | 56 | 82 |440
45| 32 |830|120|750(660| 13 | 77 | 20 | 105
4 (88045 |66 | 61|28 (650 7 |510(| 67
940| 12 [36 [3 | 20 | 100|306 (590 O |500
50 [65 | 42 | 49| 88| 25|70 [126| 83 | 288
398|233 5 | 83| 59 (23249 | 8 |365| 90
33 | 58 |632| 87 | 94 | 5 | 59 [204|120|829
62 [394| 3 | 4 |102|140|183|390| 16 | 26

N O oA W N~ O

Figure 3.6: A two-dimensional integer array that has 8 rows and 10 columns. The
value of M([3][5] is 100 and the value of M[6][2] is 632.

Given integer variables i and j, we could output the element of row i and col-
umn j (or equivalently, the jth element of the ith array) as follows:

cout << MIi][j]; // output element in row i column j

It is often a good idea to use symbolic constants to define the dimensions in
order to make your intentions clearer to someone reading your program.

const int N_DAYS = 7;
const int N_.HOURS = 24;
int schedule[N_DAYS][N_HOURS];

Dynamic Allocation of Matrices

If the dimensions of a two-dimensional array are not known in advance, it is nec-
essary to allocate the array dynamically. This can be done by applying the method
that we discussed earlier for allocating arrays in Section 1.1.3, but instead, we need
to apply it to each individual row of the matrix.

3.1. Using Arrays 113

For example, suppose that we wish to allocate an integer matrix with n rows and
m columns. Each row of the matrix is an array of integers of length m. Recall that
a dynamic array is represented as a pointer to its first element, so each row would
be declared to be of type int*. How do we group the individual rows together to
form the matrix? The matrix is an array of row pointers. Since each row pointer is
of type int*, the matrix is of type int**, that is, a pointer to a pointer of integers.

To generate our matrix, we first declare M to be of this type and allocate the
n row pointers with the command “M = new int*[n].” The ith row of the matrix
is allocated with the statement “M[i] = new int[m].” In Code Fragment 3.9, we
show how to do this given two integer variables n and m.

int** M = new int*[n]; // allocate an array of row pointers
for (inti =0;i < n; i++)
M[i] = new int[m]; // allocate the i-th row

Code Fragment 3.9: Allocating storage for a matrix as an array of arrays.

Once allocated, we can access its elements just as before, for example, as
“M[i][j].” As shown in Code Fragment 3.10, deallocating the matrix involves re-
versing these steps. First, we deallocate each of the rows, one by one. We then
deallocate the array of row pointers. Since we are deleting an array, we use the
command “delete[].”

for (inti =0;i<n;i++)
delete[] MJi[; // delete the i-th row
delete[] M; // delete the array of row pointers

Code Fragment 3.10: Deallocating storage for a matrix as an array of arrays.

Using STL Vectors to Implement Matrices

As we can see from the previous section, dynamic allocation of matrices is rather
cumbersome. The STL vector class (recall Section 1.5.5) provides a much more
elegant way to process matrices. We adapt the same approach as above by imple-
menting a matrix as a vector of vectors. Each row of our matrix is declared as
“vector<int>.” Thus, the entire matrix is declared to be a vector of rows, that is,
“vector<vector<int>>.” Let us declare M to be of this type.

Letting n denote the desired number of rows in the matrix, the constructor call
M (n) allocates storage for the rows. However, this does not allocate the desired
number of columns. The reason is that the default constructor is called for each
row, and the default is to construct an empty array.

To fix this, we make use of a nice feature of the vector class constructor. There
is an optional second argument, which indicates the value to use when initializing

114

Chapter 3. Arrays, Linked Lists, and Recursion

each element of the vector. In our case, each element of M is a vector of m integers,
that is, “vector<int>(m).” Thus, given integer variables n and m, the following code
fragment generates an n X m matrix as a vector of vectors.

vector< vector<int> > M(n, vector<int>(m));
cout << MJi][j] << endl;

The space between vector<int> and the following “>” has been added to prevent
ambiguity with the C++ input operator “>>.” Because the STL vector class au-
tomatically takes care of deleting its members, we do not need to write a loop to
explicitly delete the rows, as we needed with dynamic arrays.

Two-dimensional arrays have many applications. Next, we explore a simple
application of two-dimensional arrays for implementing a positional game.

Tic-Tac-Toe

As most school children know, Tic-Tac-Toe is a game played on a three-by-three
board. Two players, X and O, alternate in placing their respective marks in the cells
of this board, starting with player X. If either player succeeds in getting three of his
or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it’s not even that
much fun to play, since a good player O can always force a tie. Tic-Tac-Toe’s saving
grace is that it is a nice, simple example showing how two-dimensional arrays can
be used for positional games. Software for more sophisticated positional games,
such as checkers, chess, or the popular simulation games, are all based on the same
approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe. (See
Exercise P-7.11.)

The basic idea is to use a two-dimensional array, board, to maintain the game
board. Cells in this array store values that indicate if that cell is empty or stores an X
or O. That is, board is a three-by-three matrix. For example, its middle row consists
of the cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1
indicating an X, and a —1 indicating O. This encoding allows us to have a simple
way of testing whether a given board configuration is a win for X or O, namely, if
the values of a row, column, or diagonal add up to —3 or 3, respectively.

We give a complete C++ program for maintaining a Tic-Tac-Toe board for two
players in Code Fragments 3.11 and 3.12. We show the resulting output in Fig-
ure 3.8. Note that this code is just for maintaining the Tic-Tac-Toe board and regis-
tering moves; it doesn’t perform any strategy or allow someone to play Tic-Tac-Toe
against the computer. The details of such a program are beyond the scope of this
chapter, but it might nonetheless make a good project (see Exercise P-7.11).

3.1. Using Arrays

playing board

o

—_

115

0 0 0

board array

Figure 3.7: A Tic-Tac-Toe board and the array representing it.

#include <cstdlib>
#include <iostream>
using namespace std;

const int X =1, O = -1, EMPTY = 0;

int board[3][3];
int currentPlayer;

void clearBoard() {
for (inti =0;i < 3; i++)
for (int j = 0; j < 3; j++)
board[i][j] = EMPTY;
currentPlayer = X;

}

void putMark(int i, int j) {
board[i][j] = currentPlayer;
currentPlayer = —currentPlayer;

}

bool isWin(int mark) {
int win = 3*mark;

// system definitions
// 1/O definitions
// make std:: accessible

// possible marks

// playing board
// current player (X or O)

// clear the board

// every cell is empty
// player X starts

// mark row i column j
// mark with current player
// switch players

// is mark the winner?
// +3 for X and -3 for O

return ((board[0][0] + board[0][1] + board[0][2] == win) // row O
|| (board[1][0] + board[1][1] + board[1][2] == win) // row 1
|| (board[2][0] + board[2][1] 4+ board[2][2] == win) // row 2
|| (board[0][0] + board[1][0] + board[2][0] == win) // column 0
|| (board[0][1] + board[1][1] + board[2][1] == win) // column 1
|| (board[0][2] + board[1][2] 4+ board[2][2] == win) // column 2
|| (board[0][0] + board[1][1] + board[2][2] == win) // diagonal
|| (board[2][0] 4+ board[1][1] + board[0][2] == win)); // diagonal

}

Code Fragment 3.11: A C++ program for playing Tic-Tac-Toe between two players.

(Continues in Code Fragment 3.12.)

116 Chapter 3. Arrays, Linked Lists, and Recursion

int getWinner() {
if (isWin(X)) return X;
else if (isWin(O)) return O;
else return EMPTY;

}

void printBoard() {
for (inti=0;i <3 i++) {
for (int j = 0; j < 3; j++) {
switch (board[i][j]) {

// who wins? (EMPTY means tie)

// print the board

case X: cout << "X"; break;
case O: cout << "0"; break;
case EMPTY: cout << " "; break;
}
if (j <2)cout << "™, // column boundary
}
if (i <2) cout << "\n-+-+-\n"; // row boundary
}
}
int main() { // main program
clearBoard(); // clear the board
putMark(0,0); putMark(1,1); // add the marks
putMark(0,1); putMark(0,2);
putMark(2,0); putMark(1,2);
putMark(2,2); putMark(2,1);
putMark(1,0);
printBoard(); // print the final board

int winner = getWinner();
if (winner |= EMPTY)

cout << " " << (winner == X
else

cout << " Tie" << endl;
return EXIT_SUCCESS;

}

// print the winner
70X 1 20%) << " wins" << endl;

Code Fragment 3.12: A C++ program for playing Tic-Tac-Toe between two players.

(Continued from Code Fragment 3.11.)

XIX|0
—t—t—
Xl0l0
—t—t—
XI0IX

Figure 3.8: Output of

X wins

the Tic-Tac-Toe program.

3.2. Singly Linked Lists 117

3.2

Singly Linked Lists

In the previous section, we presented the array data structure and discussed some
of its applications. Arrays are nice and simple for storing things in a certain order,
but they have drawbacks. They are not very adaptable. For instance, we have
to fix the size n of an array in advance, which makes resizing an array difficult.
(This drawback is remedied in STL vectors.) Insertions and deletions are difficult
because elements need to be shifted around to make space for insertion or to fill
empty positions after deletion. In this section, we explore an important alternate
implementation of sequence, known as the singly linked list.

A linked list, in its simplest form, is a collection of rodes that together form a
linear ordering. As in the children’s game “Follow the Leader,” each node stores
a pointer, called next, to the next node of the list. In addition, each node stores its
associated element. (See Figure 3.9.)

°
°
v

°
y

LAX » MSP ATL

BOS | e (f
head tail

Figure 3.9: Example of a singly linked list of airport codes. The next pointers are
shown as arrows. The null pointer is denoted by ().

The next pointer inside a node is a link or pointer to the next node of the list.
Moving from one node to another by following a next reference is known as link
hopping or pointer hopping. The first and last nodes of a linked list are called
the head and tail of the list, respectively. Thus, we can link-hop through the list,
starting at the head and ending at the tail. We can identify the tail as the node having
a null next reference. The structure is called a singly linked list because each node
stores a single link.

Like an array, a singly linked list maintains its elements in a certain order, as
determined by the chain of next links. Unlike an array, a singly linked list does not
have a predetermined fixed size. It can be resized by adding or removing nodes.

3.2.1 Implementing a Singly Linked List

Let us implement a singly linked list of strings. We first define a class StringNode
shown in Code Fragment 3.13. The node stores two values, the member elem stores
the element stored in this node, which in this case is a character string. (Later, in
Section 3.2.4, we describe how to define nodes that can store arbitrary types of
elements.) The member next stores a pointer to the next node of the list. We make
the linked list class a friend, so that it can access the node’s private members.

118 Chapter 3. Arrays, Linked Lists, and Recursion

class StringNode { // a node in a list of strings
private:

string elem; // element value

StringNode* next; // next item in the list

friend class StringlLinkedList; // provide StringlinkedList access
%

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor

“StringLinkedList(); // destructor

bool empty() const; // is list empty?

const string& front() const; // get front element

void addFront(const string& e); // add to front of list

void removeFront(); // remove front item list
private:

StringNode* head; // pointer to the head of list
%

Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::”StringLinkedList() // destructor
{ while (lempty()) removeFront(); }

bool StringlLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head—>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.

3.2. Singly Linked Lists 119

3.2.2 Insertion to the Front of a Singly Linked List

We can easily insert an element at the head of a singly linked list. We first create a
new node, and set its elem value to the desired string and set its next link to point to
the current head of the list. We then set head to point to the new node. The process
is illustrated in Figure 3.10.

head

N\

MSP
head

\ (a)

°
Y

ATL

°
Y

BOS| o —» @

[l'___‘I
| LAX | e4--—-» MSP| e > ATL | o > BOS | «—» ()
head
\ (b)
LAX | o » MSP | o > ATL | o » BOS | «—»(f
(©

Figure 3.10: Insertion of an element at the head of a singly linked list: (a) before
the insertion; (b) creation of a new node; (c) after the insertion.

An implementation is shown in Code Fragment 3.16. Note that access to the
private members elem and next of the StringNode class would normally be prohib-
ited, but it is allowed here because StringLinkedList was declared to be a friend of

StringNode.
void StringlLinkedList::addFront(const string& e) { // add to front of list
StringNode* v = new StringNode; // create new node
v—>elem = ¢; // store data
v—>next = head; // head now follows v
head = v; // v is now the head
}

Code Fragment 3.16: Insertion to the front of a singly linked list.

3.2.3 Removal from the Front of a Singly Linked List

Next, we consider how to remove an element from the front of a singly linked list.
We essentially undo the operations performed for insertion. We first save a pointer

120

Chapter 3. Arrays, Linked Lists, and Recursion

to the old head node and advance the head pointer to the next node in the list. We
then delete the old head node. This operation is illustrated in Figure 3.11.

head
LAX | e » MSP | o > ATL | o » BOS | e——» ()
(a)
head
LAX | et MSP| ol—» ATL| ol —» BOS| o> (¥
e S
(b)
head
MSP | > ATL | o > BOS | e ()
(©

Figure 3.11: Removal of an element at the head of a singly linked list: (a) before
the removal; (b) “linking out” the old new node; (c) after the removal.

An implementation of this operation is provided in Code Fragment 3.17. We
assume that the user has checked that the list is nonempty before applying this
operation. (A more careful implementation would throw an exception if the list
were empty.) The function deletes the node in order to avoid any memory leaks.
We do not return the value of the deleted node. If its value is desired, we can call
the front function prior to the removal.

void StringLinkedList::removeFront() { // remove front item
StringNode* old = head; // save current head
head = old—>next; // skip over old head
delete old; // delete the old head
}

Code Fragment 3.17: Removal from the front of a singly linked list.

It is noteworthy that we cannot as easily delete the last node of a singly linked
list, even if we had a pointer to it. In order to delete a node, we need to update the
next link of the node immediately preceding the deleted node. Locating this node
involves traversing the entire list and could take a long time. (We remedy this in
Section 3.3 when we discuss doubly linked lists.)

3.2. Singly Linked Lists 121

3.2.4 Implementing a Generic Singly Linked List

The implementation of the singly linked list given in Section 3.2.1 assumes that the
element type is a character string. It is easy to convert the implementation so that it
works for an arbitrary element type through the use of C++’s template mechanism.
The resulting generic singly linked list class is called SLinkedList.

We begin by presenting the node class, called SNode, in Code Fragment 3.18.
The element type associated with each node is parameterized by the type vari-
able E. In contrast to our earlier version in Code Fragment 3.13, references to the
data type ‘“‘string” have been replaced by “E.” When referring to our templated
node and list class, we need to include the suffix “<E>.” For example, the class is
SLinkedList<E> and the associated node is SNode<E>.

template <typename E>

class SNode { // singly linked list node
private:
E elem; // linked list element value
SNode<E>* next; // next item in the list
friend class SLinkedList<E>; // provide SLinkedList access
i

Code Fragment 3.18: A node in a generic singly linked list.

The generic list class is presented in Code Fragment 3.19. As above, refer-
ences to the specific element type “string” have been replaced by references to the
generic type parameter “E.” To keep things simple, we have omitted housekeeping
functions such as a copy constructor.

template <typename E>

class SLinkedList { // a singly linked list
public:
SLinkedList(); // empty list constructor
“SLinkedList(); // destructor
bool empty() const; // is list empty?
const E& front() const; // return front element
void addFront(const E& e); // add to front of list
void removeFront(); // remove front item list
private:
SNode<E>* head; // head of the list
%

Code Fragment 3.19: A class definition for a generic singly linked list.

In Code Fragment 3.20, we present the class member functions. Note the sim-
ilarity with Code Fragments 3.15 through 3.17. Observe that each definition is
prefaced by the template specifier template <typename E>.

122

Chapter 3. Arrays, Linked Lists, and Recursion

template <typename E>
SLinkedList<E>::SLinkedList()
: head(NULL) { }

template <typename E>
bool SLinkedList<E>::empty() const
{ return head == NULL; }

template <typename E>
const E& SlinkedList<E>::front() const
{ return head—>elem; }

template <typename E>
SLinkedList<E>::"SLinkedList()
{ while (lempty()) removeFront(); }

template <typename E>

void SLinkedList<E>::addFront(const E& e) {
SNode<E>* v = new SNode<E>;
v—>elem = e;
v—>next = head;
head = v;

}

template <typename E>

void SLinkedList<E>::removeFront() {
SNode<E>* old = head;
head = old—>next;
delete old;

}

// constructor

// is list empty?

// return front element

// destructor

// add to front of list
// create new node
// store data

// head now follows v
// v is now the head

// remove front item
// save current head
// skip over old head
// delete the old head

Code Fragment 3.20: Other member functions for a generic singly linked list.

We can generate singly linked lists of various types by simply setting the tem-
plate parameter as desired as shown in the following code fragment.

SLinkedList<string> a;
a.addFront("MSP");
/.
SLinkedList<int> b;
b.addFront(13);

// list of strings

// list of integers

Code Fragment 3.21: Examples using the generic singly linked list class.

Because templated classes carry a relatively high notational burden, we often
sacrifice generality for simplicity, and avoid the use of templated classes in some

of our examples.

3.3. Doubly Linked Lists 123

3.3 Doubly Linked Lists

As we saw in the previous section, removing an element at the tail of a singly
linked list is not easy. Indeed, it is time consuming to remove any node other than
the head in a singly linked list, since we do not have a quick way of accessing the
node immediately preceding the one we want to remove. There are many appli-
cations where we do not have quick access to such a predecessor node. For such
applications, it would be nice to have a way of going both directions in a linked list.

There is a type of linked list that allows us to go in both directions—forward
and reverse—in a linked list. It is the doubly linked list. In addition to its element
member, a node in a doubly linked list stores two pointers, a next link and a prev
link, which point to the next node in the list and the previous node in the list, re-
spectively. Such lists allow for a great variety of quick update operations, including
efficient insertion and removal at any given position.

Header and Trailer Sentinels

To simplify programming, it is convenient to add special nodes at both ends of
a doubly linked list: a header node just before the head of the list, and a trailer
node just after the tail of the list. These “dummy” or sentinel nodes do not store
any elements. They provide quick access to the first and last nodes of the list. In
particular, the header’s next pointer points to the first node of the list, and the prev
pointer of the trailer node points to the last node of the list. An example is shown
in Figure 3.12.

header trailer
next next next next
R Mo | JFK o Mo |PVD o5 Me|SFO e M.
prev prev prev prev

Figure 3.12: A doubly linked list with sentinels, header and trailer, marking the
ends of the list. An empty list would have these sentinels pointing to each other.
We do not show the null prev pointer for the header nor do we show the null next
pointer for the trailer.

3.3.1 Insertion into a Doubly Linked List

Because of its double link structure, it is possible to insert a node at any position
within a doubly linked list. Given a node v of a doubly linked list (which could
possibly be the header, but not the trailer), let z be a new node that we wish to insert

124

Chapter 3. Arrays, Linked Lists, and Recursion

immediately after v. Let w the be node following v, that is, w is the node pointed to
by v’s next link. (This node exists, since we have sentinels.) To insert z after v, we
link it into the current list, by performing the following operations:

Make z’s prev link point to v
Make z’s next link point to w
Make w’s prev link point to z
Make v’s next link point to z

This process is illustrated in Figure 3.13, where v points to the node JFK, w points
to PVD, and z points to the new node BWI. Observe that this process works if v is
any node ranging from the header to the node just prior to the trailer.

header trailer
et [k [se [Pvo [R Tse [sFO [N |
A A
3~[’Ev'v'|';-;
(a)
header trailer

R JEE e ETIE S G S AE S
(b)

Figure 3.13: Adding a new node after the node storing JFK: (a) creating a new node
with element BWI and linking it in; (b) after the insertion.

3.3.2 Removal from a Doubly Linked List

Likewise, it is easy to remove a node v from a doubly linked list. Let u be the node
just prior to v, and w be the node just following v. (These nodes exist, since we
have sentinels.) To remove node v, we simply have u and w point to each other
instead of to v. We refer to this operation as the linking out of v. We perform the
following operations.

e Make w’s prev link point to u
e Make u’s next link point to w
e Delete node v

This process is illustrated in Figure 3.14, where v is the node PVD, u is the node
JFK, and w is the node SFO. Observe that this process works if v is any node from
the header to the tail node (the node just prior to the trailer).

3.3. Doubly Linked Lists 125

header trailer

L S RS [[S [pvn [g 8 [sFo [N |
()

header trailer

R LU R

77777777

(b)
header trailer
Lo e [om [R [[R [sro [RN |
(©)

Figure 3.14: Removing the node storing PVD: (a) before the removal; (b) linking
out the old node; (¢) after node deletion.

3.3.3 A C++ Implementation

Let us consider how to implement a doubly linked list in C++. First, we present a
C++ class for a node of the list in Code Fragment 3.22. To keep the code simple,
we have chosen not to derive a templated class as we did in Section 3.2.1 for singly
linked lists. Instead, we provide a typedef statement that defines the element type,
called Elem. We define it to be a string, but any other type could be used instead.
Each node stores an element. It also contains pointers to both the previous and next
nodes of the list. We declare DLinkedList to be a friend, so it can access the node’s
private members.

typedef string Elem; // list element type
class DNode { // doubly linked list node
private:
Elem elem; // node element value
DNode* prev; // previous node in list
DNode* next; // next node in list
friend class DLinkedList; // allow DLinkedList access
i

Code Fragment 3.22: C++ implementation of a doubly linked list node.

Next, we present the definition of the doubly linked list class, DLinkedList,
in Code Fragment 3.23. In addition to a constructor and destructor, the public
members consist of a function that indicates whether the list is currently empty

126 Chapter 3. Arrays, Linked Lists, and Recursion

(meaning that it has no nodes other than the sentinels) and accessors to retrieve
the front and back elements. We also provide methods for inserting and removing
elements from the front and back of the list. There are two private data members,
header and trailer, which point to the sentinels. Finally, we provide two protected
utility member functions, add and remove. They are used internally by the class
and by its subclasses, but they cannot be invoked from outside the class.

class DLinkedList { // doubly linked list
public:
DLinkedList(); // constructor
“DLinkedList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // get front element
const Elem& back() const; // get back element
void addFront(const Elem& e); // add to front of list
void addBack(const Elem& e); // add to back of list
void removeFront(); // remove from front
void removeBack(); // remove from back
private: // local type definitions
DNode* header; // list sentinels
DNode* trailer;
protected: // local utilities
void add(DNode* v, const Elem& e); // insert new node before v
void remove(DNode* v); // remove node v
i

Code Fragment 3.23: Implementation of a doubly linked list class.

Let us begin by presenting the class constructor and destructor as shown in
Code Fragment 3.24. The constructor creates the sentinel nodes and sets each to
point to the other, and the destructor removes all but the sentinel nodes.

DLinkedList::DLinkedList() { // constructor
header = new DNode; // create sentinels
trailer = new DNode;
header—>next = trailer; // have them point to each other
trailer—>prev = header;

}

DLinkedList::"DLinkedList() { // destructor
while (lempty()) removeFront(); // remove all but sentinels
delete header; // remove the sentinels
delete trailer;

}

Code Fragment 3.24: Class constructor and destructor.

3.3. Doubly Linked Lists 127

Next, in Code Fragment 3.25 we show the basic class accessors. To determine
whether the list is empty, we check that there is no node between the two sentinels.
We do this by testing whether the trailer follows immediately after the header. To
access the front element of the list, we return the element associated with the node
that follows the list header. To access the back element, we return the element
associated with node that precedes the trailer. Both operations assume that the list
is nonempty. We could have enhanced these functions by throwing an exception if
an attempt is made to access the front or back of an empty list, just as we did in
Code Fragment 3.6.

bool DLinkedList::empty() const // is list empty?
{ return (header—>next == trailer); }

const Elem& DLinkedList::front() const // get front element
{ return header—>next—>elem; }

const Elem& DLinkedList::back() const // get back element
{ return trailer—>prev—>elem; }

Code Fragment 3.25: Accessor functions for the doubly linked list class.

In Section 3.3.1, we discussed how to insert a node into a doubly linked list.
The local utility function add, which is shown in Code Fragment 3.26, implements
this operation. In order to add a node to the front of the list, we create a new node,
and insert it immediately after the header, or equivalently, immediately before the
node that follows the header. In order to add a new node to the back of the list, we
create a new node, and insert it immediately before the trailer.

// insert new node before v
void DLinkedList::add(DNode* v, const Elem& e) {
DNode* u = new DNode; u—>elem = e; // create a new node for e

u—>next = v; // link u in between v
u—>prev = v—>prev, // ...and v>>prev
v—>prev—>next = v—>prev = u;

}

void DLinkedList::addFront(const Elem& e) // add to front of list
{ add(header—>next, €); }

void DLinkedList::addBack(const Elem& e) // add to back of list
{ add(trailer, e); }

Code Fragment 3.26: Inserting a new node into a doubly linked list. The protected
utility function add inserts a node z before an arbitrary node v. The public member
functions addFront and addBack both invoke this utility function.

128

Chapter 3. Arrays, Linked Lists, and Recursion

Observe that the above code works even if the list is empty (meaning that the
only nodes are the header and trailer). For example, if addBack is invoked on an
empty list, then the value of trailer->prev is a pointer to the list header. Thus,
the node is added between the header and trailer as desired. One of the major
advantages of providing sentinel nodes is to avoid handling of special cases, which
would otherwise be needed.

Finally, let us discuss deletion. In Section 3.3.2, we showed how to remove
an arbitrary node from a doubly linked list. In Code Fragment 3.27, we present
local utility function remove, which performs the operation. In addition to linking
out the node, it also deletes the node. The public member functions removeFront
and removeBack are implemented by deleting the nodes immediately following the
header and immediately preceding the trailer, respectively.

void DLinkedList::remove(DNode* v) { // remove node v
DNode* u = v—>prev; // predecessor
DNode* w = v—>next; // successor
u—>next = w; // unlink v from list
W—>prev = u,
delete v;

}

void DLinkedList::removeFront() // remove from font

{ remove(header—>next); }

void DLinkedList::removeBack() // remove from back
{ remove(trailer—>prev); }

Code Fragment 3.27: Removing a node from a doubly linked list. The local utility
function remove removes the node v. The public member functions removeFront
and removeBack invoke this utility function.

There are many more features that we could have added to our simple imple-
mentation of a doubly linked list. Although we have provided access to the ends of
the list, we have not provided any mechanism for accessing or modifying elements
in the middle of the list. Later, in Chapter 6, we discuss the concept of iterators,
which provides a mechanism for accessing arbitrary elements of a list.

We have also performed no error checking in our implementation. It is the
user’s responsibility not to attempt to access or remove elements from an empty
list. In a more robust implementation of a doubly linked list, we would design the
member functions front, back, removeFront, and removeBack to throw an excep-
tion when an attempt is made to perform one of these functions on an empty list.
Nonetheless, this simple implementation illustrates how easy it is to manipulate
this useful data structure.

3.4. Circularly Linked Lists and List Reversal 129

3.4 Circularly Linked Lists and List Reversal

In this section, we study some applications and extensions of linked lists.

3.4.1 Circularly Linked Lists

A circularly linked list has the same kind of nodes as a singly linked list. That is,
each node in a circularly linked list has a next pointer and an element value. But,
rather than having a head or tail, the nodes of a circularly linked list are linked
into a cycle. If we traverse the nodes of a circularly linked list from any node by
following next pointers, we eventually visit all the nodes and cycle back to the
node from which we started.

Even though a circularly linked list has no beginning or end, we nevertheless
need some node to be marked as a special node, which we call the cursor. The
cursor node allows us to have a place to start from if we ever need to traverse a
circularly linked list.

There are two positions of particular interest in a circular list. The first is the
element that is referenced by the cursor, which is called the back, and the element
immediately following this in the circular order, which is called the front. Although
it may seem odd to think of a circular list as having a front and a back, observe that,
if we were to cut the link between the node referenced by the cursor and this node’s
immediate successor, the result would be a singly linked list from the front node to
the back node.

(front) (back) ’/cursor

CAX MSP BOS D

Figure 3.15: A circularly linked list. The node referenced by the cursor is called the
back, and the node immediately following is called the front.

ATL

We define the following functions for a circularly linked list:

front(): Return the element referenced by the cursor; an error re-
sults if the list is empty.

back(): Return the element immediately after the cursor; an error
results if the list is empty.

advance(): Advance the cursor to the next node in the list.

130 Chapter 3. Arrays, Linked Lists, and Recursion

add(e): Insert a new node with element e immediately after the
cursor; if the list is empty, then this node becomes the
cursor and its next pointer points to itself.

remove(): Remove the node immediately after the cursor (not the
cursor itself, unless it is the only node); if the list be-
comes empty, the cursor is set to null.

In Code Fragment 3.28, we show a C++ implementation of a node of a cir-
cularly linked list, assuming that each node contains a single string. The node
structure is essentially identical to that of a singly linked list (recall Code Frag-
ment 3.13). To keep the code simple, we have not implemented a templated class.
Instead, we provide a typedef statement that defines the element type Elem to be
the base type of the list, which in this case is a string.

typedef string Elem; // element type
class CNode { // circularly linked list node
private:
Elem elem; // linked list element value
CNode* next; // next item in the list
friend class CircleList; // provide CircleList access
i

Code Fragment 3.28: A node of a circularly linked list.

Next, in Code Fragment 3.29, we present the class definition for a circularly
linked list called CircleList. In addition to the above functions, the class provides
a constructor, a destructor, and a function to detect whether the list is empty. The
private member consists of the cursor, which points to some node of the list.

class CircleList { // a circularly linked list
public:
CircleList(); // constructor
“CircleList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // element at cursor
const Elem& back() const; // element following cursor
void advance(); // advance cursor
void add(const Elem& e); // add after cursor
void remove(); // remove node after cursor
private:
CNode* cursor; // the cursor
%

Code Fragment 3.29: Implementation of a circularly linked list class.

3.4. Circularly Linked Lists and List Reversal 131

Code Fragment 3.30 presents the class’s constructor and destructor. The con-
structor generates an empty list by setting the cursor to NULL. The destructor iter-
atively removes nodes until the list is empty. We exploit the fact that the member
function remove (given below) deletes the node that it removes.

CircleList::CircleList() // constructor
. cursor(NULL) { }
CircleList::"CircleList() // destructor

{ while (lempty()) remove(); }
Code Fragment 3.30: The constructor and destructor.

We present a number of simple member functions in Code Fragment 3.31. To
determine whether the list is empty, we test whether the cursor is NULL. The ad-
vance function advances the cursor to the next element.

bool CircleList::empty() const // is list empty?
{ return cursor == NULL; }

const Elem& CircleList::back() const // element at cursor
{ return cursor—>elem; }

const Elem& CircleList::front() const // element following cursor
{ return cursor—>next—>elem; }

void CircleList::advance() // advance cursor

{ cursor = cursor—>next; }

Code Fragment 3.31: Simple member functions.

Next, let us consider insertion. Recall that insertions to the circularly linked list
occur after the cursor. We begin by creating a new node and initializing its data
member. If the list is empty, we create a new node that points to itself. We then
direct the cursor to point to this element. Otherwise, we link the new node just after
the cursor. The code is presented in Code Fragment 3.32.

void CircleList::add(const Elem& e) { // add after cursor
CNode* v = new CNode; // create a new node
v—>elem = g;
if (cursor == NULL) { // list is empty?
v—>next = v; // v points to itself
cursor = v; // cursor points to v
else { // list is nonempty?
v—>next = cursor—>next; // link in v after cursor
cursor—>next = v;
}
}

Code Fragment 3.32: Inserting a node just after the cursor of a circularly linked list.

132

Chapter 3. Arrays, Linked Lists, and Recursion

Finally, we consider removal. We assume that the user has checked that the list
is nonempty before invoking this function. (A more careful implementation would
throw an exception if the list is empty.) There are two cases. If this is the last node
of the list (which can be tested by checking that the node to be removed points to
itself) we set the cursor to NULL. Otherwise, we link the cursor’s next pointer to
skip over the removed node. We then delete the node. The code is presented in
Code Fragment 3.33.

void CircleList::remove() { // remove node after cursor
CNode* old = cursor—>next; // the node being removed
if (old == cursor) // removing the only node?
cursor = NULL; // list is now empty
else
cursor—>next = old—>next; // link out the old node
delete old; // delete the old node
}

Code Fragment 3.33: Removing the node following the cursor.

To keep the code simple, we have omitted error checking. In front, back, and
advance, we should first test whether the list is empty, since otherwise the cursor
pointer will be NULL. In the first two cases, we should throw some sort of excep-
tion. In the case of advance, if the list is empty, we can simply return.

Maintaining a Playlist for a Digital Audio Player

To help illustrate the use of our CircleList implementation of the circularly linked
list, let us consider how to build a simple interface for maintaining a playlist for
a digital audio player, also known as an MP3 player. The songs of the player are
stored in a circular list. The cursor points to the current song. By advancing the
cursor, we can move from one song to the next. We can also add new songs and
remove songs by invoking the member functions insert and remove, respectively.
Of course, a complete implementation would need to provide a method for playing
the current song, but our purpose is to illustrate how the circularly linked list can
be applied to this task.

To make this more concrete, suppose that you have a friend who loves retro
music, and you want to create a playlist of songs from the bygone Disco Era. The
main program is presented Code Fragment 3.34. We declare an object playList
to be a CircleList. The constructor creates an empty playlist. We proceed to add
three songs, “Stayin Alive,” “Le Freak,” and “Jive Talkin.” The comments on the
right show the current contents of the list in square brackets. The first entry of the
list is the element immediately following the cursor (which is where insertion and
removal occur), and the last entry in the list is cursor (which is indicated with an
asterisk).

3.4. Circularly Linked Lists and List Reversal 133

Suppose that we decide to replace “Stayin Alive” with “Disco Inferno.” We
advance the cursor twice so that “Stayin Alive” comes immediately after the cursor.
We then remove this entry and insert its replacement.

int main() {
CircleList playList; // 1]
playList.add("Stayin Alive"); // [Stayin Alive*]
playList.add("Le Freak"); // [Le Freak, Stayin Alive¥|
playList.add("Jive Talkin"); // [Jive Talkin, Le Freak, Stayin Alive*]
playList.advance(); // [Le Freak, Stayin Alive, Jive Talkin*]
playList.advance(); // [Stayin Alive, Jive Talkin, Le Freak*]
playList.remove(); // [Jive Talkin, Le Freak*]

playList.add("Disco Inferno"); // [Disco Inferno, Jive Talkin, Le Freak*]
return EXIT_SUCCESS;

}
Code Fragment 3.34: Using the CircleList class to implement a playlist for a digital
audio player.

3.4.2 Reversing a Linked List

As another example of the manipulation of linked lists, we present a simple function
for reversing the elements of a doubly linked list. Given a list L, our approach
involves first copying the contents of L in reverse order into a temporary list 7', and
then copying the contents of 7" back into L (but without reversing).

To achieve the initial reversed copy, we repeatedly extract the first element of
L and copy it to the front of 7. (To see why this works, observe that the later an
element appears in L, the earlier it will appear in 7.) To copy the contents of T
back to L, we repeatedly extract elements from the front of 7', but this time we
copy each one to the back of list L. Our C++ implementation is presented in Code
Fragment 3.35.

void listReverse(DLinkedList& L) { // reverse a list
DLinkedList T; // temporary list
while (IL.empty()) { // reverse L into T
string s = L.front(); L.removeFront();
T.addFront(s);
}
while (!T.empty()) { // copy T back to L
string s = T.front(); T.removeFront();
L.addBack(s);
}
}

Code Fragment 3.35: A function that reverses the contents of a doubly linked list L.

134

Chapter 3. Arrays, Linked Lists, and Recursion

3.5

Recursion

We have seen that repetition can be achieved by writing loops, such as for loops
and while loops. Another way to achieve repetition is through recursion, which
occurs when a function refers to itself in its own definition. We have seen examples
of functions calling other functions, so it should come as no surprise that most
modern programming languages, including C++, allow a function to call itself. In
this section, we see why this capability provides an elegant and powerful alternative
for performing repetitive tasks.

The Factorial Function

To illustrate recursion, let us begin with a simple example of computing the value of
the factorial function. The factorial of a positive integer n, denoted n!, is defined
as the product of the integers from 1 to n. If n =0, then n! is defined as 1 by
convention. More formally, for any integer n > 0,

L ifn=0
ln(n—1)-(n—-2)---3-2-1 ifn>1.

For example, 5! =5-4-3-2-1 = 120. To make the connection with functions
clearer, we use the notation factorial(n) to denote n!.

The factorial function can be defined in a manner that suggests a recursive
formulation. To see this, observe that

factorial(5) =5-(4-3-2-1) =5 -factorial(4).

Thus, we can define factorial(5) in terms of factorial(4). In general, for a positive
integer n, we can define factorial(n) to be n - factorial(n — 1). This leads to the
following recursive definition

factorial(n) = ! itn=0
~ | n-factorial(n—1) ifn>1.

This definition is typical of many recursive definitions. First, it contains one
or more base cases, which are defined nonrecursively in terms of fixed quantities.
In this case, n = 0 is the base case. It also contains one or more recursive cases,
which are defined by appealing to the definition of the function being defined. Ob-
serve that there is no circularity in this definition because each time the function is
invoked, its argument is smaller by one.

3.5. Recursion 135

A Recursive Implementation of the Factorial Function

Let us consider a C++ implementation of the factorial function shown in Code Frag-
ment 3.36 under the name recursiveFactorial. Notice that no looping was needed
here. The repeated recursive invocations of the function take the place of looping.

int recursiveFactorial(int n) { // recursive factorial function
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n—1); // recursive case

}

Code Fragment 3.36: A recursive implementation of the factorial function.

We can illustrate the execution of a recursive function definition by means of a
recursion trace. Each entry of the trace corresponds to a recursive call. Each new
recursive function call is indicated by an arrow to the newly called function. When
the function returns, an arrow showing this return is drawn, and the return value
may be indicated with this arrow. An example of a trace is shown in Figure 3.16.

What is the advantage of using recursion? Although the recursive implementa-
tion of the factorial function is somewhat simpler than the iterative version, in this
case there is no compelling reason for preferring recursion over iteration. For some
problems, however, a recursive implementation can be significantly simpler and
easier to understand than an iterative implementation. Such an example follows.

\cau return 4*6 = 24 —— final answer

[recursiveFactoriaI(4)

|cal

[recursiveFactoriaI(B)

=

[recursiveFactoriaI(Z)

=

[recursiveFactoriaI(1)

=

[recursiveFactoriaI(O)

return 3*2 =6

N\

return 2*1 =2

Figure 3.16: A recursion trace for the call recursiveFactorial(4).

136

Chapter 3. Arrays, Linked Lists, and Recursion
Drawing an English Ruler

As a more complex example of the use of recursion, consider how to draw the
markings of a typical English ruler. Such a ruler is broken into intervals, and each
interval consists of a set of ticks, placed at intervals of 1/2 inch, 1/4 inch, and so
on. As the size of the interval decreases by half, the tick length decreases by one.
(See Figure 3.17.)

— 0 0 o
S
S
S
. .

(a) (b) ()

Figure 3.17: Three sample outputs of an English ruler drawing: (a) a 2-inch ruler
with major tick length 4; (b) a 1-inch ruler with major tick length 5; (c) a 3-inch
ruler with major tick length 3.

Each fraction of an inch also has a numeric label. The longest tick length is
called the major tick length. We won’t worry about actual distances, however, and
just print one tick per line.

A Recursive Approach to Ruler Drawing

Our approach to drawing such a ruler consists of three functions. The main function
drawRuler draws the entire ruler. Its arguments are the total number of inches in
the ruler, ninches, and the major tick length, majorLength. The utility function dra-
wOneTick draws a single tick of the given length. It can also be given an optional
integer label, which is printed if it is nonnegative.

3.5. Recursion 137

The interesting work is done by the recursive function draw Ticks, which draws
the sequence of ticks within some interval. Its only argument is the tick length
associated with the interval’s central tick. Consider the English ruler with major
tick length 5 shown in Figure 3.17(b). Ignoring the lines containing 0 and 1, let us
consider how to draw the sequence of ticks lying between these lines. The central
tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above and
below this central tick are identical, and each has a central tick of length 3. In
general, an interval with a central tick length L > 1 is composed of the following:

e An interval with a central tick length L — 1
e A single tick of length L

e An interval with a central tick length L — 1

With each recursive call, the length decreases by one. When the length drops to
zero, we simply return. As a result, this recursive process always terminates. This
suggests a recursive process in which the first and last steps are performed by call-
ing the drawTicks(L — 1) recursively. The middle step is performed by calling
the function drawOneTick(L). This recursive formulation is shown in Code Frag-
ment 3.37. As in the factorial example, the code has a base case (when L = 0). In
this instance we make two recursive calls to the function.

// one tick with optional label
void drawOneTick(int tickLength, int tickLabel = —1) {
for (int i = 0; i < tickLength; i++)

cout << "-"
if (tickLabel >= 0) cout << " " << tickLabel;
cout << "\n";
}
void drawTicks(int tickLength) { // draw ticks of given length
if (tickLength > 0) { // stop when length drops to 0
drawTicks(tickLength—1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength—1); // recursively draw right ticks
}
}
void drawRuler(int ninches, int majorLength) {// draw the entire ruler
drawOneTick(majorLength, 0); // draw tick 0 and its label
for (int i = 1; i <= nInches; i++) {
drawTicks(majorLength—1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label
}

Code Fragment 3.37: A recursive implementation of a function that draws a ruler.

138 Chapter 3. Arrays, Linked Lists, and Recursion

[llustrating Ruler Drawing using a Recursion Trace

The recursive execution of the recursive draw Ticks function, defined above, can be
visualized using a recursion trace.

The trace for drawTicks is more complicated than in the factorial example,
however, because each instance makes two recursive calls. To illustrate this, we
show the recursion trace in a form that is reminiscent of an outline for a document.
See Figure 3.18.

(drawTicks(3)) Output

. drawTicks(2)

+—»(drawTicks(1))

drawTicks(0)

¢—» drawOneTick(1) —» —

drawTicks(0)

e—» drawOneTick(2) ——— — -

o—»(drawTicks(1))

[drawTicks(0)

¢—> drawOneTick(1) —» —

« drawTicks(0)
¢—» drawOneTick(3)

v

« drawTicks(2)
‘ (previous pattern repeats)

Figure 3.18: A partial recursion trace for the call drawTicks(3). The second pattern
of calls for drawTicks(2) is not shown, but it is identical to the first.

Throughout this book, we see many other examples of how recursion can be
used in the design of data structures and algorithms.

3.5. Recursion 139

Further lllustrations of Recursion

As we discussed above, recursion is the concept of defining a function that makes
a call to itself. When a function calls itself, we refer to this as a recursive call. We
also consider a function M to be recursive if it calls another function that ultimately
leads to a call back to M.

The main benefit of a recursive approach to algorithm design is that it allows us
to take advantage of the repetitive structure present in many problems. By making
our algorithm description exploit this repetitive structure in a recursive way, we can
often avoid complex case analyses and nested loops. This approach can lead to
more readable algorithm descriptions, while still being quite efficient.

In addition, recursion is a useful way for defining objects that have a repeated
similar structural form, such as in the following examples.

Example 3.1: Modern operating systems define file-system directories (which are
also sometimes called “folders”) in a recursive way. Namely, a file system consists
of a top-level directory, and the contents of this directory consists of files and other
directories, which in turn can contain files and other directories, and so on. The
base directories in the file system contain only files, but by using this recursive
definition, the operating system allows for directories to be nested arbitrarily deep
(as long as there is enough space in memory).

Example 3.2: Much of the syntax in modern programming languages is defined
in a recursive way. For example, we can define an argument list in C++ using the
following notation:

argument-list:
argument
argument-list , argument

In other words, an argument list consists of either (i) an argument or (ii) an argu-
ment list followed by a comma and an argument. That is, an argument list consists
of a comma-separated list of arguments. Similarly, arithmetic expressions can be
defined recursively in terms of primitives (like variables and constants) and arith-
metic expressions.

Example 3.3: There are many examples of recursion in art and nature. One of the
most classic examples of recursion used in art is in the Russian Matryoshka dolls.
Each doll is made of solid wood or is hollow and contains another Matryoshka doll
inside it.

140 Chapter 3. Arrays, Linked Lists, and Recursion

3.5.1 Linear Recursion

The simplest form of recursion is linear recursion, where a function is defined
so that it makes at most one recursive call each time it is invoked. This type of
recursion is useful when we view an algorithmic problem in terms of a first or last
element plus a remaining set that has the same structure as the original set.

Summing the Elements of an Array Recursively

Suppose, for example, we are given an array, A, of n integers that we want to sum
together. We can solve this summation problem using linear recursion by observing
that the sum of all n integers in A is equal to A[0], if n = 1, or the sum of the first n—
1 integers in A plus the last element in A. In particular, we can solve this summation
problem using the recursive algorithm described in Code Fragment 3.38.

Algorithm LinearSum(A,n):
Input: A integer array A and an integer n > 1, such that A has at least n elements
Output: The sum of the first n integers in A

if =1 then
return A[0]
else

return LinearSum(A,n— 1) +A[n—1]
Code Fragment 3.38: Summing the elements in an array using linear recursion.

This example also illustrates an important property that a recursive function
should always possess—the function terminates. We ensure this by writing a non-
recursive statement for the case n = 1. In addition, we always perform the recursive
call on a smaller value of the parameter (n — 1) than that which we are given (n), so
that, at some point (at the “bottom” of the recursion), we will perform the nonre-
cursive part of the computation (returning A[0]). In general, an algorithm that uses
linear recursion typically has the following form:

o Test for base cases. We begin by testing for a set of base cases (there should
be at least one). These base cases should be defined so that every possible
chain of recursive calls eventually reaches a base case, and the handling of
each base case should not use recursion.

e Recur. After testing for base cases, we then perform a single recursive call.
This recursive step may involve a test that decides which of several possible
recursive calls to make, but it should ultimately choose to make just one of
these calls each time we perform this step. Moreover, we should define each
possible recursive call so that it makes progress towards a base case.

3.5. Recursion 141

Analyzing Recursive Algorithms using Recursion Traces

We can analyze a recursive algorithm by using a visual tool known as a recursion
trace. We used recursion traces, for example, to analyze and visualize the recur-
sive factorial function of Section 3.5, and we similarly use recursion traces for the
recursive sorting algorithms of Sections 11.1 and 11.2.

To draw a recursion trace, we create a box for each instance of the function
and label it with the parameters of the function. Also, we visualize a recursive call
by drawing an arrow from the box of the calling function to the box of the called
function. For example, we illustrate the recursion trace of the LinearSum algorithm
of Code Fragment 3.38 in Figure 3.19. We label each box in this trace with the
parameters used to make this call. Each time we make a recursive call, we draw
a line to the box representing the recursive call. We can also use this diagram to
visualize stepping through the algorithm, since it proceeds by going from the call
for n to the call for n— 1, to the call for n — 2, and so on, all the way down to the call
for 1. When the final call finishes, it returns its value back to the call for 2, which
adds in its value, and returns this partial sum to the call for 3, and so on, until the
call for n — 1 returns its partial sum to the call for n.

\Call

return15 + A[4]=15+5=20

(LinearSum(A,5) \
\call return 13 + A[3] = 13 + 2 = 15
[LinearSum(A,4) \
\call return 7 + A[2]=7+6=13
(LinearSum(A,3) \
\call return4 + A[11=4+3=7
[LinearSum(A,2) \

\ call

(LinearSum(A,1)

Figure 3.19: Recursion trace for an execution of LinearSum(A,n) with input param-
eters A ={4,3,6,2,5} and n =5.

From Figure 3.19, it should be clear that for an input array of size n, Algorithm
LinearSum makes n calls. Hence, it takes an amount of time that is roughly propor-
tional to n, since it spends a constant amount of time performing the nonrecursive
part of each call. Moreover, we can also see that the memory space used by the
algorithm (in addition to the array A) is also roughly proportional to n, since we
need a constant amount of memory space for each of the n boxes in the trace at the

142

Chapter 3. Arrays, Linked Lists, and Recursion

time we make the final recursive call (forn = 1).

Reversing an Array by Recursion

Next, let us consider the problem of reversing the n elements of an array, A, so that
the first element becomes the last, the second element becomes second to the last,
and so on. We can solve this problem using linear recursion, by observing that the
reversal of an array can be achieved by swapping the first and last elements and
then recursively reversing the remaining elements in the array. We describe the
details of this algorithm in Code Fragment 3.39, using the convention that the first
time we call this algorithm we do so as ReverseArray(A,0,n— 1).

Algorithm ReverseArray(A,i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j
if i < j then
Swap A[i] and A[}]
ReverseArray(A,i+1,j—1)
return
Code Fragment 3.39: Reversing the elements of an array using linear recursion.

Note that, in this algorithm, we actually have two base cases, namely, when
i = j and when i > j. Moreover, in either case, we simply terminate the algorithm,
since a sequence with zero elements or one element is trivially equal to its reversal.
Furthermore, note that in the recursive step we are guaranteed to make progress
towards one of these two base cases. If n is odd, we eventually reach the i = j case,
and if n is even, we eventually reach the i > j case. The above argument immedi-
ately implies that the recursive algorithm of Code Fragment 3.39 is guaranteed to
terminate.

Defining Problems in Ways that Facilitate Recursion

To design a recursive algorithm for a given problem, it is useful to think of the dif-
ferent ways we can subdivide this problem to define problems that have the same
general structure as the original problem. This process sometimes means we need
to redefine the original problem to facilitate similar-looking subproblems. For ex-
ample, with the ReverseArray algorithm, we added the parameters i and j so that a
recursive call to reverse the inner part of the array A would have the same structure
(and same syntax) as the call to reverse all of A. Then, rather than initially calling
the algorithm as ReverseArray(A), we call it initially as ReverseArray(A,0,n— 1).
In general, if one has difficulty finding the repetitive structure needed to design a re-
cursive algorithm, it is sometimes useful to work out the problem on a few concrete
examples to see how the subproblems should be defined.

3.5. Recursion 143

Tail Recursion

Using recursion can often be a useful tool for designing algorithms that have ele-
gant, short definitions. But this usefulness does come at a modest cost. When we
use a recursive algorithm to solve a problem, we have to use some of the memory
locations in our computer to keep track of the state of each active recursive call.
When computer memory is at a premium, then it is useful in some cases to be able
to derive nonrecursive algorithms from recursive ones.

We can use the stack data structure, discussed in Section 5.1, to convert a recur-
sive algorithm into a nonrecursive algorithm, but there are some instances when we
can do this conversion more easily and efficiently. Specifically, we can easily con-
vert algorithms that use tail recursion. An algorithm uses tail recursion if it uses
linear recursion and the algorithm makes a recursive call as its very last operation.
For example, the algorithm of Code Fragment 3.39 uses tail recursion to reverse
the elements of an array.

It is not enough that the last statement in the function definition includes a
recursive call, however. In order for a function to use tail recursion, the recursive
call must be absolutely the last thing the function does (unless we are in a base case,
of course). For example, the algorithm of Code Fragment 3.38 does not use tail
recursion, even though its last statement includes a recursive call. This recursive
call is not actually the last thing the function does. After it receives the value
returned from the recursive call, it adds this value to A[n — 1] and returns this sum.
That is, the last thing this algorithm does is an add, not a recursive call.

When an algorithm uses tail recursion, we can convert the recursive algorithm
into a nonrecursive one, by iterating through the recursive calls rather than call-
ing them explicitly. We illustrate this type of conversion by revisiting the prob-
lem of reversing the elements of an array. In Code Fragment 3.40, we give a
nonrecursive algorithm that performs this task by iterating through the recursive
calls of the algorithm of Code Fragment 3.39. We initially call this algorithm as
IterativeReverseArray(A,0,n—1).

Algorithm lterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j
while i < j do

Swap A[i] and A[}]

i—i+1

Je—=Jj—1
return

Code Fragment 3.40: Reversing the elements of an array using iteration.

144 Chapter 3. Arrays, Linked Lists, and Recursion

3.5.2 Binary Recursion

When an algorithm makes two recursive calls, we say that it uses binary recursion.
These calls can, for example, be used to solve two similar halves of some problem,
as we did in Section 3.5 for drawing an English ruler. As another application of
binary recursion, let us revisit the problem of summing the n elements of an integer
array A. In this case, we can sum the elements in A by: (i) recursively summing the
elements in the first half of A; (i) recursively summing the elements in the second
half of A; and (iii) adding these two values together. We give the details in the
algorithm of Code Fragment 3.41, which we initially call as BinarySum(A,0,n).
Algorithm BinarySum(A,i,n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if n =1 then
return A[i]
return BinarySum(A,i, [n/2]) + BinarySum(A,i+ [n/2], [n/2])
Code Fragment 3.41: Summing the elements in an array using binary recursion.

To analyze Algorithm BinarySum, we consider, for simplicity, the case where
n is a power of two. The general case of arbitrary n is considered in Exercise R-4.5.
Figure 3.20 shows the recursion trace of an execution of function BinarySum(0, 8).
We label each box with the values of parameters i and n, which represent the start-
ing index and length of the sequence of elements to be summed, respectively. No-
tice that the arrows in the trace go from a box labeled (i,n) to another box labeled
(i,n/2) or (i+n/2,n/2). That is, the value of parameter n is halved at each recur-
sive call. Thus, the depth of the recursion, that is, the maximum number of function
instances that are active at the same time, is 1 +log,n. Thus, Algorithm Binary-
Sum uses an amount of additional space roughly proportional to this value. This is
a big improvement over the space needed by the LinearSum function of Code Frag-
ment 3.38. The running time of Algorithm BinarySum is still roughly proportional
to nn, however, since each box is visited in constant time when stepping through our
algorithm and there are 2n — 1 boxes.

Figure 3.20: Recursion trace for the execution of BinarySum(0, 8).

3.5. Recursion 145
Computing Fibonacci Numbers via Binary Recursion

Let us consider the problem of computing the kth Fibonacci number. Recall from
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows:

b = 0
o= 1
FF = F_1+F_, fori>1

By directly applying this definition, Algorithm BinaryFib, shown in Code Frag-
ment 3.42, computes the sequence of Fibonacci numbers using binary recursion.

Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The kth Fibonacci number Fj

if Kk <1 then
return k
else
return BinaryFib(k — 1) + BinaryFib(k —2)

Code Fragment 3.42: Computing the kth Fibonacci number using binary recursion.

Unfortunately, in spite of the Fibonacci definition looking like a binary recur-
sion, using this technique is inefficient in this case. In fact, it takes an exponential
number of calls to compute the kth Fibonacci number in this way. Specifically, let
ny denote the number of calls performed in the execution of BinaryFib(k). Then,
we have the following values for the n;’s:

nyp = 1
n = 1
n = n+n+l=14+1+1=3

ny = m+n+1=3+14+1=5

ng = ny+m+1=54+3+1=9

ns = nmg+m+1=94+54+1=15

nge = ns+ng+1=15+9+1=25

n = ng+tns+1=25+154+1=41

ng = ni+ng+1=414+254+1=67
If we follow the pattern forward, we see that the number of calls more than doubles
for each two consecutive indices. That is, n4 is more than twice n,, ns is more than
twice nj3, ng is more than twice ny4, and so on. Thus, n; > 2K/ 2 which means that

BinaryFib(k) makes a number of calls that are exponential in k. In other words,
using binary recursion to compute Fibonacci numbers is very inefficient.

146

Chapter 3. Arrays, Linked Lists, and Recursion

Computing Fibonacci Numbers via Linear Recursion

The main problem with the approach above, based on binary recursion, is that the
computation of Fibonacci numbers is really a linearly recursive problem. It is not
a good candidate for using binary recursion. We simply got tempted into using
binary recursion because of the way the kth Fibonacci number, F;, depends on the
two previous values, F;_; and Fj;_,. But we can compute F;, much more efficiently
using linear recursion.

In order to use linear recursion, however, we need to slightly redefine the prob-
lem. One way to accomplish this conversion is to define a recursive function that
computes a pair of consecutive Fibonacci numbers (F, Fx—1) using the convention
F_; = 0. Then we can use the linearly recursive algorithm shown in Code Frag-
ment 3.43.

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fj, Fy—1)

if K <1 then
return (k,0)

else
(i,j) < LinearFibonacci(k— 1)
return (i + j,i)

Code Fragment 3.43: Computing the kth Fibonacci number using linear recursion.

The algorithm given in Code Fragment 3.43 shows that using linear recursion
to compute Fibonacci numbers is much more efficient than using binary recursion.
Since each recursive call to LinearFibonacci decreases the argument £ by 1, the
original call LinearFibonacci(k) results in a series of k — 1 additional calls. That
is, computing the kth Fibonacci number via linear recursion requires k function
calls. This performance is significantly faster than the exponential time needed by
the algorithm based on binary recursion, which was given in Code Fragment 3.42.
Therefore, when using binary recursion, we should first try to fully partition the
problem in two (as we did for summing the elements of an array) or we should be
sure that overlapping recursive calls are really necessary.

Usually, we can eliminate overlapping recursive calls by using more memory to
keep track of previous values. In fact, this approach is a central part of a technique
called dynamic programming, which is related to recursion and is discussed in
Section 12.2.

3.5. Recursion 147

3.5.3 Multiple Recursion

Generalizing from binary recursion, we use multiple recursion when a function
may make multiple recursive calls, with that number potentially being more than
two. One of the most common applications of this type of recursion is used when
we want to enumerate various configurations in order to solve a combinatorial puz-
zle. For example, the following are all instances of summation puzzles.

pot + pan = bib
dog +cat = pig
boy+ girl = baby
To solve such a puzzle, we need to assign a unique digit (that is, 0,1,...,9) to each

letter in the equation, in order to make the equation true. Typically, we solve such
a puzzle by using our human observations of the particular puzzle we are trying
to solve to eliminate configurations (that is, possible partial assignments of digits
to letters) until we can work though the feasible configurations left, testing for the
correctness of each one.

If the number of possible configurations is not too large, however, we can use
a computer to simply enumerate all the possibilities and test each one, without
employing any human observations. In addition, such an algorithm can use multiple
recursion to work through the configurations in a systematic way. We show pseudo-
code for such an algorithm in Code Fragment 3.44. To keep the description general
enough to be used with other puzzles, the algorithm enumerates and tests all k-
length sequences without repetitions of the elements of a given set U. We build the
sequences of k elements by the following steps:

1. Recursively generating the sequences of k — 1 elements

2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use the set U to keep track of the
elements not contained in the current sequence, so that an element e has not been
used yet if and only if eis in U.

Another way to look at the algorithm of Code Fragment 3.44 is that it enumer-
ates every possible size-k ordered subset of U, and tests each subset for being a
possible solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the
sequence corresponds to a given letter. For example, the first position could stand
for b, the second for o, the third for y, and so on.

148 Chapter 3. Arrays, Linked Lists, and Recursion
Algorithm PuzzleSolve(k,S,U):
Input: An integer k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U
without repetitions

for each e in U do
Remove e from U {e is now being used}
Add e to the end of S
if k=1 then
Test whether S is a configuration that solves the puzzle
if S solves the puzzle then
return “Solution found: ” S
else
PuzzleSolve(k—1,5,U)
Add e back to U {e is now unused }
Remove e from the end of §

Code Fragment 3.44: Solving a combinatorial puzzle by enumerating and testing
all possible configurations.

In Figure 3.21, we show a recursion trace of a call to PuzzleSolve(3,S,U),
where S is empty and U = {a,b,c}. During the execution, all the permutations
of the three characters are generated and tested. Note that the initial call makes
three recursive calls, each of which in turn makes two more. If we had executed
PuzzleSolve(3,S,U) on a set U consisting of four elements, the initial call would
have made four recursive calls, each of which would have a trace looking like the
one in Figure 3.21.

Initial caIN

[PuzzleSolve(3,().{a,b,c}))

v\

(PuzzleSolve(2,a,{b,c}) (PuzzleSolve(2,b {a,c})) (PuzzleSoIve(Z c,{a,b}))

(PuzzleSoIve 1,ab {c})) (PuzzIeSoIve(1 ba {c})) (PuzzIeSoIve 1,ca {b}))
cab

(PuzzIeSoIve(1 ac {b} (PuzzleSoIve 1,bc {a})) (PuzzIeSoIve(1 cb {a}))

acb bca cba

Figure 3.21: Recursion trace for an execution of PuzzleSolve(3,S,U), where S is
empty and U = {a, b, c}. This execution generates and tests all permutations of a, b,
and c. We show the permutations generated directly below their respective boxes.

3.6. Exercises

149

3.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-3.1

R-3.2

R-3.3

R-3.4

R-3.5
R-3.6

R-3.7

R-3.8

R-3.9

R-3.10

R-3.11

R-3.12

R-3.13

Modify the implementation of class Scores so that at most [maxEnt /2| of
the scores can come from any one single player.

Suppose that two entries of an array A are equal to each other. After run-
ning the insertion-sort algorithm of Code Fragment 3.7, will they appear
in the same relative order in the final sorted order or in reverse order?
Explain your answer.

Give a C++ code fragment that, given a n X n matrix M of type float,
replaces M with its transpose. Try to do this without the use of a temporary
matrix.

Describe a way to use recursion to compute the sum of all the elements in
an x n (two-dimensional) array of integers.

Give a recursive definition of a singly linked list.

Add a function size() to our C++ implementation of a singly link list. Can
you design this function so that it runs in O(1) time?

Give an algorithm for finding the penultimate (second to last) node in a
singly linked list where the last element is indicated by a null next link.

Give a fully generic implementation of the doubly linked list data structure
of Section 3.3.3 by using a templated class.

Give a more robust implementation of the doubly linked list data struc-
ture of Section 3.3.3, which throws an appropriate exception if an illegal
operation is attempted.

Describe a nonrecursive function for finding, by link hopping, the middle
node of a doubly linked list with header and trailer sentinels. (Note: This
function must only use link hopping; it cannot use a counter.) What is the
running time of this function?

Describe a recursive algorithm for finding the maximum element in an
array A of n elements. What is your running time and space usage?

Draw the recursion trace for the execution of function ReverseArray(A,0,4)
(Code Fragment 3.39) on array A = {4,3,6,2,5}.

Draw the recursion trace for the execution of function PuzzleSolve(3,S,U)
(Code Fragment 3.44), where S is empty and U = {a,b,c,d}.

www.wiley.com/college/goodrich

150

R-3.14

R-3.15

R-3.16

R-3.17

Chapter 3. Arrays, Linked Lists, and Recursion

Write a short C++ function that repeatedly selects and removes a ran-
dom entry from an n-element array until the array holds no more entries.
Assume that you have access to a function random(k), which returns a
random integer in the range from O to k.

Give a fully generic implementation of the circularly linked list data struc-
ture of Section 3.4.1 by using a templated class.

Give a more robust implementation of the circularly linked list data struc-
ture of Section 3.4.1, which throws an appropriate exception if an illegal
operation is attempted.

Write a short C++ function to count the number of nodes in a circularly
linked list.

Creativity

C-3.1

C-3.2

C-33

C-34

C-35

C-3.6

C-3.7

In the Tic-Tac-Toe example, we used 1 for player X and —1 for player O.
Explain how to modify the program’s counting trick to decide the winner
if we had used 1 for player X and 4 for player O instead. Could we use
any combination of values a and b for the two players? Explain.

Give C++ code for performing add(e) and remove(i) functions for game
entries stored in an array a, as in class Scores in Section 3.1.1, except this
time, don’t maintain the game entries in order. Assume that we still need
to keep n entries stored in indices O to n — 1. Try to implement the add
and remove functions without using any loops, so that the number of steps
they perform does not depend on n.

Let A be an array of size n > 2 containing integers from 1 to n — 1, inclu-
sive, with exactly one repeated. Describe a fast algorithm for finding the
integer in A that is repeated.

Let B be an array of size n > 6 containing integers from 1 to n — 5, inclu-
sive, with exactly five repeated. Describe a good algorithm for finding the
five integers in B that are repeated.

Suppose you are designing a multi-player game that has n > 1000 players,
numbered 1 to n, interacting in an enchanted forest. The winner of this
game is the first player who can meet all the other players at least once
(ties are allowed). Assuming that there is a function meet(i, j), which is
called each time a player i meets a player j (with i # j), describe a way to
keep track of the pairs of meeting players and who is the winner.

Give arecursive algorithm to compute the product of two positive integers,
m and n, using only addition and subtraction.

Describe a fast recursive algorithm for reversing a singly linked list L, so
that the ordering of the nodes becomes opposite of what it was before.

3.6. Exercises

C-3.8

C-39

C-3.10

C-3.11

C-3.12

C-3.13

C-3.14

C-3.15

C-3.16

C-3.17

C-3.18

C-3.19

C-3.20

151

Describe a good algorithm for concatenating two singly linked lists L and
M, with header sentinels, into a single list L’ that contains all the nodes of
L followed by all the nodes of M.

Give a fast algorithm for concatenating two doubly linked lists L and M,
with header and trailer sentinel nodes, into a single list L.

Describe in detail how to swap two nodes x and y (and not just their con-
tents) in a singly linked list L given references only to x and y. Repeat
this exercise for the case when L is a doubly linked list. Which algorithm
takes more time?

Describe in detail an algorithm for reversing a singly linked list L using
only a constant amount of additional space and not using any recursion.

In the Towers of Hanoi puzzle, we are given a platform with three pegs, a,
b, and c, sticking out of it. On peg a is a stack of n disks, each larger than
the next, so that the smallest is on the top and the largest is on the bottom.
The puzzle is to move all the disks from peg a to peg ¢, moving one disk
at a time, so that we never place a larger disk on top of a smaller one.
Describe a recursive algorithm for solving the Towers of Hanoi puzzle for
arbitrary n.

(Hint: Consider first the subproblem of moving all but the nth disk from
peg a to another peg using the third as “temporary storage.”)

Describe a recursive function for converting a string of digits into the in-
teger it represents. For example, "13531" represents the integer 13,531.

Describe a recursive algorithm that counts the number of nodes in a singly
linked list.

Write a recursive C++ program that will output all the subsets of a set of
n elements (without repeating any subsets).

Write a short recursive C++ function that finds the minimum and maxi-
mum values in an array of int values without using any loops.

Describe a recursive algorithm that will check if an array A of integers
contains an integer A[i] that is the sum of two integers that appear earlier
in A, that is, such that A[i] = A[j] + A[k] for j,k <.

Write a short recursive C++ function that will rearrange an array of int
values so that all the even values appear before all the odd values.

Write a short recursive C++ function that takes a character string s and
outputs its reverse. So for example, the reverse of "pots&pans" would
be "snap&stop".

Write a short recursive C++ function that determines if a string s is a
palindrome, that is, it is equal to its reverse. For example, "racecar"
and "gohangasalamiimalasagnahog" are palindromes.

152

C-3.21

C-3.22

C-3.23

Chapter 3. Arrays, Linked Lists, and Recursion

Use recursion to write a C++ function for determining if a string s has
more vowels than consonants.

Suppose you are given two circularly linked lists, L and M, that is, two
lists of nodes such that each node has a nonnull next node. Describe a fast
algorithm for telling if L and M are really the same list of nodes but with
different (cursor) starting points.

Given a circularly linked list L containing an even number of nodes, de-
scribe how to split L into two circularly linked lists of half the size.

Projects
P-3.1

P-3.2

P-3.3

p-3.4

P-3.5

P-3.6

pP-3.7

P-3.8

Write a C++ function that takes two three-dimensional integer arrays and
adds them componentwise.

Write a C++ program for a matrix class that can add and multiply arbitrary
two-dimensional arrays of integers. Do this by overloading the addition
(“+7) and multiplication (“*”) operators.

Write a class that maintains the top 10 scores for a game application, im-
plementing the add and remove functions of Section 3.1.1, but use a singly
linked list instead of an array.

Perform the previous project but use a doubly linked list. Moreover, your
implementation of remove(i) should make the fewest number of pointer
hops to get to the game entry at index i.

Perform the previous project but use a linked list that is both circularly
linked and doubly linked.

Write a program for solving summation puzzles by enumerating and test-
ing all possible configurations. Using your program, solve the three puz-
zles given in Section 3.5.3.

Write a program that can perform encryption and decryption using an ar-
bitrary substitution cipher. In this case, the encryption array is a random
shuffling of the letters in the alphabet. Your program should generate
a random encryption array, its corresponding decryption array, and use
these to encode and decode a message.

Write a program that can solve instances of the Tower of Hanoi problem
(from Exercise C-3.12).

Chapter Notes

The fundamental data structures of arrays and linked lists, as well as recursion, discussed
in this chapter, belong to the folklore of computer science. They were first chronicled in the
computer science literature by Knuth in his seminal book on Fundamental Algorithms [59].

Chapter

Analysis Tools

0000
0%e®® o.%oo
O @8 00 00 g0q 0
5 800020 L0880
00900 o)
SJNexeY

092500009000 ¢ 9O
PSR Ot
e
©00p00
Contents
4.1 The Seven Functions Used in This Book 154
4.1.1 The Constant Function 154
4.1.2 The Logarithm Function 154
4.1.3 The Linear Function. 156
4.1.4 The N-Log-N Function 156
4.1.5 The Quadratic Function. 156
4.1.6 The Cubic Function and Other Polynomials 158
4.1.7 The Exponential Function. 159
4.1.8 Comparing Growth Rates 161
4.2 Analysis of Algorithms 162
421 Experimental Studies 163
4.2.2 Primitive Operations 164
4.2.3 Asymptotic Notation 166
4.2.4 Asymptotic Analysis 170
4.2.5 Using the Big-Oh Notation 172
4.2.6 A Recursive Algorithm for Computing Powers 176
4.2.7 Some More Examples of Algorithm Analysis 177
4.3 Simple Justification Techniques 181
431 ByExample o 181
432 The "Contra” Attack 181
4.3.3 Induction and Loop Invariants 182
4.4 EXErCiSes v v v v v i e e e e e e e 185

154

Chapter 4. Analysis Tools

4.1

The Seven Functions Used in This Book

In this section, we briefly discuss the seven most important functions used in the
analysis of algorithms. We use only these seven simple functions for almost all
the analysis we do in this book. In fact, sections that use a function other than
one of these seven are marked with a star (x) to indicate that they are optional. In
addition to these seven fundamental functions, Appendix A contains a list of other
useful mathematical facts that apply in the context of data structure and algorithm
analysis.

4.1.1 The Constant Function

The simplest function we can think of is the constant function. This is the function,

fln)=c,

for some fixed constant ¢, such as ¢ = 3, ¢ = 27, or ¢ = 2!°. That is, for any argu-
ment 7, the constant function f(n) assigns the value c. In other words, it doesn’t
matter what the value of n is, f(n) is always be equal to the constant value c.

Since we are most interested in integer functions, the most fundamental con-
stant function is g(n) = 1, and this is the typical constant function we use in this
book. Note that any other constant function, f(n) = ¢, can be written as a constant
c times g(n). That is, f(n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis because
it characterizes the number of steps needed to do a basic operation on a computer,
like adding two numbers, assigning a value to some variable, or comparing two
numbers.

4.1.2 The Logarithm Function

One of the interesting and sometimes even surprising aspects of the analysis of
data structures and algorithms is the ubiquitous presence of the logarithm function,
f(n) =log, n, for some constant b > 1. This function is defined as follows:

x=log,n ifandonlyif b*=n.

By definition, log, 1 = 0. The value b is known as the base of the logarithm.
Computing the logarithm function exactly for any integer n involves the use
of calculus, but we can use an approximation that is good enough for our pur-
poses without calculus. In particular, we can easily compute the smallest integer
greater than or equal to log,n, since this number is equal to the number of times

4.1. The Seven Functions Used in This Book 155

we can divide n by a until we get a number less than or equal to 1. For exam-
ple, this evaluation of log;27 is 3, since 27/3/3/3 = 1. Likewise, this evaluation
of log, 64 is 3, since 64/4/4/4 = 1, and this approximation to log, 12 is 4, since
12/2/2/2/2 = 0.75 < 1. This base-2 approximation arises in algorithm analysis,
since a common operation in many algorithms is to repeatedly divide an input in
half.

Indeed, since computers store integers in binary, the most common base for the
logarithm function in computer science is 2. In fact, this base is so common that
we typically leave it off when it is 2. That is, for us,

logn = log, n.

We note that most handheld calculators have a button marked LOG, but this is
typically for calculating the logarithm base 10, not base 2.
There are some important rules for logarithms, similar to the exponent rules.

Proposition 4.1 (Logarithm Rules): Given real numbers a >0, b > 1, ¢ > 0
and d > 1, we have:

log, ac =log, a+log,c

log,,a/c =log,a—log,c

log, a“ = clog,a

log,a = (log,a)/log, b
plogaa — gloggb

A

Also, as a notational shorthand, we use log‘n to denote the function (logn)°.
Rather than show how we could derive each of the identities above which all follow
from the definition of logarithms and exponents, let us illustrate these identities
with a few examples instead.

Example 4.2: We demonstrate below some interesting applications of the loga-
rithm rules from Proposition 4.1 (using the usual convention that the base of a
logarithm is 2 if it is omitted).

log(2n) =log2+logn = 1 +logn, by rule 1

log(n/2) =logn—1log2 =logn— 1, by rule 2

logn® = 3logn, by rule 3

log2" =nlog2 =n-1=n, by rule 3

log,n = (logn)/log4 = (logn)/2, by rule 4

logn — plog2 — pl — p, by rule 5

As a practical matter, we note that rule 4 gives us a way to compute the base-2
logarithm on a calculator that has a base-10 logarithm button, LOG, for

log,n=LOGn/LOG 2.

156

Chapter 4. Analysis Tools

4.1.3 The Linear Function

Another simple yet important function is the linear function,

f(n) =n.

That is, given an input value 7, the linear function f assigns the value 7 itself.

This function arises in algorithm analysis any time we have to do a single basic
operation for each of n elements. For example, comparing a number x to each
element of an array of size n requires n comparisons. The linear function also
represents the best running time we can hope to achieve for any algorithm that
processes a collection of n objects that are not already in the computer’s memory,
since reading in the n objects itself requires n operations.

4.1.4 The N-Log-N Function

The next function we discuss in this section is the n-log-n function,

f(n) =nlogn.

That is, the function that assigns to an input n the value of n times the logarithm
base 2 of n. This function grows a little faster than the linear function and a lot
slower than the quadratic function. Thus, as we show on several occasions, if we
can improve the running time of solving some problem from quadratic to n-log-n,
we have an algorithm that runs much faster in general.

4.15 The Quadratic Function

Another function that appears quite often in algorithm analysis is the quadratic
Sfunction,

fln) =n.

That is, given an input value n, the function f assigns the product of n with itself
(in other words, “n squared”).

The main reason why the quadratic function appears in the analysis of algo-
rithms is that there are many algorithms that have nested loops, where the inner
loop performs a linear number of operations and the outer loop is performed a
linear number of times. Thus, in such cases, the algorithm performs 7 -n = n?
operations.

4.1. The Seven Functions Used in This Book 157
Nested Loops and the Quadratic Function

The quadratic function can also arise in the context of nested loops where the first
iteration of a loop uses one operation, the second uses two operations, the third uses
three operations, and so on. That is, the number of operations is

1424344+ m—-2)+(n—1)+n.

In other words, this is the total number of operations that are performed by the
nested loop if the number of operations performed inside the loop increases by one
with each iteration of the outer loop. This quantity also has an interesting history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils
occupied by adding up the integers from 1 to 100. But almost immediately one
of the children claimed to have the answer! The teacher was suspicious, for the
student had only the answer on his slate. But the answer was correct—35,050—and
the student, Carl Gauss, grew up to be one of the greatest mathematicians of his
time. It is widely suspected that young Gauss used the following identity.

Proposition 4.3: For any integer n > 1, we have:

n(n+1
142434+ 4+n—-2)+(n—1)+n= (2)

We give two “visual” justifications of Proposition 4.3 in Figure 4.1.

A A
n+1
n n
3 3
2 2
1 1 Ir
0y 2 3 n Oy 2 a2
(a) (b)

Figure 4.1: Visual justifications of Proposition 4.3. Both illustrations visualize the
identity in terms of the total area covered by n unit-width rectangles with heights
1,2,...,n. In (a), the rectangles are shown to cover a big triangle of area n* /2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In
(b), which applies only when n is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n+ 1.

158

Chapter 4. Analysis Tools

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm
with nested loops such that the operations in the inner loop increase by one each
time, then the total number of operations is quadratic in the number of times, n, we
perform the outer loop. In particular, the number of operations is n” /2 4 n/2, in this
case, which is a little more than a constant factor (1/2) times the quadratic function
n?. In other words, such an algorithm is only slightly better than an algorithm that
uses n operations each time the inner loop is performed. This observation might at
first seem nonintuitive, but it is nevertheless true as shown in Figure 4.1.

4.1.6 The Cubic Function and Other Polynomials

Continuing our discussion of functions that are powers of the input, we consider
the cubic function,

fln)=n’,

which assigns to an input value n the product of n with itself three times. This func-
tion appears less frequently in the context of algorithm analysis than the constant,
linear, and quadratic functions previously mentioned, but it does appear from time
to time.

Polynomials

Interestingly, the functions we have listed so far can be viewed as all being part of
a larger class of functions, the polynomials.
A polynomial function is a function of the form,

f(n) :ao+a1n+a2n2+a3n3+...+adnd7

where ag,ay,...,a; are constants, called the coefficients of the polynomial, and
aq # 0. Integer d, which indicates the highest power in the polynomial, is called
the degree of the polynomial.

For example, the following functions are all polynomials:

o f(n)=2+5n+n?

e f(n)=1+n°
o f(n)=1
o f(n)=n
o f(n)=n’

Therefore, we could argue that this book presents just four important functions used
in algorithm analysis, but we stick to saying that there are seven, since the constant,
linear, and quadratic functions are too important to be lumped in with other poly-
nomials. Running times that are polynomials with degree, d, are generally better
than polynomial running times of larger degree.

4.1. The Seven Functions Used in This Book 159

Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the summation, which is defined as

Zf a)+ fla+ 1)+ fla+2)+---+ f(b),

where a and b are integers and a < b. Summations arise in data structure and algo-
rithm analysis because the running times of loops naturally give rise to summations.
Using a summation, we can rewrite the formula of Proposition 4.3 as

i’ n—i—l)'

i=1

Likewise, we can write a polynomial f(n) of degree d with coefficients ay, . .., a4 as

d .
= z dinl
i=0

Thus, the summation notation gives us a shorthand way of expressing sums of in-
creasing terms that have a regular structure.

4.1.7 The Exponential Function

Another function used in the analysis of algorithms is the exponential function,

where b is a positive constant, called the base, and the argument » is the exponent.
That is, function f(n) assigns to the input argument n the value obtained by multi-
plying the base b by itself n times. In algorithm analysis, the most common base for
the exponential function is » = 2. For instance, if we have a loop that starts by per-
forming one operation and then doubles the number of operations performed with
each iteration, then the number of operations performed in the nth iteration is 2".
In addition, an integer word containing n bits can represent all the nonnegative in-
tegers less than 2". Thus, the exponential function with base 2 is quite common.
The exponential function is also referred to as exponent function.

We sometimes have other exponents besides n, however; hence, it is useful
for us to know a few handy rules for working with exponents. In particular, the
following exponent rules are quite helpful.

160 Chapter 4. Analysis Tools

Proposition 4.4 (Exponent Rules): Given positive integers a, b, and ¢, we have:

(ba)c b
2 bebt = ba-i—c
3. /b =b* ¢

For example, we have the following:

e 256 = 16 = (2%)? = 2%2 = 28 = 256 (Exponent Rule 1)

e 243 =3° =323 =3233 = 9.27 = 243 (Exponent Rule 2)

o 16 =1024/64 =2'0/26 = 210-6 — 2% — 16 (Exponent Rule 3)

We can extend the exponential function to exponents that are fractions or real
numbers and to negative exponents, as follows. Given a positive integer k, we de-
fine b'/¥ to be kth root of b, that is, the number r such that /¥ = b. For example,
25!/2 = 5, since 5% = 25. Likewise, 27'/> = 3 and 16'/* = 2. This approach al-
lows us to define any power whose exponent can be expressed as a fraction, since
b/¢ = (b*)'/¢, by Exponent Rule 1. For example, 932 = (93)1/2 = 7291/2 = 27.
Thus, b%/¢ is really just the cth root of the integral exponent b°.

We can further extend the exponential function to define »* for any real num-
ber x, by computing a series of numbers of the form 5%/ for fractions a /c that get
progressively closer and closer to x. Any real number x can be approximated arbi-
trarily close by a fraction a/c; hence, we can use the fraction a/c as the exponent
of b to get arbitrarily close to b*. So, for example, the number 2" is well defined.
Finally, given a negative exponent d, we define b¢ = 1/b~¢, which corresponds to
applying Exponent Rule 3 with @ =0 and ¢ = —d.

Geometric Sums

Suppose we have a loop where each iteration takes a multiplicative factor longer
than the previous one. This loop can be analyzed using the following proposition.
Proposition 4.5: For any integer n > 0 and any real number a such that a > 0 and
a # 1, consider the summation

n
Nad=1+a+a+ - +d"
i=0

(remembering that a° = 1 if a > 0). This summation is equal to
+1 _ 1
a—1 "~
Summations as shown in Proposition 4.5 are called geometric summations, be-

cause each term is geometrically larger than the previous one if a > 1. For example,
everyone working in computing should know that

14+2+4+8+--+2" 1 =2"—1,

since this is the largest integer that can be represented in binary notation using n
bits.

4.1. The Seven Functions Used in This Book 161

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis in order.

constant | logarithm | linear | n-log-n | quadratic | cubic | exponential

1 logn n nlogn n’ n’

n

a

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, but algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2.

1.E+44 | *

LE+40 1 —e— Exponential
1.E+36 -

—o— Cubic
1.E+32 4

LE+28 | - —=— Quadratic
1.E+24 - —&—N-Log-N

1.E+20 A —a— Linear

1.LE+16 /././././ — —4— Logarithmic
LE+12

1LE+08 1 / :ﬁﬁ?.‘:

1.E+04 M

1.E+00 + : — R o =

—&— Constant

\] \ 4 > >) o Q S O Q N Y %) N)
S QS S NN NN NN
X X X X X X X X X X X X X X X X

Figure 4.2: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart. Also, we
use the scientific notation for numbers, where aE+b denotes a10”.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value
of a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of operations
performed. Thus, the analysis of an algorithm may sometimes involve the use of
the floor function and ceiling function, which are defined respectively as follows:

e |x| = the largest integer less than or equal to x
e [x| = the smallest integer greater than or equal to x

162

Chapter 4. Analysis Tools

4.2

Analysis of Algorithms

In a classic story, the famous mathematician Archimedes was asked to determine if
a golden crown commissioned by the king was indeed pure gold, and not part silver,
as an informant had claimed. Archimedes discovered a way to perform this analysis
while stepping into a (Greek) bath. He noted that water spilled out of the bath in
proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!,” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. That is, Archimedes could dip the crown and an equal-weight amount
of gold into a bowl of water to see if they both displaced the same amount. This
discovery was unfortunate for the goldsmith, however, for when Archimedes did
his analysis, the crown displaced more water than an equal-weight lump of pure
gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” data structures and algo-
rithms. Simply put, a data structure is a systematic way of organizing and access-
ing data, and an algorithm is a step-by-step procedure for performing some task in
a finite amount of time. These concepts are central to computing, but to be able to
classify some data structures and algorithms as “good,” we must have precise ways
of analyzing them.

The primary analysis tool we use in this book involves characterizing the run-
ning times of algorithms and data structure operations, with space usage also being
of interest. Running time is a natural measure of “goodness,” since time is a pre-
cious resource—computer solutions should run as fast as possible.

In general, the running time of an algorithm or data structure method increases
with the input size, although it may also vary for different inputs of the same size.
Also, the running time is affected by the hardware environment (as reflected in the
processor, clock rate, memory, disk, etc.) and software environment (as reflected in
the operating system, programming language, compiler, interpreter, etc.) in which
the algorithm is implemented, compiled, and executed. All other factors being
equal, the running time of the same algorithm on the same input data is smaller if
the computer has, say, a much faster processor or if the implementation is done in a
program compiled into native machine code instead of an interpreted implementa-
tion run on a virtual machine. Nevertheless, in spite of the possible variations that
come from different environmental factors, we would like to focus on the relation-
ship between the running time of an algorithm and the size of its input.

We are interested in characterizing an algorithm’s running time as a function of
the input size. But what is the proper way of measuring it?

4.2. Analysis of Algorithms 163

4.2.1 Experimental Studies

If an algorithm has been implemented, we can study its running time by executing
it on various test inputs and recording the actual time spent in each execution. For-
tunately, such measurements can be taken in an accurate manner by using system
calls that are built into the language or operating system (for example, by using the
clock() function or calling the run-time environment with profiling enabled). Such
tests assign a specific running time to a specific input size, but we are interested in
determining the general dependence of running time on the size of the input. In or-
der to determine this dependence, we should perform several experiments on many
different test inputs of various sizes. Then we can visualize the results of such
experiments by plotting the performance of each run of the algorithm as a point
with x-coordinate equal to the input size, n, and y-coordinate equal to the running
time, f. (See Figure 4.3.) From this visualization and the data that supports it, we
can perform a statistical analysis that seeks to fit the best function of the input size
to the experimental data. To be meaningful, this analysis requires that we choose
good sample inputs and test enough of them to be able to make sound statistical
claims about the algorithm’s running time.

t (ms)
60 4

50

T [|
40 1 mE

30 +
4 ...
20 + u =

T B | |
104 m
|

Figure 4.3: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (n,) indicates that on an input of size n, the running time
of the algorithm is ¢ milliseconds (ms).

164 Chapter 4. Analysis Tools

While experimental studies of running times are useful, they have three major
limitations:

e Experiments can be done only on a limited set of test inputs; hence, they
leave out the running times of inputs not included in the experiment (and
these inputs may be important).

e We have difficulty comparing the experimental running times of two algo-
rithms unless the experiments were performed in the same hardware and
software environments.

e We have to fully implement and execute an algorithm in order to study its
running time experimentally.

This last requirement is obvious, but it is probably the most time consuming aspect
of performing an experimental analysis of an algorithm. The other limitations im-
pose serious hurdles too, of course. Thus, we would ideally like to have an analysis
tool that allows us to avoid performing experiments.

In the rest of this chapter, we develop a general way of analyzing the running
times of algorithms that:

e Takes into account all possible inputs.

e Allows us to evaluate the relative efficiency of any two algorithms in a way
that is independent from the hardware and software environment.

e Can be performed by studying a high-level description of the algorithm with-
out actually implementing it or running experiments on it.

This methodology aims at associating, with each algorithm, a function f(n) that
characterizes the running time of the algorithm as a function of the input size n.
Typical functions that are encountered include the seven functions mentioned ear-
lier in this chapter.

4.2.2 Primitive Operations

As noted above, experimental analysis is valuable, but it has its limitations. If
we wish to analyze a particular algorithm without performing experiments on its
running time, we can perform an analysis directly on the high-level pseudo-code
instead. We define a set of primitive operations such as the following:

e Assigning a value to a variable

e (Calling a function

e Performing an arithmetic operation (for example, adding two numbers)

e Comparing two numbers

e Indexing into an array

e Following an object reference

e Returning from a function

4.2. Analysis of Algorithms 165

Counting Primitive Operations

Specifically, a primitive operation corresponds to a low-level instruction with an ex-
ecution time that is constant. Instead of trying to determine the specific execution
time of each primitive operation, we simply count how many primitive operations
are executed, and use this number ¢ as a measure of the running time of the algo-
rithm.

This operation count correlates to an actual running time in a specific computer,
since each primitive operation corresponds to a constant-time instruction, and there
are only a fixed number of primitive operations. The implicit assumption in this
approach is that the running times of different primitive operations is fairly similar.
Thus, the number, #, of primitive operations an algorithm performs is proportional
to the actual running time of that algorithm.

An algorithm may run faster on some inputs than it does on others of the same
size. Thus, we may wish to express the running time of an algorithm as the function
of the input size obtained by taking the average over all possible inputs of the same
size. Unfortunately, such an average-case analysis is typically quite challenging.
It requires us to define a probability distribution on the set of inputs, which is often
a difficult task. Figure 4.4 schematically shows how, depending on the input distri-
bution, the running time of an algorithm can be anywhere between the worst-case
time and the best-case time. For example, what if inputs are really only of types
“A” or “D?

5ms - mm mm mm mm omm e omm o= o= o= WOISt-Case time

4 ms
average-case time?

3 ms

= = = Dbest-case time

Running Time

2 ms

1 ms

A B C D E F G

Input Instance

Figure 4.4: The difference between best-case and worst-case time. Each bar repre-
sents the running time of some algorithm on a different possible input.

166

Chapter 4. Analysis Tools
Focusing on the Worst Case

An average-case analysis usually requires that we calculate expected running times
based on a given input distribution, which usually involves sophisticated probability
theory. Therefore, for the remainder of this book, unless we specify otherwise, we
characterize running times in terms of the worst case, as a function of the input
size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires
only the ability to identify the worst-case input, which is often simple. Also, this
approach typically leads to better algorithms. Making the standard of success for
an algorithm to perform well in the worst case necessarily requires that it does well
on every input. That is, designing for the worst case leads to stronger algorithmic
“muscles,” much like a track star who always practices by running up an incline.

4.2.3 Asymptotic Notation

In general, each basic step in a pseudo-code description or a high-level language
implementation corresponds to a small number of primitive operations (except for
function calls, of course). Thus, we can perform a simple analysis of an algorithm
written in pseudo-code that estimates the number of primitive operations executed
up to a constant factor, by pseudo-code steps (but we must be careful, since a single
line of pseudo-code may denote a number of steps in some cases).

In algorithm analysis, we focus on the growth rate of the running time as a
function of the input size n, taking a “big-picture” approach. It is often enough just
to know that the running time of an algorithm such as arrayMax, shown in Code
Fragment 4.1, grows proport