

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page i — #1
i

i

i

i

i

i

Data Structures and
Algorithms in C++

Second Edition

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page iii — #3
i

i

i

i

i

i

Data Structures and
Algorithms in C++

Second Edition

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

David M. Mount
Department of Computer Science

University of Maryland

John Wiley & Sons, Inc.

i

i

“main” — 2011/1/13 — 9:10 — page iv — #4
i

i

i

i

i

i

ACQUISITIONS EDITOR Beth Lang Golub
MARKETING MANAGER Chris Ruel
EDITORIAL ASSISTANT Elizabeth Mills
MEDIA EDITOR Thomas Kulesa
SENIOR DESIGNER Jim O’Shea
CONTENT MANAGER Micheline Frederick
PRODUCTION EDITOR Amy Weintraub
PHOTO EDITOR Sheena Goldstein

This book was set in LATEX by the authors and printed and bound by Malloy Lithographers.
The cover was printed by Malloy Lithographers. The cover image is from Wuta Wuta Tjan-
gala, “Emu dreaming” c© estate of the artist 2009 licensed by Aboriginal Artists Agency.
Jennifer Steele/Art Resource, NY.

This book is printed on acid free paper. ∞
Trademark Acknowledgments: Java is a trademark of Sun Microsystems, Inc. UNIX R© is
a registered trademark in the United States and other countries, licensed through X/Open
Company, Ltd. PowerPoint R© is a trademark of Microsoft Corporation. All other product
names mentioned herein are the trademarks of their respective owners.

Copyright c© 2011, John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax (978)646-8600.

Requests to the Publisher for permission should be addressed to the Permissions Depart-
ment, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)748-6011, fax
(201)748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and
understanding for more than 200 years, helping people around the world meet their needs
and fulfill their aspirations. Our company is built on a foundation of principles that include
responsibility to the communities we serve and where we live and work. In 2008, we
launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we
are addressing are carbon impact, paper specifications and procurement, ethical conduct
within our business and among our vendors, and community and charitable support. For
more information, please visit our website: www.wiley.com/go/citizenship.

Library of Congress Cataloging in Publication Data

ISBN-13 978-0-470-38327-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.wiley.com/go/citizenship

i

i

“main” — 2011/1/13 — 9:10 — page v — #5
i

i

i

i

i

i

To Karen, Paul, Anna, and Jack
– Michael T. Goodrich

To Isabel
– Roberto Tamassia

To Jeanine
– David M. Mount

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page vii — #7
i

i

i

i

i

i

Preface

This second edition of Data Structures and Algorithms in C++ is designed to pro-
vide an introduction to data structures and algorithms, including their design, analy-
sis, and implementation. In terms of curricula based on the IEEE/ACM 2001 Com-
puting Curriculum, this book is appropriate for use in the courses CS102 (I/O/B
versions), CS103 (I/O/B versions), CS111 (A version), and CS112 (A/I/O/F/H ver-
sions). We discuss its use for such courses in more detail later in this preface.

The major changes in the second edition are the following:

• We added more examples of data structure and algorithm analysis.
• We enhanced consistency with the C++ Standard Template Library (STL).
• We incorporated STL data structures into many of our data structures.
• We added a chapter on arrays, linked lists, and iterators (Chapter 3).
• We added a chapter on memory management and B-trees (Chapter 14).
• We enhanced the discussion of algorithmic design techniques, like dynamic

programming and the greedy method.
• We simplified and reorganized the presentation of code fragments.
• We have introduced STL-style iterators into our container classes, and have

presented C++ implementations for these iterators, even for complex struc-
tures such as hash tables and binary search trees.

• We have modified our priority-queue interface to use STL-style comparator
objects.

• We expanded and revised exercises, continuing our approach of dividing
them into reinforcement, creativity, and project exercises.

This book is related to the following books:

• M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java,
John Wiley & Sons, Inc. This book has a similar overall structure to the
present book, but uses Java as the underlying language (with some modest,
but necessary pedagogical differences required by this approach).

• M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis,
and Internet Examples, John Wiley & Sons, Inc. This is a textbook for a more
advanced algorithms and data structures course, such as CS210 (T/W/C/S
versions) in the IEEE/ACM 2001 curriculum.

While this book retains the same pedagogical approach and general structure
as Data Structures and Algorithms in Java, the code fragments have been com-
pletely redesigned. We have been careful to make full use of C++’s capabilities and
design code in a manner that is consistent with modern C++ usage. In particular,
whenever appropriate, we make extensive use of C++ elements that are not part of
Java, including the C++ Standard Template Library (STL), C++ memory allocation

vii

i

i

“main” — 2011/1/13 — 9:10 — page viii — #8
i

i

i

i

i

i

viii Preface

and deallocation (and the associated issues of destructors), virtual functions, stream
input and output, operator overloading, and C++’s safe run-time casting.

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as a
vital subject in computing, because the study of data structures is part of the core
of every collegiate computer science and computer engineering major program we
are familiar with. Typically, the introductory courses are presented as a two- or
three-course sequence. Elementary data structures are often briefly introduced in
the first programming course or in an introduction to computer science course and
this is followed by a more in-depth introduction to data structures in the courses that
follow after this. Furthermore, this course sequence is typically followed at a later
point in the curriculum by a more in-depth study of data structures and algorithms.
We feel that the central role of data structure design and analysis in the curriculum
is fully justified, given the importance of efficient data structures in most software
systems, including the Web, operating systems, databases, compilers, and scientific
simulation systems.

With the emergence of the object-oriented paradigm as the framework of choice
for building robust and reusable software, we have tried to take a consistent object-
oriented viewpoint throughout this text. One of the main ideas behind the object-
oriented approach is that data should be presented as being encapsulated with the
methods that access and modify them. That is, rather than simply viewing data
as a collection of bytes and addresses, we think of data objects as instances of an
abstract data type (ADT), which includes a repertoire of methods for performing
operations on data objects of this type. Likewise, object-oriented solutions are often
organized utilizing common design patterns, which facilitate software reuse and
robustness. Thus, we present each data structure using ADTs and their respective
implementations and we introduce important design patterns as a way to organize
those implementations into classes, methods, and objects.

For most of the ADTs presented in this book, we provide a description of the
public interface in C++. Also, concrete data structures realizing the ADTs are
discussed and we often give concrete C++ classes implementing these interfaces.
We also give C++ implementations of fundamental algorithms, such as sorting and
graph searching. Moreover, in addition to providing techniques for using data struc-
tures to implement ADTs, we also give sample applications of data structures, such
as HTML tag matching and a simple system to maintain a play list for a digital
audio system. Due to space limitations, however, we only show code fragments of
some of the implementations in this book and make additional source code avail-
able on the companion web site.

i

i

“main” — 2011/1/13 — 9:10 — page ix — #9
i

i

i

i

i

i

Preface ix

Online Resources

This book is accompanied by an extensive set of online resources, which can be
found at the following web site:

www.wiley.com/college/goodrich

Included on this Web site is a collection of educational aids that augment the
topics of this book, for both students and instructors. Students are encouraged to
use this site along with the book, to help with exercises and increase understand-
ing of the subject. Instructors are likewise welcome to use the site to help plan,
organize, and present their course materials. Because of their added value, some of
these online resources are password protected.

For the Student

For all readers, and especially for students, we include the following resources:

• All the C++ source code presented in this book.

• PDF handouts of Powerpoint slides (four-per-page) provided to instructors.

• A database of hints to all exercises, indexed by problem number.

• An online study guide, which includes solutions to selected exercises.

The hints should be of considerable use to anyone needing a little help getting
started on certain exercises, and the solutions should help anyone wishing to see
completed exercises. Students who have purchased a new copy of this book will
get password access to the hints and other password-protected online resources at
no extra charge. Other readers can purchase password access for a nominal fee.

For the Instructor

For instructors using this book, we include the following additional teaching aids:

• Solutions to over 200 of the book’s exercises.

• A database of additional exercises, suitable for quizes and exams.

• Additional C++ source code.

• Slides in Powerpoint and PDF (one-per-page) format.

• Self-contained, special-topic supplements, including discussions on convex
hulls, range trees, and orthogonal segment intersection.

The slides are fully editable, so as to allow an instructor using this book full free-
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page x — #10
i

i

i

i

i

i

x Preface

A Resource for Teaching Data Structures and Algorithms

This book contains many C++-code and pseudo-code fragments, and hundreds of
exercises, which are divided into roughly 40% reinforcement exercises, 40% cre-
ativity exercises, and 20% programming projects.

This book can be used for the CS2 course, as described in the 1978 ACM Com-
puter Science Curriculum, or in courses CS102 (I/O/B versions), CS103 (I/O/B ver-
sions), CS111 (A version), and/or CS112 (A/I/O/F/H versions), as described in the
IEEE/ACM 2001 Computing Curriculum, with instructional units as outlined in
Table 0.1.

Instructional Unit Relevant Material
PL1. Overview of Programming Languages Chapters 1 and 2
PL2. Virtual Machines Sections 14.1.1 and 14.1.2
PL3. Introduction to Language Translation Section 1.7
PL4. Declarations and Types Sections 1.1.2, 1.1.3, and 2.2.5
PL5. Abstraction Mechanisms Sections 2.2.5, 5.1–5.3, 6.1.1, 6.2.1, 6.3,

7.1, 7.3.1, 8.1, 9.1, 9.5, 11.4, and 13.1.1
PL6. Object-Oriented Programming Chapters 1 and 2 and Sections 6.2.1,

7.3.7, 8.1.2, and 13.3.1
PF1. Fundamental Programming Constructs Chapters 1 and 2
PF2. Algorithms and Problem-Solving Sections 1.7 and 4.2
PF3. Fundamental Data Structures Sections 3.1, 3.2, 5.1–5.3, 6.1–6.3, 7.1,

7.3, 8.1, 8.3, 9.1–9.4, 10.1, and 13.1.1
PF4. Recursion Section 3.5
SE1. Software Design Chapter 2 and Sections 6.2.1, 7.3.7,

8.1.2, and 13.3.1
SE2. Using APIs Sections 2.2.5, 5.1–5.3, 6.1.1, 6.2.1, 6.3,

7.1, 7.3.1, 8.1, 9.1, 9.5, 11.4, and 13.1.1
AL1. Basic Algorithmic Analysis Chapter 4
AL2. Algorithmic Strategies Sections 11.1.1, 11.5.1, 12.2, 12.3.1, and

12.4.2
AL3. Fundamental Computing Algorithms Sections 8.1.5, 8.2.2, 8.3.5, 9.2, and

9.3.1, and Chapters 11, 12, and 13
DS1. Functions, Relations, and Sets Sections 4.1, 8.1, and 11.4
DS3. Proof Techniques Sections 4.3, 6.1.3, 7.3.3, 8.3, 10.2–10.5,

11.2.1, 11.3.1, 11.4.3, 13.1.1, 13.3.1,
13.4, and 13.5

DS4. Basics of Counting Sections 2.2.3 and 11.1.5
DS5. Graphs and Trees Chapters 7, 8, 10, and 13
DS6. Discrete Probability Appendix A and Sections 9.2, 9.4.2,

11.2.1, and 11.5

Table 0.1: Material for units in the IEEE/ACM 2001 Computing Curriculum.

i

i

“main” — 2011/1/13 — 9:10 — page xi — #11
i

i

i

i

i

i

Preface xi

Contents and Organization

The chapters for this course are organized to provide a pedagogical path that starts
with the basics of C++ programming and object-oriented design. We provide an
early discussion of concrete structures, like arrays and linked lists, in order to pro-
vide a concrete footing to build upon when constructing other data structures. We
then add foundational techniques like recursion and algorithm analysis, and, in the
main portion of the book, we present fundamental data structures and algorithms,
concluding with a discussion of memory management (that is, the architectural
underpinnings of data structures). Specifically, the chapters for this book are orga-
nized as follows:

1. A C++ Primer

2. Object-Oriented Design

3. Arrays, Linked Lists, and Recursion

4. Analysis Tools

5. Stacks, Queues, and Deques

6. List and Iterator ADTs

7. Trees

8. Heaps and Priority Queues

9. Hash Tables, Maps, and Skip Lists

10. Search Trees

11. Sorting, Sets, and Selection

12. Strings and Dynamic Programming

13. Graph Algorithms

14. Memory Management and B-Trees

A. Useful Mathematical Facts

A more detailed listing of the contents of this book can be found in the table of
contents.

i

i

“main” — 2011/1/13 — 9:10 — page xii — #12
i

i

i

i

i

i

xii Preface

Prerequisites

We have written this book assuming that the reader comes to it with certain knowl-
edge. We assume that the reader is at least vaguely familiar with a high-level pro-
gramming language, such as C, C++, Python, or Java, and that he or she understands
the main constructs from such a high-level language, including:
• Variables and expressions.
• Functions (also known as methods or procedures).
• Decision structures (such as if-statements and switch-statements).
• Iteration structures (for-loops and while-loops).

For readers who are familiar with these concepts, but not with how they are ex-
pressed in C++, we provide a primer on the C++ language in Chapter 1. Still, this
book is primarily a data structures book, not a C++ book; hence, it does not provide
a comprehensive treatment of C++. Nevertheless, we do not assume that the reader
is necessarily familiar with object-oriented design or with linked structures, such
as linked lists, since these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil-
iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (⋆). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix A.

About the Authors

Professors Goodrich, Tamassia, and Mount are well-recognized researchers in al-
gorithms and data structures, having published many papers in this field, with ap-
plications to Internet computing, information visualization, computer security, and
geometric computing. They have served as principal investigators in several joint
projects sponsored by the National Science Foundation, the Army Research Of-
fice, the Office of Naval Research, and the Defense Advanced Research Projects
Agency. They are also active in educational technology research.

Michael Goodrich received his Ph.D. in Computer Science from Purdue Uni-
versity in 1987. He is currently a Chancellor’s Professor in the Department of Com-
puter Science at University of California, Irvine. Previously, he was a professor at
Johns Hopkins University. He is an editor for a number of journals in computer
science theory, computational geometry, and graph algorithms. He is an ACM Dis-
tinguished Scientist, a Fellow of the American Association for the Advancement of
Science (AAAS), a Fulbright Scholar, and a Fellow of the IEEE. He is a recipient of
the IEEE Computer Society Technical Achievement Award, the ACM Recognition
of Service Award, and the Pond Award for Excellence in Undergraduate Teaching.

i

i

“main” — 2011/1/13 — 9:10 — page xiii — #13
i

i

i

i

i

i

Preface xiii

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech
Professor of Computer Science and the Chair of the Department of Computer Sci-
ence at Brown University. He is also the Director of Brown’s Center for Geometric
Computing. His research interests include information security, cryptography, anal-
ysis, design, and implementation of algorithms, graph drawing, and computational
geometry. He is an IEEE Fellow and a recipient of the Technical Achievement
Award from the IEEE Computer Society for pioneering the field of graph drawing.
He is an editor of several journals in geometric and graph algorithms. He previously
served on the editorial board of IEEE Transactions on Computers.

David Mount received his Ph.D. in Computer Science from Purdue University
in 1983. He is currently a professor in the Department of Computer Science at
the University of Maryland with a joint appointment in the University of Mary-
land’s Institute for Advanced Computer Studies. He is an associate editor for ACM
Transactions on Mathematical Software and the International Journal of Compu-
tational Geometry and Applications. He is the recipient of two ACM Recognition
of Service Awards.

In addition to their research accomplishments, the authors also have extensive
experience in the classroom. For example, Dr. Goodrich has taught data structures
and algorithms courses, including Data Structures as a freshman-sophomore level
course and Introduction to Algorithms as an upper-level course. He has earned sev-
eral teaching awards in this capacity. His teaching style is to involve the students in
lively interactive classroom sessions that bring out the intuition and insights behind
data structuring and algorithmic techniques. Dr. Tamassia has taught Data Struc-
tures and Algorithms as an introductory freshman-level course since 1988. One
thing that has set his teaching style apart is his effective use of interactive hyper-
media presentations integrated with the Web. Dr. Mount has taught both the Data
Structures and the Algorithms courses at the University of Maryland since 1985.
He has won a number of teaching awards from Purdue University, the University of
Maryland, and the Hong Kong University of Science and Technology. His lecture
notes and homework exercises for the courses that he has taught are widely used as
supplementary learning material by students and instructors at other universities.

Acknowledgments

There are a number of individuals who have made contributions to this book.
We are grateful to all our research collaborators and teaching assistants, who

provided feedback on early drafts of chapters and have helped us in developing
exercises, software, and algorithm animation systems. There have been a number of
friends and colleagues whose comments have lead to improvements in the text. We
are particularly thankful to Michael Goldwasser for his many valuable suggestions.

i

i

“main” — 2011/1/13 — 9:10 — page xiv — #14
i

i

i

i

i

i

xiv Preface

We are also grateful to Karen Goodrich, Art Moorshead, Scott Smith, and Ioannis
Tollis for their insightful comments.

We are also truly indebted to the outside reviewers and readers for their co-
pious comments, emails, and constructive criticism, which were extremely use-
ful in writing this edition. We specifically thank the following reviewers for their
comments and suggestions: Divy Agarwal, University of California, Santa Bar-
bara; Terry Andres, University of Manitoba; Bobby Blumofe, University of Texas,
Austin; Michael Clancy, University of California, Berkeley; Larry Davis, Univer-
sity of Maryland; Scott Drysdale, Dartmouth College; Arup Guha, University of
Central Florida; Chris Ingram, University of Waterloo; Stan Kwasny, Washington
University; Calvin Lin, University of Texas at Austin; John Mark Mercer, McGill
University; Laurent Michel, University of Connecticut; Leonard Myers, California
Polytechnic State University, San Luis Obispo; David Naumann, Stevens Institute
of Technology; Robert Pastel, Michigan Technological University; Bina Rama-
murthy, SUNY Buffalo; Ken Slonneger, University of Iowa; C.V. Ravishankar,
University of Michigan; Val Tannen, University of Pennsylvania; Paul Van Ar-
ragon, Messiah College; and Christopher Wilson, University of Oregon.

We are grateful to our editor, Beth Golub, for her enthusiastic support of this
project. The team at Wiley has been great. Many thanks go to Mike Berlin, Lil-
ian Brady, Regina Brooks, Paul Crockett, Richard DeLorenzo, Jen Devine, Simon
Durkin, Micheline Frederick, Lisa Gee, Katherine Hepburn, Rachael Leblond, An-
dre Legaspi, Madelyn Lesure, Frank Lyman, Hope Miller, Bridget Morrisey, Chris
Ruel, Ken Santor, Lauren Sapira, Dan Sayre, Diana Smith, Bruce Spatz, Dawn
Stanley, Jeri Warner, and Bill Zobrist.

The computing systems and excellent technical support staff in the departments
of computer science at Brown University, University of California, Irvine, and Uni-
versity of Maryland gave us reliable working environments. This manuscript was
prepared primarily with the LATEX typesetting package.

Finally, we would like to warmly thank Isabel Cruz, Karen Goodrich, Jeanine
Mount, Giuseppe Di Battista, Franco Preparata, Ioannis Tollis, and our parents for
providing advice, encouragement, and support at various stages of the preparation
of this book. We also thank them for reminding us that there are things in life
beyond writing books.

Michael T. Goodrich
Roberto Tamassia
David M. Mount

i

i

“main” — 2011/1/13 — 9:10 — page xv — #15
i

i

i

i

i

i

Contents

1 A C++ Primer 1
1.1 Basic C++ Programming Elements 2

1.1.1 A Simple C++ Program 2
1.1.2 Fundamental Types . 4
1.1.3 Pointers, Arrays, and Structures 7
1.1.4 Named Constants, Scope, and Namespaces 13

1.2 Expressions . 16
1.2.1 Changing Types through Casting 20

1.3 Control Flow . 23
1.4 Functions . 26

1.4.1 Argument Passing . 28
1.4.2 Overloading and Inlining 30

1.5 Classes . 32
1.5.1 Class Structure . 33
1.5.2 Constructors and Destructors 37
1.5.3 Classes and Memory Allocation 40
1.5.4 Class Friends and Class Members 43
1.5.5 The Standard Template Library 45

1.6 C++ Program and File Organization 47
1.6.1 An Example Program 48

1.7 Writing a C++ Program . 53
1.7.1 Design . 54
1.7.2 Pseudo-Code . 54
1.7.3 Coding . 55
1.7.4 Testing and Debugging 57

1.8 Exercises . 60

2 Object-Oriented Design 65
2.1 Goals, Principles, and Patterns 66

2.1.1 Object-Oriented Design Goals 66
2.1.2 Object-Oriented Design Principles 67
2.1.3 Design Patterns . 70

xv

i

i

“main” — 2011/1/13 — 9:10 — page xvi — #16
i

i

i

i

i

i

xvi Contents

2.2 Inheritance and Polymorphism 71
2.2.1 Inheritance in C++ . 71
2.2.2 Polymorphism . 78
2.2.3 Examples of Inheritance in C++ 79
2.2.4 Multiple Inheritance and Class Casting 84
2.2.5 Interfaces and Abstract Classes 87

2.3 Templates . 90
2.3.1 Function Templates . 90
2.3.2 Class Templates . 91

2.4 Exceptions . 93
2.4.1 Exception Objects . 93
2.4.2 Throwing and Catching Exceptions 94
2.4.3 Exception Specification 96

2.5 Exercises . 98

3 Arrays, Linked Lists, and Recursion 103
3.1 Using Arrays . 104

3.1.1 Storing Game Entries in an Array 104
3.1.2 Sorting an Array . 109
3.1.3 Two-Dimensional Arrays and Positional Games 111

3.2 Singly Linked Lists . 117
3.2.1 Implementing a Singly Linked List 117
3.2.2 Insertion to the Front of a Singly Linked List 119
3.2.3 Removal from the Front of a Singly Linked List 119
3.2.4 Implementing a Generic Singly Linked List 121

3.3 Doubly Linked Lists . 123
3.3.1 Insertion into a Doubly Linked List 123
3.3.2 Removal from a Doubly Linked List 124
3.3.3 A C++ Implementation 125

3.4 Circularly Linked Lists and List Reversal 129
3.4.1 Circularly Linked Lists 129
3.4.2 Reversing a Linked List 133

3.5 Recursion . 134
3.5.1 Linear Recursion . 140
3.5.2 Binary Recursion . 144
3.5.3 Multiple Recursion . 147

3.6 Exercises . 149

4 Analysis Tools 153
4.1 The Seven Functions Used in This Book 154

4.1.1 The Constant Function 154
4.1.2 The Logarithm Function 154

i

i

“main” — 2011/1/13 — 9:10 — page xvii — #17
i

i

i

i

i

i

Contents xvii

4.1.3 The Linear Function . 156
4.1.4 The N-Log-N Function 156
4.1.5 The Quadratic Function 156
4.1.6 The Cubic Function and Other Polynomials 158
4.1.7 The Exponential Function 159
4.1.8 Comparing Growth Rates 161

4.2 Analysis of Algorithms . 162
4.2.1 Experimental Studies 163
4.2.2 Primitive Operations 164
4.2.3 Asymptotic Notation 166
4.2.4 Asymptotic Analysis . 170
4.2.5 Using the Big-Oh Notation 172
4.2.6 A Recursive Algorithm for Computing Powers 176
4.2.7 Some More Examples of Algorithm Analysis 177

4.3 Simple Justification Techniques 181
4.3.1 By Example . 181
4.3.2 The “Contra” Attack 181
4.3.3 Induction and Loop Invariants 182

4.4 Exercises . 185

5 Stacks, Queues, and Deques 193

5.1 Stacks . 194
5.1.1 The Stack Abstract Data Type 195
5.1.2 The STL Stack . 196
5.1.3 A C++ Stack Interface 196
5.1.4 A Simple Array-Based Stack Implementation 198
5.1.5 Implementing a Stack with a Generic Linked List 202
5.1.6 Reversing a Vector Using a Stack 203
5.1.7 Matching Parentheses and HTML Tags 204

5.2 Queues . 208
5.2.1 The Queue Abstract Data Type 208
5.2.2 The STL Queue . 209
5.2.3 A C++ Queue Interface 210
5.2.4 A Simple Array-Based Implementation 211
5.2.5 Implementing a Queue with a Circularly Linked List . . . 213

5.3 Double-Ended Queues . 217
5.3.1 The Deque Abstract Data Type 217
5.3.2 The STL Deque . 218
5.3.3 Implementing a Deque with a Doubly Linked List 218
5.3.4 Adapters and the Adapter Design Pattern 220

5.4 Exercises . 223

i

i

“main” — 2011/1/13 — 9:10 — page xviii — #18
i

i

i

i

i

i

xviii Contents

6 List and Iterator ADTs 227

6.1 Vectors . 228
6.1.1 The Vector Abstract Data Type 228
6.1.2 A Simple Array-Based Implementation 229
6.1.3 An Extendable Array Implementation 231
6.1.4 STL Vectors . 236

6.2 Lists . 238
6.2.1 Node-Based Operations and Iterators 238
6.2.2 The List Abstract Data Type 240
6.2.3 Doubly Linked List Implementation 242
6.2.4 STL Lists . 247
6.2.5 STL Containers and Iterators 248

6.3 Sequences . 255
6.3.1 The Sequence Abstract Data Type 255
6.3.2 Implementing a Sequence with a Doubly Linked List . . 255
6.3.3 Implementing a Sequence with an Array 257

6.4 Case Study: Bubble-Sort on a Sequence 259
6.4.1 The Bubble-Sort Algorithm 259
6.4.2 A Sequence-Based Analysis of Bubble-Sort 260

6.5 Exercises . 262

7 Trees 267

7.1 General Trees . 268
7.1.1 Tree Definitions and Properties 269
7.1.2 Tree Functions . 272
7.1.3 A C++ Tree Interface 273
7.1.4 A Linked Structure for General Trees 274

7.2 Tree Traversal Algorithms 275
7.2.1 Depth and Height . 275
7.2.2 Preorder Traversal . 278
7.2.3 Postorder Traversal . 281

7.3 Binary Trees . 284
7.3.1 The Binary Tree ADT 285
7.3.2 A C++ Binary Tree Interface 286
7.3.3 Properties of Binary Trees 287
7.3.4 A Linked Structure for Binary Trees 289
7.3.5 A Vector-Based Structure for Binary Trees 295
7.3.6 Traversals of a Binary Tree 297
7.3.7 The Template Function Pattern 303
7.3.8 Representing General Trees with Binary Trees 309

7.4 Exercises . 310

i

i

“main” — 2011/1/13 — 9:10 — page xix — #19
i

i

i

i

i

i

Contents xix

8 Heaps and Priority Queues 321

8.1 The Priority Queue Abstract Data Type 322
8.1.1 Keys, Priorities, and Total Order Relations 322
8.1.2 Comparators . 324
8.1.3 The Priority Queue ADT 327
8.1.4 A C++ Priority Queue Interface 328
8.1.5 Sorting with a Priority Queue 329
8.1.6 The STL priority queue Class 330

8.2 Implementing a Priority Queue with a List 331
8.2.1 A C++ Priority Queue Implementation using a List . . . 333
8.2.2 Selection-Sort and Insertion-Sort 335

8.3 Heaps . 337
8.3.1 The Heap Data Structure 337
8.3.2 Complete Binary Trees and Their Representation 340
8.3.3 Implementing a Priority Queue with a Heap 344
8.3.4 C++ Implementation 349
8.3.5 Heap-Sort . 351
8.3.6 Bottom-Up Heap Construction ⋆ 353

8.4 Adaptable Priority Queues 357
8.4.1 A List-Based Implementation 358
8.4.2 Location-Aware Entries 360

8.5 Exercises . 361

9 Hash Tables, Maps, and Skip Lists 367

9.1 Maps . 368
9.1.1 The Map ADT . 369
9.1.2 A C++ Map Interface 371
9.1.3 The STL map Class . 372
9.1.4 A Simple List-Based Map Implementation 374

9.2 Hash Tables . 375
9.2.1 Bucket Arrays . 375
9.2.2 Hash Functions . 376
9.2.3 Hash Codes . 376
9.2.4 Compression Functions 380
9.2.5 Collision-Handling Schemes 382
9.2.6 Load Factors and Rehashing 386
9.2.7 A C++ Hash Table Implementation 387

9.3 Ordered Maps . 394
9.3.1 Ordered Search Tables and Binary Search 395
9.3.2 Two Applications of Ordered Maps 399

9.4 Skip Lists . 402

i

i

“main” — 2011/1/13 — 9:10 — page xx — #20
i

i

i

i

i

i

xx Contents

9.4.1 Search and Update Operations in a Skip List 404
9.4.2 A Probabilistic Analysis of Skip Lists ⋆ 408

9.5 Dictionaries . 411
9.5.1 The Dictionary ADT 411
9.5.2 A C++ Dictionary Implementation 413
9.5.3 Implementations with Location-Aware Entries 415

9.6 Exercises . 417

10 Search Trees 423
10.1 Binary Search Trees . 424

10.1.1 Searching . 426
10.1.2 Update Operations . 428
10.1.3 C++ Implementation of a Binary Search Tree 432

10.2 AVL Trees . 438
10.2.1 Update Operations . 440
10.2.2 C++ Implementation of an AVL Tree 446

10.3 Splay Trees . 450
10.3.1 Splaying . 450
10.3.2 When to Splay . 454
10.3.3 Amortized Analysis of Splaying ⋆ 456

10.4 (2,4) Trees . 461
10.4.1 Multi-Way Search Trees 461
10.4.2 Update Operations for (2,4) Trees 467

10.5 Red-Black Trees . 473
10.5.1 Update Operations . 475
10.5.2 C++ Implementation of a Red-Black Tree 488

10.6 Exercises . 492

11 Sorting, Sets, and Selection 499
11.1 Merge-Sort . 500

11.1.1 Divide-and-Conquer . 500
11.1.2 Merging Arrays and Lists 505
11.1.3 The Running Time of Merge-Sort 508
11.1.4 C++ Implementations of Merge-Sort 509
11.1.5 Merge-Sort and Recurrence Equations ⋆ 511

11.2 Quick-Sort . 513
11.2.1 Randomized Quick-Sort 521
11.2.2 C++ Implementations and Optimizations 523

11.3 Studying Sorting through an Algorithmic Lens 526
11.3.1 A Lower Bound for Sorting 526
11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 528
11.3.3 Comparing Sorting Algorithms 531

i

i

“main” — 2011/1/13 — 9:10 — page xxi — #21
i

i

i

i

i

i

Contents xxi

11.4 Sets and Union/Find Structures 533
11.4.1 The Set ADT . 533
11.4.2 Mergable Sets and the Template Method Pattern 534
11.4.3 Partitions with Union-Find Operations 538

11.5 Selection . 542
11.5.1 Prune-and-Search . 542
11.5.2 Randomized Quick-Select 543
11.5.3 Analyzing Randomized Quick-Select 544

11.6 Exercises . 545

12 Strings and Dynamic Programming 553
12.1 String Operations . 554

12.1.1 The STL String Class 555
12.2 Dynamic Programming . 557

12.2.1 Matrix Chain-Product 557
12.2.2 DNA and Text Sequence Alignment 560

12.3 Pattern Matching Algorithms 564
12.3.1 Brute Force . 564
12.3.2 The Boyer-Moore Algorithm 566
12.3.3 The Knuth-Morris-Pratt Algorithm 570

12.4 Text Compression and the Greedy Method 575
12.4.1 The Huffman-Coding Algorithm 576
12.4.2 The Greedy Method . 577

12.5 Tries . 578
12.5.1 Standard Tries . 578
12.5.2 Compressed Tries . 582
12.5.3 Suffix Tries . 584
12.5.4 Search Engines . 586

12.6 Exercises . 587

13 Graph Algorithms 593
13.1 Graphs . 594

13.1.1 The Graph ADT . 599
13.2 Data Structures for Graphs 600

13.2.1 The Edge List Structure 600
13.2.2 The Adjacency List Structure 603
13.2.3 The Adjacency Matrix Structure 605

13.3 Graph Traversals . 607
13.3.1 Depth-First Search . 607
13.3.2 Implementing Depth-First Search 611
13.3.3 A Generic DFS Implementation in C++ 613
13.3.4 Polymorphic Objects and Decorator Values ⋆ 621

i

i

“main” — 2011/1/13 — 9:10 — page xxii — #22
i

i

i

i

i

i

xxii Contents

13.3.5 Breadth-First Search 623
13.4 Directed Graphs . 626

13.4.1 Traversing a Digraph 628
13.4.2 Transitive Closure . 630
13.4.3 Directed Acyclic Graphs 633

13.5 Shortest Paths . 637
13.5.1 Weighted Graphs . 637
13.5.2 Dijkstra’s Algorithm . 639

13.6 Minimum Spanning Trees . 645
13.6.1 Kruskal’s Algorithm . 647
13.6.2 The Prim-Jarńık Algorithm 651

13.7 Exercises . 654

14 Memory Management and B-Trees 665
14.1 Memory Management . 666

14.1.1 Memory Allocation in C++ 669
14.1.2 Garbage Collection . 671

14.2 External Memory and Caching 673
14.2.1 The Memory Hierarchy 673
14.2.2 Caching Strategies . 674

14.3 External Searching and B-Trees 679
14.3.1 (a,b) Trees . 680
14.3.2 B-Trees . 682

14.4 External-Memory Sorting . 683
14.4.1 Multi-Way Merging . 684

14.5 Exercises . 685

A Useful Mathematical Facts 689

Bibliography 697

Index 702

i

i

“main” — 2011/1/13 — 9:10 — page 1 — #23
i

i

i

i

i

i

Chapter

1 A C++ Primer

Contents

1.1 Basic C++ Programming Elements 2

1.1.1 A Simple C++ Program 2

1.1.2 Fundamental Types 4

1.1.3 Pointers, Arrays, and Structures 7

1.1.4 Named Constants, Scope, and Namespaces 13

1.2 Expressions . 16

1.2.1 Changing Types through Casting 20

1.3 Control Flow . 23

1.4 Functions . 26

1.4.1 Argument Passing 28

1.4.2 Overloading and Inlining 30

1.5 Classes . 32

1.5.1 Class Structure . 33

1.5.2 Constructors and Destructors 37

1.5.3 Classes and Memory Allocation 40

1.5.4 Class Friends and Class Members 43

1.5.5 The Standard Template Library 45

1.6 C++ Program and File Organization 47

1.6.1 An Example Program 48

1.7 Writing a C++ Program 53

1.7.1 Design . 54

1.7.2 Pseudo-Code . 54

1.7.3 Coding . 55

1.7.4 Testing and Debugging 57

1.8 Exercises . 60

i

i

“main” — 2011/1/13 — 9:10 — page 2 — #24
i

i

i

i

i

i

2 Chapter 1. A C++ Primer

1.1 Basic C++ Programming Elements

Building data structures and algorithms requires communicating instructions to a
computer, and an excellent way to perform such communication is using a high-
level computer language, such as C++. C++ evolved from the programming lan-
guage C, and has, over time, undergone further evolution and development from
its original definition. It has incorporated many features that were not part of C,
such as symbolic constants, in-line function substitution, reference types, paramet-
ric polymorphism through templates, and exceptions (which are discussed later).
As a result, C++ has grown to be a complex programming language. Fortunately,
we do not need to know every detail of this sophisticated language in order to use
it effectively.

In this chapter and the next, we present a quick tour of the C++ programming
language and its features. It would be impossible to present a complete presentation
of the language in this short space, however. Since we assume that the reader is
already familiar with programming with some other language, such as C or Java,
our descriptions are short. This chapter presents the language’s basic features, and
in the following chapter, we concentrate on those features that are important for
object-oriented programming.

C++ is a powerful and flexible programming language, which was designed to
build upon the constructs of the C programming language. Thus, with minor ex-
ceptions, C++ is a superset of the C programming language. C++ shares C’s ability
to deal efficiently with hardware at the level of bits, bytes, words, addresses, etc.
In addition, C++ adds several enhancements over C (which motivates the name
“C++”), with the principal enhancement being the object-oriented concept of a
class.

A class is a user-defined type that encapsulates many important mechanisms
such as guaranteed initialization, implicit type conversion, control of memory man-
agement, operator overloading, and polymorphism (which are all important topics
that are discussed later in this book). A class also has the ability to hide its un-
derlying data. This allows a class to conceal its implementation details and allows
users to conceptualize the class in terms of a well-defined interface. Classes enable
programmers to break an application up into small, manageable pieces, or objects.
The resulting programs are easier to understand and easier to maintain.

1.1.1 A Simple C++ Program

Like many programming languages, creating and running a C++ program requires
several steps. First, we create a C++ source file into which we enter the lines of our
program. After we save this file, we then run a program, called a compiler, which

i

i

“main” — 2011/1/13 — 9:10 — page 3 — #25
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 3

creates a machine-code interpretation of this program. Another program, called
a linker (which is typically invoked automatically by the compiler), includes any
required library code functions needed and produces the final machine-executable
file. In order to run our program, the user requests that the system execute this file.

Let us consider a very simple program to illustrate some of the language’s basic
elements. Don’t worry if some elements in this example are not fully explained. We
discuss them in greater depth later in this chapter. This program inputs two integers,
which are stored in the variables x and y. It then computes their sum and stores the
result in a variable sum, and finally it outputs this sum. (The line numbers are not
part of the program; they are just for our reference.)

1 #include <cstdlib>
2 #include <iostream>
3 /* This program inputs two numbers x and y and outputs their sum */
4 int main() {
5 int x, y;
6 std::cout << "Please enter two numbers: ";
7 std::cin >> x >> y; // input x and y
8 int sum = x + y; // compute their sum
9 std::cout << "Their sum is " << sum << std::endl;

10 return EXIT SUCCESS; // terminate successfully
11 }

A few things about this C++ program should be fairly obvious. First, comments
are indicated with two slashes (//). Each such comment extends to the end of the
line. Longer block comments are enclosed between /* and */. Block comments
may extend over multiple lines. The quantities manipulated by this program are
stored in three integer variables, x, y, and sum. The operators “>>” and “<<” are
used for input and output, respectively.

Program Elements

Let us consider the elements of the above program in greater detail. Lines 1 and
2 input the two header files, “cstdlib” and “iostream.” Header files are used to
provide special declarations and definitions, which are of use to the program. The
first provides some standard system definitions, and the second provides definitions
needed for input and output.

The initial entry point for C++ programs is the function main. The statement
“int main()” on line 4 declares main to be a function that takes no arguments and
returns an integer result. (In general, the main function may be called with the
command-line arguments, but we don’t discuss this.) The function body is given
within curly braces ({...}), which start on line 4 and end on line 11. The program
terminates when the return statement on line 10 is executed.

i

i

“main” — 2011/1/13 — 9:10 — page 4 — #26
i

i

i

i

i

i

4 Chapter 1. A C++ Primer

By convention, the function main returns the value zero to indicate success
and returns a nonzero value to indicate failure. The include file cstdlib defines the
constant EXIT SUCCESS to be 0. Thus, the return statement on line 10 returns 0,
indicating a successful termination.

The statement on line 6 prints a string using the output operator (“<<”). The
statement on line 7 inputs the values of the variables x and y using the input operator
(“>>”). These variable values could be supplied, for example, by the person running
our program. The name std::cout indicates that output is to be sent to the standard
output stream. There are two other important I/O streams in C++: standard input
is where input is typically read, and standard error is where error output is written.
These are denoted std::cin and std::cerr, respectively.

The prefix “std::” indicates that these objects are from the system’s standard
library. We should include this prefix when referring to objects from the standard
library. Nonetheless, it is possible to inform the compiler that we wish to use
objects from the standard library—and so omit this prefix—by utilizing the “using”
statement as shown below.

#include <iostream>
using namespace std; // makes std:: available
// . . .
cout << "Please enter two numbers: "; // (std:: is not needed)
cin >> x >> y;

We discuss the using statement later in Section 1.1.4. In order to keep our
examples short, we often omit the include and using statements when displaying
C++ code. We also use “ //. . .” to indicate that some code has been omitted.

Returning to our simple example C++ program, we note that the statement on
line 9 outputs the value of the variable sum, which in this case stores the computed
sum of x and y. By default, the output statement does not produce an end of line.
The special object std::endl generates a special end-of-line character. Another way
to generate an end of line is to output the newline character, ’\n’.

If run interactively, that is, with the user inputing values when requested to
do so, this program’s output would appear as shown below. The user’s input is
indicated below in blue.

Please enter two numbers: 7 35

Their sum is 42

1.1.2 Fundamental Types

We continue our exploration of C++ by discussing the language’s basic data types
and how these types are represented as constants and variables. The fundamental

i

i

“main” — 2011/1/13 — 9:10 — page 5 — #27
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 5

types are the basic building blocks from which more complex types are constructed.
They include the following.

bool Boolean value, either true or false
char character
short short integer
int integer
long long integer
float single-precision floating-point number
double double-precision floating-point number

There is also an enumeration, or enum, type to represent a set of discrete val-
ues. Together, enumerations and the types bool, char, and int are called integral
types. Finally, there is a special type void, which explicitly indicates the absence
of any type information. We now discuss each of these types in greater detail.

Characters

A char variable holds a single character. A char in C++ is typically 8-bits, but the
exact number of bits used for a char variable is dependent on the particular imple-
mentation. By allowing different implementations to define the meaning of basic
types, such as char, C++ can tailor its generated code to each machine architecture
and so achieve maximum efficiency. This flexibility can be a source of frustration
for programmers who want to write machine-independent programs, however.

A literal is a constant value appearing in a program. Character literals are
enclosed in single quotes, as in ’a’, ’Q’, and ’+’. A backslash (\) is used to
specify a number of special character literals as shown below.

’\n’ newline ’\t’ tab
’\b’ backspace ’\0’ null
’\’’ single quote ’\"’ double quote
’\\’ backslash

The null character, ’\0’, is sometimes used to indicate the end of a string of
characters. Every character is associated with an integer code. The function int(ch)
returns the integer value associated with a character variable ch.

Integers

An int variable holds an integer. Integers come in three sizes: short int, (plain)
int, and long int. The terms “short” and “long” are synonyms for “short int” and
“long int,” respectively. Decimal numbers such as 0, 25, 98765, and -3 are of type
int. The suffix “l” or “L” can be added to indicate a long integer, as in 123456789L.
Octal (base 8) constants are specified by prefixing the number with the zero digit,
and hexadecimal (base 16) constants can be specified by prefixing the number with

i

i

“main” — 2011/1/13 — 9:10 — page 6 — #28
i

i

i

i

i

i

6 Chapter 1. A C++ Primer

“0x.” For example, the literals 256, 0400, and 0x100 all represent the integer value
256 (in decimal).

When declaring a variable, we have the option of providing a definition, or
initial value. If no definition is given, the initial value is unpredictable, so it is
important that each variable be assigned a value before being used. Variable names
may consist of any combination of letters, digits, or the underscore () character,
but the first character cannot be a digit. Here are some examples of declarations of
integral variables.

short n; // n’s value is undefined
int octalNumber = 0400; // 400 (base 8) = 256 (base 10)
char newline character = ’\n’;
long BIGnumber = 314159265L;
short aSTRANGE 1234 variABlE NaMe;

Although it is legal to start a variable name with an underscore, it is best to avoid
this practice, since some C++ compilers use this convention for defining their own
internal identifiers.

C++ does not specify the exact number of bits in each type, but a short is at least
16 bits, and a long is at least 32 bits. In fact, there is no requirement that long be
strictly longer than short (but it cannot be shorter!). Given a type T, the expression
sizeof(T) returns the size of type T, expressed as some number of multiples of the
size of char. For example, on typical systems, a char is 8 bits long, and an int is
32 bits long, and hence sizeof(int) is 4.

Enumerations

An enumeration is a user-defined type that can hold any of a set of discrete values.
Once defined, enumerations behave much like an integer type. A common use
of enumerations is to provide meaningful names to a set of related values. Each
element of an enumeration is associated with an integer value. By default, these
values count up from 0, but it is also possible to define explicit constant values as
shown below.

enum Day { SUN, MON, TUE, WED, THU, FRI, SAT };
enum Mood { HAPPY = 3, SAD = 1, ANXIOUS = 4, SLEEPY = 2 };

Day today = THU; // today may be any of MON . . . SAT
Mood myMood = SLEEPY; // myMood may be HAPPY, . . ., SLEEPY

Since we did not specify values, SUN would be associated with 0, MON with 1,
and so on. As a hint to the reader, we write enumeration names and other constants
with all capital letters.

i

i

“main” — 2011/1/13 — 9:10 — page 7 — #29
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 7

Floating Point

A variable of type float holds a single-precision floating-point number, and a vari-
able of type double holds a double-precision floating-point number. As it does
with integers, C++ leaves undefined the exact number of bits in each of the floating
point types. By default, floating point literals, such as 3.14159 and -1234.567 are
of type double. Scientific or exponential notation may by specified using either
“e” or “E” to separate the mantissa from the exponent, as in 3.14E5, which means
3.14× 105. To force a literal to be a float, add the suffix “f” or “F,” as in 2.0f or
1.234e-3F.

1.1.3 Pointers, Arrays, and Structures

We next discuss how to combine fundamental types to form more complex ones.

Pointers

Each program variable is stored in the computer’s memory at some location, or
address. A pointer is a variable that holds the value of such an address. Given a
type T, the type T* denotes a pointer to a variable of type T. For example, int*
denotes a pointer to an integer.

Two essential operators are used to manipulate pointers. The first returns the
address of an object in memory, and the second returns the contents of a given
address. In C++ the first task is performed by the address-of operator, &. For
example if x is an integer variable in your program &x is the address of x in memory.
Accessing an object’s value from its address is called dereferencing. This is done
using the * operator. For example, if we were to declare q to be a pointer to an
integer (that is, int*) and then set q = &x, we could access x’s value with *q.
Assigning an integer value to *q effectively changes the value of x.

Consider, for example, the code fragment below. The variable p is declared to
be a pointer to a char, and is initialized to point to the variable ch. Thus, *p is
another way of referring to ch. Observe that when the value of ch is changed, the
value of *p changes as well.

char ch = ’Q’;
char* p = &ch; // p holds the address of ch
cout << *p; // outputs the character ’Q’
ch = ’Z’; // ch now holds ’Z’
cout << *p; // outputs the character ’Z’
*p = ’X’; // ch now holds ’X’
cout << ch; // outputs the character ’X’

We shall see that pointers are very useful when building data structures where ob-
jects are linked to one another through the use of pointers. Pointers need not point

i

i

“main” — 2011/1/13 — 9:10 — page 8 — #30
i

i

i

i

i

i

8 Chapter 1. A C++ Primer

only to fundamental types, such as char and int—they may also point to complex
types and even to functions. Indeed, the popularity of C++ stems in part from its
ability to handle low-level entities like pointers.

It is useful to have a pointer value that points to nothing, that is, a null pointer.
By convention, such a pointer is assigned the value zero. An attempt to dereference
a null pointer results in a run-time error. All C++ implementations define a special
symbol NULL, which is equal to zero. This definition is activated by inserting the
statement “#include <cstdlib>” in the beginning of a program file.

We mentioned earlier that the special type void is used to indicate no type
information at all. Although we cannot declare a variable to be of type void, we
can declare a pointer to be of type void*. Such a pointer can point to a variable of
any type. Since the compiler is unable to check the correctness of such references,
the use of void* pointers is strongly discouraged, except in unusual cases where
direct access to the computer’s memory is needed.

Beware when declaring two or more pointers on the same line. The * operator
Caution binds with the variable name, not with the type name. Consider the following

misleading declaration.

int* x, y, z; // same as: int* x; int y; int z;

This declares one pointer variable x, but the other two variables are plain integers.
The simplest way to avoid this confusion is to declare one variable per statement.

Arrays

An array is a collection of elements of the same type. Given any type T and a
constant N, a variable of type T[N] holds an array of N elements, each of type T.
Each element of the array is referenced by its index, that is, a number from 0 to
N− 1. The following statements declare two arrays; one holds three doubles and
the other holds 10 double pointers.

double f[5]; // array of 5 doubles: f[0], . . ., f[4]
int m[10]; // array of 10 ints: m[0], . . ., m[9]
f[4] = 2.5;
m[2] = 4;
cout << f[m[2]]; // outputs f[4], which is 2.5

Once declared, it is not possible to increase the number of elements in an array.
Also, C++ provides no built-in run-time checking for array subscripting out of
bounds. This decision is consistent with C++’s general philosophy of not intro-
ducing any feature that would slow the execution of a program. Indexing an array
outside of its declared bounds is a common programming error. Such an error of-
ten occurs “silently,” and only much later are its effects noticed. In Section 1.5.5,

i

i

“main” — 2011/1/13 — 9:10 — page 9 — #31
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 9

we see that the vector type of the C++ Standard Template Library (STL) provides
many of the capabilities of a more complete array type, including run-time index
checking and the ability to dynamically change the array’s size.

A two-dimensional array is implemented as an “array of arrays.” For example
“int A[15][30]” declares A to be an array of 30 objects, each of which is an array
of 15 integers. An element in such an array is indexed as A[i][j], where i is in the
range 0 to 14 and j is in the range 0 to 29.

When declaring an array, we can initialize its values by enclosing the elements
in curly braces ({...}). When doing so, we do not have to specify the size of the
array, since the compiler can figure this out.

int a[] = {10, 11, 12, 13}; // declares and initializes a[4]
bool b[] = {false, true}; // declares and initializes b[2]
char c[] = {’c’, ’a’, ’t’}; // declares and initializes c[3]

Just as it is possible to declare an array of integers, it is possible to declare an
array of pointers to integers. For example, int* r[17] declares an array r consist-
ing of 17 pointers to objects of type int. Once initialized, we can dereference an
element of this array using the * operator, for example, *r[16] is the value of the
integer pointed to by the last element of this array.

Pointers and Arrays

There is an interesting connection between arrays and pointers, which C++ inher-
ited from the C programming language—the name of an array is equivalent to a
pointer to the array’s initial element and vice versa. In the example below, c is
an array of characters, and p and q are pointers to the first element of c. They all
behave essentially the same, however.

char c[] = {’c’, ’a’, ’t’};
char* p = c; // p points to c[0]
char* q = &c[0]; // q also points to c[0]
cout << c[2] << p[2] << q[2]; // outputs “ttt”

This equivalence between array names and pointers can be confusing, but it helps
Caution to explain many of C++’s apparent mysteries. For example, given two arrays c and

d, the comparison (c == d) does not test whether the contents of the two arrays are
equal. Rather it compares the addresses of their initial elements, which is probably
not what the programmer had in mind. If there is a need to perform operations
on entire arrays (such as copying one array to another) it is a good idea to use the
vector class, which is part of C++’s Standard Template Library. We discuss these
concepts in Section 1.5.5.

i

i

“main” — 2011/1/13 — 9:10 — page 10 — #32
i

i

i

i

i

i

10 Chapter 1. A C++ Primer

Strings

A string literal, such as "Hello World", is represented as a fixed-length array of
characters that ends with the null character. Character strings represented in this
way are called C-style strings, since they were inherited from C. Unfortunately,
this representation alone does not provide many string operations, such as concate-
nation and comparison. It also possesses all the peculiarities of C++ arrays, as
mentioned earlier.

For this reason, C++ provides a string type as part of its Standard Template
Library (STL). When we need to distinguish, we call these STL strings. In order
to use STL strings it is necessary to include the header file <string>. Since STL
strings are part of the standard namespace (see Section 1.1.4), their full name is
std::string. By adding the statement “using std::string,” we inform the compiler
that we want to access this definition directly, so we can omit the “std::” prefix.
STL strings may be concatenated using the + operator, they may be compared with
each other using lexicographic (or dictionary) order, and they may be input and
output using the >> and << operators, respectively. For example:

#include <string>
using std::string;
// . . .
string s = "to be";
string t = "not " + s; // t = “not to be”
string u = s + " or " + t; // u = “to be or not to be”
if (s > t) // true: “to be” > “not to be”

cout << u; // outputs “to be or not to be”

There are other STL string operations, as well. For example, we can append one
string to another using the += operator. Also, strings may be indexed like arrays
and the number of characters in a string s is given by s.size(). Since some library
functions require the old C-style strings, there is a conversion function s.c str(),
which returns a pointer to a C-style string. Here are some examples:

string s = "John"; // s = “John”
int i = s.size(); // i = 4
char c = s[3]; // c = ’n’
s += " Smith"; // now s = “John Smith”

The C++ STL provides many other string operators including operators for ex-
tracting, searching for, and replacing substrings. We discuss some of these in Sec-
tion 1.5.5.

C-Style Structures

A structure is useful for storing an aggregation of elements. Unlike an array, the
elements of a structure may be of different types. Each member, or field, of a

i

i

“main” — 2011/1/13 — 9:10 — page 11 — #33
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 11

structure is referred to by a given name. For example, consider the following struc-
ture for storing information about an airline passenger. The structure includes the
passenger’s name, meal preference, and information as to whether this passenger
is in the frequent flyer program. We create an enumerated type to handle meal
preferences.

enum MealType { NO PREF, REGULAR, LOW FAT, VEGETARIAN };

struct Passenger {
string name; // passenger name
MealType mealPref; // meal preference
bool isFreqFlyer; // in the frequent flyer program?
string freqFlyerNo; // the passenger’s freq. flyer number

};

This defines a new type called Passenger. Let us declare and initialize a variable
named “pass” of this type.

Passenger pass = { "John Smith", VEGETARIAN, true, "293145" };

The individual members of the structure are accessed using the member selection
operator, which has the form struct name.member. For example, we could change
some of the above fields as follows.

pass.name = "Pocahontas"; // change name
pass.mealPref = REGULAR; // change meal preference

Structures of the same type may be assigned to one another. For example, if p1 and
p2 are of type Passenger, then p2 = p1 copies the elements of p1 to p2.

What we have discussed so far might be called a C-style structure. C++ pro-
vides a much more powerful and flexible construct called a class, in which both
data and functions can be combined. We discuss classes in Section 1.5.

Pointers, Dynamic Memory, and the “new” Operator

We often find it useful in data structures to create objects dynamically as the need
arises. The C++ run-time system reserves a large block of memory called the free
store, for this reason. (This memory is also sometimes called heap memory, but
this should not be confused with the heap data structure, which is discussed in
Chapter 8.) The operator new dynamically allocates the correct amount of storage
for an object of a given type from the free store and returns a pointer to this object.
That is, the value of this pointer is the address where this object resides in memory.
Indeed, C++ allows for pointer variables to any data type, even to other pointers or
to individual cells in an array.

i

i

“main” — 2011/1/13 — 9:10 — page 12 — #34
i

i

i

i

i

i

12 Chapter 1. A C++ Primer

For example, suppose that in our airline system we encounter a new passenger.
We would like to dynamically create a new instance using the new operator. Let
p be a pointer to a Passenger structure. This implies that *p refers to the actual
structure; hence, we could access one of its members, say the mealPref field, using
the expression (*p).mealPref. Because complex objects like structures are often
allocated dynamically, C++ provides a shorter way to access members using the
“->” operator.

pointer name->member is equivalent to (*pointer name).member

For example, we could allocate a new passenger object and initialize its members
as follows.

Passenger *p;
// . . .
p = new Passenger; // p points to the new Passenger
p−>name = "Pocahontas"; // set the structure members
p−>mealPref = REGULAR;
p−>isFreqFlyer = false;
p−>freqFlyerNo = "NONE";

It would be natural to wonder whether we can initialize the members using the curly
brace ({...}) notation used above. The answer is no, but we will see another more
convenient way of initializing members when we discuss classes and constructors
in Section 1.5.2.

This new passenger object continues to exist in the free store until it is explicitly
deleted—a process that is done using the delete operator, which destroys the object
and returns its space to the free store.

delete p; // destroy the object p points to

The delete operator should only be applied to objects that have been allocated
through new. Since the object at p’s address was allocated using the new operator,
the C++ run-time system knows how much memory to deallocate for this delete
statement. Unlike some programming languages such as Java, C++ does not pro-
vide automatic garbage collection. This means that C++ programmers have the
responsibility of explicitly deleting all dynamically allocated objects.

Arrays can also be allocated with new. When this is done, the system allocator
returns a pointer to the first element of the array. Thus, a dynamically allocated
array with elements of type T would be declared being of type *T. Arrays allocated
in this manner cannot be deallocated using the standard delete operator. Instead,
the operator delete[] is used. Here is an example that allocates a character buffer
of 500 elements, and then later deallocates it.

char* buffer = new char[500]; // allocate a buffer of 500 chars
buffer[3] = ’a’; // elements are still accessed using []
delete [] buffer; // delete the buffer

i

i

“main” — 2011/1/13 — 9:10 — page 13 — #35
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 13

Memory Leaks

Failure to delete dynamically allocated objects can cause problems. If we were
to change the (address) value of p without first deleting the structure to which it
points, there would be no way for us to access this object. It would continue to
exist for the lifetime of the program, using up space that could otherwise be used
for other allocated objects. Having such inaccessible objects in dynamic memory
is called a memory leak. We should strongly avoid memory leaks, especially in
programs that do a great deal of memory allocation and deallocation. A program
with memory leaks can run out of usable memory even when there is a sufficient
amount of memory present. An important rule for a disciplined C++ programmer
is the following:

Remember
If an object is allocated with new, it should eventually be deallocated with
delete.

References

Pointers provide one way to refer indirectly to an object. Another way is through
references. A reference is simply an alternative name for an object. Given a type
T, the notation T& indicates a reference to an object of type T. Unlike pointers,
which can be NULL, a reference in C++ must refer to an actual variable. When a
reference is declared, its value must be initialized. Afterwards, any access to the
reference is treated exactly as if it is an access to the underlying object.

string author = "Samuel Clemens";
string& penName = author; // penName is an alias for author
penName = "Mark Twain"; // now author = “Mark Twain”
cout << author; // outputs “Mark Twain”

References are most often used for passing function arguments and are also often
used for returning results from functions. These uses are discussed later.

1.1.4 Named Constants, Scope, and Namespaces

We can easily name variables without concern for naming conflicts in small prob-
lems. It is much harder for us to avoid conflicts in large software systems, which
may consist of hundreds of files written by many different programmers. C++ has
a number of mechanisms that aid in providing names and limiting their scope.

i

i

“main” — 2011/1/13 — 9:10 — page 14 — #36
i

i

i

i

i

i

14 Chapter 1. A C++ Primer

Constants and Typedef

Good programmers commonly like to associate names with constant quantities.
By adding the keyword const to a declaration, we indicate that the value of the
associated object cannot be changed. Constants may be used virtually anywhere
that literals can be used, for example, in an array declaration. As a hint to the
reader, we will use all capital letters when naming constants.

const double PI = 3.14159265;
const int CUT OFF[] = {90, 80, 70, 60};
const int N DAYS = 7;
const int N HOURS = 24*N DAYS; // using a constant expression
int counter[N HOURS]; // an array of 168 ints

Note that enumerations (see Section 1.1.2) provide another convenient way to de-
fine integer-valued constants, especially within structures and classes.

In addition to associating names with constants, it is often useful to associate a
name with a type. This association can be done with a typedef declaration. Rather
than declaring a variable, a typedef defines a new type name.

typedef char* BufferPtr; // type BufferPtr is a pointer to char
typedef double Coordinate; // type Coordinate is a double

BufferPtr p; // p is a pointer to char
Coordinate x, y; // x and y are of type double

By using typedef we can provide shorter or more meaningful synonyms for
various types. The type name Coordinate provides more of a hint to the reader
of the meaning of variables x and y than does double. Also, if later we decide
to change our coordinate representation to int, we need only change the typedef
statement. We will follow the convention of indicating user-defined types by capi-
talizing the first character of their names.

Local and Global Scopes

When a group of C++ statements are enclosed in curly braces ({...}), they define
a block. Variables and types that are declared within a block are only accessible
from within the block. They are said to be local to the block. Blocks can be nested
within other blocks. In C++, a variable may be declared outside of any block.
Such a variable is global, in the sense that it is accessible from everywhere in the
program. The portions of a program from which a given name is accessible are
called its scope.

Two variables of the same name may be defined within nested blocks. When
this happens, the variable of the inner block becomes active until leaving the block.

i

i

“main” — 2011/1/13 — 9:10 — page 15 — #37
i

i

i

i

i

i

1.1. Basic C++ Programming Elements 15

Thus a local variable “hides” any global variables of the same name as shown in
the following example.

const int Cat = 1; // global Cat

int main() {
const int Cat = 2; // this Cat is local to main
cout << Cat; // outputs 2 (local Cat)
return EXIT SUCCESS;
}

int dog = Cat; // dog = 1 (from the global Cat)

Namespaces

Global variables present many problems in large software systems because they
can be accessed and possibly modified anywhere in the program. They also can
lead to programming errors, since an important global variable may be hidden by a
local variable of the same name. As a result, it is best to avoid global variables. We
may not be able to avoid globals entirely, however. For example, when we perform
output, we actually use the system’s global standard output stream object, cout. If
we were to define a variable with the same name, then the system’s cout stream
would be inaccessible.

A namespace is a mechanism that allows a group of related names to be defined
in one place. This helps organize global objects into natural groups and minimizes
the problems of globals. For example, the following declares a namespace myglob-
als containing two variables, cat and dog.

namespace myglobals {
int cat;
string dog = "bow wow";
}

Namespaces may generally contain definitions of more complex objects, including
types, classes, and functions. We can access an object x in namespace group, us-
ing the notation group::x, which is called its fully qualified name. For example,
myglobals::cat refers to the copy of variable cat in the myglobals namespace.

We have already seen an example of a namespace. Many standard system ob-
jects, such as the standard input and output streams cin and cout, are defined in a
system namespace called std. Their fully qualified names are std::cin and std::cout,
respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 16 — #38
i

i

i

i

i

i

16 Chapter 1. A C++ Primer

The Using Statement

If we are repeatedly using variables from the same namespace, it is possible to
avoid entering namespace specifiers by telling the system that we want to “use” a
particular specifier. We communicate this desire by utilizing the using statement,
which makes some or all of the names from the namespace accessible, without
explicitly providing the specifier. This statement has two forms that allow us to
list individual names or to make every name in the namespace accessible as shown
below.

using std::string; // makes just std::string accessible
using std::cout; // makes just std::cout accessible

using namespace myglobals; // makes all of myglobals accessible

1.2 Expressions

An expression combines variables and literals with operators to create new values.
In the following discussion, we group operators according to the types of objects
they may be applied to. Throughout, we use var to denote a variable or anything
to which a value may be assigned. (In official C++ jargon, this is called an lvalue.)
We use exp to denote an expression and type to denote a type.

Member Selection and Indexing

Some operators access a member of a structure, class, or array. We let class name
denote the name of a structure or class; pointer denotes a pointer to a structure or
class and array denotes an array or a pointer to the first element of an array.

class name . member class/structure member selection
pointer −> member class/structure member selection

array [exp] array subscripting

Arithmetic Operators

The following are the binary arithmetic operators:
exp + exp addition
exp − exp subtraction
exp * exp multiplication
exp / exp division
exp % exp modulo (remainder)

There are also unary minus (–x) and unary plus (+x) operations. Division be-
tween two integer operands results in an integer result by truncation, even if the

i

i

“main” — 2011/1/13 — 9:10 — page 17 — #39
i

i

i

i

i

i

1.2. Expressions 17

result is being assigned to a floating point variable. The modulo operator n%m
yields the remainder that would result from the integer division n/m.

Increment and Decrement Operators

The post-increment operator returns a variable’s value and then increments it by
1. The post-decrement operator is analogous but decreases the value by 1. The
pre-increment operator first increments the variables and then returns the value.

var ++ post increment
var −− post decrement
++ var pre increment
−− var pre decrement

The following code fragment illustrates the increment and decrement operators.

int a[] = {0, 1, 2, 3};
int i = 2;
int j = i++; // j = 2 and now i = 3
int k = −−i; // now i = 2 and k = 2
cout << a[k++]; // a[2] (= 2) is output; now k = 3

Relational and Logical Operators

C++ provides the usual comparison operators.

exp < exp less than
exp > exp greater than

exp <= exp less than or equal
exp >= exp greater than or equal
exp == exp equal to
exp != exp not equal to

These return a Boolean result—either true or false. Comparisons can be made
between numbers, characters, and STL strings (but not C-style strings). Pointers
can be compared as well, but it is usually only meaningful to test whether pointers
are equal or not equal (since their values are memory addresses).

The following logical operators are also provided.

! exp logical not
exp && exp logical and
exp | | exp logical or

The operators && and | | evaluate sequentially from left to right. If the left
operand of && is false, the entire result is false, and the right operand is not eval-
uated. The | | operator is analogous, but evaluation stops if the left operand is true.

This “short circuiting” is quite useful in evaluating a chain of conditional ex-
pressions where the left condition guards against an error committed by the right

i

i

“main” — 2011/1/13 — 9:10 — page 18 — #40
i

i

i

i

i

i

18 Chapter 1. A C++ Primer

condition. For example, the following code first tests that a Passenger pointer p is
non-null before accessing it. It would result in an error if the execution were not
stopped if the first condition is not satisfied.

if ((p != NULL) && p−>isFreqFlyer) . . .

Bitwise Operators

The following operators act on the representations of numbers as binary bit strings.
They can be applied to any integer type, and the result is an integer type.

˜ exp bitwise complement
exp & exp bitwise and
exp ^ exp bitwise exclusive-or
exp | exp bitwise or

exp1 << exp2 shift exp1 left by exp2 bits
exp1 >> exp2 shift exp1 right by exp2 bits

The left shift operator always fills with zeros. How the right shift fills depends
on a variable’s type. In C++ integer variables are “signed” quantities by default,
but they may be declared as being “unsigned,” as in “unsigned int x.” If the left
operand of a right shift is unsigned, the shift fills with zeros and otherwise the right
shift fills with the number’s sign bit (0 for positive numbers and 1 for negative
numbers). Note that the input (>>) and output (<<) operators are not in this group.
They are discussed later.

Assignment Operators

In addition to the familiar assignment operator (=), C++ includes a special form
for each of the arithmetic binary operators (+, −, *, /, %) and each of the bit-
wise binary operators (&, |, ^, <<, >>), that combines a binary operation with
assignment. For example, the statement “n += 2” means “n = n + 2.” Some
examples are shown below.

int i = 10;
int j = 5;
string s = "yes";
i −= 4; // i = i - 4 = 6
j *= −2; // j = j * (-2) = -10
s += " or no"; // s = s + “ or no” = “yes or no”

These assignment operators not only provide notational convenience, but they
can be more efficient to execute as well. For example, in the string concatenation
example above, the new text can just be appended to s without the need to generate
a temporary string to hold the intermediate result.

i

i

“main” — 2011/1/13 — 9:10 — page 19 — #41
i

i

i

i

i

i

1.2. Expressions 19

Take care when performing assignments between aggregate objects (arrays,
strings, and structures). Typically the programmer intends such an assignment to
copy the contents of one object to the other. This works for STL strings and C-
style structures (provided they have the same type). However, as discussed earlier,
C-style strings and arrays cannot be copied merely through a single assignment
statement.

Other Operators

Here are some other useful operators.

class name :: member class scope resolution
namespace name :: member namespace resolution

bool exp ? true exp : false exp conditional expression

We have seen the namespace resolution operator in Section 1.1.4. The condi-
tional expression is a variant of “if-then-else” for expressions. If bool exp evaluates
to true, the value of true exp is returned, and otherwise the value of false exp is re-
turned.

The following example shows how to use this to return the minimum of two
numbers, x and y.

smaller = (x < y ? x : y); // smaller = min(x,y)

We also have the following operations on input/output streams.

stream >> var stream input
stream << exp stream output

Although they look like the bitwise shift operators, the input (>>) and output
(<<) stream operators are quite different. They are examples of C++’s powerful ca-
pability, called operator overloading, which are discussed in Section 1.4.2. These
operators are not an intrinsic part of C++, but are provided by including the file
<iostream>. We refer the reader to the references given in the chapter notes for
more information on input and output in C++.

The above discussion provides a somewhat incomplete list of all the C++ oper-
ators, but it nevertheless covers the most common ones. Later we introduce others,
including casting operators.

Operator Precedence

Operators in C++ are assigned a precedence that determines the order in which
operations are performed in the absence of parentheses. In Table 1.1, we show the
precedence of some of the more common C++ operators, with the highest listed
first. Unless parentheses are used, operators are evaluated in order from highest

i

i

“main” — 2011/1/13 — 9:10 — page 20 — #42
i

i

i

i

i

i

20 Chapter 1. A C++ Primer

to lowest. For example, the expression 0 < 4 + x * 3 would be evaluated as if it
were parenthesized as 0 < (4 + (x * 3)). If p is an array of pointers, then *p[2] is
equivalent to *(p[2]). Except for && and | |, which guarantee left-to-right evalua-
tion, the order of evaluation of subexpressions is dependent on the implementation.
Since these rules are complex, it is a good idea to add parentheses to complex
expressions to make your intent clear to someone reading your program.

Operator Precedences

Type Operators
scope resolution namespace name :: member
selection/subscripting class name.member pointer−>member array[exp]
function call function(args)
postfix operators var++ var−−
prefix operators ++var −−var +exp −exp ˜exp !exp
dereference/address *pointer &var
multiplication/division * / %
addition/subtraction + −
shift << >>
comparison < <= > >=
equality == !=
bitwise and &
bitwise exclusive-or ^

bitwise or |
logical and &&
logical or | |
conditional bool exp ? true exp : false exp
assignment = += −= *= /= %= >>= <<= &= ^= |=

Table 1.1: The C++ precedence rules. The notation “exp” denotes any expression.

1.2.1 Changing Types through Casting

Casting is an operation that allows us to change the type of a variable. In essence,
we can take a variable of one type and cast it into an equivalent variable of another
type. Casting is useful in many situations. There are two fundamental types of
casting that can be done in C++. We can either cast with respect to the fundamental
types or we can cast with respect to class objects and pointers. We discuss casting
with fundamental types here, and we consider casting with objects in Section 2.2.4.
We begin by introducing the traditional way of casting in C++, and later we present
C++’s newer casting operators.

i

i

“main” — 2011/1/13 — 9:10 — page 21 — #43
i

i

i

i

i

i

1.2. Expressions 21

Traditional C-Style Casting

Let exp be some expression, and let T be a type. To cast the value of the expression
to type T we can use the notation “(T)exp.” We call this a C-style cast. If the
desired type is a type name (as opposed to a type expression), there is an alternate
functional-style cast. This has the form “T(exp).” Some examples are shown
below. In both cases, the integer value 14 is cast to a double value 14.0.

int cat = 14;
double dog = (double) cat; // traditional C-style cast
double pig = double(cat); // C++ functional cast

Both forms of casting are legal, but some authors prefer the functional-style cast.
Casting to a type of higher precision or size is often needed in forming expres-

sions. The results of certain binary operators depend on the variable types involved.
For example, division between integers always produces an integer result by trun-
cating the fractional part. If a floating-point result is desired, we must cast the
operands before performing the operation as shown below.

int i1 = 18;
int i2 = 16;
double dv1 = i1 / i2; // dv1 has value 1.0
double dv2 = double(i1) / double(i2); // dv2 has value 1.125
double dv3 = double(i1 / i2); // dv3 has value 1.0

When i1 and i2 are cast to doubles, double-precision division is performed.
When i1 and i2 are not cast, truncated integer division is performed. In the case of
dv3, the cast is performed after the integer division, so precision is still lost.

Explicit Cast Operators

Casting operations can vary from harmless to dangerous, depending on how similar
the two types are and whether information is lost. For example, casting a short to
an int is harmless, since no information is lost. Casting from a double to an int is
more dangerous because the fractional part of the number is lost. Casting from a
double* to char* is dangerous because the meaning of converting such a pointer
will likely vary from machine to machine. One important element of good software
design is that programs be portable, meaning that they behave the same on different
machines.

For this reason, C++ provides a number of casting operators that make the
safety of the cast much more explicit. These are called the static cast, dynamic cast,
const cast, and reinterpret cast. We discuss only the static cast here and con-
sider the others as the need arises.

i

i

“main” — 2011/1/13 — 9:10 — page 22 — #44
i

i

i

i

i

i

22 Chapter 1. A C++ Primer

Static Casting

Static casting is used when a conversion is made between two related types, for
example numbers to numbers or pointers to pointers. Its syntax is given below.

static cast < desired type > (expression)

The most common use is for conversions between numeric types. Some of these
conversions may involve the loss of information, for example a conversion from
a double to an int. This conversion is done by truncating the fractional part (not
rounding). For example, consider the following:

double d1 = 3.2;
double d2 = 3.9999;
int i1 = static cast<int>(d1); // i1 has value 3
int i2 = static cast<int>(d2); // i2 has value 3

This type of casting is more verbose than the C-style and functional-style casts
shown earlier. But this form is appropriate, because it serves as a visible warning to
the programmer that a potentially unsafe operation is taking place. In our examples
in this book, we use the functional style for safe casts (such as integer to double)
and these newer cast operators for all other casts. Some older C++ compilers may
not support the newer cast operators, but then the traditional C-style and functional-
style casts can be used instead.

Implicit Casting

There are many instances where the programmer has not requested an explicit cast,
but a change of types is required. In many of these cases, C++ performs an implicit
cast. That is, the compiler automatically inserts a cast into the machine-generated
code. For example, when numbers of different types are involved in an operation,
the compiler automatically casts to the stronger type. C++ allows an assignment
that implicitly loses information, but the compiler usually issues a warning mes-
sage.

int i = 3;
double d = 4.8;
double d3 = i / d; // d3 = 0.625 = double(i)/d
int i3 = d3; // i3 = 0 = int(d3)

// Warning! Assignment may lose information

A general rule with casting is to “play it safe.” If a compiler’s behavior regarding
the implicit casting of a value is uncertain, then we are safest in using an explicit
cast. Doing so makes our intentions clear.

i

i

“main” — 2011/1/13 — 9:10 — page 23 — #45
i

i

i

i

i

i

1.3. Control Flow 23

1.3 Control Flow

Control flow in C++ is similar to that of other high-level languages. We review the
basic structure and syntax of control flow in C++ in this section, including method
returns, if statements, switch statements, loops, and restricted forms of “jumps”
(the break and continue statements).

If Statement

Every programming language includes a way of making choices, and C++ is no
exception. The most common method of making choices in a C++ program is
through the use of an if statement. The syntax of an if statement in C++ is shown
below, together with a small example.

if (condition)
true statement

else if (condition)
else if statement

else
else statement

Each of the conditions should return a Boolean result. Each statement can either
be a single statement or a block of statements enclosed in braces ({...}). The “else
if” and “else” parts are optional, and any number of else-if parts may be given.
The conditions are tested one by one, and the statement associated with the first
true condition is executed. All the other statements are skipped. Here is a simple
example.

if (snowLevel < 2) {
goToClass(); // do this if snow level is less than 2
comeHome();

}
else if (snowLevel < 5)

haveSnowballFight(); // if level is at least 2 but less than 5
else if (snowLevel < 10)

goSkiing(); // if level is at least 5 but less than 10
else

stayAtHome(); // if snow level is 10 or more

Switch Statement

A switch statement provides an efficient way to distinguish between many different
options according to the value of an integral type. In the following example, a

i

i

“main” — 2011/1/13 — 9:10 — page 24 — #46
i

i

i

i

i

i

24 Chapter 1. A C++ Primer

single character is input, and based on the character’s value, an appropriate editing
function is called. The comments explain the equivalent if-then-else structure, but
the compiler is free to select the most efficient way to execute the statement.

char command;
cin >> command; // input command character
switch (command) { // switch based on command value

case ’I’ : // if (command == ’I’)
editInsert();
break;

case ’D’ : // else if (command == ’D’)
editDelete();
break;

case ’R’ : // else if (command == ’R’)
editReplace();
break;

default : // else
cout << "Unrecognized command\n";
break;

}

The argument of the switch can be any integral type or enumeration. The
“default” case is executed if none of the cases equals the switch argument.

Each case in a switch statement should be terminated with a break statement,
which, when executed, exits the switch statement. Otherwise, the flow of control
“falls through” to the next case.

While and Do-While Loops

C++ has two kinds of conditional loops for iterating over a set of statements as
long as some specified condition holds. These two loops are the standard while
loop and the do-while loop. One loop tests a Boolean condition before performing
an iteration of the loop body and the other tests a condition after. Let us consider
the while loop first.

while (condition)
loop body statement

At the beginning of each iteration, the loop tests the Boolean expression and then
executes the loop body only if this expression evaluates to true. The loop body
statement can also be a block of statements.

Consider the following example. It computes the sum of the elements of an
array, until encountering the first negative value. Note the use of the += operator to
increment the value of sum and the ++ operator which increments i after accessing

i

i

“main” — 2011/1/13 — 9:10 — page 25 — #47
i

i

i

i

i

i

1.3. Control Flow 25

the current array element.

int a[100];
// . . .
int i = 0;
int sum = 0;
while (i < 100 && a[i] >= 0) {

sum += a[i++];
}

The do-while loop is similar to the while loop in that the condition is tested at
the end of the loop execution rather than before. It has the following syntax.

do
loop body statement

while (condition)

For Loop

Many loops involve three common elements: an initialization, a condition under
which to continue execution, and an increment to be performed after each execution
of the loop’s body. A for loop conveniently encapsulates these three elements.

for (initialization ; condition ; increment)
loop body statement

The initialization indicates what is to be done before starting the loop. Typ-
ically, this involves declaring and initializing a loop-control variable or counter.
Next, the condition gives a Boolean expression to be tested in order for the loop to
continue execution. It is evaluated before executing the loop body. When the con-
dition evaluates to false, execution jumps to the next statement after the for loop.
Finally, the increment specifies what changes are to be made at the end of each
execution of the loop body. Typically, this involves incrementing or decrementing
the value of the loop-control variable.

Here is a simple example, which prints the positive elements of an array, one
per line. Recall that ’\n’ generates a newline character.

const int NUM ELEMENTS = 100;
double b[NUM ELEMENTS];
// . . .
for (int i = 0; i < NUM ELEMENTS; i++) {

if (b[i] > 0)
cout << b[i] << ’\n’;

}

In this example, the loop variable i was declared as int i = 0. Before each iteration,
the loop tests the condition “i < NUM ELEMENTS” and executes the loop body

i

i

“main” — 2011/1/13 — 9:10 — page 26 — #48
i

i

i

i

i

i

26 Chapter 1. A C++ Primer

only if this is true. Finally, at the end of each iteration the loop uses the statement
i++ to increment the loop variable i before testing the condition again. Although
the loop variable is declared outside the curly braces of the for loop, the compiler
treats it as if it were a local variable within the loop. This implies that its value is
not accessible outside the loop.

Break and Continue Statements

C++ provides statements to change control flow, including the break, continue,
and return statements. We discuss the first two here, and leave the return state-
ment for later. A break statement is used to “break” out of a loop or switch state-
ment. When it is executed, it causes the flow of control to immediately exit the
innermost switch statement or loop (for loop, while loop, or do-while loop). The
break statement is useful when the condition for terminating the loop is determined
inside the loop. For example, in an input loop, termination often depends on a
specific value that has been input. The following example provides a different
implementation of an earlier example, which sums the elements of an array until
finding the first negative value.

int a[100];
// . . .
int sum = 0;
for (int i = 0; i < 100; i++) {

if (a[i] < 0) break;
sum += a[i];
}

The other statement that is often useful for altering loop behavior is the con-
tinue statement. The continue statement can only be used inside loops (for, while,
and do-while). The continue statement causes the execution to skip to the end of
the loop, ready to start a new iteration.

1.4 Functions

A function is a chunk of code that can be called to perform some well-defined task,
such as calculating the area of a rectangle, computing the weekly withholding tax
for a company employee, or sorting a list of names in ascending order. In order to
define a function, we need to provide the following information to the compiler:

Return type. This specifies the type of value or object that is returned by the func-
tion. For example, a function that computes the area of a rectangle might re-
turn a value of type double. A function is not required to return a value. For
example, it may simply produce some output or modify some data structure.

i

i

“main” — 2011/1/13 — 9:10 — page 27 — #49
i

i

i

i

i

i

1.4. Functions 27

If so, the return type is void. A function that returns no value is sometimes
called a procedure.

Function name. This indicates the name that is given to the function. Ideally, the
function’s name should provide a hint to the reader as to what the function
does.

Argument list. This serves as a list of placeholders for the values that will be
passed into the function. The actual values will be provided when the func-
tion is invoked. For example, a function that computes the area of a polygon
might take four double arguments; the x- and y-coordinates of the rectan-
gle’s lower left corner and the x- and y-coordinates of the rectangle’s upper
right corner. The argument list is given as a comma-separated list enclosed
in parentheses, where each entry consists of the name of the argument and its
type. A function may have any number of arguments, and the argument list
may even be empty.

Function body. This is a collection of C++ statements that define the actual com-
putations to be performed by the function. This is enclosed within curly
braces. If the function returns a value, the body will typically end with a
return statement, which specifies the final function value.

Function specifications in C++ typically involve two steps, declaration and def-
inition. A function is declared, by specifying three things: the function’s return
type, its name, and its argument list. The declaration makes the compiler aware
of the function’s existence, and allows the compiler to verify that the function is
being used correctly. This three-part combination of return type, function name,
and argument types is called the function’s signature or prototype.

For example, suppose that we wanted to create a function, called evenSum, that
is given two arguments, an integer array a and its length n. It determines whether
the sum of array values is even, and if so it returns the value true. Otherwise,
it returns false. Thus, it has a return value of type bool. The function could be
declared as follows:

bool evenSum(int a[], int n); // function declaration

Second, the function is defined. The definition consists both of the function’s
signature and the function body. The reason for distinguishing between the decla-
ration and definition involves the manner in which large C++ programs are written.
They are typically spread over many different files. The function declaration must
appear in every file that invokes the function, but the definition must appear only

i

i

“main” — 2011/1/13 — 9:10 — page 28 — #50
i

i

i

i

i

i

28 Chapter 1. A C++ Primer

once. Here is how our evenSum function might be defined.

bool evenSum(int a[], int n) { // function definition
int sum = 0;
for (int i = 0; i < n; i++) // sum the array elements

sum += a[i];
return (sum % 2) == 0; // returns true if sum is even
}

The expression in the return statement may take a minute to understand. We use
the mod operator (%) to compute the remainder when sum is divided by 2. If the
sum is even, the remainder is 0, and hence the expression “(sum % 2) == 0”
evaluates to true. Otherwise, it evaluates to false, which is exactly what we want.

To complete the example, let us provide a simple main program, which first
declares the function, and then invokes it on an actual array.

bool evenSum(int a[], int n); // function declaration

int main() {
int list[] = {4, 2, 7, 8, 5, 1};
bool result = evenSum(list, 6); // invoke the function
if (result) cout << "the sum is even\n";
else cout << "the sum is odd\n";
return EXIT SUCCESS;
}

Let us consider this example in greater detail. The names “a” and “n” in the
function definition are called formal arguments since they serve merely as place-
holders. The variable “list” and literal “6” in the function call in the main program
are the actual arguments. Thus, each reference to “a” in the function body is trans-
lated into a reference to the actual array “list.” Similarly, each reference to “n” can
be thought of as taking on the actual value 6 in the function body. The types of the
actual arguments must agree with the corresponding formal arguments. Exact type
agreement is not always necessary, however, for the compiler may perform implicit
type conversions in some cases, such as casting a short actual argument to match
an int formal argument.

When we refer to function names throughout this book, we often include a pair
of parentheses following the name. This makes it easier to distinguish function
names from variable names. For example, we would refer to the above function as
evenSum.

1.4.1 Argument Passing

By default, arguments in C++ programs are passed by value. When arguments
are passed by value, the system makes a copy of the variable to be passed to the

i

i

“main” — 2011/1/13 — 9:10 — page 29 — #51
i

i

i

i

i

i

1.4. Functions 29

function. In the above example, the formal argument “n” is initialized to the actual
value 6 when the function is called. This implies that modifications made to a
formal argument in the function do not alter the actual argument.

Sometimes it is useful for the function to modify one of its arguments. To do
so, we can explicitly define a formal argument to be a reference type (as introduced
in Section 1.1.3). When we do this, any modifications made to an argument in the
function modifies the corresponding actual argument. This is called passing the
argument by reference. An example is shown below, where one argument is passed
by value and the other is passed by reference.

void f(int value, int& ref) { // one value and one reference
value++; // no effect on the actual argument
ref++; // modifies the actual argument
cout << value << endl; // outputs 2
cout << ref << endl; // outputs 6
}

int main() {
int cat = 1;
int dog = 5;
f(cat, dog); // pass cat by value, dog by ref
cout << cat << endl; // outputs 1
cout << dog << endl; // outputs 6
return EXIT SUCCESS;
}

Observe that altering the value argument had no effect on the actual argument,
whereas modifying the reference argument did.

Modifying function arguments is felt to be a rather sneaky way of passing in-
formation back from a function, especially if the function returns a nonvoid value.
Another way to modify an argument is to pass the address of the argument, rather
than the argument itself. Even though a pointer is passed by value (and, hence, the
address of where it is pointing cannot be changed), we can access the pointer and
modify the variables to which it points. Reference arguments achieve essentially
the same result with less notational burden.

Constant References as Arguments

There is a good reason for choosing to pass structure and class arguments by ref-
erence. In particular, passing a large structure or class by value results in a copy
being made of the entire structure. All this copying may be quite inefficient for
large structures and classes. Passing such an argument by reference is much more
efficient, since only the address of the structure need be passed.

Since most function arguments are not modified, an even better practice is to
pass an argument as a “constant reference.” Such a declaration informs the compiler

i

i

“main” — 2011/1/13 — 9:10 — page 30 — #52
i

i

i

i

i

i

30 Chapter 1. A C++ Primer

that, even though the argument is being passed by reference, the function cannot
alter its value. Furthermore, the function is not allowed to pass the argument to
another function that might modify its value. Here is an example using the Passen-
ger structure, which we defined earlier in Section 1.1.3. The attempt to modify the
argument would result in a compiler error message.

void someFunction(const Passenger& pass) {
pass.name = "new name"; // ILLEGAL! pass is declared const
}

When writing small programs, we can easily avoid modifying the arguments
that are passed by reference for the sake of efficiency. But in large programs, which
may be distributed over many files, enforcing this rule is much harder. Fortunately,
passing class and structure arguments as a constant reference allows the compiler
to do the checking for us. Henceforth, when we pass a class or structure as an
argument, we typically pass it as a reference, usually a constant reference.

Array Arguments

We have discussed passing large structures and classes by reference, but what about
large arrays? Would passing an array by value result in making a copy of the entire
array? The answer is no. When an array is passed to a function, it is converted to a
pointer to its initial element. That is, an object of type T[] is converted to type T*.
Thus, an assignment to an element of an array within a function does modify the
actual array contents. In short, arrays are not passed by value.

By the same token, it is not meaningful to pass an array back as the result of
a function call. Essentially, an attempt to do so will only pass a pointer to the
array’s initial element. If returning an array is our goal, then we should either
explicitly return a pointer or consider returning an object of type vector from the
C++ Standard Template Library.

1.4.2 Overloading and Inlining

Overloading means defining two or more functions or operators that have the same
name, but whose effect depends on the types of their actual arguments.

Function Overloading

Function overloading occurs when two or more functions are defined with the
same name but with different argument lists. Such definitions are useful in situa-
tions where we desire two functions that achieve essentially the same purpose, but
do it with different types of arguments.

i

i

“main” — 2011/1/13 — 9:10 — page 31 — #53
i

i

i

i

i

i

1.4. Functions 31

One convenient application of function overloading is in writing procedures
that print their arguments. In particular, a function that prints an integer would be
different from a function that prints a Passenger structure from Section 1.1.3, but
both could use the same name, print, as shown in the following example.

void print(int x) // print an integer
{ cout << x; }

void print(const Passenger& pass) { // print a Passenger
cout << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer)

cout << " " << pass.freqFlyerNo;
}

When the print function is used, the compiler considers the types of the actual ar-
gument and invokes the appropriate function, that is, the one with signature closest
to the actual arguments.

Operator Overloading

C++ also allows overloading of operators, such as +, *, +=, and <<. Not
surprisingly, such a definition is called operator overloading. Suppose we would
like to write an equality test for two Passenger objects. We can denote this in a
natural way by overloading the == operator as shown below.

bool operator==(const Passenger& x, const Passenger& y) {
return x.name == y.name

&& x.mealPref == y.mealPref
&& x.isFreqFlyer == y.isFreqFlyer
&& x.freqFlyerNo == y.freqFlyerNo;

}

This definition is similar to a function definition, but in place of a function name we
use “operator==.” In general, the == is replaced by whatever operator is being
defined. For binary operators we have two arguments, and for unary operators we
have just one.

There are several useful applications of function and operator overloading. For
example, overloading the == operator allows us to naturally test for the equality of
two objects, p1 and p2, with the expression “p1==p2.” Another useful application
of operator overloading is for defining input and output operators for classes and
structures. Here is how to define an output operator for our Passenger structure.
The type ostream is the system’s output stream type. The standard output, cout is

i

i

“main” — 2011/1/13 — 9:10 — page 32 — #54
i

i

i

i

i

i

32 Chapter 1. A C++ Primer

of this type.

ostream& operator<<(ostream& out, const Passenger& pass) {
out << pass.name << " " << pass.mealPref;
if (pass.isFreqFlyer) {

out << " " << pass.freqFlyerNo;
}
return out;
}

The output in this case is not very pretty, but we could easily modify our output
operator to produce nicer formatting.

There is much more that could be said about function and operator overload-
ing, and indeed C++ functions in general. We refer the reader to a more complete
reference on C++ for this information.

Operator overloading is a powerful mechanism, but it is easily abused. It can be
very confusing for someone reading your program to find that familiar operations
such as “+” and “/” have been assigned new and possibly confusing meanings.
Good programmers usually restrict operator overloading to certain general purpose
operators such as “ <<” (output), “=” (assignment), “==” (equality), “[]” (index-
ing, for sequences).

In-line Functions

Very short functions may be defined to be “inline.” This is a hint to the compiler
it should simply expand the function code in place, rather than using the system’s
call-return mechanism. As a rule of thumb, in-line functions should be very short
(at most a few lines) and should not involve any loops or conditionals. Here is an
example, which returns the minimum of two integers.

inline int min(int x, int y) { return (x < y ? x : y); }

1.5 Classes

The concept of a class is fundamental to C++, since it provides a way to define new
user-defined types, complete with associated functions and operators. By restrict-
ing access to certain class members, it is possible to separate out the properties that
are essential to a class’s correct use from the details needed for its implementation.
Classes are fundamental to programming that uses an object-oriented approach,
which is a programming paradigm we discuss in the next chapter.

i

i

“main” — 2011/1/13 — 9:10 — page 33 — #55
i

i

i

i

i

i

1.5. Classes 33

1.5.1 Class Structure

A class consists of members. Members that are variables or constants are data
members (also called member variables) and members that are functions are called
member functions (also called methods). Data members may be of any type, and
may even be classes themselves, or pointers or references to classes. Member func-
tions typically act on the member variables, and so define the behavior of the class.

We begin with a simple example, called Counter. It implements a simple
counter stored in the member variable count. It provides three member functions.
The first member function, called Counter, initializes the counter. The second,
called getCount, returns the counter’s current value. The third, called increaseBy,
increases the counter’s value.

class Counter { // a simple counter
public:

Counter(); // initialization
int getCount(); // get the current count
void increaseBy(int x); // add x to the count

private:
int count; // the counter’s value
};

Let’s explore this class definition in a bit more detail. Observe that the class
definition is separated into two parts by the keywords public and private. The
public section defines the class’s public interface. These are the entities that users
of the class are allowed to access. In this case, the public interface has the three
member functions (Counter, getCount, and increaseBy). In contrast, the private
section declares entities that cannot be accessed by users of the class. We say more
about these two parts below.

So far, we have only declared the member functions of class Counter. Next,
we present the definitions of these member functions. In order to make clear to
the compiler that we are defining member functions of Counter (as opposed to
member functions of some other class), we precede each function name with the
scoping specifier “Counter::”.

Counter::Counter() // constructor
{ count = 0; }

int Counter::getCount() // get current count
{ return count; }

void Counter::increaseBy(int x) // add x to the count
{ count += x; }

The first of these functions has the same name as the class itself. This is a special
member function called a constructor. A constructor’s job is to initialize the values

i

i

“main” — 2011/1/13 — 9:10 — page 34 — #56
i

i

i

i

i

i

34 Chapter 1. A C++ Primer

of the class’s member variables. The function getCount is commonly referred to
as a “getter” function. Such functions provide access to the private members of the
class.

Here is an example how we might use our simple class. We declare a new object
of type Counter, called ctr. This implicitly invokes the class’s constructor, and thus
initializes the counter’s value to 0. To invoke one of the member functions, we use
the notation ctr.function name().

Counter ctr; // an instance of Counter
cout << ctr.getCount() << endl; // prints the initial value (0)
ctr.increaseBy(3); // increase by 3
cout << ctr.getCount() << endl; // prints 3
ctr.increaseBy(5); // increase by 5
cout << ctr.getCount() << endl; // prints 8

Access Control

One important feature of classes is the notion of access control. Members may
be declared to be public, which means that they are accessible from outside the
class, or private, which means that they are accessible only from within the class.
(We discuss two exceptions to this later: protected access and friend functions.) In
the previous example, we could not directly access the private member count from
outside the class definition.

Counter ctr; // ctr is an instance of Counter
// . . .
cout << ctr.count << endl; // ILLEGAL - count is private

Why bother declaring members to be private? We discuss the reasons in detail
in Chapter 2 when we discuss object-oriented programming. For now, suffice it to
say that it stems from the desire to present users with a clean (public) interface from
which to use the class, without bothering them with the internal (private) details of
its implementation. All external access to class objects takes place through the
public members, or the public interface as it is called. The syntax for a class is as
follows.

class 〈 class name 〉 {
public:

public members
private:

private members
};

Note that if no access specifier is given, the default is private for classes and
public for structures. (There is a third specifier, called protected, which is dis-
cussed later in the book.) There is no required order between the private and public

i

i

“main” — 2011/1/13 — 9:10 — page 35 — #57
i

i

i

i

i

i

1.5. Classes 35

sections, and in fact, it is possible to switch back and forth between them. Most
C++ style manuals recommend that public members be presented first, since these
are the elements of the class that are relevant to a programmer who wishes to use
the class. We sometimes violate this convention in this book, particularly when we
want to emphasize the private members.

Member Functions

Let us return to the Passenger structure, which was introduced earlier in Sec-
tion 1.1.3, but this time we define it using a class structure. We provide the same
member variables as earlier, but they are now private members. To this we add
a few member functions. For this short example, we provide just a few of many
possible member functions. The first member function is a constructor. Its job is
to guarantee that each instance of the class is properly initialized. Notice that the
constructor does not have a return type. The member function isFrequentFlyer tests
whether the passenger is a frequent flyer, and the member function makeFrequent-
Flyer makes a passenger a frequent flyer and assigns a frequent flyer number. This
is only a partial definition, and a number of member functions have been omitted.
As usual we use “ //. . .” to indicate omitted code.

class Passenger { // Passenger (as a class)
public:

Passenger(); // constructor
bool isFrequentFlyer() const; // is this a frequent flyer?

// make this a frequent flyer
void makeFrequentFlyer(const string& newFreqFlyerNo);
// . . . other member functions

private:
string name; // passenger name
MealType mealPref; // meal preference
bool isFreqFlyer; // is a frequent flyer?
string freqFlyerNo; // frequent flyer number
};

Class member functions can be placed in two major categories: accessor func-
tions, which only read class data, and update functions, which may alter class
data. The keyword “const” indicates that the member function isFrequentFlyer is
an accessor. This informs the user of the class that this function will not change
the object contents. It also allows the compiler to catch a potential error should we
inadvertently attempt to modify any class member variables.

We have declared two member functions, but we still need to define them.
Member functions may either be defined inside or outside the class body. Most
C++ style manuals recommend defining all member functions outside the class, in

i

i

“main” — 2011/1/13 — 9:10 — page 36 — #58
i

i

i

i

i

i

36 Chapter 1. A C++ Primer

order to present a clean public interface in the class’s definition. As we saw above
in the Counter example, when a member function is defined outside the class body,
it is necessary to specify which class it belongs to, which is done by preceding the
function name with the scoping specifier class name::member name.

bool Passenger::isFrequentFlyer() const {
return isFreqFlyer;
}
void Passenger::makeFrequentFlyer(const string& newFreqFlyerNo) {

isFreqFlyer = true;
freqFlyerNo = newFreqFlyerNo;
}

Notice that when we are within the body of a member function, the member vari-
ables (such as isFreqFlyer and freqFlyerNo) are given without reference to a par-
ticular object. These functions will be invoked on a particular Passenger object.
For example, let pass be a variable of type Passenger. We may invoke these public
member functions on pass using the same member selection operator we introduced
with structures as shown below. Only public members may be accessed in this way.

Passenger pass; // pass is a Passenger
// . . .
if (!pass.isFrequentFlyer()) { // not already a frequent flyer?

pass.makeFrequentFlyer("392953"); // set pass’s freq flyer number
}
pass.name = "Joe Blow"; // ILLEGAL! name is private

In-Class Function Definitions

In the above examples, we have shown member functions being defined outside of
the class body. We can also define members within the class body. When a member
function is defined within a class it is compiled in line (recall Section 1.4.2). As
with in-line functions, in-class function definitions should be reserved for short
functions that do not involve loops or conditionals. Here is an example of how the
isFrequentFlyer member function would be defined from within the class.

class Passenger {
public:

// . . .
bool isFrequentFlyer() const { return isFreqFlyer; }
// . . .
};

i

i

“main” — 2011/1/13 — 9:10 — page 37 — #59
i

i

i

i

i

i

1.5. Classes 37

1.5.2 Constructors and Destructors

The above declaration of the class variable pass suffers from the shortcoming that
we have not initialized any of its classes members. An important aspect of classes
is the capability to initialize a class’s member data. A constructor is a special
member function whose task is to perform such an initialization. It is invoked
when a new class object comes into existence. There is an analogous destructor
member function that is called when a class object goes out of existence.

Constructors

A constructor member function’s name is the same as the class, and it has no return
type. Because objects may be initialized in different ways, it is natural to define
different constructors and rely on function overloading to determine which one is
to be called.

Returning to our Passenger class, let us define three constructors. The first con-
structor has no arguments. Such a constructor is called a default constructor, since
it is used in the absence of any initialization information. The second constructor
is given the values of the member variables to initialize. The third constructor is
given a Passenger reference from which to copy information. This is called a copy
constructor.

class Passenger {
private:

// . . .
public:

Passenger(); // default constructor
Passenger(const string& nm, MealType mp, const string& ffn = "NONE");
Passenger(const Passenger& pass); // copy constructor
// . . .
};

Look carefully at the second constructor. The notation ffn="NONE" indicates that
the argument for ffn is a default argument. That is, an actual argument need not
be given, and if so, the value "NONE" is used instead. If a newly created passenger
is not a frequent flyer, we simply omit this argument. The constructor tests for this
special value and sets things up accordingly. Default arguments can be assigned
any legal value and can be used for more than one argument. It is often useful
to define default values for all the arguments of a constructor. Such a constructor
is the default constructor because it is called if no arguments are given. Default
arguments can be used with any function (not just constructors). The associated
constructor definitions are shown below. Note that the default argument is given in

i

i

“main” — 2011/1/13 — 9:10 — page 38 — #60
i

i

i

i

i

i

38 Chapter 1. A C++ Primer

the declaration, but not in the definition.

Passenger::Passenger() { // default constructor
name = "--NO NAME--";
mealPref = NO PREF;
isFreqFlyer = false;
freqFlyerNo = "NONE";
}

// constructor given member values
Passenger::Passenger(const string& nm, MealType mp, const string& ffn) {

name = nm;
mealPref = mp;
isFreqFlyer = (ffn != "NONE"); // true only if ffn given
freqFlyerNo = ffn;
}

// copy constructor
Passenger::Passenger(const Passenger& pass) {

name = pass.name;
mealPref = pass.mealPref;
isFreqFlyer = pass.isFreqFlyer;
freqFlyerNo = pass.freqFlyerNo;
}

Here are some examples of how the constructors above can be invoked to de-
fine Passenger objects. Note that in the cases of p3 and pp2 we have omitted the
frequent flyer number.

Passenger p1; // default constructor
Passenger p2("John Smith", VEGETARIAN, 293145); // 2nd constructor
Passenger p3("Pocahontas", REGULAR); // not a frequent flyer
Passenger p4(p3); // copied from p3
Passenger p5 = p2; // copied from p2
Passenger* pp1 = new Passenger; // default constructor
Passenger* pp2 = new Passenger("Joe Blow", NO PREF); // 2nd constr.
Passenger pa[20]; // uses the default constructor

Although they look different, the declarations for p4 and p5 both call the copy
constructor. These declarations take advantage of a bit of notational magic, which
C++ provides to make copy constructors look more like the type definitions we
have seen so far. The declarations for pp1 and pp2 create new passenger objects
from the free store, and return a pointer to each. The declaration of pa declares
an array of Passenger. The individual members of the array are always initialized
from the default constructor.

i

i

“main” — 2011/1/13 — 9:10 — page 39 — #61
i

i

i

i

i

i

1.5. Classes 39

Initializing Class Members with Initializer Lists

There is a subtlety that we glossed over in our presentations of the constructors.
Recall that a string is a class in the standard template library. Our initialization
using “name=nm” above relied on the fact that the string class has an assignment
operator defined for it. If the type of name is a class without an assignment opera-
tor, this type of initialization might not be possible. In order to deal with the issue
of initializing member variables that are themselves classes, C++ provides an alter-
nate method of initialization called an initializer list. This list is placed between
the constructor’s argument list and its body. It consists of a colon (:) followed by
a comma-separated list of the form member name(initial value). To illustrate the
feature, let us rewrite the second Passenger constructor so that its first three mem-
bers are initialized by an initializer list. The initializer list is executed before the
body of the constructor.

// constructor using an initializer list
Passenger::Passenger(const string& nm, MealType mp, string ffn)

: name(nm), mealPref(mp), isFreqFlyer(ffn != "NONE")
{ freqFlyerNo = ffn; }

Destructors

A constructor is called when a class object comes into existence. A destructor is
a member function that is automatically called when a class object ceases to exist.
If a class object comes into existence dynamically using the new operator, the
destructor will be called when this object is destroyed using the delete operator.
If a class object comes into existence because it is a local variable in a function
that has been called, the destructor will be called when the function returns. The
destructor for a class T is denoted ~T. It takes no arguments and has no return type.
Destructors are needed when classes allocate resources, such as memory, from the
system. When the object ceases to exist, it is the responsibility of the destructor to
return these resources to the system.

Let us consider a class Vect, shown in the following code fragment, which
stores a vector by dynamically allocating an array of integers. The dynamic array
is referenced by the member variable data. (Recall from Section 1.1.3 that a dy-
namically allocated array is represented by a pointer to its initial element.) The
member variable size stores the number of elements in the vector. The constructor
for this class allocates an array of the desired size. In order to return this space to
the system when a Vect object is removed, we need to provide a destructor to deal-
locate this space. (Recall that when an array is deleted we use “delete[],” rather
than “delete.”)

i

i

“main” — 2011/1/13 — 9:10 — page 40 — #62
i

i

i

i

i

i

40 Chapter 1. A C++ Primer

class Vect { // a vector class
public:

Vect(int n); // constructor, given size
˜Vect(); // destructor
// . . . other public members omitted

private:
int* data; // an array holding the vector
int size; // number of array entries
};

Vect::Vect(int n) { // constructor
size = n;
data = new int[n]; // allocate array
}

Vect::˜Vect() { // destructor
delete [] data; // free the allocated array
}

We are not strictly required by C++ to provide our own destructor. Nonetheless,
if our class allocates memory, we should write a destructor to free this memory. If
we did not provide the destructor in the example above, the deletion of an object
of type Vect would cause a memory leak. (Recall from Section 1.1.3 that this is
an inaccessible block of memory that cannot be removed). The job of explicitly
deallocating objects that were allocated is one of the chores that C++ programmers
must endure.

1.5.3 Classes and Memory Allocation

When a class performs memory allocation using new, care must be taken to avoid
a number of common programming errors. We have shown above that failure to
deallocate storage in a class’s destructor can result in memory leaks. A somewhat
more insidious problem occurs when classes that allocate memory fail to provide a
copy constructor or an assignment operator. Consider the following example, using
our Vect class.

Vect a(100); // a is a vector of size 100
Vect b = a; // initialize b from a (DANGER!)
Vect c; // c is a vector (default size 10)
c = a; // assign a to c (DANGER!)

It would seem that we have just created three separate vectors, all of size 100,
but have we? In reality all three of these vectors share the same 100-element array.
Let us see why this has occurred.

i

i

“main” — 2011/1/13 — 9:10 — page 41 — #63
i

i

i

i

i

i

1.5. Classes 41

The declaration of object a invokes the vector constructor, which allocates an
array of 100 integers and a.data points to this array. The declaration “Vect b=a”
initializes b from a. Since we provided no copy constructor in Vect, the system
uses its default, which simply copies each member of a to b. In particular it sets
“b.data=a.data.” Notice that this does not copy the contents of the array; rather it
copies the pointer to the array’s initial element. This default action is sometimes
called a shallow copy.

The declaration of c invokes the constructor with a default argument value of
10, and hence allocates an array of 10 elements in the free store. Because we have
not provided an assignment operator, the statement “c=a,” also does a shallow copy
of a to c. Only pointers are copied, not array contents. Worse yet, we have lost the
pointer to c’s original 10-element array, thus creating a memory leak.

Now, a, b, and c all have members that point to the same array in the free store.
If the contents of the arrays of one of the three were to change, the other two would
mysteriously change as well. Worse yet, if one of the three were to be deleted
before the others (for example, if this variable was declared in a nested block), the
destructor would delete the shared array. When either of the other two attempts to
access the now deleted array, the results would be disastrous. In short, there are
many problems here.

Fortunately, there is a simple fix for all of these problems. The problems arose
because we allocated memory and we used the system’s default copy constructor
and assignment operator. If a class allocates memory, you should provide a copy
constructor and assignment operator to allocate new memory for making copies. A
copy constructor for a class T is typically declared to take a single argument, which
is a constant reference to an object of the same class, that is, T(const T& t). As
shown in the code fragment below, it copies each of the data members from one
class to the other while allocating memory for any dynamic members.

Vect::Vect(const Vect& a) { // copy constructor from a

size = a.size; // copy sizes

data = new int[size]; // allocate new array

for (int i = 0; i < size; i++) { // copy the vector contents

data[i] = a.data[i];

}
}

The assignment operator is handled by overloading the = operator as shown
in the next code fragment. The argument “a” plays the role of the object on the
right side of the assignment operator. The assignment operator deletes the existing
array storage, allocates a new array of the proper size, and copies elements into
this new array. The if statement checks against the possibility of self assignment.
(This can sometimes happen when different variables reference the same object.)
We perform this check using the keyword this. For any instance of a class object,

i

i

“main” — 2011/1/13 — 9:10 — page 42 — #64
i

i

i

i

i

i

42 Chapter 1. A C++ Primer

“this” is defined to be the address of this instance. If this equals the address of a,
then this is a case of self assignment, and we ignore the operation. Otherwise, we
deallocate the existing array, allocate a new array, and copy the contents over.

Vect& Vect::operator=(const Vect& a) { // assignment operator from a

if (this != &a) { // avoid self-assignment

delete [] data; // delete old array

size = a.size; // set new size

data = new int[size]; // allocate new array

for (int i=0; i < size; i++) { // copy the vector contents

data[i] = a.data[i];

}
}
return *this;

}

Notice that in the last line of the assignment operator we return a reference to
the current object with the statement “return *this.” Such an approach is useful
for assignment operators, since it allows us to chain together assignments, as in
“a=b=c.” The assignment “b=c” invokes the assignment operator, copying vari-
able c to b and then returns a reference to b. This result is then assigned to variable
a.

The only other changes needed to complete the job would be to add the appro-
priate function declarations to the Vect class. By using the copy constructor and
assignment operator, we avoid the above memory leak and the dangerous shared
array. The lessons of the last two sections can be summarized in the following rule.

Remember

Every class that allocates its own objects using new should:
• Define a destructor to free any allocated objects.
• Define a copy constructor, which allocates its own new member stor-

age and copies the contents of member variables.
• Define an assignment operator, which deallocates old storage, allo-

cates new storage, and copies all member variables.

Some programmers recommend that these functions be included for every class,
even if memory is not allocated, but we are not so fastidious. In rare instances, we
may want to forbid users from using one or more of these operations. For example,
we may not want a huge data structure to be copied inadvertently. In this case,
we can define empty copy constructors and assignment functions and make them
private members of the class.

i

i

“main” — 2011/1/13 — 9:10 — page 43 — #65
i

i

i

i

i

i

1.5. Classes 43

1.5.4 Class Friends and Class Members

Complex data structures typically involve the interaction of many different classes.
In such cases, there are often issues coordinating the actions of these classes to
allow sharing of information. We discuss some of these issues in this section.

We said private members of a class may only be accessed from within the class,
but there is an exception to this. Specifically, we can declare a function as a friend,
which means that this function may access the class’s private data. There are a
number of reasons for defining friend functions. One is that syntax requirements
may forbid us from defining a member function. For example, consider a class
SomeClass. Suppose that we want to define an overloaded output operator for this
class, and this output operator needs access to private member data. To handle this,
the class declares that the output operator is a friend of the class as shown below.

class SomeClass {
private:

int secret;
public:

// . . . // give << operator access to secret
friend ostream& operator<<(ostream& out, const SomeClass& x);
};

ostream& operator<<(ostream& out, const SomeClass& x)
{ cout << x.secret; }

Another time when it is appropriate to use friends is when two different classes
are closely related. For example, Code Fragment 1.1 shows two cooperating classes
Vector and Matrix. The former stores a three-dimensional vector and the latter
stores a 3× 3 matrix. In this code fragment, we show just one example of the
usefulness of class friendship. The class Vector stores is coordinates in a private
array, called coord. The Matrix class defines a function that multiplies a matrix
times a vector. Because coord is a private member of Vector, members of the class
Matrix would not have access to coord. However, because Vector has declared
Matrix to be a friend, class Matrix can access all the private members of class
Vector.

The ability to declare friendship relationships between classes is useful, but the
extensive use of friends often indicates a poor class structure design. For example, a
better solution would be to have class Vector define a public subscripting operator.
Then the multiply function could use this public member to access the vector class,
rather than access private member data.

Note that “friendship” is not transitive. For example, if a new class Tensor
was made a friend of Matrix, Tensor would not be a friend of Vector, unless class
Vector were to explicitly declare it to be so.

i

i

“main” — 2011/1/13 — 9:10 — page 44 — #66
i

i

i

i

i

i

44 Chapter 1. A C++ Primer

class Vector { // a 3-element vector
public: // . . . public members omitted
private:

double coord[3]; // storage for coordinates
friend class Matrix; // give Matrix access to coord
};

class Matrix { // a 3x3 matrix
public:

Vector multiply(const Vector& v); // multiply by vector v
// . . . other public members omitted

private:
double a[3][3]; // matrix entries
};

Vector Matrix::multiply(const Vector& v) { // multiply by vector v
Vector w;
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
w.coord[i] += a[i][j] * v.coord[j]; // access to coord allowed

return w;
}

Code Fragment 1.1: An example of class friendship.

Nesting Classes and Types within Classes

We know that classes may define member variables and member functions. Classes
may also define their own types as well. In particular, we can nest a class definition
within another class. Such a nested class is often convenient in the design of data
structures. For example, suppose that we want to design a data structure, called
Book, and we want to provide a mechanism for placing bookmarks to identify par-
ticular locations within our book. We could define a nested class, called Bookmark,
which is defined within class Book.

class Book {
public:

class Bookmark {
// . . . (Bookmark definition here)
};
// . . . (Remainder of Book definition)
}

We might define a member function that returns a bookmark within the book, say,
to the start of some chapter. Outside the class Book, we use the scope-resolution
operator, Book::Bookmark, in order to refer to this nested class. We shall see many
other examples of nested classes later in the book.

i

i

“main” — 2011/1/13 — 9:10 — page 45 — #67
i

i

i

i

i

i

1.5. Classes 45

1.5.5 The Standard Template Library

The Standard Template Library (STL) is a collection of useful classes for common
data structures. In addition to the string class, which we have seen many times, it
also provides data structures for the following standard containers. We discuss
many of these data structures later in this book, so don’t worry if their names seem
unfamiliar.

stack Container with last-in, first-out access
queue Container with first-in, first-out access
deque Double-ended queue
vector Resizeable array
list Doubly linked list
priority queue Queue ordered by value
set Set
map Associative array (dictionary)

Templates and the STL Vector Class

One of the important features of the STL is that each such object can store objects
of any one type. Contrast this with the Vect class of Section 1.5.2, which can
only hold integers. Such a class whose definition depends on a user-specified type
is called a template. We discuss templates in greater detail in Chapter 2, but we
briefly mention how they are used with container objects here.

We specify the type of the object being stored in the container in angle brackets
(<...>). For example, we could define vectors to hold 100 integers, 500 characters,
and 20 passengers as follows:

#include <vector>
using namespace std; // make std accessible

vector<int> scores(100); // 100 integer scores
vector<char> buffer(500); // buffer of 500 characters
vector<Passenger> passenList(20); // list of 20 Passengers

As usual, the include statement provides the necessary declarations for using
the vector class. Each instance of an STL vector can only hold objects of one type.

STL vectors are superior to standard C++ arrays in many respects. First, as
with arrays, individual elements can be indexed using the usual index operator ([]).
They can also be accessed by the at member function. The advantage of the latter
is that it performs range checking and generates an error exception if the index is
out of bounds. (We discuss exceptions in Section 2.4.) Recall that standard arrays
in C++ do not even know their size, and hence range checking is not even possible.
In contrast, a vector object’s size is given by its size member function. Unlike

i

i

“main” — 2011/1/13 — 9:10 — page 46 — #68
i

i

i

i

i

i

46 Chapter 1. A C++ Primer

standard arrays, one vector object can be assigned to another, which results in the
contents of one vector object being copied to the other. A vector can be resized
dynamically by calling the resize member function. We show several examples of
uses of the STL vector class below.

int i = // . . .
cout << scores[i]; // index (range unchecked)
buffer.at(i) = buffer.at(2 * i); // index (range checked)
vector<int> newScores = scores; // copy scores to newScores
scores.resize(scores.size() + 10); // add room for 10 more elements

We discuss the STL further in Chapter 3.

More on STL Strings

In Section 1.1.3, we introduced the STL string class. This class provides a number
of useful utilities for manipulating character strings. Earlier, we discussed the use
of the addition operator (“ +”) for concatenating strings, the operator “ +=” for
appending a string to the end of an existing string, the function size for determining
the length of a string, and the indexing operator (“[]”) for accessing individual
characters of a string.

Let us present a few more string functions. In the table below, let s be an STL
string, and let p be either an STL string or a standard C++ string. Let i and m be
nonnegative integers. Throughout, we use i to denote the index of a position in a
string and we use m to denote the number of characters involved in the operation.
(A string’s first character is at index i = 0.)

s.find(p) Return the index of first occurrence of string p in s

s.find(p, i) Return the index of first occurrence of string p in s
on or after position i

s.substr(i,m) Return the substring starting at position i of s
and consisting of m characters

s.insert(i, p) Insert string p just prior to index i in s

s.erase(i, m) Remove the substring of length m starting at index i

s.replace(i, m, p) Replace the substring of length m starting at index i
with p

getline(is, s) Read a single line from the input stream is and store
the result in s

In order to indicate that a pattern string p is not found, the find function returns
the special value string::npos. Strings can also be compared lexicographically,
using the C++ comparison operators: <, <=, >, >=, ==, and !=.

i

i

“main” — 2011/1/13 — 9:10 — page 47 — #69
i

i

i

i

i

i

1.6. C++ Program and File Organization 47

Here are some examples of the use of these functions.

string s = "a dog"; // “a dog”
s += " is a dog"; // “a dog is a dog”
cout << s.find("dog"); // 2
cout << s.find("dog", 3); // 11
if (s.find("doug") == string::npos) { } // true
cout << s.substr(7, 5); // “s a d”
s.replace(2, 3, "frog"); // “a frog is a dog”
s.erase(6, 3); // “a frog a dog”
s.insert(0, "is "); // “is a frog a dog”
if (s == "is a frog a dog") { } // true
if (s < "is a frog a toad") { } // true
if (s < "is a frog a cat") { } // false

1.6 C++ Program and File Organization

Let us now consider the broader issue of how to organize an entire C++ program.
A typical large C++ program consists of many files, with related pieces of code
residing within each file. For example, C++ programmers commonly place each
major class in its own file.

Source Files

There are two common file types, source files and header files. Source files typi-
cally contain most of the executable statements and data definitions. This includes
the bodies of functions and definitions of any global variables.

Different compilers use different file naming conventions. Source file names
typically have distinctive suffixes, such as “.cc”, “.cpp”, and “.C”. Source files may
be compiled separately by the compiler, and then these files are combined into one
program by a system program called a linker.

Each nonconstant global variable and function may be defined only once. Other
source files may share such a global variable or function provided they have a
matching declaration. To indicate that a global variable is defined in another file,
the type specifier “extern” is added. This keyword is not needed for functions.
For example, consider the declarations extracted from two files below. The file
Source1.cpp defines a global variable cat and function foo. The file Source2.cpp
can access these objects by including the appropriate matching declarations and
adding “extern” for variables.

File: Source1.cpp

int cat = 1; // definition of cat
int foo(int x) { return x+1; } // definition of foo

i

i

“main” — 2011/1/13 — 9:10 — page 48 — #70
i

i

i

i

i

i

48 Chapter 1. A C++ Primer

File: Source2.cpp

extern int cat; // cat is defined elsewhere
int foo(int x); // foo is defined elsewhere

Header Files

Since source files using shared objects must provide identical declarations, we com-
monly store these shared declarations in a header file, which is then read into each
such source file using an #include statement. Statements beginning with # are
handled by a special program, called the preprocessor, which is invoked automati-
cally by the compiler. A header file typically contains many declarations, including
classes, structures, constants, enumerations, and typedefs. Header files generally
do not contain the definition (body) of a function. In-line functions are an excep-
tion, however, as their bodies are given in a header file.

Except for some standard library headers, the convention is that header file
names end with a “.h” suffix. Standard library header files are indicated with angle
brackets, as in <iostream>, while other local header files are indicated using quotes,
as in ”myIncludes.h”.

#include <iostream> // system include file
#include "myIncludes.h" // user-defined include file

As a general rule, we should avoid including namespace using directives in
header files, because any source file that includes such a header file has its names-
pace expanded as a result. We make one exception to this in our examples, however.
Some of our header files include a using directive for the STL string class because
it is so useful.

1.6.1 An Example Program

To make this description more concrete, let us consider an example of a simple
yet complete C++ program. Our example consists of one class, called CreditCard,
which defines a credit card object and a procedure that uses this class.

The CreditCard Class

The credit card object defined by CreditCard is a simplified version of a traditional
credit card. It has an identifying number, identifying information about the owner,
and information about the credit limit and the current balance. It does not charge
interest or late payments, but it does restrict charges that would cause a card’s
balance to go over its spending limit.

The main class structure is presented in the header file CreditCard.h and is
shown in Code Fragment 1.2.

i

i

“main” — 2011/1/13 — 9:10 — page 49 — #71
i

i

i

i

i

i

1.6. C++ Program and File Organization 49

#ifndef CREDIT CARD H // avoid repeated expansion
#define CREDIT CARD H

#include <string> // provides string
#include <iostream> // provides ostream

class CreditCard {
public:

CreditCard(const std::string& no, // constructor
const std::string& nm, int lim, double bal=0);

// accessor functions
std::string getNumber() const { return number; }
std::string getName() const { return name; }
double getBalance() const { return balance; }
int getLimit() const { return limit; }

bool chargeIt(double price); // make a charge
void makePayment(double payment); // make a payment

private: // private member data
std::string number; // credit card number
std::string name; // card owner’s name
int limit; // credit limit
double balance; // credit card balance
};

// print card information
std::ostream& operator<<(std::ostream& out, const CreditCard& c);
#endif

Code Fragment 1.2: The header file CreditCard.h, which contains the definition of
class CreditCard.

i

i

“main” — 2011/1/13 — 9:10 — page 50 — #72
i

i

i

i

i

i

50 Chapter 1. A C++ Primer

Before discussing the class, let us say a bit about the general file structure.
The first two lines (containing #ifndef and #define) and the last line (containing
#endif) are used to keep the same header file from being expanded twice. We
discuss this later. The next lines include the header files for strings and standard
input and output.

This class has four private data members. We provide a simple constructor to
initialize these members. There are four accessor functions, which provide access
to read the current values of these member variables. Of course, we could have
alternately defined the member variables as being public and saved the work of
providing these accessor functions. However, this would allow users to modify any
of these member variables directly. We usually prefer to restrict the modification of
member variables to special update functions. We include two such update func-
tions, chargeIt and makePayment. We have also defined a stream output operator
for the class.

The accessor functions and makePayment are short, so we define them within
the class body. The other member functions and the output operator are defined
outside the class in the file CreditCard.cpp, shown in Code Fragment 1.3. This
approach of defining a header file with the class definition and an associated source
file with the longer member function definitions is common in C++.

The Main Test Program

Our main program is in the file TestCard.cpp. It consists of a main function, but this
function does little more than call the function testCard, which does all the work.
We include CreditCard.h to provide the CreditCard declaration. We do not need to
include iostream and string, since CreditCard.h does this for us, but it would not
have hurt to do so.

The testCard function declares an array of pointers to CreditCard. We allocate
three such objects and initialize them. We then perform a number of payments and
print the associated information. We show the complete code for the Test class in
Code Fragment 1.4.

The output of the Test class is sent to the standard output stream. We show this
output in Code Fragment 1.5.

Avoiding Multiple Header Expansions

A typical C++ program includes many different header files, which often include
other header files. As a result, the same header file may be expanded many times.
Such repeated header expansion is wasteful and can result in compilation errors
because of repeated definitions. To avoid this repeated expansion, most header
files use a combination of preprocessor commands. Let us explain the process,
illustrated in Code Fragment 1.2.

i

i

“main” — 2011/1/13 — 9:10 — page 51 — #73
i

i

i

i

i

i

1.6. C++ Program and File Organization 51

#include "CreditCard.h" // provides CreditCard

using namespace std; // make std:: accessible
// standard constructor

CreditCard::CreditCard(const string& no, const string& nm, int lim, double bal) {
number = no;
name = nm;
balance = bal;
limit = lim;
}

// make a charge
bool CreditCard::chargeIt(double price) {

if (price + balance > double(limit))
return false; // over limit

balance += price;
return true; // the charge goes through
}

void CreditCard::makePayment(double payment) { // make a payment
balance −= payment;
}

// print card information
ostream& operator<<(ostream& out, const CreditCard& c) {

out << "Number = " << c.getNumber() << "\n"

<< "Name = " << c.getName() << "\n"

<< "Balance = " << c.getBalance() << "\n"

<< "Limit = " << c.getLimit() << "\n";
return out;
}

Code Fragment 1.3: The file CreditCard.cpp, which contains the definition of the
out-of-class member functions for class CreditCard.

i

i

“main” — 2011/1/13 — 9:10 — page 52 — #74
i

i

i

i

i

i

52 Chapter 1. A C++ Primer

#include <vector> // provides STL vector
#include "CreditCard.h" // provides CreditCard, cout, string

using namespace std; // make std accessible

void testCard() { // CreditCard test function
vector<CreditCard*> wallet(10); // vector of 10 CreditCard pointers

// allocate 3 new cards
wallet[0] = new CreditCard("5391 0375 9387 5309", "John Bowman", 2500);
wallet[1] = new CreditCard("3485 0399 3395 1954", "John Bowman", 3500);
wallet[2] = new CreditCard("6011 4902 3294 2994", "John Bowman", 5000);

for (int j=1; j <= 16; j++) { // make some charges
wallet[0]−>chargeIt(double(j)); // explicitly cast to double
wallet[1]−>chargeIt(2 * j); // implicitly cast to double
wallet[2]−>chargeIt(double(3 * j));
}

cout << "Card payments:\n";
for (int i=0; i < 3; i++) { // make more charges

cout << *wallet[i];
while (wallet[i]−>getBalance() > 100.0) {

wallet[i]−>makePayment(100.0);
cout << "New balance = " << wallet[i]−>getBalance() << "\n";
}
cout << "\n";
delete wallet[i]; // deallocate storage
}
}

int main() { // main function
testCard();
return EXIT SUCCESS; // successful execution
}

Code Fragment 1.4: The file TestCard.cpp.

Let us start with the second line. The #define statement defines a preprocessor
variable CREDIT CARD H. This variable’s name is typically based on the header
file name, and by convention, it is written in all capitals. The name itself is not
important as long as different header files use different names. The entire file is
enclosed in a preprocessor “if” block starting with #ifndef on top and ending with
#endif at the bottom. The “ifndef” is read “if not defined,” meaning that the header
file contents will be expanded only if the preprocessor variable CREDIT CARD H
is not defined.

Here is how it works. The first time the header file is encountered, the variable

i

i

“main” — 2011/1/13 — 9:10 — page 53 — #75
i

i

i

i

i

i

1.7. Writing a C++ Program 53

Card payments:
Number = 5391 0375 9387 5309
Name = John Bowman
Balance = 136
Limit = 2500
New balance = 36

Number = 3485 0399 3395 1954
Name = John Bowman
Balance = 272
Limit = 3500
New balance = 172
New balance = 72

Number = 6011 4902 3294 2994
Name = John Bowman
Balance = 408
Limit = 5000
New balance = 308
New balance = 208
New balance = 108
New balance = 8

Code Fragment 1.5: Sample program output.

CREDIT CARD H has not yet been seen, so the header file is expanded by the
preprocessor. In the process of doing this expansion, the second line defines the
variable CREDIT CARD H. Hence, any attempt to include the header file will find
that CREDIT CARD H is defined, so the file will not be expanded.

Throughout this book we omit these preprocessor commands from our exam-
ples, but they should be included in each header file we write.

1.7 Writing a C++ Program

As with any programming language, writing a program in C++ involves three fun-
damental steps:

1. Design
2. Coding

3. Testing and Debugging.

We briefly discuss each of these steps in this section.

i

i

“main” — 2011/1/13 — 9:10 — page 54 — #76
i

i

i

i

i

i

54 Chapter 1. A C++ Primer

1.7.1 Design

The design step is perhaps the most important in the process of writing a program.
In this step, we decide how to divide the workings of our program into classes, we
decide how these classes will interact, what data each will store, and what actions
each will perform. Indeed, one of the main challenges that beginning C++ pro-
grammers face is deciding what classes to define to do the work of their program.
While general prescriptions are hard to come by, there are some general rules of
thumb that we can apply when determining how to define our classes.

• Responsibilities: Divide the work into different actors, each with a different
responsibility. Try to describe responsibilities using action verbs. These
actors form the classes for the program.

• Independence: Define the work for each class to be as independent from
other classes as possible. Subdivide responsibilities between classes so that
each class has autonomy over some aspect of the program. Give data (as
member variables) to the class that has jurisdiction over the actions that re-
quire access to this data.

• Behaviors: Define the behaviors for each class carefully and precisely, so
that the consequences of each action performed by a class are well under-
stood by other classes with which it interacts. These behaviors define the
member functions that this class performs. The set of behaviors for a class is
sometimes referred to as a protocol, since we expect the behaviors for a class
to hold together as a cohesive unit.

Defining the classes, together with their member variables and member func-
tions, determines the design of a C++ program. A good programmer will naturally
develop greater skill in performing these tasks over time, as experience teaches him
or her to notice patterns in the requirements of a program that match patterns that
he or she has seen before.

1.7.2 Pseudo-Code

Programmers are often asked to describe algorithms in a way that is intended for
human eyes only, prior to writing actual code. Such descriptions are called pseudo-
code. Pseudo-code is not a computer program, but is more structured than usual
prose. Pseudo-code is a mixture of natural language and high-level programming
constructs that describe the main ideas behind a generic implementation of a data
structure or algorithm. There really is no precise definition of the pseudo-code lan-
guage, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard program-
ming language constructs. The programming language constructs we choose are
those consistent with modern high-level languages such as C, C++, and Java.

i

i

“main” — 2011/1/13 — 9:10 — page 55 — #77
i

i

i

i

i

i

1.7. Writing a C++ Program 55

These constructs include the following:

• Expressions: We use standard mathematical symbols to express numeric
and Boolean expressions. We use the left arrow sign (←) as the assignment
operator in assignment statements (equivalent to the = operator in C++) and
we use the equal sign (=) as the equality relation in Boolean expressions
(equivalent to the “==” relation in C++).

• Function declarations: Algorithm name(arg1,arg2, . . .) declares a new
function “name” and its arguments.

• Decision structures: if condition then true-actions [else false-actions]. We
use indentation to indicate what actions should be included in the true-actions
and false-actions.

• While-loops: while condition do actions. We use indentation to indicate
what actions should be included in the loop actions.

• Repeat-loops: repeat actions until condition. We use indentation to indicate
what actions should be included in the loop actions.

• For-loops: for variable-increment-definition do actions. We use indentation
to indicate what actions should be included among the loop actions.

• Array indexing: A[i] represents the ith cell in the array A. The cells of an
n-celled array A are indexed from A[0] to A[n−1] (consistent with C++).

• Member function calls: object.method(args) (object is optional if it is un-
derstood).

• Function returns: return value. This operation returns the value specified
to the method that called this one.

• Comments: { Comment goes here. }. We enclose comments in braces.

When we write pseudo-code, we must keep in mind that we are writing for a
human reader, not a computer. Thus, we should strive to communicate high-level
ideas, not low-level implementation details. At the same time, we should not gloss
over important steps. Like many forms of human communication, finding the right
balance is an important skill that is refined through practice.

1.7.3 Coding

As mentioned above, one of the key steps in coding up an object-oriented pro-
gram is coding up the descriptions of classes and their respective data and member
functions. In order to accelerate the development of this skill, we discuss vari-
ous design patterns for designing object-oriented programs (see Section 2.1.3) at
various points throughout this text. These patterns provide templates for defining
classes and the interactions between these classes.

Many programmers do their initial coding not on a computer, but by using CRC
cards. Class-Responsibility-Collaborator (CRC) cards are simple index cards that
subdivide the work required of a program. The main idea behind this tool is to

i

i

“main” — 2011/1/13 — 9:10 — page 56 — #78
i

i

i

i

i

i

56 Chapter 1. A C++ Primer

have each card represent a component, which will ultimately become a class in our
program. We write the name of each component on the top of an index card. On
the left-hand side of the card, we begin writing the responsibilities for this com-
ponent. On the right-hand side, we list the collaborators for this component, that
is, the other components that this component will have to interact with to perform
its duties. The design process iterates through an action/actor cycle, where we first
identify an action (that is, a responsibility), and we then determine an actor (that
is, a component) that is best suited to perform that action. The design is complete
when we have assigned all actions to actors.

By the way, in using index cards to begin our coding, we are assuming that
each component will have a small set of responsibilities and collaborators. This
assumption is no accident, since it helps keep our programs manageable.

An alternative to CRC cards is the use of UML (Unified Modeling Language)
diagrams to express the organization of a program, and the use of pseudo-code to
describe the algorithms. UML diagrams are a standard visual notation to express
object-oriented software designs. Several computer-aided tools are available to
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is
a technique that we utilize throughout this book.

Once we have decided on the classes and their respective responsibilities for
our programs, we are ready to begin coding. We create the actual code for the
classes in our program by using either an independent text editor (such as emacs,
notepad, or vi), or the editor embedded in an integrated development environment
(IDE), such as Microsoft’s Visual Studio and Eclipse.

Once we have completed coding for a program (or file), we then compile this
file into working code by invoking a compiler. If our program contains syntax
errors, they will be identified, and we will have to go back into our editor to fix the
offending lines of code. Once we have eliminated all syntax errors and created the
appropriate compiled code, we then run our program.

Readability and Style

Programs should be made easy to read and understand. Good programmers should
therefore be mindful of their coding style and develop a style that communicates
the important aspects of a program’s design for both humans and computers. Much
has been written about good coding style. Here are some of the main principles.

• Use meaningful names for identifiers. Try to choose names that can be read
aloud and reflect the action, responsibility, or data each identifier is nam-
ing. The tradition in most C++ circles is to capitalize the first letter of each
word in an identifier, except for the first word in an identifier for a variable
or method. So, in this tradition, “Date,” “Vector,” and “DeviceManager”

i

i

“main” — 2011/1/13 — 9:10 — page 57 — #79
i

i

i

i

i

i

1.7. Writing a C++ Program 57

would identify classes, and “isFull,” “insertItem,” “studentName,” and “stu-
dentHeight” would respectively identify member functions and variables.

• Use named constants and enumerations instead of embedded values. Read-
ability, robustness, and modifiability are enhanced if we include a series of
definitions of named constant values in a class definition. These can then be
used within this class and others to refer to special values for this class. Our
convention is to fully capitalize such constants as shown below.

const int MIN CREDITS = 12; // min. credits in a term
const int MAX CREDITS = 24; // max. credits in a term

// enumeration for year
enum Year { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };

• Indent statement blocks. Typically programmers indent each statement block
by four spaces. (In this book, we typically use two spaces to avoid having
our code overrun the book’s margins.)

• Organize each class in a consistent order. In the examples in this book, we
usually use the following order:

1. Public types and nested classes
2. Public member functions
3. Protected member functions (internal utilities)
4. Private member data

Our class organizations do not always follow this convention. In particular,
when we wish to emphasize the implementation details of a class, we present
the private members first and the public functions afterwards.

• Use comments that add meaning to a program and explain ambiguous or
confusing constructs. In-line comments are good for quick explanations and
do not need to be sentences. Block comments are good for explaining the
purpose of a method and complex code sections.

1.7.4 Testing and Debugging

Testing is the process of verifying the correctness of a program, while debugging
is the process of tracking the execution of a program and discovering the errors
in it. Testing and debugging are often the most time-consuming activity in the
development of a program.

Testing

A careful testing plan is an essential part of writing a program. While verifying
the correctness of a program over all possible inputs is usually not feasible, we
should aim at executing the program on a representative subset of inputs. At the
very minimum, we should make sure that every method in the program is tested

i

i

“main” — 2011/1/13 — 9:10 — page 58 — #80
i

i

i

i

i

i

58 Chapter 1. A C++ Primer

at least once (method coverage). Even better, each code statement in the program
should be executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to
be carefully identified and tested. For example, when testing a method that sorts
an array of integers (that is, arranges them in ascending order), we should consider
the following inputs:

• The array has zero length (no elements)
• The array has one element
• All the elements of the array are the same
• The array is already sorted
• The array is reverse sorted

In addition to special inputs to the program, we should also consider special
conditions for the structures used by the program. For example, if we use an array
to store data, we should make sure that boundary cases, such as inserting/removing
at the beginning or end of the subarray holding data, are properly handled. While it
is essential to use hand-crafted test suites, it is also advantageous to run the program
on a large collection of randomly generated inputs.

There is a hierarchy among the classes and functions of a program induced by
the “caller-callee” relationship. Namely, a function A is above a function B in the
hierarchy if A calls B. There are two main testing strategies, top-down and bottom-
up, which differ in the order in which functions are tested.

Bottom-up testing proceeds from lower-level functions to higher-level func-
tions. Namely, bottom-level functions, which do not invoke other functions, are
tested first, followed by functions that call only bottom-level functions, and so on.
This strategy ensures that errors found in a method are not likely to be caused by
lower-level functions nested within it.

Top-down testing proceeds from the top to the bottom of the method hierarchy.
It is typically used in conjunction with stubbing, a boot-strapping technique that
replaces a lower-level method with a stub, a replacement for the method that simu-
lates the output of the original method. For example, if function A calls function B
to get the first line of a file, we can replace B with a stub that returns a fixed string
when testing A.

Debugging

The simplest debugging technique consists of using print statements (typically us-
ing the stream output operator, “<<”) to track the values of variables during the
execution of the program. The problem with this approach is that the print state-
ments need to be removed or commented out before the program can be executed
as part of a “production” software system.

i

i

“main” — 2011/1/13 — 9:10 — page 59 — #81
i

i

i

i

i

i

1.7. Writing a C++ Program 59

A better approach is to run the program within a debugger, which is a special-
ized environment for controlling and monitoring the execution of a program. The
basic functionality provided by a debugger is the insertion of breakpoints within
the code. When the program is executed within the debugger, it stops at each
breakpoint. While the program is stopped, the current value of variables can be
inspected. In addition to fixed breakpoints, advanced debuggers allow for specifi-
cation of conditional breakpoints, which are triggered only if a given expression is
satisfied.

Many IDEs, such as Microsoft Visual Studio and Eclipse provide built-in de-
buggers.

i

i

“main” — 2011/1/13 — 9:10 — page 60 — #82
i

i

i

i

i

i

60 Chapter 1. A C++ Primer

1.8 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-1.1 Which of the following is not a valid C++ variable name? (There may be
more than one.)

a. i think i am valid

b. i may have 2 many digits 2 be valid

c. I start and end with underscores

d. I Have A Dollar $ign

e. I AM LONG AND HAVE NO LOWER CASE LETTERS

R-1.2 Write a pseudo-code description of a method for finding the smallest and
largest numbers in an array of integers and compare that to a C++ function
that would do the same thing.

R-1.3 Give a C++ definition of a struct called Pair that consists of two mem-
bers. The first is an integer called first, and the second is a double called
second.

R-1.4 What are the contents of string s after executing the following statements.

string s = "abc";
string t = "cde";
s += s + t[1] + s;

R-1.5 Consider the expression y + 2 * z ++ < 3 - w / 5. Add parentheses
to show the precise order of evaluation given the C++ rules for operator
precedence.

R-1.6 Consider the following attempt to allocate a 10-element array of pointers
to doubles and initialize the associated double values to 0.0. Rewrite the
following (incorrect) code to do this correctly. (Hint: Storage for the
doubles needs to be allocated.)

double* dp[10]
for (int i = 0; i < 10; i++) dp[i] = 0.0;

R-1.7 Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

R-1.8 Write a short C++ function, isMultiple, that takes two positive long values,
n and m, and returns true if and only if n is a multiple of m, that is, n = mi
for some integer i.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 61 — #83
i

i

i

i

i

i

1.8. Exercises 61

R-1.9 Write a C++ function printArray(A, m, n) that prints an m× n two-
dimensional array A of integers, declared to be “int** A,” to the standard
output. Each of the m rows should appear on a separate line.

R-1.10 What (if anything) is different about the behavior of the following two
functions f and g that increment a variable and print its value?

void f(int x)
{ std::cout << ++x; }

void g(int& x)
{ std::cout << ++x; }

R-1.11 Write a C++ class, Flower, that has three member variables of type string,
int, and float, which respectively represent the name of the flower, its
number of pedals, and price. Your class must include a constructor method
that initializes each variable to an appropriate value, and your class should
include functions for setting the value of each type, and getting the value
of each type.

R-1.12 Modify the CreditCard class from Code Fragment 1.3 to check that the
price argument passed to function chargeIt and the payment argument
passed to function makePayment are positive.

R-1.13 Modify the CreditCard class from Code Fragment 1.2 to charge interest
on each payment.

R-1.14 Modify the CreditCard class from Code Fragment 1.2 to charge a late fee
for any payment that is past its due date.

R-1.15 Modify the CreditCard class from Code Fragment 1.2 to include modifier
functions that allow a user to modify internal variables in a CreditCard
class in a controlled manner.

R-1.16 Modify the declaration of the first for loop in the Test class in Code Frag-
ment 1.4 so that its charges will eventually cause exactly one of the three
credit cards to go over its credit limit. Which credit card is it?

R-1.17 Write a C++ class, AllKinds, that has three member variables of type int,
long, and float, respectively. Each class must include a constructor func-
tion that initializes each variable to a nonzero value, and each class should
include functions for setting the value of each type, getting the value of
each type, and computing and returning the sum of each possible combi-
nation of types.

R-1.18 Write a short C++ function, isMultiple, that takes two long values, n and
m, and returns true if and only if n is a multiple of m, that is, n = m · i for
some integer i.

R-1.19 Write a short C++ function, isTwoPower, that takes an int i and returns
true if and only if i is a power of 2. Do not use multiplication or division,
however.

i

i

“main” — 2011/1/13 — 9:10 — page 62 — #84
i

i

i

i

i

i

62 Chapter 1. A C++ Primer

R-1.20 Write a short C++ function that takes an integer n and returns the sum of
all the integers smaller than n.

R-1.21 Write a short C++ function that takes an integer n and returns the sum of
all the odd integers smaller than n.

R-1.22 Write a short C++ function that takes a positive double value x and returns
the number of times we can divide x by 2 before we get a number less
than 2.

Creativity

C-1.1 Write a pseudo-code description of a method that reverses an array of n
integers, so that the numbers are listed in the opposite order than they were
before, and compare this method to an equivalent C++ method for doing
the same thing.

C-1.2 Write a short C++ function that takes an array of int values and determines
if there is a pair of numbers in the array whose product is even.

C-1.3 Write a C++ function that takes an STL vector of int values and deter-
mines if all the numbers are different from each other (that is, they are
distinct).

C-1.4 Write a C++ function that takes an STL vector of int values and prints all
the odd values in the vector.

C-1.5 Write a C++ function that takes an array containing the set of all integers
in the range 1 to 52 and shuffles it into random order. Use the built-in func-
tion rand, which returns a pseudo-random integer each time it is called.
Your function should output each possible order with equal probability.

C-1.6 Write a short C++ program that outputs all possible strings formed by
using each of the characters ’a’, ’b’, ’c’, ’d’, ’e’, and ’f’ exactly
once.

C-1.7 Write a short C++ program that takes all the lines input to standard input
and writes them to standard output in reverse order. That is, each line is
output in the correct order, but the ordering of the lines is reversed.

C-1.8 Write a short C++ program that takes two arguments of type STL vec-
tor<double>, a and b, and returns the element-by-element product of a
and b. That is, it returns a vector c of the same length such that c[i] =
a[i] ·b[i].

C-1.9 Write a C++ class Vector2, that stores the (x,y) coordinates of a two-
dimensional vector, where x and y are of type double. Show how to
override various C++ operators in order to implement the addition of two
vectors (producing a vector result), the multiplication of a scalar times
a vector (producing a vector result), and the dot product of two vectors
(producing a double result).

i

i

“main” — 2011/1/13 — 9:10 — page 63 — #85
i

i

i

i

i

i

1.8. Exercises 63

C-1.10 Write an efficient C++ function that takes any integer value i and returns
2i, as a long value. Your function should not multiply 2 by itself i times;
there are much faster ways of computing 2i.

C-1.11 The greatest common divisor, or GCD, of two positive integers n and m is
the largest number j, such that n and m are both multiples of j. Euclid pro-
posed a simple algorithm for computing GCD(n,m), where n > m, which
is based on a concept known as the Chinese Remainder Theorem. The
main idea of the algorithm is to repeatedly perform modulo computations
of consecutive pairs of the sequence that starts (n,m, . . .), until reaching
zero. The last nonzero number in this sequence is the GCD of n and m.
For example, for n = 80,844 and m = 25,320, the sequence is as follows:

80,844 mod 25,320 = 4,884

25,320 mod 4,884 = 900

4,884 mod 900 = 384

900 mod 384 = 132

384 mod 132 = 120

132 mod 120 = 12

120 mod 12 = 0

So, GCD of 80,844 and 25,320 is 12. Write a short C++ function to
compute GCD(n,m) for two integers n and m.

Projects

P-1.1 A common punishment for school children is to write out the same sen-
tence multiple times. Write a C++ stand-alone program that will write
out the following sentence one hundred times: “I will always use object-
oriented design.” Your program should number each of the sentences and
it should “accidentally” make eight different random-looking typos at var-
ious points in the listing, so that it looks like a human typed it all by hand.

P-1.2 Write a C++ program that, when given a starting day (Sunday through
Saturday) as a string, and a four-digit year, prints a calendar for that year.
Each month should contain the name of the month, centered over the dates
for that month and a line containing the names of the days of the week,
running from Sunday to Saturday. Each week should be printed on a sep-
arate line. Be careful to check for a leap year.

P-1.3 The birthday paradox says that the probability that two people in a room
will have the same birthday is more than half as long as the number of

i

i

“main” — 2011/1/13 — 9:10 — page 64 — #86
i

i

i

i

i

i

64 Chapter 1. A C++ Primer

people in the room (n), is more than 23. This property is not really a para-
dox, but many people find it surprising. Design a C++ program that can
test this paradox by a series of experiments on randomly generated birth-
days, which test this paradox for n = 5,10,15,20, . . . ,100. You should run
at least 10 experiments for each value of n and it should output, for each
n, the number of experiments for that n, such that two people in that test
have the same birthday.

Chapter Notes

For more detailed information about the C++ programming language and the Standard
Template Library, we refer the reader to books by Stroustrup [91], Lippmann and La-
joie [67], Musser and Saini [81], and Horstmann [47]. Lippmann also wrote a short in-
troduction to C++ [66]. For more advanced information of how to use C++’s features in
the most effective manner, consult the books by Meyers [77, 76]. For an introduction to
C++ assuming a background of C see the book by Pohl [84]. For an explanation of the
differences between C++ and Java see the book by Budd [17].

i

i

“main” — 2011/1/13 — 9:10 — page 65 — #87
i

i

i

i

i

i

Chapter

2 Object-Oriented Design

Contents

2.1 Goals, Principles, and Patterns 66

2.1.1 Object-Oriented Design Goals 66

2.1.2 Object-Oriented Design Principles 67

2.1.3 Design Patterns . 70

2.2 Inheritance and Polymorphism 71

2.2.1 Inheritance in C++ 71

2.2.2 Polymorphism . 78

2.2.3 Examples of Inheritance in C++ 79

2.2.4 Multiple Inheritance and Class Casting 84

2.2.5 Interfaces and Abstract Classes 87

2.3 Templates . 90

2.3.1 Function Templates 90

2.3.2 Class Templates . 91

2.4 Exceptions . 93

2.4.1 Exception Objects 93

2.4.2 Throwing and Catching Exceptions 94

2.4.3 Exception Specification 96

2.5 Exercises . 98

i

i

“main” — 2011/1/13 — 9:10 — page 66 — #88
i

i

i

i

i

i

66 Chapter 2. Object-Oriented Design

2.1 Goals, Principles, and Patterns

As the name implies, the main “actors” in the object-oriented design paradigm are
called objects. An object comes from a class, which is a specification of the data
members that the object contains, as well as the member functions (also called
methods or operations) that the object can execute. Each class presents to the out-
side world a concise and consistent view of the objects that are instances of this
class, without going into too much unnecessary detail or giving others access to the
inner workings of the objects. This view of computing is intended to fulfill several
goals and incorporate several design principles, which we discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusabil-
ity. (See Figure 2.1.)

Robustness Adaptability Reusability

Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means
that a program produces the right output for all the anticipated inputs in the pro-
gram’s application. In addition, we want software to be robust, that is, capable of
handling unexpected inputs that are not explicitly defined for its application. For
example, if a program is expecting a positive integer (for example, representing the
price of an item) and instead is given a negative integer, then the program should be
able to recover gracefully from this error. More importantly, in life-critical appli-
cations, where a software error can lead to injury or loss of life, software that is not
robust could be deadly. This point was driven home in the late 1980s in accidents
involving Therac-25, a radiation-therapy machine, which severely overdosed six
patients between 1985 and 1987, some of whom died from complications resulting
from their radiation overdose. All six accidents were traced to software errors.

i

i

“main” — 2011/1/13 — 9:10 — page 67 — #89
i

i

i

i

i

i

2.1. Goals, Principles, and Patterns 67

Adaptability

Modern software applications, such as Web browsers and Internet search engines,
typically involve large programs that are used for many years. Software therefore
needs to be able to evolve over time in response to changing conditions in its envi-
ronment. Thus, another important goal of quality software is that it achieves adapt-
ability (also called evolvability). Related to this concept is portability, which is the
ability of software to run with minimal change on different hardware and operat-
ing system platforms. An advantage of writing software in C++ is the portability
provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that
is, the same code should be usable as a component of different systems in various
applications. Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that makes it easily
reusable in future applications. Such reuse should be done with care, however, for
one of the major sources of software errors in the Therac-25 came from inappropri-
ate reuse of Therac-20 software (which was not object-oriented and not designed
for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to
facilitate the goals outlined above, are the following (see Figure 2.2):

• Abstraction
• Encapsulation
• Modularity.

Abstraction Encapsulation Modularity

Figure 2.2: Principles of object-oriented design.

i

i

“main” — 2011/1/13 — 9:10 — page 68 — #90
i

i

i

i

i

i

68 Chapter 2. Object-Oriented Design

Abstraction

The notion of abstraction is to distill a complicated system down to its most fun-
damental parts and describe these parts in a simple, precise language. Typically,
describing the parts of a system involves naming them and explaining their func-
tionality. Applying the abstraction paradigm to the design of data structures gives
rise to abstract data types (ADTs). An ADT is a mathematical model of a data
structure that specifies the type of the data stored, the operations supported on them,
and the types of the parameters of the operations. An ADT specifies what each op-
eration does, but not how it does it. In C++, the functionality of a data structure
is expressed through the public interface of the associated class or classes that de-
fine the data structure. By public interface, we mean the signatures (names, return
types, and argument types) of a class’s public member functions. This is the only
part of the class that can be accessed by a user of the class.

An ADT is realized by a concrete data structure, which is modeled in C++
by a class. A class defines the data being stored and the operations supported by
the objects that are instances of the class. Also, unlike interfaces, classes specify
how the operations are performed in the body of each function. A C++ class is
said to implement an interface if its functions include all the functions declared
in the interface, thus providing a body for them. However, a class can have more
functions than those of the interface.

Encapsulation

Another important principle of object-oriented design is the concept of encapsula-
tion, which states that different components of a software system should not reveal
the internal details of their respective implementations. One of the main advantages
of encapsulation is that it gives the programmer freedom in implementing the de-
tails of a system. The only constraint on the programmer is to maintain the abstract
interface that outsiders see.

Modularity

In addition to abstraction and encapsulation, a fundamental principle of object-
oriented design is modularity. Modern software systems typically consist of sev-
eral different components that must interact correctly in order for the entire system
to work properly. Keeping these interactions straight requires that these different
components be well organized. In object-oriented design, this code structuring
approach centers around the concept of modularity. Modularity refers to an orga-
nizing principle for code in which different components of a software system are
divided into separate functional units.

i

i

“main” — 2011/1/13 — 9:10 — page 69 — #91
i

i

i

i

i

i

2.1. Goals, Principles, and Patterns 69

Hierarchical Organization

The structure imposed by modularity helps to enable software reusability. If soft-
ware modules are written in an abstract way to solve general problems, then mod-
ules can be reused when instances of these same general problems arise in other
contexts.

For example, the structural definition of a wall is the same from house to house,
typically being defined in terms of vertical studs, spaced at fixed-distance intervals,
etc. Thus, an organized architect can reuse his or her wall definitions from one
house to another. In reusing such a definition, some parts may require redefinition,
for example, a wall in a commercial building may be similar to that of a house, but
the electrical system and stud material might be different.

A natural way to organize various structural components of a software package
is in a hierarchical fashion, which groups similar abstract definitions together in
a level-by-level manner that goes from specific to more general as one traverses
up the hierarchy. A common use of such hierarchies is in an organizational chart
where each link going up can be read as “is a,” as in “a ranch is a house is a
building.” This kind of hierarchy is useful in software design, for it groups together
common functionality at the most general level, and views specialized behavior as
an extension of the general one.

Building

Apartment Commercial
Building

High-rise
Apartment

Low-rise
Apartment

Two-story
House

Ranch Skyscraper

House

Figure 2.3: An example of an “is a” hierarchy involving architectural buildings.

i

i

“main” — 2011/1/13 — 9:10 — page 70 — #92
i

i

i

i

i

i

70 Chapter 2. Object-Oriented Design

2.1.3 Design Patterns

One of the advantages of object-oriented design is that it facilitates reusable, ro-
bust, and adaptable software. Designing good code takes more than simply under-
standing object-oriented methodologies, however. It requires the effective use of
object-oriented design techniques.

Computing researchers and practitioners have developed a variety of organiza-
tional concepts and methodologies for designing quality object-oriented software
that is concise, correct, and reusable. Of special relevance to this book is the con-
cept of a design pattern, which describes a solution to a “typical” software design
problem. A pattern provides a general template for a solution that can be applied in
many different situations. It describes the main elements of a solution in an abstract
way that can be specialized for a specific problem at hand. It consists of a name,
which identifies the pattern, a context, which describes the scenarios for which this
pattern can be applied, a template, which describes how the pattern is applied, and
a result, which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be
consistently applied to implementations of data structures and algorithms. These
design patterns fall into two groups—patterns for solving algorithm design prob-
lems and patterns for solving software engineering problems. Some of the algo-
rithm design patterns we discuss include the following:

• Recursion (Section 3.5)
• Amortization (Section 6.1.3)
• Divide-and-conquer (Section 11.1.1)
• Prune-and-search, also known as decrease-and-conquer (Section 11.5.1)
• Brute force (Section 12.3.1)
• The greedy method (Section 12.4.2)
• Dynamic programming (Section 12.2)

Likewise, some of the software engineering design patterns we discuss include:

• Position (Section 6.2.1)
• Adapter (Section 5.3.4)
• Iterator (Section 6.2.1)
• Template method (Sections 7.3.7, 11.4, and 13.3.3)
• Composition (Section 8.1.2)
• Comparator (Section 8.1.2)
• Decorator (Section 13.3.1)

Rather than explain each of these concepts here, however, we introduce them
throughout the text as noted above. For each pattern, be it for algorithm engineering
or software engineering, we explain its general use and we illustrate it with at least
one concrete example.

i

i

“main” — 2011/1/13 — 9:10 — page 71 — #93
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 71

2.2 Inheritance and Polymorphism

To take advantage of hierarchical relationships, which are common in software
projects, the object-oriented design approach provides ways of reusing code.

2.2.1 Inheritance in C++

The object-oriented paradigm provides a modular and hierarchical organizing struc-
ture for reusing code through a technique called inheritance. This technique allows
the design of generic classes that can be specialized to more particular classes, with
the specialized classes reusing the code from the generic class. For example, sup-
pose that we are designing a set of classes to represent people at a university. We
might have a generic class Person, which defines elements common to all people.
We could then define specialized classes such as Student, Administrator, and In-
structor, each of which provides specific information about a particular type of
person.

A generic class is also known as a base class, parent class, or superclass.
It defines “generic” members that apply in a multitude of situations. Any class
that specializes or extends a base class need not give new implementations for the
general functions, for it inherits them. It should only define those functions that
are specialized for this particular class. Such a class is called a derived class, child
class, or subclass.

Let us consider an example to illustrate these concepts. Suppose that we are
writing a program to deal with people at a university. Below we show a partial
implementation of a generic class for a person. We use “// ...” to indicate code
that is irrelevant to the example and so has been omitted.

class Person { // Person (base class)
private:

string name; // name
string idNum; // university ID number

public:
// . . .
void print(); // print information
string getName(); // retrieve name
};

Suppose we next wish to define a student object. We can derive our class Stu-

i

i

“main” — 2011/1/13 — 9:10 — page 72 — #94
i

i

i

i

i

i

72 Chapter 2. Object-Oriented Design

dent from class Person as shown below.

class Student : public Person { // Student (derived from Person)
private:

string major; // major subject
int gradYear; // graduation year

public:
// . . .
void print(); // print information
void changeMajor(const string& newMajor); // change major
};

The “public Person” phrase indicates that the Student is derived from the Per-
son class. (The keyword “public” specifies public inheritance. We discuss other
types of inheritance later.) When we derive classes in this way, there is an implied
“is a” relationship between them. In this case, a Student “is a” Person. In partic-
ular, a Student object inherits all the member data and member functions of class
Person in addition to providing its own members. The relationship between these
two classes is shown graphically in a class inheritance diagram in Figure 2.4.

+print() : void

+getName() : string

-name : string

-ssn : string

Person

+print() : void

+changeMajor(in newMajor : string) : void

-major : string

-gradYear : int

Student

Figure 2.4: A class inheritance diagram, showing a base class Person and derived
class Student. Entries tagged with “–” are private and entries tagged with “+” are
public. Each block of the diagram consists of three parts: the class name, the class
member variables, and the class member functions. The type (or return type) of
each member is indicated after the colon (“:”). The arrow indicates that Student is
derived from Person.

i

i

“main” — 2011/1/13 — 9:10 — page 73 — #95
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 73

Member Functions

An object of type Person can access the public members of Person. An object of
type Student can access the public members of both classes. If a Student object
invokes the shared print function, it will use its own version by default. We use
the class scope operator (::) to specify which class’s function is used, as in Per-
son::print and Student::print. Note that an object of type Person cannot access
members of the base type, and thus it is not possible for a Person object to invoke
the changeMajor function of class Student.

Person person("Mary", "12-345"); // declare a Person
Student student("Bob", "98-764", "Math", 2012); // declare a Student

cout << student.getName() << endl; // invokes Person::getName()
person.print(); // invokes Person::print()
student.print(); // invokes Student::print()
person.changeMajor("Physics"); // ERROR!
student.changeMajor("English"); // okay

C++ programmers often find it useful for a derived class to explicitly invoke a
member function of a base class. For example, in the process of printing informa-
tion for a student, it is natural to first print the information of the Person base class,
and then print information particular to the student. Performing this task is done
using the class scope operator.

void Person::print() { // definition of Person print
cout << "Name " << name << endl;
cout << "IDnum " << idNum << endl;
}

void Student::print() { // definition of Student print
Person::print(); // first print Person information
cout << "Major " << major << endl;
cout << "Year " << gradYear << endl;
}

Without the “Person::” specifier used above, the Student::print function would
call itself recursively, which is not what we want.

Protected Members

Even though class Student is inherited from class Person, member functions of
Student do not have access to private members of Person. For example, the fol-
lowing is illegal.

void Student::printName() {
cout << name << ’\n’; // ERROR! name is private to Person
}

i

i

“main” — 2011/1/13 — 9:10 — page 74 — #96
i

i

i

i

i

i

74 Chapter 2. Object-Oriented Design

Special access privileges for derived classes can be provided by declaring mem-
bers to be “protected.” A protected member is “public” to all classes derived from
this one, but “private” to all other functions. From a syntactic perspective, the key-
word protected behaves in the same way as the keyword private and public. In
the class example above, had we declared name to be protected rather than private,
the above function printName would work fine.

Although C++ makes no requirements on the order in which the various sec-
tions of a class appear, there are two common ways of doing it. The first is to
declare public members first and private members last. This emphasizes the ele-
ments that are important to a user of the class. The other way is to present private
members first and public members last. This tends to be easier to read for an im-
plementor. Of course, clarity is a more important consideration than adherence to
any standard.

Illustrating Class Protection

Consider for example, three classes: a base class Base, a derived class Derived, and
an unrelated class Unrelated. The base class defines three integer members, one of
each access type.

class Base {
private: int priv;
protected: int prot;
public: int publ;
};

class Derived: public Base {
void someMemberFunction() {

cout << priv; // ERROR: private member
cout << prot; // okay
cout << publ; // okay
}
};

class Unrelated {
Base X;

void anotherMemberFunction() {
cout << X.priv; // ERROR: private member
cout << X.prot; // ERROR: protected member
cout << X.publ; // okay
}
};

When designing a class, we should give careful thought to the access privi-
leges we give each member variable or function. Member variables are almost

i

i

“main” — 2011/1/13 — 9:10 — page 75 — #97
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 75

always declared to be private or at least protected, since they determine the details
of the class’s implementation. A user of the class can access only the public class
members, which consist of the principal member functions for accessing and ma-
nipulating class objects. Finally, protected members are commonly used for utility
functions, which may be useful to derived classes. We will see many examples of
these three access types in the examples appearing in later chapters.

Constructors and Destructors

We saw in Section 1.5.2, that when a class object is created, the class’s constructor
is called. When a derived class is constructed, it is the responsibility of this class’s
constructor to take care that the appropriate constructor is called for its base class.
Class hierarchies in C++ are constructed bottom-up: base class first, then its mem-
bers, then the derived class itself. For this reason, the constructor for a base class
needs to be called in the initializer list (see Section 1.5.2) of the derived class. The
example below shows how constructors might be implemented for the Person and
Student classes.

Person::Person(const string& nm, const string& id)
: name(nm), // initialize name

idNum(id) { } // initialize ID number

Student::Student(const string& nm, const string& id,
const string& maj, int year)

: Person(nm, id), // initialize Person members
major(maj), // initialize major
gradYear(year) { } // initialize graduation year

Only the Person(nm, id) call has to be in the initializer list. The other initializations
could be placed in the constructor function body ({...}), but putting class initializa-
tions in the initialization list is generally more efficient. Suppose that we create a
new student object.

Student* s = new Student("Carol", "34-927", "Physics", 2014);

Note that the constructor for the Student class first makes a function call to Per-
son(”Carol”, ”34-927”) to initialize the Person base class, and then it initializes
the major to ”Physics” and the year to 2014.

Classes are destroyed in the reverse order from their construction, with derived
classes destroyed before base classes. For example, suppose that we declared de-
structors for these two classes. (Note that destructors are not really needed in this
case, because neither class allocates storage or other resources.)

Person::˜Person() { . . . } // Person destructor
Student::˜Student() { . . . } // Student destructor

i

i

“main” — 2011/1/13 — 9:10 — page 76 — #98
i

i

i

i

i

i

76 Chapter 2. Object-Oriented Design

If we were to destroy our student object, the Student destructor would be called
first, followed by the Person destructor. Unlike constructors, the Student destructor
does not need to (and is not allowed to) call the Person destructor. This happens
automatically.

delete s; // calls ˜Student() then ˜Person()

Static Binding

When a class is derived from a base class, as with Student and Person, the derived
class becomes a subtype of the base class, which means that we can use the derived
class wherever the base class is acceptable. For example, suppose that we create an
array of pointers to university people.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)

Since getName is common to both classes, it can be invoked on either elements
of the array. A more interesting issue arises if we attempt to invoke print. Since
pp[1] holds the address of a Student object, we might think that the function Stu-
dent::print would be called. Surprisingly, the function Person::print is called in
both cases, in spite of the apparent difference in the two objects. Furthermore, pp[i]
is not even allowed to access Student member functions.

cout << pp[1]−>getName() << ’\n’; // okay
pp[0]−>print(); // calls Person::print()
pp[1]−>print(); // also calls Person::print() (!)
pp[1]−>changeMajor("English"); // ERROR!

The reason for this apparently anomalous behavior is called static binding—when
determining which member function to call, C++’s default action is to consider an
object’s declared type, not its actual type. Since pp[1] is declared to be a pointer to
a Person, the members for that class are used. Nonetheless, C++ provides a way to
achieve the desired dynamic effect using the technique we describe next.

Dynamic Binding and Virtual Functions

As we saw above, C++ uses static binding by default to determine which member
function to call for a derived class. Alternatively, in dynamic binding, an object’s
contents determine which member function is called. To specify that a member
function should use dynamic binding, the keyword “virtual” is added to the func-
tion’s declaration. Let us redefine our Person and Student, but this time we will

i

i

“main” — 2011/1/13 — 9:10 — page 77 — #99
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 77

declare the print function to be virtual.

class Person { // Person (base class)
virtual void print() { . . . } // print (details omitted)
// . . .
};
class Student : public Person { // Student (derived from Person)

virtual void print() { . . . } // print (details omitted)
// . . .
};

Let us consider the effect of this change on our array example, thereby illus-
trating the usefulness of dynamic binding.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)
pp[0]−>print(); // calls Person::print()
pp[1]−>print(); // calls Student::print()

In this case, pp[1] contains a pointer to an object of type Student, and by the
power of dynamic binding with virtual functions, the function Student::print will
be called. The decision as to which function to call is made at run-time, hence the
name dynamic binding.

Virtual Destructors

There is no such thing as a virtual constructor. Such a concept does not make any
sense. Virtual destructors, however, are very important. In our array example, since
we store objects of both types Person and Student in the array, it is important that
the appropriate destructor be called for each object. However, if the destructor is
nonvirtual, then only the Person destructor will be called in each case. In our ex-
ample, this choice is not a problem. But if the Student class had allocated memory
dynamically, the fact that the wrong destructor is called would result in a memory
leak (see Section 1.5.3).

When writing a base class, we cannot know, in general, whether a derived class
may need to implement a destructor. So, to be safe, when defining any virtual
functions, it is recommended that a virtual destructor be defined as well. This
destructor may do nothing at all, and that is fine. It is provided just in case a
derived class needs to define its own destructor. This principle is encapsulated in
the following rule of thumb.

Remember If a base class defines any virtual functions, it should define a virtual de-
structor, even if it is empty.

i

i

“main” — 2011/1/13 — 9:10 — page 78 — #100
i

i

i

i

i

i

78 Chapter 2. Object-Oriented Design

Dynamic binding is a powerful technique, since it allows us to create an object,
such as the array pp above, whose behavior varies depending on its contents. This
technique is fundamental to the concept of polymorphism, which we discuss in the
next section.

2.2.2 Polymorphism

Literally, “polymorphism” means “many forms.” In the context of object-oriented
design, it refers to the ability of a variable to take different types. Polymorphism is
typically applied in C++ using pointer variables. In particular, a variable p declared
to be a pointer to some class S implies that p can point to any object belonging to
any derived class T of S.

Now consider what happens if both of these classes define a virtual member
function a, and let us consider which of these functions is called when we invoke
p->a(). Since dynamic binding is used, if p points to an object of type T, then
it invokes the function T::a. In this case, T is said to override function a from S.
Alternatively, if p points to an object of type S, it will invoke S::a.

Polymorphism such as this is useful because the caller of p->a() does not have
to know whether the pointer p refers to an instance of T or S in order to get the a
function to execute correctly. A pointer variable p that points to a class object that
has at least one virtual function is said to be polymorphic. That is, p can take many
forms, depending on the specific class of the object it is referring to. This kind of
functionality allows a specialized class T to extend a class S, inherit the “generic”
functions from class S, and redefine other functions from class S to account for
specific properties of objects of class T.

Inheritance, polymorphism, and function overloading support reusable soft-
ware. We can define classes that inherit generic member variables and functions
and can then define new, more specific variables and functions that deal with spe-
cial aspects of objects of the new class. For example, suppose that we defined a
generic class Person and then derived three classes Student, Administrator, and
Instructor. We could store pointers to all these objects in a list of type Person*.
When we invoke a virtual member function, such as print, to any element of the
list, it will call the function appropriate to the individual element’s type.

Specialization

There are two primary ways of using inheritance, one of which is specialization.
In using specialization, we are specializing a general class to a particular derived
class. Such derived classes typically possess an “is a” relationship to their base
class. The derived classes inherit all the members of the base class. For each
inherited function, if that function operates correctly, independent of whether it
is operating for a specialization, no additional work is needed. If, on the other

i

i

“main” — 2011/1/13 — 9:10 — page 79 — #101
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 79

hand, a general function of the base class would not work correctly on the derived
class, then we should override the function to have the correct functionality for the
derived class.

For example, we could have a general class, Dog, which has a function drink
and a function sniff. Specializing this class to a Bloodhound class would probably
not require that we override the drink function, as all dogs drink pretty much the
same way. But it could require that we override the sniff function, as a Bloodhound
has a much more sensitive sense of smell than a “generic” dog. In this way, the
Bloodhound class specializes the functions of its base class, Dog.

Extension

Another way of using inheritance is extension. In using extension, we reuse the
code written for functions of the base class, but we then add new functions that are
not present in the base class, so as to extend its functionality. For example, returning
to our Dog class, we might wish to create a derived class, BorderCollie, which
inherits all the generic functions of the Dog class, but then adds a new function,
herd, since Border Collies have a herding instinct that is not present in generic
dogs, thereby extending the functionality of a generic dog.

2.2.3 Examples of Inheritance in C++

To make the concepts of inheritance and polymorphism more concrete, let us con-
sider a simple example in C++. We consider an example of several classes that print
numeric progressions. A numeric progression is a sequence of numbers, where the
value of each number depends on one or more of the previous values. For example,
an arithmetic progression determines a next number by addition of a fixed incre-
ment. A geometric progression determines a next number by multiplication by a
fixed base value. In any case, a progression requires a way of defining its first value
and it needs a way of identifying the current value as well.

Arithmetic progression (increment 1) 0,1,2,3,4,5, . . .
Arithmetic progression (increment 3) 0,3,6,9,12, . . .
Geometric progression (base 2) 1,2,4,8,16,32, . . .
Geometric progression (base 3) 1,3,9,27,81, . . .

We begin by defining a class, Progression, which is declared in the code frag-
ment below. It defines the “generic” members and functions of a numeric progres-
sion. Specifically, it defines the following two long-integer variable members:
• first: first value of the progression
• cur: current value of the progression

Because we want these variables to be accessible from derived classes, we declare
them to be protected.

i

i

“main” — 2011/1/13 — 9:10 — page 80 — #102
i

i

i

i

i

i

80 Chapter 2. Object-Oriented Design

We define a constructor, Progression, a destructor, ~Progression, and the fol-
lowing three member functions.

firstValue(): Reset the progression to the first value and return it.

nextValue(): Step the progression to the next value and return it.

printProgression(n): Reset the progression and print its first n values.

class Progression { // a generic progression
public:

Progression(long f = 0) // constructor
: first(f), cur(f) { }

virtual ˜Progression() { }; // destructor
void printProgression(int n); // print the first n values

protected:
virtual long firstValue(); // reset
virtual long nextValue(); // advance

protected:
long first; // first value
long cur; // current value
};

The member function printProgression is public and is defined below.

void Progression::printProgression(int n) { // print n values
cout << firstValue(); // print the first
for (int i = 2; i <= n; i++) // print 2 through n

cout << ’ ’ << nextValue();
cout << endl;
}

In contrast, the member functions firstValue and nextValue are intended as
utilities that will only be invoked from within this class or its derived classes. For
this reason, we declare them to be protected. They are defined below.

long Progression::firstValue() { // reset
cur = first;
return cur;
}
long Progression::nextValue() { // advance

return ++cur;
}

It is our intention that, in order to generate different progressions, derived
classes will override one or both of these functions. For this reason, we have de-
clared both to be virtual. Because there are virtual functions in our class, we have
also provided a virtual destructor in order to be safe. (Recall the discussion of vir-
tual destructors from Section 2.2.1.) At this point the destructor does nothing, but
this might be overridden by derived classes.

i

i

“main” — 2011/1/13 — 9:10 — page 81 — #103
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 81

Arithmetic Progression Class

Let us consider a class ArithProgression, shown below. We add a new member
variable inc, which provides the value to be added to each new element of the pro-
gression. We also override the member function nextValue to produce the desired
new behavior.

class ArithProgression : public Progression { // arithmetic progression
public:

ArithProgression(long i = 1); // constructor
protected:

virtual long nextValue(); // advance
protected:

long inc; // increment
};

The constructor and the new member function nextValue are defined below.
Observe that the constructor invokes the base class constructor Progression to ini-
tialize the base object in addition to initializing the value of inc.

ArithProgression::ArithProgression(long i) // constructor
: Progression(), inc(i) { }

long ArithProgression::nextValue() { // advance by adding
cur += inc;
return cur;
}

Polymorphism is at work here. When a Progression pointer is pointing to an
ArithProgression object, it will use the ArithProgression functions firstValue and
nextValue. Even though the function printProgression is not virtual, it makes use of
this polymorphism. Its calls to the firstValue and nextValue functions are implicitly
for the “current” object, which will be of the ArithProgression class.

A Geometric Progression Class

Let us next define GeomProgression that implements a geometric progression. As
with the ArithProgression class, this new class inherits the member variables first
and cur, and the member functions firstValue and printProgression from Progres-
sion. We add a new member variable base, which holds the base value to be multi-
plied to form each new element of the progression. The constructor initializes the
base class with a starting value of 1 rather than 0. The function nextValue applies

i

i

“main” — 2011/1/13 — 9:10 — page 82 — #104
i

i

i

i

i

i

82 Chapter 2. Object-Oriented Design

multiplication to obtain the next value.

class GeomProgression : public Progression { // geometric progression
public:

GeomProgression(long b = 2); // constructor
protected:

virtual long nextValue(); // advance
protected:

long base; // base value
};

GeomProgression::GeomProgression(long b) // constructor
: Progression(1), base(b) { }

long GeomProgression::nextValue() { // advance by multiplying
cur *= base;
return cur;
}

A Fibonacci Progression Class

As a further example, we define a FibonacciProgression class that represents an-
other kind of progression, the Fibonacci progression, where the next value is de-
fined as the sum of the current and previous values. We show the FibonacciPro-
gression class below. Recall that each element of a Fibonacci series is the sum of
the previous two elements.

Fibonacci progression (first = 0, second = 1): 0,1,1,2,3,5,8, . . .

In addition to the current value cur in the Progression base class, we also store
here the value of the previous element, denoted prev. The constructor is given the
first two elements of the sequence. The member variable first is inherited from the
base class. We add a new member variable second, to store this second element.
The default values for the first and second elements are 0 and 1, respectively.

class FibonacciProgression : public Progression { // Fibonacci progression
public:

FibonacciProgression(long f = 0, long s = 1); // constructor
protected:

virtual long firstValue(); // reset
virtual long nextValue(); // advance

protected:
long second; // second value
long prev; // previous value
};

The initialization process is a bit tricky because we need to create a “fictitious”
element that precedes the first element. Note that setting this element to the value

i

i

“main” — 2011/1/13 — 9:10 — page 83 — #105
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 83

second−first achieves the desired result. This change is reflected both in the con-
structor and the overridden member function firstValue. The overridden member
function nextValue copies the current value to the previous value. We need to store
the old previous value in a temporary variable.

FibonacciProgression::FibonacciProgression(long f, long s)
: Progression(f), second(s), prev(second − first) { }

long FibonacciProgression::firstValue() { // reset
cur = first;
prev = second − first; // create fictitious prev
return cur;
}

long FibonacciProgression::nextValue() { // advance
long temp = prev;
prev = cur;
cur += temp;
return cur;
}

Combining the Progression Classes

In order to visualize how the three different progression classes are derived from
the generic Progression class, we give their inheritance diagram in Figure 2.5.

Figure 2.5: Inheritance diagram for class Progression and its subclasses.

i

i

“main” — 2011/1/13 — 9:10 — page 84 — #106
i

i

i

i

i

i

84 Chapter 2. Object-Oriented Design

To complete our example, we define the main function shown in Code Frag-
ment 2.1, which performs a simple test of each of the three classes. In this class,
variable prog is a polymorphic array of pointers to class Progression. Since each of
its members points to an object of class ArithProgression, GeomProgression, or Fi-
bonacciProgression, the functions appropriate to the given progression are invoked
in each case. The output is shown in Code Fragment 2.2. Notice that this program
has a (unimportant) memory leak because we never deleted the allocated object.

The example presented in this section provides a simple illustration of inheri-
tance and polymorphism in C++. The Progression class, its derived classes, and the
tester program have a number of shortcomings, however, which might not be im-
mediately apparent. One problem is that the geometric and Fibonacci progressions
grow quickly, and there is no provision for handling the inevitable overflow of the
long integers involved. For example, since 340 > 263, a geometric progression with
base b = 3 will overflow a 64-bit long integer after 40 iterations. Likewise, the
94th Fibonacci number is greater than 263; hence, the Fibonacci progression will
overflow a 64-bit long integer after 94 iterations. Another problem is that we may
not allow arbitrary starting values for a Fibonacci progression. For example, do we
allow a Fibonacci progression starting with 0 and −1? Dealing with input errors or
error conditions that occur during the running of a C++ program requires that we
have some mechanism for handling them. We discuss this topic later in Section 2.4.

2.2.4 Multiple Inheritance and Class Casting

In the examples we have shown so far, a subclass has been derived from a single
base class and we didn’t have to deal with the problem of viewing an object of a
specific declared class as also being of an inherited type. We discuss some related,
more-advanced C++ programming issues in this section.

Multiple and Restricted Inheritance

In C++, we are allowed to derive a class from a number of base classes, that is, C++
allows multiple inheritance. Although multiple inheritance can be useful, espe-
cially in defining interfaces, it introduces a number of complexities. For example,
if both base classes provide a member variable with the same name or a member
function with the same declaration, the derived class must specify from which base
class the member should be used (which is complicated). For this reason, we use
single inheritance almost exclusively.

We have been using public inheritance in our previous examples, indicated by
the keyword public in specifying the base class. Remember that private base class
members are not accessible in a derived class. Protected and public members of the
base class become protected and public members of the derived class, respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 85 — #107
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 85

/** Test program for the progression classes */
int main() {

Progression* prog;
// test ArithProgression

cout << "Arithmetic progression with default increment:\n";
prog = new ArithProgression();
prog−>printProgression(10);
cout << "Arithmetic progression with increment 5:\n";
prog = new ArithProgression(5);
prog−>printProgression(10);

// test GeomProgression
cout << "Geometric progression with default base:\n";
prog = new GeomProgression();
prog−>printProgression(10);
cout << "Geometric progression with base 3:\n";
prog = new GeomProgression(3);
prog−>printProgression(10);

// test FibonacciProgression
cout << "Fibonacci progression with default start values:\n";
prog = new FibonacciProgression();
prog−>printProgression(10);
cout << "Fibonacci progression with start values 4 and 6:\n";
prog = new FibonacciProgression(4, 6);
prog−>printProgression(10);
return EXIT SUCCESS; // successful execution
}

Code Fragment 2.1: Program for testing the progression classes.

Arithmetic progression with default increment:

0 1 2 3 4 5 6 7 8 9

Arithmetic progression with increment 5:

0 5 10 15 20 25 30 35 40 45

Geometric progression with default base:

1 2 4 8 16 32 64 128 256 512

Geometric progression with base 3:

1 3 9 27 81 243 729 2187 6561 19683

Fibonacci progression with default start values:

0 1 1 2 3 5 8 13 21 34

Fibonacci progression with start values 4 and 6:

4 6 10 16 26 42 68 110 178 288

Code Fragment 2.2: Output of TestProgression program from Code Fragment 2.1.

i

i

“main” — 2011/1/13 — 9:10 — page 86 — #108
i

i

i

i

i

i

86 Chapter 2. Object-Oriented Design

C++ supports two other types of inheritance. These different types of inheritance
diminish the access rights for base class members. In protected inheritance, fields
declared to be public in the base class become protected in the child class. In
private inheritance, fields declared to be public and protected in the base class
become private in the derived class. An example is shown below.

class Base { // base class
protected: int foo;
public: int bar;
};

class Derive1 : public Base { // public inheritance
// foo is protected and bar is public
};

class Derive2 : protected Base { // protected inheritance
// both foo and bar are protected
};

class Derive3 : private Base { // public inheritance
// both foo and bar are private
};

Protected and private inheritance are not used as often as public inheritance. We
only use public inheritance in this book.

Casting in an Inheritance Hierarchy

An object variable can be viewed as being of various types, but it can be declared
as only one type. Thus, a variable’s declared type determines how it is used, and
even determines how certain functions will act on it. Enforcing that all variables
be typed and that operations declare the types they expect is called strong typing,
which helps prevent bugs. Nonetheless, we sometimes need to explicitly change, or
cast, a variable from one type to another. We have already introduced type casting
in Section 1.2.1. We now discuss how it works for classes.

To illustrate an example where we may want to perform a cast, recall our class
hierarchy consisting of a base class Person and derived class Student. Suppose
that we are storing pointers to objects of both types in an array pp. The following
attempt to change a student’s major would be flagged as an error by the compiler.

Person* pp[100]; // array of 100 Person pointers
pp[0] = new Person(. . .); // add a Person (details omitted)
pp[1] = new Student(. . .); // add a Student (details omitted)
// . . .
pp[1]−>changeMajor("English"); // ERROR!

i

i

“main” — 2011/1/13 — 9:10 — page 87 — #109
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 87

The problem is that the base class Person does not have a function changeMajor.
Notice that this is different from the case of the function print because the print
function was provided in both classes. Nonetheless, we “know” that pp[1] points to
an object of class Student, so this operation should be legal.

To access the changeMajor function, we need to cast the pp[1] pointer from
type Person* to type Student*. Because the contents of a variable are dynamic, we
need to use the C++ run-time system to determine whether this cast is legal, which
is what a dynamic cast does. The syntax of a dynamic cast is shown below.

dynamic cast < desired type > (expression)

Dynamic casting can only be applied to polymorphic objects, that is, objects
that come from a class with at least one virtual function. Below we show how to
use dynamic casting to change the major of pp[1].

Student* sp = dynamic cast<Student*>(pp[1]); // cast pp[1] to Student*
sp−>changeMajor("Chemistry"); // now changeMajor is legal

Dynamic casting is most often applied for casting pointers within the class
hierarchy. If an illegal pointer cast is attempted, then the result is a null pointer.
For example, we would get a NULL pointer from an attempt to cast pp[0] as above,
since it points to a Person object.

To illustrate the use of dynamic cast, we access all the elements of the pp array
and, for objects of (actual) type Student, change the major to “Undecided”

for (int i = 0; i < 100; i++) {
Student *sp = dynamic cast<Student*>(pp[i]);
if (sp != NULL) // cast succeeded?

sp−>changeMajor("Undecided"); // change major
}

The casting we have discussed here could also have been done using the tradi-
tional C-style cast or through a static cast (recall Section 1.2.1). Unfortunately, no
error checking would be performed in that case. An attempt to cast a Person object
pointer to a Student pointer would succeed “silently,” but any attempt to use such
a pointer would have disastrous consequences.

2.2.5 Interfaces and Abstract Classes

For two objects to interact, they must “know” about each other’s member func-
tions. To enforce this “knowledge,” the object-oriented design paradigm asks that
classes specify the application programming interface (API), or simply interface,
that their objects present to other objects. In the ADT-based approach (see Sec-
tion 2.1.2) to data structures followed in this book, an interface defining an ADT

i

i

“main” — 2011/1/13 — 9:10 — page 88 — #110
i

i

i

i

i

i

88 Chapter 2. Object-Oriented Design

is specified as a type definition and a collection of member functions for this type,
with the arguments for each function being of specified types.

Some programming languages provide a mechanism for defining ADTs. One
example is Java’s interface. An interface is a collection of function declarations
with no data and no bodies. That is, the member functions of an interface are
always empty. When a class implements an interface, it must implement all of the
member functions declared in the interface.

C++ does not provide a direct mechanism for specifying interfaces. Nonethe-
less, throughout this book we often provide informal interfaces, even though they
are not legal C++ structures. For example, a stack data structure (see Chapter 5)
is a container that supports various operations such as inserting (or pushing) an
element onto the top of the stack, removing (or popping) an element from the top
of the stack, and testing whether the stack is empty. Below we provide an example
of a minimal interface for a stack of integers.

class Stack { // informal interface – not a class
public:

bool isEmpty() const; // is the stack empty?
void push(int x); // push x onto the stack
int pop(); // pop the stack and return result
};

Abstract Classes

The above informal interface is not a valid construct in C++; it is just a documen-
tation aid. In particular, it does not contain any data members or definitions of
member functions. Nonetheless, it is useful, since it provides important informa-
tion about a stack’s public member functions and how they are called.

An abstract class in C++ is a class that is used only as a base class for inheri-
tance; it cannot be used to create instances directly. At first the idea of creating a
class that cannot be instantiated seems to be nonsense, but it is often very important.
For example, suppose that we want to define a set of geometric shape classes, say,
Circle, Rectangle, and Triangle. It is natural to derive these related classes from a
single generic base class, say, Shape. Each of the derived classes will have a virtual
member function draw, which draws the associated object. The rules of inheritance
require that we define such a function for the base class, but it is unclear what such
a function means for a generic shape.

One way to handle this would be to define Shape::draw with an empty function
body ({ }), which would be a rather unnatural solution. What is really desired
here is some way to inform the compiler that the class Shape is abstract; it is not
possible to create objects of type Shape, only its subclasses. In C++, we define
a class as being abstract by specifying that one or more members of its functions
are abstract, or pure virtual. A function is declared pure virtual by giving “=0” in

i

i

“main” — 2011/1/13 — 9:10 — page 89 — #111
i

i

i

i

i

i

2.2. Inheritance and Polymorphism 89

place of its body. C++ does not allow the creation of an object that has one or more
pure virtual functions. Thus, any derived class must provide concrete definitions
for all pure virtual functions of the base class.

As an example, recall our Progression class and consider the member func-
tion nextValue, which computes the next value in the progression. The meaning
of this function is clear for each of the derived classes: ArithProgression, Geom-
Progression, and FibonacciProgression. However, in the base class Progression
we invented a rather arbitrary default for the nextValue function. (Go back and
check it. What progression does it compute?) It would be more natural to leave
this function undefined. We show below how to make it a pure virtual member
function.

class Progression { // abstract base class
// . . .
virtual long nextValue() = 0; // pure virtual function
// . . .
};

As a result, the compiler will not allow the creation of objects of type Progres-
sion, since the function nextValue is “pure virtual.” However, its derived classes,
ArithProgression for example, can be defined because they provide a definition for
this member function.

Interfaces and Abstract Base Classes

We said above that C++ does not provide a direct mechanism for defining interfaces
for abstract data types. Nevertheless, we can use abstract base classes to achieve
much of the same purpose.

In particular, we may construct a class for an interface in which all the functions
are pure virtual as shown below for the example of a simple stack ADT.

class Stack { // stack interface as an abstract class
public:

virtual bool isEmpty() const = 0; // is the stack empty?
virtual void push(int x) = 0; // push x onto the stack
virtual int pop() = 0; // pop the stack and return result
};

A class that implements this stack interface can be derived from this abstract
base class, and then provide concrete definitions for all of these virtual functions as

i

i

“main” — 2011/1/13 — 9:10 — page 90 — #112
i

i

i

i

i

i

90 Chapter 2. Object-Oriented Design

shown below.

class ConcreteStack : public Stack { // implements Stack
public:

virtual bool isEmpty() { . . . } // implementation of members
virtual void push(int x) { . . . } // . . . (details omitted)
virtual int pop() { . . . }

private:
// . . . // member data for the implementation
};

There are practical limitations to this method of defining interfaces, so we only
use informal interfaces for the purpose of illustrating ADTs.

2.3 Templates

Inheritance is only one mechanism that C++ provides in support of polymorphism.
In this section, we consider another way—using templates.

2.3.1 Function Templates

Let us consider the following function, which returns the minimum of two integers.

int integerMin(int a, int b) // returns the minimum of a and b
{ return (a < b ? a : b); }

Such a function is very handy, so we might like to define a similar function for
computing the minimum of two variables of other types, such as long, short, float,
and double. Each such function would require a different declaration and definition,
however, and making many copies of the same function is an error-prone solution,
especially for longer functions.

C++ provides an automatic mechanism, called the function template, to pro-
duce a generic function for an arbitrary type T. A function template provides a
well-defined pattern from which a concrete function may later be formally defined
or instantiated. The example below defines a genericMin function template.

template <typename T>
T genericMin(T a, T b) { // returns the minimum of a and b

return (a < b ? a : b);
}

The declaration takes the form of the keyword “template” followed by the notation
<typename T>, which is the parameter list for the template. In this case, there is

i

i

“main” — 2011/1/13 — 9:10 — page 91 — #113
i

i

i

i

i

i

2.3. Templates 91

just one parameter T. The keyword “typename” indicates that T is the name of
some type. (Older versions of C++ do not support this keyword and instead the
keyword “class” must be used.) We can have other types of template parameters,
integers for example, but type names are the most common. Observe that the type
parameter T takes the place of “int” in the original definition of the genericMin
function.

We can now invoke our templated function to compute the minimum of objects
of many different types. The compiler looks at the argument types and determines
which form of the function to instantiate.

cout << genericMin(3, 4) << ’ ’ // = genericMin<int>(3,4)
<< genericMin(1.1, 3.1) << ’ ’ // = genericMin<double>(1.1, 3.1)
<< genericMin(’t’, ’g’) << endl; // = genericMin<char>(’t’,’g’)

The template type does not need to be a fundamental type. We could use any
type in this example, provided that the less than operator (<) is defined for this type.

2.3.2 Class Templates

In addition to function templates, C++ allows classes to be templated, which is a
powerful mechanism because it allows us to provide one data structure declaration
that can be applied to many different types. In fact, the Standard Template Library
uses class templates extensively.

Let us consider an example of a template for a restricted class BasicVector that
stores a vector of elements, which is a simplified version of a structure discussed in
greater detail in Chapter 6. This class has a constructor that is given the size of the
array to allocate. In order to access elements of the array, we overload the indexing
operator “[].”

We present a partial implementation of a class template for class BasicVector
below. We have omitted many of the other member functions, such as the copy
constructor, assignment operator, and destructor. The template parameter T takes
the place of the actual type that will be stored in the array.

template <typename T>
class BasicVector { // a simple vector class
public:

BasicVector(int capac = 10); // constructor
T& operator[](int i) // access element at index i
{ return a[i]; }

// . . . other public members omitted
private:

T* a; // array storing the elements
int capacity; // length of array a
};

i

i

“main” — 2011/1/13 — 9:10 — page 92 — #114
i

i

i

i

i

i

92 Chapter 2. Object-Oriented Design

We have defined one member function (the indexing operator) within the class
body, and below we show how the other member function (the constructor) can
be defined outside the class body. The constructor initializes the capacity value and
allocates the array storage.

template <typename T> // constructor
BasicVector<T>::BasicVector(int capac) {

capacity = capac;
a = new T[capacity]; // allocate array storage
}

To instantiate a concrete instance of the class BasicVector, we provide the class
name followed by the actual type parameter enclosed in angled brackets (<...>). The
code fragment below shows how we would define three vectors, one of type int,
one of type double, and one of type string.

BasicVector<int> iv(5); // vector of 5 integers
BasicVector<double> dv(20); // vector of 20 doubles
BasicVector<string> sv(10); // vector of 10 strings

Since we have overloaded the indexing operator, we can access elements of each
array in the same manner as we would for any C++ array.

iv[3] = 8;
dv[14] = 2.5;
sv[7] = "hello";

Templated Arguments

The actual argument in the instantiation of a class template can itself be a templated
type. For example, we could create a BasicVector whose individual elements are
themselves of type BasicVector<int>.

BasicVector<BasicVector<int> > xv(5); // a vector of vectors
// . . .
xv[2][8] = 15;

In this case, because no capacity argument could be provided to the constructor,
each element of the vector is constructed using the default capacity of 10. Thus the
above definition declares a BasicVector consisting of five elements, each of which
is a BasicVector consisting of 10 integers. Such a structure therefore behaves much
like a two-dimensional array of integers.

Note that in the declaration of xv above, we intentionally left a space after
“<int>.” The reason is that without the space, the character combination “>>”
would be interpreted as a bitwise right-shift operator by the compiler (see Sec-
tion 1.2).

i

i

“main” — 2011/1/13 — 9:10 — page 93 — #115
i

i

i

i

i

i

2.4. Exceptions 93

2.4 Exceptions

Exceptions are unexpected events that occur during the execution of a program. An
exception can be the result of an error condition or simply an unanticipated input.
In C++, exceptions can be thought of as being objects themselves.

2.4.1 Exception Objects

In C++, an exception is “thrown” by code that encounters some unexpected condi-
tion. Exceptions can also be thrown by the C++ run-time environment should it en-
counter an unexpected condition like running out of memory. A thrown exception
is “caught” by other code that “handles” the exception somehow, or the program is
terminated unexpectedly. (We say more about catching exceptions shortly.)

Exceptions are a relatively recent addition to C++. Prior to having exceptions,
errors were typically handled by having the program abort at the source of the
error or by having the involved function return some special value. Exceptions
provide a much cleaner mechanism for handling errors. Nevertheless, for historical
reasons, many of the functions in the C++ standard library do not throw exceptions.
Typically they return some sort of special error status, or set an error flag, which
can be tested.

Exceptions are thrown when a piece of code finds some sort of problem dur-
ing execution. Since there are many types of possible errors, when an exception is
thrown, it is identified by a type. Typically this type is a class whose members pro-
vide information as to the exact nature of the error, for example a string containing
a descriptive error message.

Exception types often form hierarchies. For example, let’s imagine a hypothet-
ical mathematics library, which may generate many different types of errors. The
library might begin by defining one generic exception, MathException, represent-
ing all types of mathematical errors, and then derive more specific exceptions for
particular error conditions. The errMsg member holds a message string with an
informative message. Here is a possible definition of this generic class.

class MathException { // generic math exception
public:

MathException(const string& err) // constructor
: errMsg(err) { }

string getError() { return errMsg; } // access error message
private:

string errMsg; // error message
};

i

i

“main” — 2011/1/13 — 9:10 — page 94 — #116
i

i

i

i

i

i

94 Chapter 2. Object-Oriented Design

Using Inheritance to Define New Exception Types

The above MathException class would likely have other member functions, for
example, for accessing the error message. We may then add more specific excep-
tions, such as ZeroDivide, to handle division by zero, and NegativeRoot, to handle
attempts to compute the square root of a negative number. We could use class
inheritance to represent this hierarchical relationship, as follows.

class ZeroDivide : public MathException {
public:

ZeroDivide(const string& err) // divide by zero
: MathException(err) { }
};

class NegativeRoot : public MathException {
public:

NegativeRoot(const string& err) // negative square root
: MathException(err) { }
};

2.4.2 Throwing and Catching Exceptions

Exceptions are typically processed in the context of “try” and “catch” blocks. A
try block is a block of statements proceeded by the keyword try. After a try block,
there are one or more catch blocks. Each catch block specifies the type of exception
that it catches. Execution begins with the statements of the try block. If all goes
smoothly, then execution leaves the try block and skips over its associated catch
blocks. If an exception is thrown, then the control immediately jumps into the
appropriate catch block for this exception.

For example, suppose that we were to use our mathematical library as part of
the implementation of a numerical application. We would enclose the computations
of the application within a try block. After the try block, we would catch and deal
with any exceptions that arose in the computation.

try {
// . . . application computations
if (divisor == 0) // attempt to divide by 0?

throw ZeroDivide("Divide by zero in Module X");
}
catch (ZeroDivide& zde) {

// handle division by zero
}
catch (MathException& me) {

// handle any math exception other than division by zero
}

i

i

“main” — 2011/1/13 — 9:10 — page 95 — #117
i

i

i

i

i

i

2.4. Exceptions 95

Processing the above try block is done as follows. The computations of the try
block are executed. When an attempt is discovered to divide by zero, ZeroDivide is
thrown, and execution jumps immediately to the associated catch statement where
corrective recovery and clean up should be performed.

Let us study the entire process in somewhat greater detail. The throw statement
is typically written as follows:

throw exception name(arg1,arg2, . . .)

where the arguments are passed to the exception’s constructor.
Exceptions may also be thrown by the C++ run-time system itself. For example,

if an attempt to allocate space in the free store using the new operator fails due to
lack of space, then a bad alloc exception is thrown by the system.

When an exception is thrown, it must be caught or the program will abort. In
any particular function, an exception in that function can be passed through to the
calling function or it can be caught in that function. When an exception is caught,
it can be analyzed and dealt with. The general syntax for a try-catch block in C++
is as follows:

try
try statements

catch (exception type 1 identifier 1)
catch statements 1

. . .
catch (exception type n identifier n)

catch statements n

Execution begins in the “try statements.” If this execution generates no excep-
tions, then the flow of control continues with the first statement after the last line of
the entire try-catch block. If, on the other hand, an exception is generated, execu-
tion in the try block terminates at that point and execution jumps to the first catch
block matching the exception thrown. Thus, an exception thrown for a derived
class will be caught by its base class. For example, if we had thrown NegativeRoot
in the example above, it would be caught by catch block for MathException. Note
that because the system executes the first matching catch block, exceptions should
be listed in order of most specific to least specific. The special form “catch(...)”
catches all exceptions.

The “identifier” for the catch statement identifies the exception object itself.
As we said before, this object usually contains additional information about the
exception, and this information may be accessed from within the catch block. As is
common in passing class arguments, the exception is typically passed as a reference
or a constant reference. Once execution of the catch block completes, control flow
continues with the first statement after the last catch block.

The recovery action taken in a catch block depends very much on the particular
application. It may be as simple as printing an error message and terminating the

i

i

“main” — 2011/1/13 — 9:10 — page 96 — #118
i

i

i

i

i

i

96 Chapter 2. Object-Oriented Design

program. It may require complex clean-up operations, such as deallocating dynam-
ically allocated storage and restoring the program’s internal state. There are also
some interesting cases in which the best way to handle an exception is to ignore it
(which can be specified by having an empty catch block). Ignoring an exception
is usually done, for example, when the programmer does not care whether there
was an exception or not. Another legitimate way of handling exceptions is to throw
another exception, possibly one that specifies the exceptional condition more pre-
cisely.

2.4.3 Exception Specification

When we declare a function, we should also specify the exceptions it might throw.
This convention has both a functional and courteous purpose. For one, it lets users
know what to expect. It also lets the compiler know which exceptions to prepare
for. The following is an example of such a function definition.

void calculator() throw(ZeroDivide, NegativeRoot) {
// function body . . .

}

This definition indicates that the function calculator (and any other functions it
calls) can throw these two exceptions or exceptions derived from these types, but
no others.

By specifying all the exceptions that might be thrown by a function, we prepare
others to be able to handle all of the exceptional cases that might arise from using
this function. Another benefit of declaring exceptions is that we do not need to
catch those exceptions in our function, which is appropriate, for example, in the
case where other code is responsible for causing the circumstances leading up to
the exception.

The following illustrates an exception that is “passed through.”

void getReadyForClass() throw(ShoppingListTooSmallException,
OutOfMoneyException) {

goShopping(); // I don’t have to try or catch the exceptions
// which goShopping() might throw because
// getReadyForClass() will just pass these along.

makeCookiesForTA();
}

A function can declare that it throws as many exceptions as it likes. Such a
listing can be simplified somewhat if all exceptions that can be thrown are derived
classes of the same exception. In this case, we only have to declare that a function
throws the appropriate base class.

i

i

“main” — 2011/1/13 — 9:10 — page 97 — #119
i

i

i

i

i

i

2.4. Exceptions 97

Suppose that a function does not contain a throw specification. It would be
natural to assume that such a function does not throw any exceptions. In fact, it has
quite a different meaning. If a function does not provide a throw specification, then
it may throw any exception. Although this is confusing, it is necessary to maintain
compatibility with older versions of C++. To indicate that a function throws no
exceptions, provide the throw specifier with an empty list of exceptions.

void func1(); // can throw any exception
void func2() throw(); // can throw no exceptions

Generic Exception Class

We declare many different exceptions in this book. In order to structure these ex-
ceptions hierarchically, we need to have one generic exception class that serves as
the “mother of all exceptions.” C++ does not provide such a generic exception, so
we created one of our own. This class, called RuntimeException, is shown below.
It has an error message as its only member. It provides a constructor that is given
an informative error message as its argument. It also provides a member function
getMessage that allows us to access this message.

class RuntimeException { // generic run-time exception
private:

string errorMsg;
public:

RuntimeException(const string& err) { errorMsg = err; }
string getMessage() const { return errorMsg; }
};

By deriving all of our exceptions from this base class, for any exception e, we
can output e’s error message by invoking the inherited getMessage function.

i

i

“main” — 2011/1/13 — 9:10 — page 98 — #120
i

i

i

i

i

i

98 Chapter 2. Object-Oriented Design

2.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-2.1 What are some potential efficiency disadvantages of having very deep in-
heritance trees, that is, a large set of classes, A, B, C, and so on, such that
B extends A, C extends B, D extends C, etc.?

R-2.2 What are some potential efficiency disadvantages of having very shallow
inheritance trees, that is, a large set of classes, A, B, C, and so on, such
that all of these classes extend a single class, Z?

R-2.3 Give three examples of life-critical software applications.

R-2.4 Give an example of a software application where adaptability can mean
the difference between a prolonged sales lifetime and bankruptcy.

R-2.5 Describe a component from a text-editor GUI (other than an “edit” menu)
and the member functions that it encapsulates.

R-2.6 Draw a class inheritance diagram for the following set of classes.

• Class Goat extends Object and adds a member variable tail and
functions milk and jump.

• Class Pig extends Object and adds a member variable nose and func-
tions eat and wallow.

• Class Horse extends Object and adds member variables height and
color, and functions run and jump.

• Class Racer extends Horse and adds a function race.

• Class Equestrian extends Horse and adds a member variable weight
and functions trot and isTrained.

R-2.7 A derived class’s constructor explicitly invokes its base class’s constructor,
but a derived class’s destructor cannot invoke its base class’s destructor.
Why does this apparent asymmetry make sense?

R-2.8 Give a short fragment of C++ code that uses the progression classes from
Section 2.2.3 to find the 7th value of a Fibonacci progression that starts
with 3 and 4 as its first two values.

R-2.9 If we choose inc = 128, how many calls to the nextValue function from
the ArithProgression class of Section 2.2.3 can we make before we cause
a long-integer overflow, assuming a 64-bit long integer?

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 99 — #121
i

i

i

i

i

i

2.5. Exercises 99

R-2.10 Suppose we have a variable p that is declared to be a pointer to an object
of type Progression using the classes of Section 2.2.3. Suppose further
that p actually points to an instance of the class GeomProgression that
was created with the default constructor. If we cast p to a pointer of type
Progression and call p->firstValue(), what will be returned? Why?

R-2.11 Consider the inheritance of classes from Exercise R-2.6, and let d be an
object variable of type Horse. If d refers to an actual object of type Eques-
trian, can it be cast to the class Racer? Why or why not?

R-2.12 Generalize the Person-Student class hierarchy to include classes Faculty,
UndergraduateStudent, GraduateStudent, Professor, Instructor. Explain
the inheritance structure of these classes, and derive some appropriate
member variables for each class.

R-2.13 Give an example of a C++ code fragment that performs an array reference
that is possibly out of bounds, and if it is out of bounds, the program
catches that exception and prints an appropriate error message.

R-2.14 Consider the following code fragment:

class Object
{ public: virtual void printMe() = 0; };

class Place : public Object
{ public: virtual void printMe() { cout << "Buy it.\n"; } };

class Region : public Place
{ public: virtual void printMe() { cout << "Box it.\n"; } };

class State : public Region
{ public: virtual void printMe() { cout << "Ship it.\n"; } };

class Maryland : public State
{ public: virtual void printMe() { cout << "Read it.\n"; } };

int main() {
Region* mid = new State;
State* md = new Maryland;
Object* obj = new Place;
Place* usa = new Region;
md−>printMe();
mid−>printMe();
(dynamic cast<Place*>(obj))−>printMe();
obj = md;
(dynamic cast<Maryland*>(obj))−>printMe();
obj = usa;
(dynamic cast<Place*>(obj))−>printMe();
usa = md;
(dynamic cast<Place*>(usa))−>printMe();
return EXIT SUCCESS;
}

What is the output from calling the main function of the Maryland class?

i

i

“main” — 2011/1/13 — 9:10 — page 100 — #122
i

i

i

i

i

i

100 Chapter 2. Object-Oriented Design

R-2.15 Write a short C++ function that counts the number of vowels in a given
character string.

R-2.16 Write a short C++ function that removes all the punctuation from a string s
storing a sentence. For example, this operation would transform the string
"Let’s try, Mike." to "Lets try Mike".

R-2.17 Write a short program that takes as input three integers, a, b, and c, and
determines if they can be used in a correct arithmetic formula (in the given
order), like “a+ b = c,” “a = b− c,” or “a∗b = c.”

R-2.18 Write a short C++ program that creates a Pair class that can store two
objects declared as generic types. Demonstrate this program by creating
and printing Pair objects that contain five different kinds of pairs, such as
<int,string> and <float,long>.

Creativity

C-2.1 Give an example of a C++ program that outputs its source code when it is
run. Such a program is called a quine.

C-2.2 Suppose you are on the design team for a new e-book reader. What are the
primary classes and functions that the C++ software for your reader will
need? You should include an inheritance diagram for this code, but you
don’t need to write any actual code. Your software architecture should
at least include ways for customers to buy new books, view their list of
purchased book, and read their purchased books.

C-2.3 Most modern C++ compilers have optimizers that can detect simple cases
when it is logically impossible for certain statements in a program to ever
be executed. In such cases, the compiler warns the programmer about the
useless code. Write a short C++ function that contains code for which it
is provably impossible for that code to ever be executed, but your favorite
C++ compiler does not detect this fact.

C-2.4 Design a class Line that implements a line, which is represented by the for-
mula y = ax+b. Your class should store a and b as double member vari-
ables. Write a member function intersect(ℓ) that returns the x coordinate
at which this line intersects line ℓ. If the two lines are parallel, then your
function should throw an exception Parallel. Write a C++ program that
creates a number of Line objects and tests each pair for intersection. Your
program should print an appropriate error message for parallel lines.

C-2.5 Write a C++ class that is derived from the Progression class to produce a
progression where each value is the absolute value of the difference be-
tween the previous two values. You should include a default constructor
that starts with 2 and 200 as the first two values and a parametric construc-
tor that starts with a specified pair of numbers as the first two values.

i

i

“main” — 2011/1/13 — 9:10 — page 101 — #123
i

i

i

i

i

i

2.5. Exercises 101

C-2.6 Write a C++ class that is derived from the Progression class to produce
a progression where each value is the square root of the previous value.
(Note that you can no longer represent each value with an integer.) You
should include a default constructor that starts with 65,536 as the first
value and a parametric constructor that starts with a specified (double)
number as the first value.

C-2.7 Write a program that consists of three classes, A, B, and C, such that B is a
subclass of A and C is a subclass of B. Each class should define a member
variable named “x” (that is, each has its own variable named x). Describe
a way for a member function in C to access and set A’s version of x to a
given value, without changing B or C’s version.

C-2.8 Write a set of C++ classes that can simulate an Internet application, where
one party, Alice, is periodically creating a set of packets that she wants to
send to Bob. The Internet process is continually checking if Alice has any
packets to send, and if so, it delivers them to Bob’s computer, and Bob is
periodically checking if his computer has a packet from Alice, and, if so,
he reads and deletes it.

C-2.9 Write a C++ program that can input any polynomial in standard algebraic
notation and outputs the first derivative of that polynomial.

Projects

P-2.1 Write a C++ program that can take a positive integer greater than 2 as
input and write out the number of times one must repeatedly divide this
number by 2 before getting a value less than 2.

P-2.2 Write a C++ program that “makes change.” Your program should input
two numbers, one that is a monetary amount charged and the other that is
a monetary amount given. It should return the number of each kind of bill
and coin to give back as change for the difference between the amounts
given and charged. The values assigned to the bills and coins can be based
on the monetary system of any government. Try to design your program
so that it returns the fewest number of bills and coins as possible.

P-2.3 Implement a templated C++ class Vector that manipulates a numeric vec-
tor. Your class should be templated with any numerical scalar type T ,
which supports the operations + (addition), − (subtraction), and * (mul-
tiplication). In addition, type T should have constructors T (0), which
produces the additive identity element (typically 0) and T (1), which pro-
duces the multiplicative identity (typically 1). Your class should provide a
constructor, which is given the size of the vector as an argument. It should
provide member functions (or operators) for vector addition, vector sub-
traction, multiplication of a scalar and a vector, and vector dot product.

i

i

“main” — 2011/1/13 — 9:10 — page 102 — #124
i

i

i

i

i

i

102 Chapter 2. Object-Oriented Design

Write a class Complex that implements a complex number by overload-
ing the operators for addition, subtraction, and multiplication. Implement
three concrete instances of your class Vector with the scalar types int,
double, and Complex, respectively.

P-2.4 Write a simulator as in the previous project, but add a Boolean gender
field and a floating-point strength field to each Animal object. Now, if
two animals of the same type try to collide, then they only create a new
instance of that type of animal if they are of different genders. Otherwise,
if two animals of the same type and gender try to collide, then only the
one of larger strength survives.

P-2.5 Write a C++ program that has a Polygon interface that has abstract func-
tions, area(), and perimeter(). Implement classes for Triangle, Quadri-
lateral, Pentagon, Hexagon, and Octagon, which implement this inter-
face, with the obvious meanings for the area() and perimeter() functions.
Also implement classes, IsoscelesTriangle, EquilateralTriangle, Rectan-
gle, and Square, which have the appropriate inheritance relationships. Fi-
nally, write a simple user interface that allows users to create polygons of
the various types, input their geometric dimensions, and then output their
area and perimeter. For extra effort, allow users to input polygons by spec-
ifying their vertex coordinates and be able to test if two such polygons are
similar.

P-2.6 Write a C++ program that inputs a document and then outputs a bar-chart
plot of the frequencies of each alphabet character that appears in that doc-
ument.

P-2.7 Write a C++ program that inputs a list of words separated by whitespace,
and outputs how many times each word appears in the list. You need not
worry about efficiency at this point, however, as this topic is something
that will be addressed later in this book.

Chapter Notes

For a broad overview of developments in computer science and engineering, we refer the
reader to The Computer Science and Engineering Handbook [96]. For more information
about the Therac-25 incident, please see the paper by Leveson and Turner [63].

The reader interested in studying object-oriented programming further, is referred to
the books by Booch [13], Budd [16], and Liskov and Guttag [68]. Liskov and Guttag [68]
also provide a nice discussion of abstract data types, as does the survey paper by Cardelli
and Wegner [19] and the book chapter by Demurjian [27] in the The Computer Science
and Engineering Handbook [96]. Design patterns are described in the book by Gamma et
al. [35]. The class inheritance diagram notation we use is derived from the Gamma et al.

i

i

“main” — 2011/1/13 — 9:10 — page 103 — #125
i

i

i

i

i

i

Chapter

3 Arrays, Linked Lists, and Recursion

Contents

3.1 Using Arrays . 104

3.1.1 Storing Game Entries in an Array 104

3.1.2 Sorting an Array . 109

3.1.3 Two-Dimensional Arrays and Positional Games . . . 111

3.2 Singly Linked Lists . 117

3.2.1 Implementing a Singly Linked List 117

3.2.2 Insertion to the Front of a Singly Linked List 119

3.2.3 Removal from the Front of a Singly Linked List . . . 119

3.2.4 Implementing a Generic Singly Linked List 121

3.3 Doubly Linked Lists 123

3.3.1 Insertion into a Doubly Linked List 123

3.3.2 Removal from a Doubly Linked List 124

3.3.3 A C++ Implementation 125

3.4 Circularly Linked Lists and List Reversal 129

3.4.1 Circularly Linked Lists 129

3.4.2 Reversing a Linked List 133

3.5 Recursion . 134

3.5.1 Linear Recursion . 140

3.5.2 Binary Recursion 144

3.5.3 Multiple Recursion 147

3.6 Exercises . 149

i

i

“main” — 2011/1/13 — 9:10 — page 104 — #126
i

i

i

i

i

i

104 Chapter 3. Arrays, Linked Lists, and Recursion

3.1 Using Arrays

In this section, we explore a few applications of arrays—the concrete data structures
introduced in Section 1.1.3 that access their entries using integer indices.

3.1.1 Storing Game Entries in an Array

The first application we study is for storing entries in an array; in particular, high
score entries for a video game. Storing objects in arrays is a common use for arrays,
and we could just as easily have chosen to store records for patients in a hospital or
the names of players on a football team. Nevertheless, let us focus on storing high
score entries, which is a simple application that is already rich enough to present
some important data structuring concepts.

Let us begin by thinking about what we want to include in an object represent-
ing a high score entry. Obviously, one component to include is an integer repre-
senting the score itself, which we call score. Another useful thing to include is the
name of the person earning this score, which we simply call name. We could go on
from here, adding fields representing the date the score was earned or game statis-
tics that led to that score. Let us keep our example simple, however, and just have
two fields, score and name. The class structure is shown in Code Fragment 3.1.

class GameEntry { // a game score entry
public:

GameEntry(const string& n="", int s=0); // constructor
string getName() const; // get player name
int getScore() const; // get score

private:
string name; // player’s name
int score; // player’s score
};

Code Fragment 3.1: A C++ class representing a game entry.

In Code Fragment 3.2, we provide the definitions of the class constructor and
two accessor member functions.

GameEntry::GameEntry(const string& n, int s) // constructor
: name(n), score(s) { }

// accessors
string GameEntry::getName() const { return name; }
int GameEntry::getScore() const { return score; }

Code Fragment 3.2: GameEntry constructor and accessors.

i

i

“main” — 2011/1/13 — 9:10 — page 105 — #127
i

i

i

i

i

i

3.1. Using Arrays 105

A Class for High Scores

Let’s now design a class, called Scores, to store our game-score information. We
store the highest scores in an array entries. The maximum number of scores may
vary from instance to instance, so we create a member variable, maxEntries, stor-
ing the desired maximum. Its value is specified when a Scores object is first con-
structed. In order to keep track of the actual number of entries, we define a member
variable numEntries. It is initialized to zero, and it is updated as entries are added
or removed. We provide a constructor, a destructor, a member function for adding
a new score, and one for removing a score at a given index. The definition is given
in Code Fragment 3.3.

class Scores { // stores game high scores
public:

Scores(int maxEnt = 10); // constructor
˜Scores(); // destructor
void add(const GameEntry& e); // add a game entry
GameEntry remove(int i) // remove the ith entry

throw(IndexOutOfBounds);
private:

int maxEntries; // maximum number of entries
int numEntries; // actual number of entries
GameEntry* entries; // array of game entries
};

Code Fragment 3.3: A C++ class for storing high game scores.

In Code Fragment 3.4, we present the class constructor, which allocates the
desired amount of storage for the array using the “new” operator. Recall from
Section 1.1.3 that C++ represents a dynamic array as a pointer to its first element,
and this command returns such a pointer. The class destructor, ~Scores, deletes this
array.

Scores::Scores(int maxEnt) { // constructor
maxEntries = maxEnt; // save the max size
entries = new GameEntry[maxEntries]; // allocate array storage
numEntries = 0; // initially no elements
}

Scores::˜Scores() { // destructor
delete[] entries;
}

Code Fragment 3.4: A C++ class GameEntry representing a game entry.

The entries that have been added to the array are stored in indices 0 through
numEntries−1. As more users play our video game, additional GameEntry objects

i

i

“main” — 2011/1/13 — 9:10 — page 106 — #128
i

i

i

i

i

i

106 Chapter 3. Arrays, Linked Lists, and Recursion

are copied into the array. This is done using the class’s add member function, which
we describe below. Only the highest maxEntries scores are retained. We also
provide a member function, remove(i), which removes the entry at index i from
the array. We assume that 0 ≤ i ≤ numEntries− 1. If not, the remove function,
throws an IndexOutOfBounds exception. We do not define this exception here, but
it is derived from the class RuntimeException from Section 2.4.

In our design, we have chosen to order the GameEntry objects by their score
values, from highest to lowest. (In Exercise C-3.2, we explore an alternative design
in which entries are not ordered.) We illustrate an example of the data structure in
Figure 3.1.

Mike

1105

0 1

Rob

750

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Figure 3.1: The entries array of length eight storing six GameEntry objects in the
cells from index 0 to 5. Here maxEntries is 10 and numEntries is 6.

Insertion

Next, let us consider how to add a new GameEntry e to the array of high scores. In
particular, let us consider how we might perform the following update operation on
an instance of the Scores class.

add(e): Insert game entry e into the collection of high scores. If
this causes the number of entries to exceed maxEntries,
the smallest is removed.

The approach is to shift all the entries of the array whose scores are smaller than
e’s score to the right, in order to make space for the new entry. (See Figure 3.2.)

Mike

1105

0 1

Rob

750

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Jill

740

Figure 3.2: Preparing to add a new GameEntry object (“Jill”,740) to the entries
array. In order to make room for the new entry, we shift all the entries with smaller
scores to the right by one position.

i

i

“main” — 2011/1/13 — 9:10 — page 107 — #129
i

i

i

i

i

i

3.1. Using Arrays 107

Once we have identified the position in the entries array where the new game
entry, e, belongs, we copy e into this position. (See Figure 3.3.)

Mike

1105

0 1

Rob

750

Jill

740

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Figure 3.3: After adding the new entry at index 2.

The details of our algorithm for adding the new game entry e to the entries array
are similar to this informal description and are given in Code Fragment 3.5. First,
we consider whether the array is already full. If so, we check whether the score of
the last entry in the array (which is at entries[maxEntries− 1]) is at least as large
as e’s score. If so, we can return immediately since e is not high enough to replace
any of the existing highest scores. If the array is not yet full, we know that one new
entry will be added, so we increment the value of numEntries. Next, we identify all
the entries whose scores are smaller than e’s and shift them one entry to the right.
To avoid overwriting existing array entries, we start from the right end of the array
and work to the left. The loop continues until we encounter an entry whose score
is not smaller than e’s, or we fall off the front end of the array. In either case, the
new entry is added at index i+ 1.

void Scores::add(const GameEntry& e) { // add a game entry
int newScore = e.getScore(); // score to add
if (numEntries == maxEntries) { // the array is full

if (newScore <= entries[maxEntries−1].getScore())
return; // not high enough - ignore

}
else numEntries++; // if not full, one more entry

int i = numEntries−2; // start with the next to last
while (i >= 0 && newScore > entries[i].getScore()) {

entries[i+1] = entries[i]; // shift right if smaller
i−−;
}
entries[i+1] = e; // put e in the empty spot
}

Code Fragment 3.5: C++ code for inserting a GameEntry object.

Check the code carefully to see that all the limiting cases have been handled
correctly by the add function (for example, largest score, smallest score, empty
array, full array). The number of times we perform the loop in this function depends
on the number of entries that we need to shift. This is pretty fast if the number of
entries is small. But if there are a lot to move, then this method could be fairly slow.

i

i

“main” — 2011/1/13 — 9:10 — page 108 — #130
i

i

i

i

i

i

108 Chapter 3. Arrays, Linked Lists, and Recursion

Object Removal

Suppose some hot shot plays our video game and gets his or her name on our high
score list. In this case, we might want to have a function that lets us remove a game
entry from the list of high scores. Therefore, let us consider how we might remove
a GameEntry object from the entries array. That is, let us consider how we might
implement the following operation:

remove(i): Remove and return the game entry e at index i in the
entries array. If index i is outside the bounds of the
entries array, then this function throws an exception; oth-
erwise, the entries array is updated to remove the ob-
ject at index i and all objects previously stored at indices
higher than i are “shifted left” to fill in for the removed
object.

Our implementation of remove is similar to that of add, but in reverse. To
remove the entry at index i, we start at index i and move all the entries at indices
higher than i one position to the left. (See Figure 3.4.)

Mike

1105

0 1

Rob

750

Jill

740

2

Paul

720

3

Anna

660

4

Rose

590

5

Jack

510

6 7 8 9

Return:

Figure 3.4: Removal of the entry (“Paul”,720) at index 3.

The code for performing the removal is presented in Code Fragment 3.6.

GameEntry Scores::remove(int i) throw(IndexOutOfBounds) {
if ((i < 0) | | (i >= numEntries)) // invalid index

throw IndexOutOfBounds("Invalid index");
GameEntry e = entries[i]; // save the removed object
for (int j = i+1; j < numEntries; j++)

entries[j−1] = entries[j]; // shift entries left
numEntries−−; // one fewer entry
return e; // return the removed object
}

Code Fragment 3.6: C++ code for performing the remove operation.

i

i

“main” — 2011/1/13 — 9:10 — page 109 — #131
i

i

i

i

i

i

3.1. Using Arrays 109

The removal operation involves a few subtle points. In order to return the value
of the removed game entry (let’s call it e), we must first save e in a temporary vari-
able. When we are done, the function will return this value. The shifting process
starts at the position just following the removal, j = i+ 1. We repeatedly copy the
entry at index j to index j− 1, and then increment j, until coming to the last ele-
ment of the set. Similar to the case of insertion, this left-to-right order is essential
to avoid overwriting existing entries. To complete the function, we return a copy of
the removed entry that was saved in e.

These functions for adding and removing objects in an array of high scores are
simple. Nevertheless, they form the basis of techniques that are used repeatedly
to build more sophisticated data structures. These other structures may be more
general than our simple array-based solution, and they may support many more
operations. But studying the concrete array data structure, as we are doing now, is
a great starting point for understanding these more sophisticated structures, since
every data structure has to be implemented using concrete means.

3.1.2 Sorting an Array

In the previous subsection, we worked hard to show how we can add or remove
objects at a certain index i in an array while keeping the previous order of the
objects intact. In this section, we consider how to rearrange objects of an array that
are ordered arbitrarily in ascending order. This is known as sorting.

We study several sorting algorithms in this book, most of which appear in Chap-
ter 11. As a warmup, we describe a simple sorting algorithm called insertion-sort.
In this case, we describe a specific version of the algorithm where the input is an ar-
ray of comparable elements. We consider more general kinds of sorting algorithms
later in this book.

We begin with a high-level outline of the insertion-sort algorithm. We start
with the first element in the array. One element by itself is already sorted. Then we
consider the next element in the array. If it is smaller than the first, we swap them.
Next we consider the third element in the array. We swap it leftward until it is in
its proper order with the first two elements. We continue in this manner with each
element of the array, swapping it leftward until it is in its proper position.

It is easy to see why this algorithm is called “insertion-sort”—each iteration
of the algorithm inserts the next element into the current sorted part of the array,
which was previously the subarray in front of that element. We may implement
the above outline using two nested loops. The outer loop considers each element
in the array in turn, and the inner loop moves that element to its proper location
with the (sorted) subarray of elements that are to its left. We illustrate the resulting
algorithm in Code Fragment 3.7.

This description is already quite close to actual C++ code. It indicates which

i

i

“main” — 2011/1/13 — 9:10 — page 110 — #132
i

i

i

i

i

i

110 Chapter 3. Arrays, Linked Lists, and Recursion

Algorithm InsertionSort(A):
Input: An array A of n comparable elements
Output: The array A with elements rearranged in nondecreasing order

for i← 1 to n−1 do
{Insert A[i] at its proper location in A[0],A[1], . . . ,A[i−1]}
cur← A[i]
j← i−1
while j ≥ 0 and A[j] > cur do

A[j + 1]← A[j]
j← j−1

A[j + 1]← cur {cur is now in the right place}

Code Fragment 3.7: Algorithmic description of the insertion-sort algorithm.

temporary variables are needed, how the loops are structured, and what decisions
need to be made. We illustrate an example run in Figure 3.5.

We present C++ code for our insertion-sort algorithm in Code Fragment 3.8.
We assume that the array to be sorted consists of elements of type char, but it is easy
to generalize this to other data types. The array A in the algorithm is implemented
as a char array. Recall that each array in C++ is represented as a pointer to its first
element, so the parameter A is declared to be of type char*. We also pass the size
of the array in an integer parameter n. The rest is a straightforward translation of
the description given in Code Fragment 3.7 into C++ syntax.

void insertionSort(char* A, int n) { // sort an array of n characters
for (int i = 1; i < n; i++) { // insertion loop

char cur = A[i]; // current character to insert
int j = i − 1; // start at previous character
while ((j >= 0) && (A[j] > cur)) { // while A[j] is out of order

A[j + 1] = A[j]; // move A[j] right
j−−; // decrement j
}
A[j + 1] = cur; // this is the proper place for cur
}
}

Code Fragment 3.8: C++ code implementing the insertion-sort algorithm.

An interesting thing happens in the insertion-sort algorithm if the array is al-
ready sorted. In this case, the inner loop does only one comparison, determines that
there is no swap needed, and returns back to the outer loop. Of course, we might
have to do a lot more work than this if the input array is extremely out of order.
Indeed, the worst case arises if the initial array is given in descending order.

i

i

“main” — 2011/1/13 — 9:10 — page 111 — #133
i

i

i

i

i

i

3.1. Using Arrays 111

Figure 3.5: Execution of the insertion-sort algorithm on an array of eight characters.
We show the completed (sorted) part of the array in white, and we color the next
element that is being inserted into the sorted part of the array with light blue. We
also highlight the character on the left, since it is stored in the cur variable. Each
row corresponds to an iteration of the outer loop, and each copy of the array in a
row corresponds to an iteration of the inner loop. Each comparison is shown with
an arc. In addition, we indicate whether that comparison resulted in a move or not.

3.1.3 Two-Dimensional Arrays and Positional Games

Many computer games, be they strategy games, simulation games, or first-person
conflict games, use a two-dimensional “board.” Programs that deal with such po-
sitional games need a way of representing objects in a two-dimensional space. A
natural way to do this is with a two-dimensional array, where we use two indices,
say i and j, to refer to the cells in the array. The first index usually refers to a row
number and the second to a column number. Given such an array we can then main-
tain two-dimensional game boards, as well as perform other kinds of computations

i

i

“main” — 2011/1/13 — 9:10 — page 112 — #134
i

i

i

i

i

i

112 Chapter 3. Arrays, Linked Lists, and Recursion

involving data that is stored in rows and columns.
Arrays in C++ are one-dimensional; we use a single index to access each cell

of an array. Nevertheless, there is a way we can define two-dimensional arrays in
C++—we can create a two-dimensional array as an array of arrays. That is, we can
define a two-dimensional array to be an array with each of its cells being another
array. Such a two-dimensional array is sometimes also called a matrix. In C++, we
declare a two-dimensional array as follows:

int M[8][10]; // matrix with 8 rows and 10 columns

This statement creates a two-dimensional “array of arrays,” M, which is 8× 10,
having 8 rows and 10 columns. That is, M is an array of length 8 such that each
element of M is an array of length 10 of integers. (See Figure 3.6.)

Figure 3.6: A two-dimensional integer array that has 8 rows and 10 columns. The
value of M[3][5] is 100 and the value of M[6][2] is 632.

Given integer variables i and j, we could output the element of row i and col-
umn j (or equivalently, the j th element of the i th array) as follows:

cout << M[i][j]; // output element in row i column j

It is often a good idea to use symbolic constants to define the dimensions in
order to make your intentions clearer to someone reading your program.

const int N DAYS = 7;
const int N HOURS = 24;
int schedule[N DAYS][N HOURS];

Dynamic Allocation of Matrices

If the dimensions of a two-dimensional array are not known in advance, it is nec-
essary to allocate the array dynamically. This can be done by applying the method
that we discussed earlier for allocating arrays in Section 1.1.3, but instead, we need
to apply it to each individual row of the matrix.

i

i

“main” — 2011/1/13 — 9:10 — page 113 — #135
i

i

i

i

i

i

3.1. Using Arrays 113

For example, suppose that we wish to allocate an integer matrix with n rows and
m columns. Each row of the matrix is an array of integers of length m. Recall that
a dynamic array is represented as a pointer to its first element, so each row would
be declared to be of type int*. How do we group the individual rows together to
form the matrix? The matrix is an array of row pointers. Since each row pointer is
of type int*, the matrix is of type int**, that is, a pointer to a pointer of integers.

To generate our matrix, we first declare M to be of this type and allocate the
n row pointers with the command “M = new int*[n].” The ith row of the matrix
is allocated with the statement “M[i] = new int[m].” In Code Fragment 3.9, we
show how to do this given two integer variables n and m.

int** M = new int*[n]; // allocate an array of row pointers
for (int i = 0; i < n; i++)

M[i] = new int[m]; // allocate the i-th row

Code Fragment 3.9: Allocating storage for a matrix as an array of arrays.

Once allocated, we can access its elements just as before, for example, as
“M[i][j].” As shown in Code Fragment 3.10, deallocating the matrix involves re-
versing these steps. First, we deallocate each of the rows, one by one. We then
deallocate the array of row pointers. Since we are deleting an array, we use the
command “delete[].”

for (int i = 0; i < n; i++)
delete[] M[i]; // delete the i-th row

delete[] M; // delete the array of row pointers

Code Fragment 3.10: Deallocating storage for a matrix as an array of arrays.

Using STL Vectors to Implement Matrices

As we can see from the previous section, dynamic allocation of matrices is rather
cumbersome. The STL vector class (recall Section 1.5.5) provides a much more
elegant way to process matrices. We adapt the same approach as above by imple-
menting a matrix as a vector of vectors. Each row of our matrix is declared as
“vector<int>.” Thus, the entire matrix is declared to be a vector of rows, that is,
“vector<vector<int>>.” Let us declare M to be of this type.

Letting n denote the desired number of rows in the matrix, the constructor call
M(n) allocates storage for the rows. However, this does not allocate the desired
number of columns. The reason is that the default constructor is called for each
row, and the default is to construct an empty array.

To fix this, we make use of a nice feature of the vector class constructor. There
is an optional second argument, which indicates the value to use when initializing

i

i

“main” — 2011/1/13 — 9:10 — page 114 — #136
i

i

i

i

i

i

114 Chapter 3. Arrays, Linked Lists, and Recursion

each element of the vector. In our case, each element of M is a vector of m integers,
that is, “vector<int>(m).” Thus, given integer variables n and m, the following code
fragment generates an n×m matrix as a vector of vectors.

vector< vector<int> > M(n, vector<int>(m));
cout << M[i][j] << endl;

The space between vector<int> and the following “>” has been added to prevent
ambiguity with the C++ input operator “>>.” Because the STL vector class au-
tomatically takes care of deleting its members, we do not need to write a loop to
explicitly delete the rows, as we needed with dynamic arrays.

Two-dimensional arrays have many applications. Next, we explore a simple
application of two-dimensional arrays for implementing a positional game.

Tic-Tac-Toe

As most school children know, Tic-Tac-Toe is a game played on a three-by-three
board. Two players, X and O, alternate in placing their respective marks in the cells
of this board, starting with player X. If either player succeeds in getting three of his
or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it’s not even that
much fun to play, since a good player O can always force a tie. Tic-Tac-Toe’s saving
grace is that it is a nice, simple example showing how two-dimensional arrays can
be used for positional games. Software for more sophisticated positional games,
such as checkers, chess, or the popular simulation games, are all based on the same
approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe. (See
Exercise P-7.11.)

The basic idea is to use a two-dimensional array, board, to maintain the game
board. Cells in this array store values that indicate if that cell is empty or stores an X
or O. That is, board is a three-by-three matrix. For example, its middle row consists
of the cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1
indicating an X, and a −1 indicating O. This encoding allows us to have a simple
way of testing whether a given board configuration is a win for X or O, namely, if
the values of a row, column, or diagonal add up to −3 or 3, respectively.

We give a complete C++ program for maintaining a Tic-Tac-Toe board for two
players in Code Fragments 3.11 and 3.12. We show the resulting output in Fig-
ure 3.8. Note that this code is just for maintaining the Tic-Tac-Toe board and regis-
tering moves; it doesn’t perform any strategy or allow someone to play Tic-Tac-Toe
against the computer. The details of such a program are beyond the scope of this
chapter, but it might nonetheless make a good project (see Exercise P-7.11).

i

i

“main” — 2011/1/13 — 9:10 — page 115 — #137
i

i

i

i

i

i

3.1. Using Arrays 115

Figure 3.7: A Tic-Tac-Toe board and the array representing it.

#include <cstdlib> // system definitions
#include <iostream> // I/O definitions
using namespace std; // make std:: accessible

const int X = 1, O = −1, EMPTY = 0; // possible marks
int board[3][3]; // playing board
int currentPlayer; // current player (X or O)

void clearBoard() { // clear the board
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
board[i][j] = EMPTY; // every cell is empty

currentPlayer = X; // player X starts
}

void putMark(int i, int j) { // mark row i column j
board[i][j] = currentPlayer; // mark with current player
currentPlayer = −currentPlayer; // switch players
}

bool isWin(int mark) { // is mark the winner?
int win = 3*mark; // +3 for X and -3 for O
return ((board[0][0] + board[0][1] + board[0][2] == win) // row 0

| | (board[1][0] + board[1][1] + board[1][2] == win) // row 1
| | (board[2][0] + board[2][1] + board[2][2] == win) // row 2
| | (board[0][0] + board[1][0] + board[2][0] == win) // column 0
| | (board[0][1] + board[1][1] + board[2][1] == win) // column 1
| | (board[0][2] + board[1][2] + board[2][2] == win) // column 2
| | (board[0][0] + board[1][1] + board[2][2] == win) // diagonal
| | (board[2][0] + board[1][1] + board[0][2] == win)); // diagonal

}
Code Fragment 3.11: A C++ program for playing Tic-Tac-Toe between two players.
(Continues in Code Fragment 3.12.)

i

i

“main” — 2011/1/13 — 9:10 — page 116 — #138
i

i

i

i

i

i

116 Chapter 3. Arrays, Linked Lists, and Recursion

int getWinner() { // who wins? (EMPTY means tie)
if (isWin(X)) return X;
else if (isWin(O)) return O;
else return EMPTY;
}

void printBoard() { // print the board
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
switch (board[i][j]) {
case X: cout << "X"; break;
case O: cout << "O"; break;
case EMPTY: cout << " "; break;
}
if (j < 2) cout << "|"; // column boundary
}
if (i < 2) cout << "\n-+-+-\n"; // row boundary
}
}

int main() { // main program
clearBoard(); // clear the board
putMark(0,0); putMark(1,1); // add the marks
putMark(0,1); putMark(0,2);
putMark(2,0); putMark(1,2);
putMark(2,2); putMark(2,1);
putMark(1,0);
printBoard(); // print the final board
int winner = getWinner();
if (winner != EMPTY) // print the winner

cout << " " << (winner == X ? ’X’ : ’0’) << " wins" << endl;
else

cout << " Tie" << endl;
return EXIT SUCCESS;
}

Code Fragment 3.12: A C++ program for playing Tic-Tac-Toe between two players.
(Continued from Code Fragment 3.11.)

X|X|O

-+-+-

X|O|O

-+-+-

X|O|X X wins

Figure 3.8: Output of the Tic-Tac-Toe program.

i

i

“main” — 2011/1/13 — 9:10 — page 117 — #139
i

i

i

i

i

i

3.2. Singly Linked Lists 117

3.2 Singly Linked Lists

In the previous section, we presented the array data structure and discussed some
of its applications. Arrays are nice and simple for storing things in a certain order,
but they have drawbacks. They are not very adaptable. For instance, we have
to fix the size n of an array in advance, which makes resizing an array difficult.
(This drawback is remedied in STL vectors.) Insertions and deletions are difficult
because elements need to be shifted around to make space for insertion or to fill
empty positions after deletion. In this section, we explore an important alternate
implementation of sequence, known as the singly linked list.

A linked list, in its simplest form, is a collection of nodes that together form a
linear ordering. As in the children’s game “Follow the Leader,” each node stores
a pointer, called next, to the next node of the list. In addition, each node stores its
associated element. (See Figure 3.9.)

Figure 3.9: Example of a singly linked list of airport codes. The next pointers are
shown as arrows. The null pointer is denoted by ∅.

The next pointer inside a node is a link or pointer to the next node of the list.
Moving from one node to another by following a next reference is known as link
hopping or pointer hopping. The first and last nodes of a linked list are called
the head and tail of the list, respectively. Thus, we can link-hop through the list,
starting at the head and ending at the tail. We can identify the tail as the node having
a null next reference. The structure is called a singly linked list because each node
stores a single link.

Like an array, a singly linked list maintains its elements in a certain order, as
determined by the chain of next links. Unlike an array, a singly linked list does not
have a predetermined fixed size. It can be resized by adding or removing nodes.

3.2.1 Implementing a Singly Linked List

Let us implement a singly linked list of strings. We first define a class StringNode
shown in Code Fragment 3.13. The node stores two values, the member elem stores
the element stored in this node, which in this case is a character string. (Later, in
Section 3.2.4, we describe how to define nodes that can store arbitrary types of
elements.) The member next stores a pointer to the next node of the list. We make
the linked list class a friend, so that it can access the node’s private members.

i

i

“main” — 2011/1/13 — 9:10 — page 118 — #140
i

i

i

i

i

i

118 Chapter 3. Arrays, Linked Lists, and Recursion

class StringNode { // a node in a list of strings
private:

string elem; // element value
StringNode* next; // next item in the list

friend class StringLinkedList; // provide StringLinkedList access
};

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor
˜StringLinkedList(); // destructor
bool empty() const; // is list empty?
const string& front() const; // get front element
void addFront(const string& e); // add to front of list
void removeFront(); // remove front item list

private:
StringNode* head; // pointer to the head of list
};

Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::˜StringLinkedList() // destructor
{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head−>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.

i

i

“main” — 2011/1/13 — 9:10 — page 119 — #141
i

i

i

i

i

i

3.2. Singly Linked Lists 119

3.2.2 Insertion to the Front of a Singly Linked List

We can easily insert an element at the head of a singly linked list. We first create a
new node, and set its elem value to the desired string and set its next link to point to
the current head of the list. We then set head to point to the new node. The process
is illustrated in Figure 3.10.

(a)

(b)

(c)

Figure 3.10: Insertion of an element at the head of a singly linked list: (a) before
the insertion; (b) creation of a new node; (c) after the insertion.

An implementation is shown in Code Fragment 3.16. Note that access to the
private members elem and next of the StringNode class would normally be prohib-
ited, but it is allowed here because StringLinkedList was declared to be a friend of
StringNode.

void StringLinkedList::addFront(const string& e) { // add to front of list
StringNode* v = new StringNode; // create new node
v−>elem = e; // store data
v−>next = head; // head now follows v
head = v; // v is now the head
}

Code Fragment 3.16: Insertion to the front of a singly linked list.

3.2.3 Removal from the Front of a Singly Linked List

Next, we consider how to remove an element from the front of a singly linked list.
We essentially undo the operations performed for insertion. We first save a pointer

i

i

“main” — 2011/1/13 — 9:10 — page 120 — #142
i

i

i

i

i

i

120 Chapter 3. Arrays, Linked Lists, and Recursion

to the old head node and advance the head pointer to the next node in the list. We
then delete the old head node. This operation is illustrated in Figure 3.11.

(a)

(b)

(c)

Figure 3.11: Removal of an element at the head of a singly linked list: (a) before
the removal; (b) “linking out” the old new node; (c) after the removal.

An implementation of this operation is provided in Code Fragment 3.17. We
assume that the user has checked that the list is nonempty before applying this
operation. (A more careful implementation would throw an exception if the list
were empty.) The function deletes the node in order to avoid any memory leaks.
We do not return the value of the deleted node. If its value is desired, we can call
the front function prior to the removal.

void StringLinkedList::removeFront() { // remove front item
StringNode* old = head; // save current head
head = old−>next; // skip over old head
delete old; // delete the old head
}

Code Fragment 3.17: Removal from the front of a singly linked list.

It is noteworthy that we cannot as easily delete the last node of a singly linked
list, even if we had a pointer to it. In order to delete a node, we need to update the
next link of the node immediately preceding the deleted node. Locating this node
involves traversing the entire list and could take a long time. (We remedy this in
Section 3.3 when we discuss doubly linked lists.)

i

i

“main” — 2011/1/13 — 9:10 — page 121 — #143
i

i

i

i

i

i

3.2. Singly Linked Lists 121

3.2.4 Implementing a Generic Singly Linked List

The implementation of the singly linked list given in Section 3.2.1 assumes that the
element type is a character string. It is easy to convert the implementation so that it
works for an arbitrary element type through the use of C++’s template mechanism.
The resulting generic singly linked list class is called SLinkedList.

We begin by presenting the node class, called SNode, in Code Fragment 3.18.
The element type associated with each node is parameterized by the type vari-
able E. In contrast to our earlier version in Code Fragment 3.13, references to the
data type “string” have been replaced by “E.” When referring to our templated
node and list class, we need to include the suffix “<E>.” For example, the class is
SLinkedList<E> and the associated node is SNode<E>.

template <typename E>
class SNode { // singly linked list node
private:

E elem; // linked list element value
SNode<E>* next; // next item in the list
friend class SLinkedList<E>; // provide SLinkedList access
};

Code Fragment 3.18: A node in a generic singly linked list.

The generic list class is presented in Code Fragment 3.19. As above, refer-
ences to the specific element type “string” have been replaced by references to the
generic type parameter “E.” To keep things simple, we have omitted housekeeping
functions such as a copy constructor.

template <typename E>
class SLinkedList { // a singly linked list
public:

SLinkedList(); // empty list constructor
˜SLinkedList(); // destructor
bool empty() const; // is list empty?
const E& front() const; // return front element
void addFront(const E& e); // add to front of list
void removeFront(); // remove front item list

private:
SNode<E>* head; // head of the list
};

Code Fragment 3.19: A class definition for a generic singly linked list.

In Code Fragment 3.20, we present the class member functions. Note the sim-
ilarity with Code Fragments 3.15 through 3.17. Observe that each definition is
prefaced by the template specifier template <typename E>.

i

i

“main” — 2011/1/13 — 9:10 — page 122 — #144
i

i

i

i

i

i

122 Chapter 3. Arrays, Linked Lists, and Recursion

template <typename E>
SLinkedList<E>::SLinkedList() // constructor

: head(NULL) { }

template <typename E>
bool SLinkedList<E>::empty() const // is list empty?
{ return head == NULL; }

template <typename E>
const E& SLinkedList<E>::front() const // return front element
{ return head−>elem; }

template <typename E>
SLinkedList<E>::˜SLinkedList() // destructor
{ while (!empty()) removeFront(); }

template <typename E>
void SLinkedList<E>::addFront(const E& e) { // add to front of list

SNode<E>* v = new SNode<E>; // create new node
v−>elem = e; // store data
v−>next = head; // head now follows v
head = v; // v is now the head
}

template <typename E>
void SLinkedList<E>::removeFront() { // remove front item

SNode<E>* old = head; // save current head
head = old−>next; // skip over old head
delete old; // delete the old head
}
Code Fragment 3.20: Other member functions for a generic singly linked list.

We can generate singly linked lists of various types by simply setting the tem-
plate parameter as desired as shown in the following code fragment.

SLinkedList<string> a; // list of strings
a.addFront("MSP");
// . . .
SLinkedList<int> b; // list of integers
b.addFront(13);

Code Fragment 3.21: Examples using the generic singly linked list class.

Because templated classes carry a relatively high notational burden, we often
sacrifice generality for simplicity, and avoid the use of templated classes in some
of our examples.

i

i

“main” — 2011/1/13 — 9:10 — page 123 — #145
i

i

i

i

i

i

3.3. Doubly Linked Lists 123

3.3 Doubly Linked Lists

As we saw in the previous section, removing an element at the tail of a singly
linked list is not easy. Indeed, it is time consuming to remove any node other than
the head in a singly linked list, since we do not have a quick way of accessing the
node immediately preceding the one we want to remove. There are many appli-
cations where we do not have quick access to such a predecessor node. For such
applications, it would be nice to have a way of going both directions in a linked list.

There is a type of linked list that allows us to go in both directions—forward
and reverse—in a linked list. It is the doubly linked list. In addition to its element
member, a node in a doubly linked list stores two pointers, a next link and a prev
link, which point to the next node in the list and the previous node in the list, re-
spectively. Such lists allow for a great variety of quick update operations, including
efficient insertion and removal at any given position.

Header and Trailer Sentinels

To simplify programming, it is convenient to add special nodes at both ends of
a doubly linked list: a header node just before the head of the list, and a trailer
node just after the tail of the list. These “dummy” or sentinel nodes do not store
any elements. They provide quick access to the first and last nodes of the list. In
particular, the header’s next pointer points to the first node of the list, and the prev
pointer of the trailer node points to the last node of the list. An example is shown
in Figure 3.12.

Figure 3.12: A doubly linked list with sentinels, header and trailer, marking the
ends of the list. An empty list would have these sentinels pointing to each other.
We do not show the null prev pointer for the header nor do we show the null next
pointer for the trailer.

3.3.1 Insertion into a Doubly Linked List

Because of its double link structure, it is possible to insert a node at any position
within a doubly linked list. Given a node v of a doubly linked list (which could
possibly be the header, but not the trailer), let z be a new node that we wish to insert

i

i

“main” — 2011/1/13 — 9:10 — page 124 — #146
i

i

i

i

i

i

124 Chapter 3. Arrays, Linked Lists, and Recursion

immediately after v. Let w the be node following v, that is, w is the node pointed to
by v’s next link. (This node exists, since we have sentinels.) To insert z after v, we
link it into the current list, by performing the following operations:

• Make z’s prev link point to v
• Make z’s next link point to w
• Make w’s prev link point to z
• Make v’s next link point to z

This process is illustrated in Figure 3.13, where v points to the node JFK, w points
to PVD, and z points to the new node BWI. Observe that this process works if v is
any node ranging from the header to the node just prior to the trailer.

(a)

(b)

Figure 3.13: Adding a new node after the node storing JFK: (a) creating a new node
with element BWI and linking it in; (b) after the insertion.

3.3.2 Removal from a Doubly Linked List

Likewise, it is easy to remove a node v from a doubly linked list. Let u be the node
just prior to v, and w be the node just following v. (These nodes exist, since we
have sentinels.) To remove node v, we simply have u and w point to each other
instead of to v. We refer to this operation as the linking out of v. We perform the
following operations.

• Make w’s prev link point to u
• Make u’s next link point to w
• Delete node v

This process is illustrated in Figure 3.14, where v is the node PVD, u is the node
JFK, and w is the node SFO. Observe that this process works if v is any node from
the header to the tail node (the node just prior to the trailer).

i

i

“main” — 2011/1/13 — 9:10 — page 125 — #147
i

i

i

i

i

i

3.3. Doubly Linked Lists 125

(a)

(b)

(c)

Figure 3.14: Removing the node storing PVD: (a) before the removal; (b) linking
out the old node; (c) after node deletion.

3.3.3 A C++ Implementation

Let us consider how to implement a doubly linked list in C++. First, we present a
C++ class for a node of the list in Code Fragment 3.22. To keep the code simple,
we have chosen not to derive a templated class as we did in Section 3.2.1 for singly
linked lists. Instead, we provide a typedef statement that defines the element type,
called Elem. We define it to be a string, but any other type could be used instead.
Each node stores an element. It also contains pointers to both the previous and next
nodes of the list. We declare DLinkedList to be a friend, so it can access the node’s
private members.

typedef string Elem; // list element type
class DNode { // doubly linked list node
private:

Elem elem; // node element value
DNode* prev; // previous node in list
DNode* next; // next node in list
friend class DLinkedList; // allow DLinkedList access
};

Code Fragment 3.22: C++ implementation of a doubly linked list node.

Next, we present the definition of the doubly linked list class, DLinkedList,
in Code Fragment 3.23. In addition to a constructor and destructor, the public
members consist of a function that indicates whether the list is currently empty

i

i

“main” — 2011/1/13 — 9:10 — page 126 — #148
i

i

i

i

i

i

126 Chapter 3. Arrays, Linked Lists, and Recursion

(meaning that it has no nodes other than the sentinels) and accessors to retrieve
the front and back elements. We also provide methods for inserting and removing
elements from the front and back of the list. There are two private data members,
header and trailer, which point to the sentinels. Finally, we provide two protected
utility member functions, add and remove. They are used internally by the class
and by its subclasses, but they cannot be invoked from outside the class.

class DLinkedList { // doubly linked list
public:

DLinkedList(); // constructor
˜DLinkedList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // get front element
const Elem& back() const; // get back element
void addFront(const Elem& e); // add to front of list
void addBack(const Elem& e); // add to back of list
void removeFront(); // remove from front
void removeBack(); // remove from back

private: // local type definitions
DNode* header; // list sentinels
DNode* trailer;

protected: // local utilities
void add(DNode* v, const Elem& e); // insert new node before v
void remove(DNode* v); // remove node v
};

Code Fragment 3.23: Implementation of a doubly linked list class.

Let us begin by presenting the class constructor and destructor as shown in
Code Fragment 3.24. The constructor creates the sentinel nodes and sets each to
point to the other, and the destructor removes all but the sentinel nodes.

DLinkedList::DLinkedList() { // constructor
header = new DNode; // create sentinels
trailer = new DNode;
header−>next = trailer; // have them point to each other
trailer−>prev = header;
}

DLinkedList::˜DLinkedList() { // destructor
while (!empty()) removeFront(); // remove all but sentinels
delete header; // remove the sentinels
delete trailer;
}

Code Fragment 3.24: Class constructor and destructor.

i

i

“main” — 2011/1/13 — 9:10 — page 127 — #149
i

i

i

i

i

i

3.3. Doubly Linked Lists 127

Next, in Code Fragment 3.25 we show the basic class accessors. To determine
whether the list is empty, we check that there is no node between the two sentinels.
We do this by testing whether the trailer follows immediately after the header. To
access the front element of the list, we return the element associated with the node
that follows the list header. To access the back element, we return the element
associated with node that precedes the trailer. Both operations assume that the list
is nonempty. We could have enhanced these functions by throwing an exception if
an attempt is made to access the front or back of an empty list, just as we did in
Code Fragment 3.6.

bool DLinkedList::empty() const // is list empty?
{ return (header−>next == trailer); }

const Elem& DLinkedList::front() const // get front element
{ return header−>next−>elem; }

const Elem& DLinkedList::back() const // get back element
{ return trailer−>prev−>elem; }

Code Fragment 3.25: Accessor functions for the doubly linked list class.

In Section 3.3.1, we discussed how to insert a node into a doubly linked list.
The local utility function add, which is shown in Code Fragment 3.26, implements
this operation. In order to add a node to the front of the list, we create a new node,
and insert it immediately after the header, or equivalently, immediately before the
node that follows the header. In order to add a new node to the back of the list, we
create a new node, and insert it immediately before the trailer.

// insert new node before v
void DLinkedList::add(DNode* v, const Elem& e) {

DNode* u = new DNode; u−>elem = e; // create a new node for e
u−>next = v; // link u in between v
u−>prev = v−>prev; // . . .and v->prev
v−>prev−>next = v−>prev = u;
}

void DLinkedList::addFront(const Elem& e) // add to front of list
{ add(header−>next, e); }

void DLinkedList::addBack(const Elem& e) // add to back of list
{ add(trailer, e); }

Code Fragment 3.26: Inserting a new node into a doubly linked list. The protected
utility function add inserts a node z before an arbitrary node v. The public member
functions addFront and addBack both invoke this utility function.

i

i

“main” — 2011/1/13 — 9:10 — page 128 — #150
i

i

i

i

i

i

128 Chapter 3. Arrays, Linked Lists, and Recursion

Observe that the above code works even if the list is empty (meaning that the
only nodes are the header and trailer). For example, if addBack is invoked on an
empty list, then the value of trailer->prev is a pointer to the list header. Thus,
the node is added between the header and trailer as desired. One of the major
advantages of providing sentinel nodes is to avoid handling of special cases, which
would otherwise be needed.

Finally, let us discuss deletion. In Section 3.3.2, we showed how to remove
an arbitrary node from a doubly linked list. In Code Fragment 3.27, we present
local utility function remove, which performs the operation. In addition to linking
out the node, it also deletes the node. The public member functions removeFront
and removeBack are implemented by deleting the nodes immediately following the
header and immediately preceding the trailer, respectively.

void DLinkedList::remove(DNode* v) { // remove node v
DNode* u = v−>prev; // predecessor
DNode* w = v−>next; // successor
u−>next = w; // unlink v from list
w−>prev = u;
delete v;
}

void DLinkedList::removeFront() // remove from font
{ remove(header−>next); }

void DLinkedList::removeBack() // remove from back
{ remove(trailer−>prev); }

Code Fragment 3.27: Removing a node from a doubly linked list. The local utility
function remove removes the node v. The public member functions removeFront
and removeBack invoke this utility function.

There are many more features that we could have added to our simple imple-
mentation of a doubly linked list. Although we have provided access to the ends of
the list, we have not provided any mechanism for accessing or modifying elements
in the middle of the list. Later, in Chapter 6, we discuss the concept of iterators,
which provides a mechanism for accessing arbitrary elements of a list.

We have also performed no error checking in our implementation. It is the
user’s responsibility not to attempt to access or remove elements from an empty
list. In a more robust implementation of a doubly linked list, we would design the
member functions front, back, removeFront, and removeBack to throw an excep-
tion when an attempt is made to perform one of these functions on an empty list.
Nonetheless, this simple implementation illustrates how easy it is to manipulate
this useful data structure.

i

i

“main” — 2011/1/13 — 9:10 — page 129 — #151
i

i

i

i

i

i

3.4. Circularly Linked Lists and List Reversal 129

3.4 Circularly Linked Lists and List Reversal

In this section, we study some applications and extensions of linked lists.

3.4.1 Circularly Linked Lists

A circularly linked list has the same kind of nodes as a singly linked list. That is,
each node in a circularly linked list has a next pointer and an element value. But,
rather than having a head or tail, the nodes of a circularly linked list are linked
into a cycle. If we traverse the nodes of a circularly linked list from any node by
following next pointers, we eventually visit all the nodes and cycle back to the
node from which we started.

Even though a circularly linked list has no beginning or end, we nevertheless
need some node to be marked as a special node, which we call the cursor. The
cursor node allows us to have a place to start from if we ever need to traverse a
circularly linked list.

There are two positions of particular interest in a circular list. The first is the
element that is referenced by the cursor, which is called the back, and the element
immediately following this in the circular order, which is called the front. Although
it may seem odd to think of a circular list as having a front and a back, observe that,
if we were to cut the link between the node referenced by the cursor and this node’s
immediate successor, the result would be a singly linked list from the front node to
the back node.

LAX MSP ATL BOS

(front) (back)
cursor

Figure 3.15: A circularly linked list. The node referenced by the cursor is called the
back, and the node immediately following is called the front.

We define the following functions for a circularly linked list:

front(): Return the element referenced by the cursor; an error re-
sults if the list is empty.

back(): Return the element immediately after the cursor; an error
results if the list is empty.

advance(): Advance the cursor to the next node in the list.

i

i

“main” — 2011/1/13 — 9:10 — page 130 — #152
i

i

i

i

i

i

130 Chapter 3. Arrays, Linked Lists, and Recursion

add(e): Insert a new node with element e immediately after the
cursor; if the list is empty, then this node becomes the
cursor and its next pointer points to itself.

remove(): Remove the node immediately after the cursor (not the
cursor itself, unless it is the only node); if the list be-
comes empty, the cursor is set to null.

In Code Fragment 3.28, we show a C++ implementation of a node of a cir-
cularly linked list, assuming that each node contains a single string. The node
structure is essentially identical to that of a singly linked list (recall Code Frag-
ment 3.13). To keep the code simple, we have not implemented a templated class.
Instead, we provide a typedef statement that defines the element type Elem to be
the base type of the list, which in this case is a string.

typedef string Elem; // element type
class CNode { // circularly linked list node
private:

Elem elem; // linked list element value
CNode* next; // next item in the list

friend class CircleList; // provide CircleList access
};

Code Fragment 3.28: A node of a circularly linked list.

Next, in Code Fragment 3.29, we present the class definition for a circularly
linked list called CircleList. In addition to the above functions, the class provides
a constructor, a destructor, and a function to detect whether the list is empty. The
private member consists of the cursor, which points to some node of the list.

class CircleList { // a circularly linked list
public:

CircleList(); // constructor
˜CircleList(); // destructor
bool empty() const; // is list empty?
const Elem& front() const; // element at cursor
const Elem& back() const; // element following cursor
void advance(); // advance cursor
void add(const Elem& e); // add after cursor
void remove(); // remove node after cursor

private:
CNode* cursor; // the cursor
};

Code Fragment 3.29: Implementation of a circularly linked list class.

i

i

“main” — 2011/1/13 — 9:10 — page 131 — #153
i

i

i

i

i

i

3.4. Circularly Linked Lists and List Reversal 131

Code Fragment 3.30 presents the class’s constructor and destructor. The con-
structor generates an empty list by setting the cursor to NULL. The destructor iter-
atively removes nodes until the list is empty. We exploit the fact that the member
function remove (given below) deletes the node that it removes.

CircleList::CircleList() // constructor
: cursor(NULL) { }

CircleList::˜CircleList() // destructor
{ while (!empty()) remove(); }

Code Fragment 3.30: The constructor and destructor.

We present a number of simple member functions in Code Fragment 3.31. To
determine whether the list is empty, we test whether the cursor is NULL. The ad-
vance function advances the cursor to the next element.

bool CircleList::empty() const // is list empty?
{ return cursor == NULL; }

const Elem& CircleList::back() const // element at cursor
{ return cursor−>elem; }

const Elem& CircleList::front() const // element following cursor
{ return cursor−>next−>elem; }

void CircleList::advance() // advance cursor
{ cursor = cursor−>next; }

Code Fragment 3.31: Simple member functions.

Next, let us consider insertion. Recall that insertions to the circularly linked list
occur after the cursor. We begin by creating a new node and initializing its data
member. If the list is empty, we create a new node that points to itself. We then
direct the cursor to point to this element. Otherwise, we link the new node just after
the cursor. The code is presented in Code Fragment 3.32.

void CircleList::add(const Elem& e) { // add after cursor
CNode* v = new CNode; // create a new node
v−>elem = e;
if (cursor == NULL) { // list is empty?

v−>next = v; // v points to itself
cursor = v; // cursor points to v
}
else { // list is nonempty?

v−>next = cursor−>next; // link in v after cursor
cursor−>next = v;
}
}

Code Fragment 3.32: Inserting a node just after the cursor of a circularly linked list.

i

i

“main” — 2011/1/13 — 9:10 — page 132 — #154
i

i

i

i

i

i

132 Chapter 3. Arrays, Linked Lists, and Recursion

Finally, we consider removal. We assume that the user has checked that the list
is nonempty before invoking this function. (A more careful implementation would
throw an exception if the list is empty.) There are two cases. If this is the last node
of the list (which can be tested by checking that the node to be removed points to
itself) we set the cursor to NULL. Otherwise, we link the cursor’s next pointer to
skip over the removed node. We then delete the node. The code is presented in
Code Fragment 3.33.

void CircleList::remove() { // remove node after cursor
CNode* old = cursor−>next; // the node being removed
if (old == cursor) // removing the only node?

cursor = NULL; // list is now empty
else

cursor−>next = old−>next; // link out the old node
delete old; // delete the old node
}

Code Fragment 3.33: Removing the node following the cursor.

To keep the code simple, we have omitted error checking. In front, back, and
advance, we should first test whether the list is empty, since otherwise the cursor
pointer will be NULL. In the first two cases, we should throw some sort of excep-
tion. In the case of advance, if the list is empty, we can simply return.

Maintaining a Playlist for a Digital Audio Player

To help illustrate the use of our CircleList implementation of the circularly linked
list, let us consider how to build a simple interface for maintaining a playlist for
a digital audio player, also known as an MP3 player. The songs of the player are
stored in a circular list. The cursor points to the current song. By advancing the
cursor, we can move from one song to the next. We can also add new songs and
remove songs by invoking the member functions insert and remove, respectively.
Of course, a complete implementation would need to provide a method for playing
the current song, but our purpose is to illustrate how the circularly linked list can
be applied to this task.

To make this more concrete, suppose that you have a friend who loves retro
music, and you want to create a playlist of songs from the bygone Disco Era. The
main program is presented Code Fragment 3.34. We declare an object playList
to be a CircleList. The constructor creates an empty playlist. We proceed to add
three songs, “Stayin Alive,” “Le Freak,” and “Jive Talkin.” The comments on the
right show the current contents of the list in square brackets. The first entry of the
list is the element immediately following the cursor (which is where insertion and
removal occur), and the last entry in the list is cursor (which is indicated with an
asterisk).

i

i

“main” — 2011/1/13 — 9:10 — page 133 — #155
i

i

i

i

i

i

3.4. Circularly Linked Lists and List Reversal 133

Suppose that we decide to replace “Stayin Alive” with “Disco Inferno.” We
advance the cursor twice so that “Stayin Alive” comes immediately after the cursor.
We then remove this entry and insert its replacement.

int main() {
CircleList playList; // []
playList.add("Stayin Alive"); // [Stayin Alive*]
playList.add("Le Freak"); // [Le Freak, Stayin Alive*]
playList.add("Jive Talkin"); // [Jive Talkin, Le Freak, Stayin Alive*]

playList.advance(); // [Le Freak, Stayin Alive, Jive Talkin*]
playList.advance(); // [Stayin Alive, Jive Talkin, Le Freak*]
playList.remove(); // [Jive Talkin, Le Freak*]
playList.add("Disco Inferno"); // [Disco Inferno, Jive Talkin, Le Freak*]
return EXIT SUCCESS;
}

Code Fragment 3.34: Using the CircleList class to implement a playlist for a digital
audio player.

3.4.2 Reversing a Linked List

As another example of the manipulation of linked lists, we present a simple function
for reversing the elements of a doubly linked list. Given a list L, our approach
involves first copying the contents of L in reverse order into a temporary list T , and
then copying the contents of T back into L (but without reversing).

To achieve the initial reversed copy, we repeatedly extract the first element of
L and copy it to the front of T . (To see why this works, observe that the later an
element appears in L, the earlier it will appear in T .) To copy the contents of T
back to L, we repeatedly extract elements from the front of T , but this time we
copy each one to the back of list L. Our C++ implementation is presented in Code
Fragment 3.35.

void listReverse(DLinkedList& L) { // reverse a list
DLinkedList T; // temporary list
while (!L.empty()) { // reverse L into T

string s = L.front(); L.removeFront();
T.addFront(s);
}
while (!T.empty()) { // copy T back to L

string s = T.front(); T.removeFront();
L.addBack(s);
}
}

Code Fragment 3.35: A function that reverses the contents of a doubly linked list L.

i

i

“main” — 2011/1/13 — 9:10 — page 134 — #156
i

i

i

i

i

i

134 Chapter 3. Arrays, Linked Lists, and Recursion

3.5 Recursion

We have seen that repetition can be achieved by writing loops, such as for loops
and while loops. Another way to achieve repetition is through recursion, which
occurs when a function refers to itself in its own definition. We have seen examples
of functions calling other functions, so it should come as no surprise that most
modern programming languages, including C++, allow a function to call itself. In
this section, we see why this capability provides an elegant and powerful alternative
for performing repetitive tasks.

The Factorial Function

To illustrate recursion, let us begin with a simple example of computing the value of
the factorial function. The factorial of a positive integer n, denoted n!, is defined
as the product of the integers from 1 to n. If n = 0, then n! is defined as 1 by
convention. More formally, for any integer n≥ 0,

n! =

{
1 if n = 0
n · (n−1) · (n−2) · · ·3 ·2 ·1 if n≥ 1.

For example, 5! = 5 · 4 · 3 · 2 · 1 = 120. To make the connection with functions
clearer, we use the notation factorial(n) to denote n!.

The factorial function can be defined in a manner that suggests a recursive
formulation. To see this, observe that

factorial(5) = 5 · (4 ·3 ·2 ·1) = 5 · factorial(4).

Thus, we can define factorial(5) in terms of factorial(4). In general, for a positive
integer n, we can define factorial(n) to be n · factorial(n− 1). This leads to the
following recursive definition

factorial(n) =

{
1 if n = 0
n · factorial(n−1) if n≥ 1.

This definition is typical of many recursive definitions. First, it contains one
or more base cases, which are defined nonrecursively in terms of fixed quantities.
In this case, n = 0 is the base case. It also contains one or more recursive cases,
which are defined by appealing to the definition of the function being defined. Ob-
serve that there is no circularity in this definition because each time the function is
invoked, its argument is smaller by one.

i

i

“main” — 2011/1/13 — 9:10 — page 135 — #157
i

i

i

i

i

i

3.5. Recursion 135

A Recursive Implementation of the Factorial Function

Let us consider a C++ implementation of the factorial function shown in Code Frag-
ment 3.36 under the name recursiveFactorial. Notice that no looping was needed
here. The repeated recursive invocations of the function take the place of looping.

int recursiveFactorial(int n) { // recursive factorial function
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n−1); // recursive case
}

Code Fragment 3.36: A recursive implementation of the factorial function.

We can illustrate the execution of a recursive function definition by means of a
recursion trace. Each entry of the trace corresponds to a recursive call. Each new
recursive function call is indicated by an arrow to the newly called function. When
the function returns, an arrow showing this return is drawn, and the return value
may be indicated with this arrow. An example of a trace is shown in Figure 3.16.

What is the advantage of using recursion? Although the recursive implementa-
tion of the factorial function is somewhat simpler than the iterative version, in this
case there is no compelling reason for preferring recursion over iteration. For some
problems, however, a recursive implementation can be significantly simpler and
easier to understand than an iterative implementation. Such an example follows.

Figure 3.16: A recursion trace for the call recursiveFactorial(4).

i

i

“main” — 2011/1/13 — 9:10 — page 136 — #158
i

i

i

i

i

i

136 Chapter 3. Arrays, Linked Lists, and Recursion

Drawing an English Ruler

As a more complex example of the use of recursion, consider how to draw the
markings of a typical English ruler. Such a ruler is broken into intervals, and each
interval consists of a set of ticks, placed at intervals of 1/2 inch, 1/4 inch, and so
on. As the size of the interval decreases by half, the tick length decreases by one.
(See Figure 3.17.)

---- 0 ----- 0 --- 0

- - -

-- -- --

- - -

--- --- --- 1

- - -

-- -- --

- - -

---- 1 ---- --- 2

- - -

-- -- --

- - -

--- --- --- 3

- -

-- --

- -

---- 2 ----- 1

(a) (b) (c)

Figure 3.17: Three sample outputs of an English ruler drawing: (a) a 2-inch ruler
with major tick length 4; (b) a 1-inch ruler with major tick length 5; (c) a 3-inch
ruler with major tick length 3.

Each fraction of an inch also has a numeric label. The longest tick length is
called the major tick length. We won’t worry about actual distances, however, and
just print one tick per line.

A Recursive Approach to Ruler Drawing

Our approach to drawing such a ruler consists of three functions. The main function
drawRuler draws the entire ruler. Its arguments are the total number of inches in
the ruler, nInches, and the major tick length, majorLength. The utility function dra-
wOneTick draws a single tick of the given length. It can also be given an optional
integer label, which is printed if it is nonnegative.

i

i

“main” — 2011/1/13 — 9:10 — page 137 — #159
i

i

i

i

i

i

3.5. Recursion 137

The interesting work is done by the recursive function drawTicks, which draws
the sequence of ticks within some interval. Its only argument is the tick length
associated with the interval’s central tick. Consider the English ruler with major
tick length 5 shown in Figure 3.17(b). Ignoring the lines containing 0 and 1, let us
consider how to draw the sequence of ticks lying between these lines. The central
tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above and
below this central tick are identical, and each has a central tick of length 3. In
general, an interval with a central tick length L≥ 1 is composed of the following:

• An interval with a central tick length L−1

• A single tick of length L

• An interval with a central tick length L−1

With each recursive call, the length decreases by one. When the length drops to
zero, we simply return. As a result, this recursive process always terminates. This
suggests a recursive process in which the first and last steps are performed by call-
ing the drawTicks(L− 1) recursively. The middle step is performed by calling
the function drawOneTick(L). This recursive formulation is shown in Code Frag-
ment 3.37. As in the factorial example, the code has a base case (when L = 0). In
this instance we make two recursive calls to the function.

// one tick with optional label
void drawOneTick(int tickLength, int tickLabel = −1) {

for (int i = 0; i < tickLength; i++)
cout << "-";

if (tickLabel >= 0) cout << " " << tickLabel;
cout << "\n";
}
void drawTicks(int tickLength) { // draw ticks of given length

if (tickLength > 0) { // stop when length drops to 0
drawTicks(tickLength−1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength−1); // recursively draw right ticks
}
}
void drawRuler(int nInches, int majorLength) {// draw the entire ruler

drawOneTick(majorLength, 0); // draw tick 0 and its label
for (int i = 1; i <= nInches; i++) {

drawTicks(majorLength−1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label
}
}

Code Fragment 3.37: A recursive implementation of a function that draws a ruler.

i

i

“main” — 2011/1/13 — 9:10 — page 138 — #160
i

i

i

i

i

i

138 Chapter 3. Arrays, Linked Lists, and Recursion

Illustrating Ruler Drawing using a Recursion Trace

The recursive execution of the recursive drawTicks function, defined above, can be
visualized using a recursion trace.

The trace for drawTicks is more complicated than in the factorial example,
however, because each instance makes two recursive calls. To illustrate this, we
show the recursion trace in a form that is reminiscent of an outline for a document.
See Figure 3.18.

Figure 3.18: A partial recursion trace for the call drawTicks(3). The second pattern
of calls for drawTicks(2) is not shown, but it is identical to the first.

Throughout this book, we see many other examples of how recursion can be
used in the design of data structures and algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 139 — #161
i

i

i

i

i

i

3.5. Recursion 139

Further Illustrations of Recursion

As we discussed above, recursion is the concept of defining a function that makes
a call to itself. When a function calls itself, we refer to this as a recursive call. We
also consider a function M to be recursive if it calls another function that ultimately
leads to a call back to M.

The main benefit of a recursive approach to algorithm design is that it allows us
to take advantage of the repetitive structure present in many problems. By making
our algorithm description exploit this repetitive structure in a recursive way, we can
often avoid complex case analyses and nested loops. This approach can lead to
more readable algorithm descriptions, while still being quite efficient.

In addition, recursion is a useful way for defining objects that have a repeated
similar structural form, such as in the following examples.

Example 3.1: Modern operating systems define file-system directories (which are
also sometimes called “folders”) in a recursive way. Namely, a file system consists
of a top-level directory, and the contents of this directory consists of files and other
directories, which in turn can contain files and other directories, and so on. The
base directories in the file system contain only files, but by using this recursive
definition, the operating system allows for directories to be nested arbitrarily deep
(as long as there is enough space in memory).

Example 3.2: Much of the syntax in modern programming languages is defined
in a recursive way. For example, we can define an argument list in C++ using the
following notation:

argument-list:
argument
argument-list , argument

In other words, an argument list consists of either (i) an argument or (ii) an argu-
ment list followed by a comma and an argument. That is, an argument list consists
of a comma-separated list of arguments. Similarly, arithmetic expressions can be
defined recursively in terms of primitives (like variables and constants) and arith-
metic expressions.

Example 3.3: There are many examples of recursion in art and nature. One of the
most classic examples of recursion used in art is in the Russian Matryoshka dolls.
Each doll is made of solid wood or is hollow and contains another Matryoshka doll
inside it.

i

i

“main” — 2011/1/13 — 9:10 — page 140 — #162
i

i

i

i

i

i

140 Chapter 3. Arrays, Linked Lists, and Recursion

3.5.1 Linear Recursion

The simplest form of recursion is linear recursion, where a function is defined
so that it makes at most one recursive call each time it is invoked. This type of
recursion is useful when we view an algorithmic problem in terms of a first or last
element plus a remaining set that has the same structure as the original set.

Summing the Elements of an Array Recursively

Suppose, for example, we are given an array, A, of n integers that we want to sum
together. We can solve this summation problem using linear recursion by observing
that the sum of all n integers in A is equal to A[0], if n = 1, or the sum of the first n−
1 integers in A plus the last element in A. In particular, we can solve this summation
problem using the recursive algorithm described in Code Fragment 3.38.

Algorithm LinearSum(A,n):
Input: A integer array A and an integer n≥ 1, such that A has at least n elements
Output: The sum of the first n integers in A

if n = 1 then
return A[0]

else
return LinearSum(A,n−1)+ A[n−1]

Code Fragment 3.38: Summing the elements in an array using linear recursion.

This example also illustrates an important property that a recursive function
should always possess—the function terminates. We ensure this by writing a non-
recursive statement for the case n = 1. In addition, we always perform the recursive
call on a smaller value of the parameter (n−1) than that which we are given (n), so
that, at some point (at the “bottom” of the recursion), we will perform the nonre-
cursive part of the computation (returning A[0]). In general, an algorithm that uses
linear recursion typically has the following form:

• Test for base cases. We begin by testing for a set of base cases (there should
be at least one). These base cases should be defined so that every possible
chain of recursive calls eventually reaches a base case, and the handling of
each base case should not use recursion.

• Recur. After testing for base cases, we then perform a single recursive call.
This recursive step may involve a test that decides which of several possible
recursive calls to make, but it should ultimately choose to make just one of
these calls each time we perform this step. Moreover, we should define each
possible recursive call so that it makes progress towards a base case.

i

i

“main” — 2011/1/13 — 9:10 — page 141 — #163
i

i

i

i

i

i

3.5. Recursion 141

Analyzing Recursive Algorithms using Recursion Traces

We can analyze a recursive algorithm by using a visual tool known as a recursion
trace. We used recursion traces, for example, to analyze and visualize the recur-
sive factorial function of Section 3.5, and we similarly use recursion traces for the
recursive sorting algorithms of Sections 11.1 and 11.2.

To draw a recursion trace, we create a box for each instance of the function
and label it with the parameters of the function. Also, we visualize a recursive call
by drawing an arrow from the box of the calling function to the box of the called
function. For example, we illustrate the recursion trace of the LinearSum algorithm
of Code Fragment 3.38 in Figure 3.19. We label each box in this trace with the
parameters used to make this call. Each time we make a recursive call, we draw
a line to the box representing the recursive call. We can also use this diagram to
visualize stepping through the algorithm, since it proceeds by going from the call
for n to the call for n−1, to the call for n−2, and so on, all the way down to the call
for 1. When the final call finishes, it returns its value back to the call for 2, which
adds in its value, and returns this partial sum to the call for 3, and so on, until the
call for n−1 returns its partial sum to the call for n.

Figure 3.19: Recursion trace for an execution of LinearSum(A,n) with input param-
eters A = {4,3,6,2,5} and n = 5.

From Figure 3.19, it should be clear that for an input array of size n, Algorithm
LinearSum makes n calls. Hence, it takes an amount of time that is roughly propor-
tional to n, since it spends a constant amount of time performing the nonrecursive
part of each call. Moreover, we can also see that the memory space used by the
algorithm (in addition to the array A) is also roughly proportional to n, since we
need a constant amount of memory space for each of the n boxes in the trace at the

i

i

“main” — 2011/1/13 — 9:10 — page 142 — #164
i

i

i

i

i

i

142 Chapter 3. Arrays, Linked Lists, and Recursion

time we make the final recursive call (for n = 1).

Reversing an Array by Recursion

Next, let us consider the problem of reversing the n elements of an array, A, so that
the first element becomes the last, the second element becomes second to the last,
and so on. We can solve this problem using linear recursion, by observing that the
reversal of an array can be achieved by swapping the first and last elements and
then recursively reversing the remaining elements in the array. We describe the
details of this algorithm in Code Fragment 3.39, using the convention that the first
time we call this algorithm we do so as ReverseArray(A,0,n−1).

Algorithm ReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j

if i < j then
Swap A[i] and A[j]
ReverseArray(A, i+ 1, j−1)

return
Code Fragment 3.39: Reversing the elements of an array using linear recursion.

Note that, in this algorithm, we actually have two base cases, namely, when
i = j and when i > j. Moreover, in either case, we simply terminate the algorithm,
since a sequence with zero elements or one element is trivially equal to its reversal.
Furthermore, note that in the recursive step we are guaranteed to make progress
towards one of these two base cases. If n is odd, we eventually reach the i = j case,
and if n is even, we eventually reach the i > j case. The above argument immedi-
ately implies that the recursive algorithm of Code Fragment 3.39 is guaranteed to
terminate.

Defining Problems in Ways that Facilitate Recursion

To design a recursive algorithm for a given problem, it is useful to think of the dif-
ferent ways we can subdivide this problem to define problems that have the same
general structure as the original problem. This process sometimes means we need
to redefine the original problem to facilitate similar-looking subproblems. For ex-
ample, with the ReverseArray algorithm, we added the parameters i and j so that a
recursive call to reverse the inner part of the array A would have the same structure
(and same syntax) as the call to reverse all of A. Then, rather than initially calling
the algorithm as ReverseArray(A), we call it initially as ReverseArray(A,0,n−1).
In general, if one has difficulty finding the repetitive structure needed to design a re-
cursive algorithm, it is sometimes useful to work out the problem on a few concrete
examples to see how the subproblems should be defined.

i

i

“main” — 2011/1/13 — 9:10 — page 143 — #165
i

i

i

i

i

i

3.5. Recursion 143

Tail Recursion

Using recursion can often be a useful tool for designing algorithms that have ele-
gant, short definitions. But this usefulness does come at a modest cost. When we
use a recursive algorithm to solve a problem, we have to use some of the memory
locations in our computer to keep track of the state of each active recursive call.
When computer memory is at a premium, then it is useful in some cases to be able
to derive nonrecursive algorithms from recursive ones.

We can use the stack data structure, discussed in Section 5.1, to convert a recur-
sive algorithm into a nonrecursive algorithm, but there are some instances when we
can do this conversion more easily and efficiently. Specifically, we can easily con-
vert algorithms that use tail recursion. An algorithm uses tail recursion if it uses
linear recursion and the algorithm makes a recursive call as its very last operation.
For example, the algorithm of Code Fragment 3.39 uses tail recursion to reverse
the elements of an array.

It is not enough that the last statement in the function definition includes a
recursive call, however. In order for a function to use tail recursion, the recursive
call must be absolutely the last thing the function does (unless we are in a base case,
of course). For example, the algorithm of Code Fragment 3.38 does not use tail
recursion, even though its last statement includes a recursive call. This recursive
call is not actually the last thing the function does. After it receives the value
returned from the recursive call, it adds this value to A[n−1] and returns this sum.
That is, the last thing this algorithm does is an add, not a recursive call.

When an algorithm uses tail recursion, we can convert the recursive algorithm
into a nonrecursive one, by iterating through the recursive calls rather than call-
ing them explicitly. We illustrate this type of conversion by revisiting the prob-
lem of reversing the elements of an array. In Code Fragment 3.40, we give a
nonrecursive algorithm that performs this task by iterating through the recursive
calls of the algorithm of Code Fragment 3.39. We initially call this algorithm as
IterativeReverseArray(A,0,n−1).

Algorithm IterativeReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j

while i < j do
Swap A[i] and A[j]
i← i+ 1
j← j−1

return
Code Fragment 3.40: Reversing the elements of an array using iteration.

i

i

“main” — 2011/1/13 — 9:10 — page 144 — #166
i

i

i

i

i

i

144 Chapter 3. Arrays, Linked Lists, and Recursion

3.5.2 Binary Recursion

When an algorithm makes two recursive calls, we say that it uses binary recursion.
These calls can, for example, be used to solve two similar halves of some problem,
as we did in Section 3.5 for drawing an English ruler. As another application of
binary recursion, let us revisit the problem of summing the n elements of an integer
array A. In this case, we can sum the elements in A by: (i) recursively summing the
elements in the first half of A; (ii) recursively summing the elements in the second
half of A; and (iii) adding these two values together. We give the details in the
algorithm of Code Fragment 3.41, which we initially call as BinarySum(A,0,n).

Algorithm BinarySum(A, i,n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]

return BinarySum(A, i,⌈n/2⌉) + BinarySum(A, i+ ⌈n/2⌉,⌊n/2⌋)
Code Fragment 3.41: Summing the elements in an array using binary recursion.

To analyze Algorithm BinarySum, we consider, for simplicity, the case where
n is a power of two. The general case of arbitrary n is considered in Exercise R-4.5.
Figure 3.20 shows the recursion trace of an execution of function BinarySum(0,8).
We label each box with the values of parameters i and n, which represent the start-
ing index and length of the sequence of elements to be summed, respectively. No-
tice that the arrows in the trace go from a box labeled (i,n) to another box labeled
(i,n/2) or (i+ n/2,n/2). That is, the value of parameter n is halved at each recur-
sive call. Thus, the depth of the recursion, that is, the maximum number of function
instances that are active at the same time, is 1 + log2 n. Thus, Algorithm Binary-
Sum uses an amount of additional space roughly proportional to this value. This is
a big improvement over the space needed by the LinearSum function of Code Frag-
ment 3.38. The running time of Algorithm BinarySum is still roughly proportional
to n, however, since each box is visited in constant time when stepping through our
algorithm and there are 2n−1 boxes.

Figure 3.20: Recursion trace for the execution of BinarySum(0,8).

i

i

“main” — 2011/1/13 — 9:10 — page 145 — #167
i

i

i

i

i

i

3.5. Recursion 145

Computing Fibonacci Numbers via Binary Recursion

Let us consider the problem of computing the kth Fibonacci number. Recall from
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows:

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i > 1

By directly applying this definition, Algorithm BinaryFib, shown in Code Frag-
ment 3.42, computes the sequence of Fibonacci numbers using binary recursion.

Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The kth Fibonacci number Fk

if k ≤ 1 then
return k

else
return BinaryFib(k−1) + BinaryFib(k−2)

Code Fragment 3.42: Computing the kth Fibonacci number using binary recursion.

Unfortunately, in spite of the Fibonacci definition looking like a binary recur-
sion, using this technique is inefficient in this case. In fact, it takes an exponential
number of calls to compute the kth Fibonacci number in this way. Specifically, let
nk denote the number of calls performed in the execution of BinaryFib(k). Then,
we have the following values for the nk’s:

n0 = 1

n1 = 1

n2 = n1 + n0 + 1 = 1+ 1+ 1 = 3

n3 = n2 + n1 + 1 = 3+ 1+ 1 = 5

n4 = n3 + n2 + 1 = 5+ 3+ 1 = 9

n5 = n4 + n3 + 1 = 9+ 5+ 1 = 15

n6 = n5 + n4 + 1 = 15+ 9+ 1 = 25

n7 = n6 + n5 + 1 = 25+ 15+ 1 = 41

n8 = n7 + n6 + 1 = 41+ 25+ 1 = 67

If we follow the pattern forward, we see that the number of calls more than doubles
for each two consecutive indices. That is, n4 is more than twice n2, n5 is more than
twice n3, n6 is more than twice n4, and so on. Thus, nk > 2k/2, which means that
BinaryFib(k) makes a number of calls that are exponential in k. In other words,
using binary recursion to compute Fibonacci numbers is very inefficient.

i

i

“main” — 2011/1/13 — 9:10 — page 146 — #168
i

i

i

i

i

i

146 Chapter 3. Arrays, Linked Lists, and Recursion

Computing Fibonacci Numbers via Linear Recursion

The main problem with the approach above, based on binary recursion, is that the
computation of Fibonacci numbers is really a linearly recursive problem. It is not
a good candidate for using binary recursion. We simply got tempted into using
binary recursion because of the way the kth Fibonacci number, Fk, depends on the
two previous values, Fk−1 and Fk−2. But we can compute Fk much more efficiently
using linear recursion.

In order to use linear recursion, however, we need to slightly redefine the prob-
lem. One way to accomplish this conversion is to define a recursive function that
computes a pair of consecutive Fibonacci numbers (Fk,Fk−1) using the convention
F−1 = 0. Then we can use the linearly recursive algorithm shown in Code Frag-
ment 3.43.

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk,Fk−1)

if k ≤ 1 then
return (k,0)

else
(i, j)← LinearFibonacci(k−1)
return (i+ j, i)

Code Fragment 3.43: Computing the kth Fibonacci number using linear recursion.

The algorithm given in Code Fragment 3.43 shows that using linear recursion
to compute Fibonacci numbers is much more efficient than using binary recursion.
Since each recursive call to LinearFibonacci decreases the argument k by 1, the
original call LinearFibonacci(k) results in a series of k− 1 additional calls. That
is, computing the kth Fibonacci number via linear recursion requires k function
calls. This performance is significantly faster than the exponential time needed by
the algorithm based on binary recursion, which was given in Code Fragment 3.42.
Therefore, when using binary recursion, we should first try to fully partition the
problem in two (as we did for summing the elements of an array) or we should be
sure that overlapping recursive calls are really necessary.

Usually, we can eliminate overlapping recursive calls by using more memory to
keep track of previous values. In fact, this approach is a central part of a technique
called dynamic programming, which is related to recursion and is discussed in
Section 12.2.

i

i

“main” — 2011/1/13 — 9:10 — page 147 — #169
i

i

i

i

i

i

3.5. Recursion 147

3.5.3 Multiple Recursion

Generalizing from binary recursion, we use multiple recursion when a function
may make multiple recursive calls, with that number potentially being more than
two. One of the most common applications of this type of recursion is used when
we want to enumerate various configurations in order to solve a combinatorial puz-
zle. For example, the following are all instances of summation puzzles.

pot + pan = bib

dog + cat = pig

boy+ girl = baby

To solve such a puzzle, we need to assign a unique digit (that is, 0,1, . . . ,9) to each
letter in the equation, in order to make the equation true. Typically, we solve such
a puzzle by using our human observations of the particular puzzle we are trying
to solve to eliminate configurations (that is, possible partial assignments of digits
to letters) until we can work though the feasible configurations left, testing for the
correctness of each one.

If the number of possible configurations is not too large, however, we can use
a computer to simply enumerate all the possibilities and test each one, without
employing any human observations. In addition, such an algorithm can use multiple
recursion to work through the configurations in a systematic way. We show pseudo-
code for such an algorithm in Code Fragment 3.44. To keep the description general
enough to be used with other puzzles, the algorithm enumerates and tests all k-
length sequences without repetitions of the elements of a given set U . We build the
sequences of k elements by the following steps:

1. Recursively generating the sequences of k−1 elements

2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use the set U to keep track of the
elements not contained in the current sequence, so that an element e has not been
used yet if and only if e is in U .

Another way to look at the algorithm of Code Fragment 3.44 is that it enumer-
ates every possible size-k ordered subset of U , and tests each subset for being a
possible solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the
sequence corresponds to a given letter. For example, the first position could stand
for b, the second for o, the third for y, and so on.

i

i

“main” — 2011/1/13 — 9:10 — page 148 — #170
i

i

i

i

i

i

148 Chapter 3. Arrays, Linked Lists, and Recursion
Algorithm PuzzleSolve(k,S,U):

Input: An integer k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U

without repetitions

for each e in U do
Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k−1,S,U)
Add e back to U {e is now unused}
Remove e from the end of S

Code Fragment 3.44: Solving a combinatorial puzzle by enumerating and testing
all possible configurations.

In Figure 3.21, we show a recursion trace of a call to PuzzleSolve(3,S,U),
where S is empty and U = {a,b,c}. During the execution, all the permutations
of the three characters are generated and tested. Note that the initial call makes
three recursive calls, each of which in turn makes two more. If we had executed
PuzzleSolve(3,S,U) on a set U consisting of four elements, the initial call would
have made four recursive calls, each of which would have a trace looking like the
one in Figure 3.21.

Figure 3.21: Recursion trace for an execution of PuzzleSolve(3,S,U), where S is
empty and U = {a,b,c}. This execution generates and tests all permutations of a, b,
and c. We show the permutations generated directly below their respective boxes.

i

i

“main” — 2011/1/13 — 9:10 — page 149 — #171
i

i

i

i

i

i

3.6. Exercises 149

3.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-3.1 Modify the implementation of class Scores so that at most ⌈maxEnt/2⌉ of
the scores can come from any one single player.

R-3.2 Suppose that two entries of an array A are equal to each other. After run-
ning the insertion-sort algorithm of Code Fragment 3.7, will they appear
in the same relative order in the final sorted order or in reverse order?
Explain your answer.

R-3.3 Give a C++ code fragment that, given a n× n matrix M of type float,
replaces M with its transpose. Try to do this without the use of a temporary
matrix.

R-3.4 Describe a way to use recursion to compute the sum of all the elements in
a n×n (two-dimensional) array of integers.

R-3.5 Give a recursive definition of a singly linked list.

R-3.6 Add a function size() to our C++ implementation of a singly link list. Can
you design this function so that it runs in O(1) time?

R-3.7 Give an algorithm for finding the penultimate (second to last) node in a
singly linked list where the last element is indicated by a null next link.

R-3.8 Give a fully generic implementation of the doubly linked list data structure
of Section 3.3.3 by using a templated class.

R-3.9 Give a more robust implementation of the doubly linked list data struc-
ture of Section 3.3.3, which throws an appropriate exception if an illegal
operation is attempted.

R-3.10 Describe a nonrecursive function for finding, by link hopping, the middle
node of a doubly linked list with header and trailer sentinels. (Note: This
function must only use link hopping; it cannot use a counter.) What is the
running time of this function?

R-3.11 Describe a recursive algorithm for finding the maximum element in an
array A of n elements. What is your running time and space usage?

R-3.12 Draw the recursion trace for the execution of function ReverseArray(A,0,4)
(Code Fragment 3.39) on array A = {4,3,6,2,5}.

R-3.13 Draw the recursion trace for the execution of function PuzzleSolve(3,S,U)
(Code Fragment 3.44), where S is empty and U = {a,b,c,d}.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 150 — #172
i

i

i

i

i

i

150 Chapter 3. Arrays, Linked Lists, and Recursion

R-3.14 Write a short C++ function that repeatedly selects and removes a ran-
dom entry from an n-element array until the array holds no more entries.
Assume that you have access to a function random(k), which returns a
random integer in the range from 0 to k.

R-3.15 Give a fully generic implementation of the circularly linked list data struc-
ture of Section 3.4.1 by using a templated class.

R-3.16 Give a more robust implementation of the circularly linked list data struc-
ture of Section 3.4.1, which throws an appropriate exception if an illegal
operation is attempted.

R-3.17 Write a short C++ function to count the number of nodes in a circularly
linked list.

Creativity

C-3.1 In the Tic-Tac-Toe example, we used 1 for player X and −1 for player O.
Explain how to modify the program’s counting trick to decide the winner
if we had used 1 for player X and 4 for player O instead. Could we use
any combination of values a and b for the two players? Explain.

C-3.2 Give C++ code for performing add(e) and remove(i) functions for game
entries stored in an array a, as in class Scores in Section 3.1.1, except this
time, don’t maintain the game entries in order. Assume that we still need
to keep n entries stored in indices 0 to n− 1. Try to implement the add
and remove functions without using any loops, so that the number of steps
they perform does not depend on n.

C-3.3 Let A be an array of size n≥ 2 containing integers from 1 to n−1, inclu-
sive, with exactly one repeated. Describe a fast algorithm for finding the
integer in A that is repeated.

C-3.4 Let B be an array of size n≥ 6 containing integers from 1 to n−5, inclu-
sive, with exactly five repeated. Describe a good algorithm for finding the
five integers in B that are repeated.

C-3.5 Suppose you are designing a multi-player game that has n≥ 1000 players,
numbered 1 to n, interacting in an enchanted forest. The winner of this
game is the first player who can meet all the other players at least once
(ties are allowed). Assuming that there is a function meet(i, j), which is
called each time a player i meets a player j (with i 6= j), describe a way to
keep track of the pairs of meeting players and who is the winner.

C-3.6 Give a recursive algorithm to compute the product of two positive integers,
m and n, using only addition and subtraction.

C-3.7 Describe a fast recursive algorithm for reversing a singly linked list L, so
that the ordering of the nodes becomes opposite of what it was before.

i

i

“main” — 2011/1/13 — 9:10 — page 151 — #173
i

i

i

i

i

i

3.6. Exercises 151

C-3.8 Describe a good algorithm for concatenating two singly linked lists L and
M, with header sentinels, into a single list L′ that contains all the nodes of
L followed by all the nodes of M.

C-3.9 Give a fast algorithm for concatenating two doubly linked lists L and M,
with header and trailer sentinel nodes, into a single list L′.

C-3.10 Describe in detail how to swap two nodes x and y (and not just their con-
tents) in a singly linked list L given references only to x and y. Repeat
this exercise for the case when L is a doubly linked list. Which algorithm
takes more time?

C-3.11 Describe in detail an algorithm for reversing a singly linked list L using
only a constant amount of additional space and not using any recursion.

C-3.12 In the Towers of Hanoi puzzle, we are given a platform with three pegs, a,
b, and c, sticking out of it. On peg a is a stack of n disks, each larger than
the next, so that the smallest is on the top and the largest is on the bottom.
The puzzle is to move all the disks from peg a to peg c, moving one disk
at a time, so that we never place a larger disk on top of a smaller one.
Describe a recursive algorithm for solving the Towers of Hanoi puzzle for
arbitrary n.
(Hint: Consider first the subproblem of moving all but the nth disk from
peg a to another peg using the third as “temporary storage.”)

C-3.13 Describe a recursive function for converting a string of digits into the in-
teger it represents. For example, "13531" represents the integer 13,531.

C-3.14 Describe a recursive algorithm that counts the number of nodes in a singly
linked list.

C-3.15 Write a recursive C++ program that will output all the subsets of a set of
n elements (without repeating any subsets).

C-3.16 Write a short recursive C++ function that finds the minimum and maxi-
mum values in an array of int values without using any loops.

C-3.17 Describe a recursive algorithm that will check if an array A of integers
contains an integer A[i] that is the sum of two integers that appear earlier
in A, that is, such that A[i] = A[j]+ A[k] for j,k < i.

C-3.18 Write a short recursive C++ function that will rearrange an array of int
values so that all the even values appear before all the odd values.

C-3.19 Write a short recursive C++ function that takes a character string s and
outputs its reverse. So for example, the reverse of "pots&pans" would
be "snap&stop".

C-3.20 Write a short recursive C++ function that determines if a string s is a
palindrome, that is, it is equal to its reverse. For example, "racecar"
and "gohangasalamiimalasagnahog" are palindromes.

i

i

“main” — 2011/1/13 — 9:10 — page 152 — #174
i

i

i

i

i

i

152 Chapter 3. Arrays, Linked Lists, and Recursion

C-3.21 Use recursion to write a C++ function for determining if a string s has
more vowels than consonants.

C-3.22 Suppose you are given two circularly linked lists, L and M, that is, two
lists of nodes such that each node has a nonnull next node. Describe a fast
algorithm for telling if L and M are really the same list of nodes but with
different (cursor) starting points.

C-3.23 Given a circularly linked list L containing an even number of nodes, de-
scribe how to split L into two circularly linked lists of half the size.

Projects

P-3.1 Write a C++ function that takes two three-dimensional integer arrays and
adds them componentwise.

P-3.2 Write a C++ program for a matrix class that can add and multiply arbitrary
two-dimensional arrays of integers. Do this by overloading the addition
(“+”) and multiplication (“*”) operators.

P-3.3 Write a class that maintains the top 10 scores for a game application, im-
plementing the add and remove functions of Section 3.1.1, but use a singly
linked list instead of an array.

P-3.4 Perform the previous project but use a doubly linked list. Moreover, your
implementation of remove(i) should make the fewest number of pointer
hops to get to the game entry at index i.

P-3.5 Perform the previous project but use a linked list that is both circularly
linked and doubly linked.

P-3.6 Write a program for solving summation puzzles by enumerating and test-
ing all possible configurations. Using your program, solve the three puz-
zles given in Section 3.5.3.

P-3.7 Write a program that can perform encryption and decryption using an ar-
bitrary substitution cipher. In this case, the encryption array is a random
shuffling of the letters in the alphabet. Your program should generate
a random encryption array, its corresponding decryption array, and use
these to encode and decode a message.

P-3.8 Write a program that can solve instances of the Tower of Hanoi problem
(from Exercise C-3.12).

Chapter Notes

The fundamental data structures of arrays and linked lists, as well as recursion, discussed
in this chapter, belong to the folklore of computer science. They were first chronicled in the
computer science literature by Knuth in his seminal book on Fundamental Algorithms [59].

i

i

“main” — 2011/1/13 — 9:10 — page 153 — #175
i

i

i

i

i

i

Chapter

4 Analysis Tools

Contents

4.1 The Seven Functions Used in This Book 154

4.1.1 The Constant Function 154

4.1.2 The Logarithm Function 154

4.1.3 The Linear Function 156

4.1.4 The N-Log-N Function 156

4.1.5 The Quadratic Function 156

4.1.6 The Cubic Function and Other Polynomials 158

4.1.7 The Exponential Function 159

4.1.8 Comparing Growth Rates 161

4.2 Analysis of Algorithms 162

4.2.1 Experimental Studies 163

4.2.2 Primitive Operations 164

4.2.3 Asymptotic Notation 166

4.2.4 Asymptotic Analysis 170

4.2.5 Using the Big-Oh Notation 172

4.2.6 A Recursive Algorithm for Computing Powers 176

4.2.7 Some More Examples of Algorithm Analysis 177

4.3 Simple Justification Techniques 181

4.3.1 By Example . 181

4.3.2 The “Contra” Attack 181

4.3.3 Induction and Loop Invariants 182

4.4 Exercises . 185

i

i

“main” — 2011/1/13 — 9:10 — page 154 — #176
i

i

i

i

i

i

154 Chapter 4. Analysis Tools

4.1 The Seven Functions Used in This Book

In this section, we briefly discuss the seven most important functions used in the
analysis of algorithms. We use only these seven simple functions for almost all
the analysis we do in this book. In fact, sections that use a function other than
one of these seven are marked with a star (⋆) to indicate that they are optional. In
addition to these seven fundamental functions, Appendix A contains a list of other
useful mathematical facts that apply in the context of data structure and algorithm
analysis.

4.1.1 The Constant Function

The simplest function we can think of is the constant function. This is the function,

f (n) = c,

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any argu-
ment n, the constant function f (n) assigns the value c. In other words, it doesn’t
matter what the value of n is, f (n) is always be equal to the constant value c.

Since we are most interested in integer functions, the most fundamental con-
stant function is g(n) = 1, and this is the typical constant function we use in this
book. Note that any other constant function, f (n) = c, can be written as a constant
c times g(n). That is, f (n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis because
it characterizes the number of steps needed to do a basic operation on a computer,
like adding two numbers, assigning a value to some variable, or comparing two
numbers.

4.1.2 The Logarithm Function

One of the interesting and sometimes even surprising aspects of the analysis of
data structures and algorithms is the ubiquitous presence of the logarithm function,
f (n) = logb n, for some constant b > 1. This function is defined as follows:

x = logb n if and only if bx = n.

By definition, logb 1 = 0. The value b is known as the base of the logarithm.
Computing the logarithm function exactly for any integer n involves the use

of calculus, but we can use an approximation that is good enough for our pur-
poses without calculus. In particular, we can easily compute the smallest integer
greater than or equal to loga n, since this number is equal to the number of times

i

i

“main” — 2011/1/13 — 9:10 — page 155 — #177
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 155

we can divide n by a until we get a number less than or equal to 1. For exam-
ple, this evaluation of log3 27 is 3, since 27/3/3/3 = 1. Likewise, this evaluation
of log4 64 is 3, since 64/4/4/4 = 1, and this approximation to log2 12 is 4, since
12/2/2/2/2 = 0.75 ≤ 1. This base-2 approximation arises in algorithm analysis,
since a common operation in many algorithms is to repeatedly divide an input in
half.

Indeed, since computers store integers in binary, the most common base for the
logarithm function in computer science is 2. In fact, this base is so common that
we typically leave it off when it is 2. That is, for us,

log n = log2 n.

We note that most handheld calculators have a button marked LOG, but this is
typically for calculating the logarithm base 10, not base 2.

There are some important rules for logarithms, similar to the exponent rules.

Proposition 4.1 (Logarithm Rules): Given real numbers a > 0, b > 1, c > 0
and d > 1, we have:

1. logb ac = logb a+ logb c
2. logb a/c = logb a− logb c
3. logb ac = c logb a
4. logb a = (logd a)/ logd b
5. blogd a = alogd b

Also, as a notational shorthand, we use logc n to denote the function (log n)c.
Rather than show how we could derive each of the identities above which all follow
from the definition of logarithms and exponents, let us illustrate these identities
with a few examples instead.

Example 4.2: We demonstrate below some interesting applications of the loga-
rithm rules from Proposition 4.1 (using the usual convention that the base of a
logarithm is 2 if it is omitted).

• log(2n) = log2+ logn = 1+ logn, by rule 1
• log(n/2) = log n− log2 = logn−1, by rule 2
• log n3 = 3log n, by rule 3
• log 2n = n log 2 = n ·1 = n, by rule 3
• log4 n = (log n)/ log 4 = (log n)/2, by rule 4
• 2log n = nlog 2 = n1 = n, by rule 5

As a practical matter, we note that rule 4 gives us a way to compute the base-2
logarithm on a calculator that has a base-10 logarithm button, LOG, for

log2 n = LOG n/LOG 2.

i

i

“main” — 2011/1/13 — 9:10 — page 156 — #178
i

i

i

i

i

i

156 Chapter 4. Analysis Tools

4.1.3 The Linear Function

Another simple yet important function is the linear function,

f (n) = n.

That is, given an input value n, the linear function f assigns the value n itself.
This function arises in algorithm analysis any time we have to do a single basic

operation for each of n elements. For example, comparing a number x to each
element of an array of size n requires n comparisons. The linear function also
represents the best running time we can hope to achieve for any algorithm that
processes a collection of n objects that are not already in the computer’s memory,
since reading in the n objects itself requires n operations.

4.1.4 The N-Log-N Function

The next function we discuss in this section is the n-log-n function,

f (n) = n log n.

That is, the function that assigns to an input n the value of n times the logarithm
base 2 of n. This function grows a little faster than the linear function and a lot
slower than the quadratic function. Thus, as we show on several occasions, if we
can improve the running time of solving some problem from quadratic to n-log-n,
we have an algorithm that runs much faster in general.

4.1.5 The Quadratic Function

Another function that appears quite often in algorithm analysis is the quadratic
function,

f (n) = n2.

That is, given an input value n, the function f assigns the product of n with itself
(in other words, “n squared”).

The main reason why the quadratic function appears in the analysis of algo-
rithms is that there are many algorithms that have nested loops, where the inner
loop performs a linear number of operations and the outer loop is performed a
linear number of times. Thus, in such cases, the algorithm performs n · n = n2

operations.

i

i

“main” — 2011/1/13 — 9:10 — page 157 — #179
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 157

Nested Loops and the Quadratic Function

The quadratic function can also arise in the context of nested loops where the first
iteration of a loop uses one operation, the second uses two operations, the third uses
three operations, and so on. That is, the number of operations is

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n.

In other words, this is the total number of operations that are performed by the
nested loop if the number of operations performed inside the loop increases by one
with each iteration of the outer loop. This quantity also has an interesting history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils
occupied by adding up the integers from 1 to 100. But almost immediately one
of the children claimed to have the answer! The teacher was suspicious, for the
student had only the answer on his slate. But the answer was correct—5,050—and
the student, Carl Gauss, grew up to be one of the greatest mathematicians of his
time. It is widely suspected that young Gauss used the following identity.

Proposition 4.3: For any integer n≥ 1, we have:

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n =
n(n+ 1)

2
.

We give two “visual” justifications of Proposition 4.3 in Figure 4.1.

(a) (b)
Figure 4.1: Visual justifications of Proposition 4.3. Both illustrations visualize the
identity in terms of the total area covered by n unit-width rectangles with heights
1,2, . . . ,n. In (a), the rectangles are shown to cover a big triangle of area n2/2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In
(b), which applies only when n is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n+ 1.

i

i

“main” — 2011/1/13 — 9:10 — page 158 — #180
i

i

i

i

i

i

158 Chapter 4. Analysis Tools

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm
with nested loops such that the operations in the inner loop increase by one each
time, then the total number of operations is quadratic in the number of times, n, we
perform the outer loop. In particular, the number of operations is n2/2 + n/2, in this
case, which is a little more than a constant factor (1/2) times the quadratic function
n2. In other words, such an algorithm is only slightly better than an algorithm that
uses n operations each time the inner loop is performed. This observation might at
first seem nonintuitive, but it is nevertheless true as shown in Figure 4.1.

4.1.6 The Cubic Function and Other Polynomials

Continuing our discussion of functions that are powers of the input, we consider
the cubic function,

f (n) = n3,

which assigns to an input value n the product of n with itself three times. This func-
tion appears less frequently in the context of algorithm analysis than the constant,
linear, and quadratic functions previously mentioned, but it does appear from time
to time.

Polynomials

Interestingly, the functions we have listed so far can be viewed as all being part of
a larger class of functions, the polynomials.

A polynomial function is a function of the form,

f (n) = a0 + a1n+ a2n2 + a3n3 + · · ·+ adnd ,

where a0,a1, . . . ,ad are constants, called the coefficients of the polynomial, and
ad 6= 0. Integer d, which indicates the highest power in the polynomial, is called
the degree of the polynomial.

For example, the following functions are all polynomials:
• f (n) = 2+ 5n+ n2

• f (n) = 1+ n3

• f (n) = 1
• f (n) = n
• f (n) = n2

Therefore, we could argue that this book presents just four important functions used
in algorithm analysis, but we stick to saying that there are seven, since the constant,
linear, and quadratic functions are too important to be lumped in with other poly-
nomials. Running times that are polynomials with degree, d, are generally better
than polynomial running times of larger degree.

i

i

“main” — 2011/1/13 — 9:10 — page 159 — #181
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 159

Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the summation, which is defined as

b

∑
i=a

f (i) = f (a)+ f (a+ 1)+ f (a+ 2)+ · · ·+ f (b),

where a and b are integers and a≤ b. Summations arise in data structure and algo-
rithm analysis because the running times of loops naturally give rise to summations.

Using a summation, we can rewrite the formula of Proposition 4.3 as

n

∑
i=1

i =
n(n+ 1)

2
.

Likewise, we can write a polynomial f (n) of degree d with coefficients a0, . . . ,ad as

f (n) =
d

∑
i=0

ain
i.

Thus, the summation notation gives us a shorthand way of expressing sums of in-
creasing terms that have a regular structure.

4.1.7 The Exponential Function

Another function used in the analysis of algorithms is the exponential function,

f (n) = bn,

where b is a positive constant, called the base, and the argument n is the exponent.
That is, function f (n) assigns to the input argument n the value obtained by multi-
plying the base b by itself n times. In algorithm analysis, the most common base for
the exponential function is b = 2. For instance, if we have a loop that starts by per-
forming one operation and then doubles the number of operations performed with
each iteration, then the number of operations performed in the nth iteration is 2n.
In addition, an integer word containing n bits can represent all the nonnegative in-
tegers less than 2n. Thus, the exponential function with base 2 is quite common.
The exponential function is also referred to as exponent function.

We sometimes have other exponents besides n, however; hence, it is useful
for us to know a few handy rules for working with exponents. In particular, the
following exponent rules are quite helpful.

i

i

“main” — 2011/1/13 — 9:10 — page 160 — #182
i

i

i

i

i

i

160 Chapter 4. Analysis Tools

Proposition 4.4 (Exponent Rules): Given positive integers a, b, and c, we have:
1. (ba)c = bac

2. babc = ba+c

3. ba/bc = ba−c

For example, we have the following:
• 256 = 162 = (24)2 = 24·2 = 28 = 256 (Exponent Rule 1)
• 243 = 35 = 32+3 = 3233 = 9 ·27 = 243 (Exponent Rule 2)
• 16 = 1024/64 = 210/26 = 210−6 = 24 = 16 (Exponent Rule 3)
We can extend the exponential function to exponents that are fractions or real

numbers and to negative exponents, as follows. Given a positive integer k, we de-
fine b1/k to be kth root of b, that is, the number r such that rk = b. For example,
251/2 = 5, since 52 = 25. Likewise, 271/3 = 3 and 161/4 = 2. This approach al-
lows us to define any power whose exponent can be expressed as a fraction, since
ba/c = (ba)1/c, by Exponent Rule 1. For example, 93/2 = (93)1/2 = 7291/2 = 27.
Thus, ba/c is really just the cth root of the integral exponent ba.

We can further extend the exponential function to define bx for any real num-
ber x, by computing a series of numbers of the form ba/c for fractions a/c that get
progressively closer and closer to x. Any real number x can be approximated arbi-
trarily close by a fraction a/c; hence, we can use the fraction a/c as the exponent
of b to get arbitrarily close to bx. So, for example, the number 2π is well defined.
Finally, given a negative exponent d, we define bd = 1/b−d , which corresponds to
applying Exponent Rule 3 with a = 0 and c =−d.

Geometric Sums

Suppose we have a loop where each iteration takes a multiplicative factor longer
than the previous one. This loop can be analyzed using the following proposition.

Proposition 4.5: For any integer n≥ 0 and any real number a such that a > 0 and
a 6= 1, consider the summation

n

∑
i=0

ai = 1+ a+ a2 + · · ·+ an

(remembering that a0 = 1 if a > 0). This summation is equal to

an+1−1
a−1

.

Summations as shown in Proposition 4.5 are called geometric summations, be-
cause each term is geometrically larger than the previous one if a > 1. For example,
everyone working in computing should know that

1+ 2+ 4+ 8+ · · ·+ 2n−1 = 2n−1,

since this is the largest integer that can be represented in binary notation using n
bits.

i

i

“main” — 2011/1/13 — 9:10 — page 161 — #183
i

i

i

i

i

i

4.1. The Seven Functions Used in This Book 161

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis in order.

constant logarithm linear n-log-n quadratic cubic exponential
1 logn n n logn n2 n3 an

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, but algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2.

1.E+00

1.E+04

1.E+08

1.E+12

1.E+16

1.E+20

1.E+24

1.E+28

1.E+32

1.E+36

1.E+40

1.E+44

1.E
+00

1.E
+01

1.E
+02

1.E
+03

1.E
+04

1.E
+05

1.E
+06

1.E
+07

1.E
+08

1.E
+09

1.E
+10

1.E
+11

1.E
+12

1.E
+13

1.E
+14

1.E
+15

Exponential

Cubic

Quadratic

N-Log-N

Linear

Logarithmic

Constant

Figure 4.2: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart. Also, we
use the scientific notation for numbers, where aE+b denotes a10b.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value
of a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of operations
performed. Thus, the analysis of an algorithm may sometimes involve the use of
the floor function and ceiling function, which are defined respectively as follows:
• ⌊x⌋ = the largest integer less than or equal to x
• ⌈x⌉ = the smallest integer greater than or equal to x

i

i

“main” — 2011/1/13 — 9:10 — page 162 — #184
i

i

i

i

i

i

162 Chapter 4. Analysis Tools

4.2 Analysis of Algorithms

In a classic story, the famous mathematician Archimedes was asked to determine if
a golden crown commissioned by the king was indeed pure gold, and not part silver,
as an informant had claimed. Archimedes discovered a way to perform this analysis
while stepping into a (Greek) bath. He noted that water spilled out of the bath in
proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!,” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. That is, Archimedes could dip the crown and an equal-weight amount
of gold into a bowl of water to see if they both displaced the same amount. This
discovery was unfortunate for the goldsmith, however, for when Archimedes did
his analysis, the crown displaced more water than an equal-weight lump of pure
gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” data structures and algo-
rithms. Simply put, a data structure is a systematic way of organizing and access-
ing data, and an algorithm is a step-by-step procedure for performing some task in
a finite amount of time. These concepts are central to computing, but to be able to
classify some data structures and algorithms as “good,” we must have precise ways
of analyzing them.

The primary analysis tool we use in this book involves characterizing the run-
ning times of algorithms and data structure operations, with space usage also being
of interest. Running time is a natural measure of “goodness,” since time is a pre-
cious resource—computer solutions should run as fast as possible.

In general, the running time of an algorithm or data structure method increases
with the input size, although it may also vary for different inputs of the same size.
Also, the running time is affected by the hardware environment (as reflected in the
processor, clock rate, memory, disk, etc.) and software environment (as reflected in
the operating system, programming language, compiler, interpreter, etc.) in which
the algorithm is implemented, compiled, and executed. All other factors being
equal, the running time of the same algorithm on the same input data is smaller if
the computer has, say, a much faster processor or if the implementation is done in a
program compiled into native machine code instead of an interpreted implementa-
tion run on a virtual machine. Nevertheless, in spite of the possible variations that
come from different environmental factors, we would like to focus on the relation-
ship between the running time of an algorithm and the size of its input.

We are interested in characterizing an algorithm’s running time as a function of
the input size. But what is the proper way of measuring it?

i

i

“main” — 2011/1/13 — 9:10 — page 163 — #185
i

i

i

i

i

i

4.2. Analysis of Algorithms 163

4.2.1 Experimental Studies

If an algorithm has been implemented, we can study its running time by executing
it on various test inputs and recording the actual time spent in each execution. For-
tunately, such measurements can be taken in an accurate manner by using system
calls that are built into the language or operating system (for example, by using the
clock() function or calling the run-time environment with profiling enabled). Such
tests assign a specific running time to a specific input size, but we are interested in
determining the general dependence of running time on the size of the input. In or-
der to determine this dependence, we should perform several experiments on many
different test inputs of various sizes. Then we can visualize the results of such
experiments by plotting the performance of each run of the algorithm as a point
with x-coordinate equal to the input size, n, and y-coordinate equal to the running
time, t. (See Figure 4.3.) From this visualization and the data that supports it, we
can perform a statistical analysis that seeks to fit the best function of the input size
to the experimental data. To be meaningful, this analysis requires that we choose
good sample inputs and test enough of them to be able to make sound statistical
claims about the algorithm’s running time.

50 1000

t (ms)

n

10

20

30

40

50

60

Figure 4.3: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (n, t) indicates that on an input of size n, the running time
of the algorithm is t milliseconds (ms).

i

i

“main” — 2011/1/13 — 9:10 — page 164 — #186
i

i

i

i

i

i

164 Chapter 4. Analysis Tools

While experimental studies of running times are useful, they have three major
limitations:

• Experiments can be done only on a limited set of test inputs; hence, they
leave out the running times of inputs not included in the experiment (and
these inputs may be important).

• We have difficulty comparing the experimental running times of two algo-
rithms unless the experiments were performed in the same hardware and
software environments.

• We have to fully implement and execute an algorithm in order to study its
running time experimentally.

This last requirement is obvious, but it is probably the most time consuming aspect
of performing an experimental analysis of an algorithm. The other limitations im-
pose serious hurdles too, of course. Thus, we would ideally like to have an analysis
tool that allows us to avoid performing experiments.

In the rest of this chapter, we develop a general way of analyzing the running
times of algorithms that:

• Takes into account all possible inputs.
• Allows us to evaluate the relative efficiency of any two algorithms in a way

that is independent from the hardware and software environment.
• Can be performed by studying a high-level description of the algorithm with-

out actually implementing it or running experiments on it.

This methodology aims at associating, with each algorithm, a function f (n) that
characterizes the running time of the algorithm as a function of the input size n.
Typical functions that are encountered include the seven functions mentioned ear-
lier in this chapter.

4.2.2 Primitive Operations

As noted above, experimental analysis is valuable, but it has its limitations. If
we wish to analyze a particular algorithm without performing experiments on its
running time, we can perform an analysis directly on the high-level pseudo-code
instead. We define a set of primitive operations such as the following:

• Assigning a value to a variable
• Calling a function
• Performing an arithmetic operation (for example, adding two numbers)
• Comparing two numbers
• Indexing into an array
• Following an object reference
• Returning from a function

i

i

“main” — 2011/1/13 — 9:10 — page 165 — #187
i

i

i

i

i

i

4.2. Analysis of Algorithms 165

Counting Primitive Operations

Specifically, a primitive operation corresponds to a low-level instruction with an ex-
ecution time that is constant. Instead of trying to determine the specific execution
time of each primitive operation, we simply count how many primitive operations
are executed, and use this number t as a measure of the running time of the algo-
rithm.

This operation count correlates to an actual running time in a specific computer,
since each primitive operation corresponds to a constant-time instruction, and there
are only a fixed number of primitive operations. The implicit assumption in this
approach is that the running times of different primitive operations is fairly similar.
Thus, the number, t, of primitive operations an algorithm performs is proportional
to the actual running time of that algorithm.

An algorithm may run faster on some inputs than it does on others of the same
size. Thus, we may wish to express the running time of an algorithm as the function
of the input size obtained by taking the average over all possible inputs of the same
size. Unfortunately, such an average-case analysis is typically quite challenging.
It requires us to define a probability distribution on the set of inputs, which is often
a difficult task. Figure 4.4 schematically shows how, depending on the input distri-
bution, the running time of an algorithm can be anywhere between the worst-case
time and the best-case time. For example, what if inputs are really only of types
“A” or “D”?

Input Instance

R
un

ni
ng

 T
im

e

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case time

best-case time

}average-case time?

Figure 4.4: The difference between best-case and worst-case time. Each bar repre-
sents the running time of some algorithm on a different possible input.

i

i

“main” — 2011/1/13 — 9:10 — page 166 — #188
i

i

i

i

i

i

166 Chapter 4. Analysis Tools

Focusing on the Worst Case

An average-case analysis usually requires that we calculate expected running times
based on a given input distribution, which usually involves sophisticated probability
theory. Therefore, for the remainder of this book, unless we specify otherwise, we
characterize running times in terms of the worst case, as a function of the input
size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires
only the ability to identify the worst-case input, which is often simple. Also, this
approach typically leads to better algorithms. Making the standard of success for
an algorithm to perform well in the worst case necessarily requires that it does well
on every input. That is, designing for the worst case leads to stronger algorithmic
“muscles,” much like a track star who always practices by running up an incline.

4.2.3 Asymptotic Notation

In general, each basic step in a pseudo-code description or a high-level language
implementation corresponds to a small number of primitive operations (except for
function calls, of course). Thus, we can perform a simple analysis of an algorithm
written in pseudo-code that estimates the number of primitive operations executed
up to a constant factor, by pseudo-code steps (but we must be careful, since a single
line of pseudo-code may denote a number of steps in some cases).

In algorithm analysis, we focus on the growth rate of the running time as a
function of the input size n, taking a “big-picture” approach. It is often enough just
to know that the running time of an algorithm such as arrayMax, shown in Code
Fragment 4.1, grows proportionally to n, with its true running time being n times a
constant factor that depends on the specific computer.

We analyze algorithms using a mathematical notation for functions that disre-
gards constant factors. Namely, we characterize the running times of algorithms by
using functions that map the size of the input, n, to values that correspond to the
main factor that determines the growth rate in terms of n. This approach allows us
to focus on the “big-picture” aspects of an algorithm’s running time.

Algorithm arrayMax(A,n):
Input: An array A storing n≥ 1 integers.
Output: The maximum element in A.

currMax← A[0]
for i← 1 to n−1 do

if currMax < A[i] then
currMax← A[i]

return currMax
Code Fragment 4.1: Algorithm arrayMax.

i

i

“main” — 2011/1/13 — 9:10 — page 167 — #189
i

i

i

i

i

i

4.2. Analysis of Algorithms 167

The “Big-Oh” Notation

Let f (n) and g(n) be functions mapping nonnegative integers to real numbers. We
say that f (n) is O(g(n)) if there is a real constant c > 0 and an integer constant
n0 ≥ 1 such that

f (n) ≤ cg(n), for n≥ n0.

This definition is often referred to as the “big-Oh” notation, for it is sometimes
pronounced as “ f (n) is big-Oh of g(n).” Alternatively, we can also say “ f (n) is
order of g(n).” (This definition is illustrated in Figure 4.5.)

Input Size

R
un

ni
ng

 T
im

e

cg(n)

f(n)

n0

Figure 4.5: The “big-Oh” notation. The function f (n) is O(g(n)), since f (n) ≤
c ·g(n) when n≥ n0.

Example 4.6: The function 8n−2 is O(n).

Justification: By the big-Oh definition, we need to find a real constant c > 0 and
an integer constant n0 ≥ 1 such that 8n−2≤ cn for every integer n≥ n0. It is easy
to see that a possible choice is c = 8 and n0 = 1. Indeed, this is one of infinitely
many choices available because any real number greater than or equal to 8 works
for c, and any integer greater than or equal to 1 works for n0.

The big-Oh notation allows us to say that a function f (n) is “less than or equal
to” another function g(n) up to a constant factor and in the asymptotic sense as n
grows toward infinity. This ability comes from the fact that the definition uses “≤”
to compare f (n) to a g(n) times a constant, c, for the asymptotic cases when n≥ n0.

i

i

“main” — 2011/1/13 — 9:10 — page 168 — #190
i

i

i

i

i

i

168 Chapter 4. Analysis Tools

Characterizing Running Times using the Big-Oh Notation

The big-Oh notation is used widely to characterize running times and space bounds
in terms of some parameter n, which varies from problem to problem, but is always
defined as a chosen measure of the “size” of the problem. For example, if we are
interested in finding the largest element in an array of integers, as in the arrayMax
algorithm, we should let n denote the number of elements of the array. Using the
big-Oh notation, we can write the following mathematically precise statement on
the running time of algorithm arrayMax for any computer.

Proposition 4.7: The Algorithm arrayMax, for computing the maximum element
in an array of n integers, runs in O(n) time.

Justification: The number of primitive operations executed by algorithm array-
Max in each iteration is a constant. Hence, since each primitive operation runs in
constant time, we can say that the running time of algorithm arrayMax on an input
of size n is at most a constant times n, that is, we may conclude that the running
time of algorithm arrayMax is O(n).

Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower order terms and
focus on the main components of a function that affect its growth.

Example 4.8: 5n4 + 3n3 + 2n2 + 4n+ 1 is O(n4).

Justification: Note that 5n4 +3n3 +2n2 +4n+1≤ (5+3+2+4+1)n4 = cn4,
for c = 15, when n≥ n0 = 1.

In fact, we can characterize the growth rate of any polynomial function.

Proposition 4.9: If f (n) is a polynomial of degree d, that is,

f (n) = a0 + a1n+ · · ·+ adnd ,

and ad > 0, then f (n) is O(nd).

Justification: Note that, for n≥ 1, we have 1≤ n≤ n2 ≤ ·· · ≤ nd ; hence,

a0 + a1n+ a2n2 + · · ·+ adnd ≤ (a0 + a1 + a2 + · · ·+ ad)n
d .

Therefore, we can show f (n) is O(nd) by defining c = a0 +a1 + · · ·+ad and n0 = 1.

Thus, the highest-degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial. We consider some additional properties
of the big-Oh notation in the exercises. Let us consider some further examples
here, however, focusing on combinations of the seven fundamental functions used
in algorithm design.

i

i

“main” — 2011/1/13 — 9:10 — page 169 — #191
i

i

i

i

i

i

4.2. Analysis of Algorithms 169

Example 4.10: 5n2 + 3n log n+ 2n+ 5 is O(n2).

Justification: 5n2 +3n log n+2n+5≤ (5+3+2+5)n2 = cn2, for c = 15, when
n≥ n0 = 2 (note that n log n is zero for n = 1).

Example 4.11: 20n3 + 10n log n+ 5 is O(n3).

Justification: 20n3 + 10n log n+ 5≤ 35n3, for n≥ 1.

Example 4.12: 3log n+ 2 is O(logn).

Justification: 3logn + 2 ≤ 5log n, for n ≥ 2. Note that logn is zero for n = 1.
That is why we use n≥ n0 = 2 in this case.

Example 4.13: 2n+2 is O(2n).

Justification: 2n+2 = 2n22 = 4 ·2n; hence, we can take c = 4 and n0 = 1 in this
case.

Example 4.14: 2n+ 100log n is O(n).

Justification: 2n+100log n≤ 102n, for n≥ n0 = 2; hence, we can take c = 102
in this case.

Characterizing Functions in Simplest Terms

In general, we should use the big-Oh notation to characterize a function as closely
as possible. While it is true that the function f (n) = 4n3 + 3n2 is O(n5) or even
O(n4), it is more accurate to say that f (n) is O(n3). Consider, by way of analogy,
a scenario where a hungry traveler driving along a long country road happens upon
a local farmer walking home from a market. If the traveler asks the farmer how
much longer he must drive before he can find some food, it may be truthful for the
farmer to say, “certainly no longer than 12 hours,” but it is much more accurate
(and helpful) for him to say, “you can find a market just a few minutes drive up this
road.” Thus, even with the big-Oh notation, we should strive as much as possible
to tell the whole truth.

It is also considered poor taste to include constant factors and lower order terms
in the big-Oh notation. For example, it is not fashionable to say that the function
2n2 is O(4n2 + 6n log n), although this is completely correct. We should strive
instead to describe the function in the big-Oh in simplest terms.

The seven functions listed in Section 4.1 are the most common functions used
in conjunction with the big-Oh notation to characterize the running times and space
usage of algorithms. Indeed, we typically use the names of these functions to refer
to the running times of the algorithms they characterize. So, for example, we would
say that an algorithm that runs in worst-case time 4n2 + n logn is a quadratic-time
algorithm, since it runs in O(n2) time. Likewise, an algorithm running in time at
most 5n+ 20log n+ 4 would be called a linear-time algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 170 — #192
i

i

i

i

i

i

170 Chapter 4. Analysis Tools

Big-Omega

Just as the big-Oh notation provides an asymptotic way of saying that a function is
“less than or equal to” another function, the following notations provide an asymp-
totic way of saying that a function grows at a rate that is “greater than or equal to”
that of another.

Let f (n) and g(n) be functions mapping nonnegative integers to real numbers.
We say that f (n) is Ω(g(n)) (pronounced “ f (n) is big-Omega of g(n)”) if g(n) is
O(f (n)), that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such
that

f (n) ≥ cg(n), for n≥ n0.

This definition allows us to say asymptotically that one function is greater than or
equal to another, up to a constant factor.

Example 4.15: 3n log n+ 2n is Ω(n log n).

Justification: 3n log n+ 2n≥ 3n log n, for n≥ 2.

Big-Theta

In addition, there is a notation that allows us to say that two functions grow at the
same rate, up to constant factors. We say that f (n) is Θ(g(n)) (pronounced “ f (n)
is big-Theta of g(n)”) if f (n) is O(g(n)) and f (n) is Ω(g(n)), that is, there are real
constants c′ > 0 and c′′ > 0, and an integer constant n0 ≥ 1 such that

c′g(n)≤ f (n) ≤ c′′g(n), for n≥ n0.

Example 4.16: 3n log n+ 4n+ 5logn is Θ(n log n).

Justification: 3n log n≤ 3n log n+ 4n+ 5logn≤ (3+ 4+ 5)n logn for n≥ 2.

4.2.4 Asymptotic Analysis

Suppose two algorithms solving the same problem are available: an algorithm A,
which has a running time of O(n), and an algorithm B, which has a running time
of O(n2). Which algorithm is better? We know that n is O(n2), which implies that
algorithm A is asymptotically better than algorithm B, although for a small value
of n, B may have a lower running time than A.

We can use the big-Oh notation to order classes of functions by asymptotic
growth rate. Our seven functions are ordered by increasing growth rate in the se-
quence below, that is, if a function f (n) precedes a function g(n) in the sequence,
then f (n) is O(g(n)):

1 logn n n log n n2 n3 2n.

i

i

“main” — 2011/1/13 — 9:10 — page 171 — #193
i

i

i

i

i

i

4.2. Analysis of Algorithms 171

We illustrate the growth rates of some important functions in Table 4.2.

n logn n n logn n2 n3 2n

8 3 8 24 64 512 256
16 4 16 64 256 4,096 65,536
32 5 32 160 1,024 32,768 4,294,967,296
64 6 64 384 4,096 262,144 1.84× 1019

128 7 128 896 16,384 2,097,152 3.40× 1038

256 8 256 2,048 65,536 16,777,216 1.15× 1077

512 9 512 4,608 262,144 134,217,728 1.34× 10154

Table 4.2: Selected values of fundamental functions in algorithm analysis.

We further illustrate the importance of the asymptotic viewpoint in Table 4.3.
This table explores the maximum size allowed for an input instance that is pro-
cessed by an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance
of good algorithm design, because an asymptotically slow algorithm is beaten in
the long run by an asymptotically faster algorithm, even if the constant factor for
the asymptotically faster algorithm is worse.

Running Maximum Problem Size (n)
Time (µs) 1 second 1 minute 1 hour

400n 2,500 150,000 9,000,000
2n2 707 5,477 42,426
2n 19 25 31

Table 4.3: Maximum size of a problem that can be solved in 1 second, 1 minute,
and 1 hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved
effectively on a given computer, however. As shown in Table 4.4, even if we
achieve a dramatic speed-up in hardware, we still cannot overcome the handicap
of an asymptotically slow algorithm. This table shows the new maximum problem
size achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

Running Time New Maximum Problem Size
400n 256m
2n2 16m
2n m + 8

Table 4.4: Increase in the maximum size of a problem that can be solved in a fixed
amount of time by using a computer that is 256 times faster than the previous one.
Each entry is a function of m, the previous maximum problem size.

i

i

“main” — 2011/1/13 — 9:10 — page 172 — #194
i

i

i

i

i

i

172 Chapter 4. Analysis Tools

4.2.5 Using the Big-Oh Notation

Having made the case of using the big-Oh notation for analyzing algorithms, let
us briefly discuss a few issues concerning its use. It is considered poor taste, in
general, to say “ f (n) ≤ O(g(n)),” since the big-Oh already denotes the “less-than-
or-equal-to” concept. Likewise, although common, it is not fully correct to say
“ f (n) = O(g(n))” (with the usual understanding of the “=” relation), since there
is no way to make sense of the statement “O(g(n)) = f (n).” In addition, it is
completely wrong to say “ f (n) ≥ O(g(n))” or “ f (n) > O(g(n)),” since the g(n) in
the big-Oh expresses an upper bound on f (n). It is best to say,

“ f (n) is O(g(n)).”

For the more mathematically inclined, it is also correct to say,

“ f (n) ∈ O(g(n)),”

for the big-Oh notation is, technically speaking, denoting a whole collection of
functions. In this book, we stick to presenting big-Oh statements as “ f (n) is
O(g(n)).” Even with this interpretation, there is considerable freedom in how
we can use arithmetic operations with the big-Oh notation, and with this freedom
comes a certain amount of responsibility.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations can be somewhat misleading
should the constant factors they “hide” be very large. For example, while it is
true that the function 10100n is O(n), if this is the running time of an algorithm
being compared to one whose running time is 10n log n, we prefer the O(n logn)
time algorithm, even though the linear-time algorithm is asymptotically faster. This
preference is because the constant factor, 10100, which is called “one googol,” is
believed by many astronomers to be an upper bound on the number of atoms in
the observable universe. So we are unlikely to ever have a real-world problem that
has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower order terms
we are “hiding.”

The observation above raises the issue of what constitutes a “fast” algorithm.
Generally speaking, any algorithm running in O(n logn) time (with a reasonable
constant factor) should be considered efficient. Even an O(n2) time method may
be fast enough in some contexts, that is, when n is small. But an algorithm running
in O(2n) time should almost never be considered efficient.

i

i

“main” — 2011/1/13 — 9:10 — page 173 — #195
i

i

i

i

i

i

4.2. Analysis of Algorithms 173

Exponential Running Times

There is a famous story about the inventor of the game of chess. He asked only that
his king pay him 1 grain of rice for the first square on the board, 2 grains for the
second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting test of
programming skills to write a program to compute exactly the number of grains of
rice the king would have to pay. In fact, any C++ program written to compute this
number in a single integer value causes an integer overflow to occur (although the
run-time machine probably won’t complain).

If we must draw a line between efficient and inefficient algorithms, therefore,
it is natural to make this distinction be that between those algorithms running in
polynomial time and those running in exponential time. That is, make the distinc-
tion between algorithms with a running time that is O(nc), for some constant c > 1,
and those with a running time that is O(bn), for some constant b > 1. Like so many
notions we have discussed in this section, this too should be taken with a “grain of
salt,” for an algorithm running in O(n100) time should probably not be considered
“efficient.” Even so, the distinction between polynomial-time and exponential-time
algorithms is considered a robust measure of tractability.

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta
provide a convenient language for us to analyze data structures and algorithms. As
mentioned earlier, these notations provide convenience because they let us concen-
trate on the “big picture” rather than low-level details.

Two Examples of Asymptotic Algorithm Analysis

We conclude this section by analyzing two algorithms that solve the same problem
but have rather different running times. The problem we are interested in is the
one of computing the so-called prefix averages of a sequence of numbers. Namely,
given an array X storing n numbers, we want to compute an array A such that A[i]
is the average of elements X [0], . . . ,X [i], for i = 0, . . . ,n−1, that is,

A[i] =
∑i

j=0 X [j]

i+ 1
.

Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, an investor typically
wants to see the fund’s average annual returns for the last year, the last three years,
the last five years, and the last ten years. Likewise, given a stream of daily Web
usage logs, a Web site manager may wish to track average usage trends over various
time periods.

i

i

“main” — 2011/1/13 — 9:10 — page 174 — #196
i

i

i

i

i

i

174 Chapter 4. Analysis Tools

A Quadratic-Time Algorithm

Our first algorithm for the prefix averages problem, called prefixAverages1, is
shown in Code Fragment 4.2. It computes every element of A separately, following
the definition.

Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is

the average of elements X [0], . . . ,X [i].

Let A be an array of n numbers.
for i← 0 to n−1 do

a← 0
for j← 0 to i do

a← a+ X [j]
A[i]← a/(i+ 1)

return array A

Code Fragment 4.2: Algorithm prefixAverages1.

Let us analyze the prefixAverages1 algorithm.

• Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element and takes O(n) time.

• There are two nested for loops that are controlled by counters i and j, re-
spectively. The body of the outer loop, controlled by counter i, is executed
n times for i = 0, . . . ,n− 1. Thus, statements a = 0 and A[i] = a/(i + 1) are
executed n times each. This implies that these two statements, plus the incre-
menting and testing of counter i, contribute a number of primitive operations
proportional to n, that is, O(n) time.

• The body of the inner loop, which is controlled by counter j, is executed
i+1 times, depending on the current value of the outer loop counter i. Thus,
statement a = a+X [j] in the inner loop is executed 1+2+3+ · · ·+n times.
By recalling Proposition 4.3, we know that 1+ 2+ 3+ · · ·+ n = n(n+ 1)/2,
which implies that the statement in the inner loop contributes O(n2) time. A
similar argument can be done for the primitive operations associated with the
incrementing and testing counter j, which also take O(n2) time.

The running time of algorithm prefixAverages1 is given by the sum of three terms.
The first and the second term are O(n), and the third term is O(n2). By a simple
application of Proposition 4.9, the running time of prefixAverages1 is O(n2).

i

i

“main” — 2011/1/13 — 9:10 — page 175 — #197
i

i

i

i

i

i

4.2. Analysis of Algorithms 175

A Linear-Time Algorithm

In order to compute prefix averages more efficiently, we can observe that two con-
secutive averages A[i−1] and A[i] are similar:

A[i−1] = (X [0]+ X [1]+ · · ·+ X [i−1])/i

A[i] = (X [0]+ X [1]+ · · ·+ X [i−1]+ X [i])/(i+ 1).

If we denote with Si the prefix sum X [0] + X [1] + · · ·+ X [i], we can compute
the prefix averages as A[i] = Si/(i+1). It is easy to keep track of the current prefix
sum while scanning array X with a loop. We are now ready to present Algorithm
prefixAverages2 in Code Fragment 4.3.

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is

the average of elements X [0], . . . ,X [i].

Let A be an array of n numbers.
s← 0
for i← 0 to n−1 do

s← s+ X [i]
A[i]← s/(i+ 1)

return array A

Code Fragment 4.3: Algorithm prefixAverages2.

The analysis of the running time of algorithm prefixAverages2 follows:

• Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element, and takes O(n) time.

• Initializing variable s at the beginning takes O(1) time.

• There is a single for loop, which is controlled by counter i. The body of the
loop is executed n times, for i = 0, . . . ,n− 1. Thus, statements s = s + X [i]
and A[i] = s/(i + 1) are executed n times each. This implies that these two
statements plus the incrementing and testing of counter i contribute a number
of primitive operations proportional to n, that is, O(n) time.

The running time of algorithm prefixAverages2 is given by the sum of three terms.
The first and the third term are O(n), and the second term is O(1). By a simple
application of Proposition 4.9, the running time of prefixAverages2 is O(n), which
is much better than the quadratic-time algorithm prefixAverages1.

i

i

“main” — 2011/1/13 — 9:10 — page 176 — #198
i

i

i

i

i

i

176 Chapter 4. Analysis Tools

4.2.6 A Recursive Algorithm for Computing Powers

As a more interesting example of algorithm analysis, let us consider the problem
of raising a number x to an arbitrary nonnegative integer, n. That is, we wish to
compute the power function p(x,n), defined as p(x,n) = xn. This function has an
immediate recursive definition based on linear recursion:

p(x,n) =

{
1 if n = 0
x · p(x,n−1) otherwise

This definition leads immediately to a recursive algorithm that uses O(n) function
calls to compute p(x,n). We can compute the power function much faster than
this, however, by using the following alternative definition, also based on linear
recursion, which employs a squaring technique:

p(x,n) =






1 if n = 0
x · p(x,(n−1)/2)2 if n > 0 is odd
p(x,n/2)2 if n > 0 is even

To illustrate how this definition works, consider the following examples:

24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26 = 2(6/2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128

This definition suggests the algorithm of Code Fragment 4.4.

Algorithm Power(x,n):
Input: A number x and integer n≥ 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y← Power(x,(n−1)/2)
return x · y · y

else
y← Power(x,n/2)
return y · y

Code Fragment 4.4: Computing the power function using linear recursion.

To analyze the running time of the algorithm, we observe that each recur-
sive call of function Power(x,n) divides the exponent, n, by two. Thus, there
are O(logn) recursive calls, not O(n). That is, by using linear recursion and the
squaring technique, we reduce the running time for the computation of the power
function from O(n) to O(logn), which is a big improvement.

i

i

“main” — 2011/1/13 — 9:10 — page 177 — #199
i

i

i

i

i

i

4.2. Analysis of Algorithms 177

4.2.7 Some More Examples of Algorithm Analysis

Now that we have the big-Oh notation for doing algorithm analysis, let us give some
more examples of simple algorithms that can have their running times characterized
using this notation. Moreover, in keeping with our earlier promise, we illustrate
below how each of the seven functions given earlier in this chapter can be used to
characterize the running time of an example algorithm.

A Constant-Time Method

To illustrate a constant-time algorithm, consider the following C++ function, which
returns the size of an STL vector, that is, the current number of cells in the array:

int capacity(const vector<int>& arr) {
return arr.size();

}

This is a very simple algorithm, because the size of a vector is stored as a
member variable in the vector object, so it takes only a constant-time lookup to
return this value. Thus, the capacity function runs in O(1) time; that is, the running
time of this function is independent of the value of n, the size of the array.

Revisiting the Method for Finding the Maximum in an Array

For our next example, let us reconsider a simple problem studied earlier, finding
the largest value in an array of integers. We assume that the array is stored as an
STL vector. This can be done in C++ as follows:

int findMax(const vector<int>& arr) {
int max = arr[0];

for (int i = 1; i < arr.size(); i++) {
if (max < arr[i]) max = arr[i];

}
return max;

}

This function, which amounts to a C++ implementation of the arrayMax al-
gorithm of Section 4.2.3, compares each of the n elements in the input array to a
current maximum, and each time it finds an element larger than the current maxi-
mum, it updates the current maximum to be this value. Thus, it spends a constant
amount of time for each of the n elements in the array; hence, as with the pseudo-
code version of the arrayMax algorithm, the running time of this algorithm is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 178 — #200
i

i

i

i

i

i

178 Chapter 4. Analysis Tools

Further Analysis of the Maximum-Finding Algorithm

A more interesting question, with respect to the above maximum-finding algorithm,
is to ask how many times we update the current maximum value. Note that this
statement is executed only if we encounter a value of the array that is larger than
our current maximum. In the worst case, this condition could be true each time
we perform the test. For instance, this situation would occur if the input array is
given to us in sorted order. Thus, in the worst-case, the statement max = arr[i] is
performed n−1 times, hence O(n) times.

But what if the input array is given to us in random order, with all orders equally
likely; what would be the expected number of times we updated the maximum value
in this case? To answer this question, note that we update the current maximum in
the ith iteration only if the ith element in the array is bigger than all the elements
that precede it. But if the array is given to us in random order, the probability that
the ith element is larger than all elements that precede it is 1/i; hence, the expected
number of times we update the maximum in this case is Hn = ∑n

i=1 1/i, which is
known as the nth Harmonic number. It turns out (see Proposition A.16) that Hn is
O(logn). Therefore, the expected number of times the maximum is updated when
the above maximum-finding algorithm is run on a random array is O(logn).

Three-Way Set Disjointness

Suppose we are given three sets, A, B, and C, with these sets stored in three different
integer arrays, a, b, and c, respectively. The three-way set disjointness problem is
to determine if these three sets are disjoint, that is, whether there is no element x
such that x∈ A, x ∈ B, and x ∈C. A simple C++ function to determine this property
is given below:

bool areDisjoint(const vector<int>& a, const vector<int>& b,
const vector<int>& c) {

for (int i = 0; i < a.size(); i++)
for (int j = 0; j < b.size(); j++)

for (int k = 0; k < c.size(); k++)
if ((a[i] == b[j]) && (b[j] == c[k])) return false;

return true;
}

This simple algorithm loops through each possible triple of indices i, j, and k
to check if the respective elements indexed in a, b, and c are equal. Thus, if each of
these arrays is of size n, then the worst-case running time of this function is O(n3).
Moreover, the worst case is achieved when the sets are disjoint, since in this case
we go through all n3 triples of valid indices, i, j, and k. Such a running time would
generally not be considered very efficient, but, fortunately, there is a better way to
solve this problem, which we explore in Exercise C-4.3.

i

i

“main” — 2011/1/13 — 9:10 — page 179 — #201
i

i

i

i

i

i

4.2. Analysis of Algorithms 179

Recursion Run Amok

The next few example algorithms we study are for solving the element uniqueness
problem, in which we are given a range, i, i + 1, . . . , j, of indices for an array, A,
which we assume is given as an STL vector. We want to determine if the elements
of this range, A[i],A[i + 1], . . . ,A[j], are all unique, that is, there is no repeated
element in this group of array entries. The first algorithm we give for solving the
element uniqueness problem is a recursive one. But it uses recursion in a very
inefficient manner, as shown in the following C++ implementation.

bool isUnique(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
if (!isUnique(arr, start, end−1))

return false;
if (!isUnique(arr, start+1, end))

return false;
return (arr[start] != arr[end]);
}

You should first convince yourself that the function is correct. To analyze this
recursive algorithm’s running time, let us first determine how much time we spend
outside of recursive calls in any invocation of this function. Note, in particular, that
there are no loops—just comparisons, arithmetic operations, array element refer-
ences, and function returns. Thus, the nonrecursive part of each function invocation
runs in constant time, that is, O(1) time; hence, to determine the worst-case run-
ning time of this function we only need to determine the worst-case total number
of calls we make to the isUnique function.

Let n denote the number of entries under consideration, that is, let

n = end− start + 1.

If n = 1, then the running time of the isUnique is O(1), since there are no recursive
calls for this case. To characterize the running time of the general case, the impor-
tant observation to make is that in order to solve a problem of size n, the isUnique
function makes two recursive calls on problems of size n− 1. Thus, in the worst
case, a call for a range of size n makes two calls on ranges of size n− 1, which
each make two calls on ranges of size n−2, which each make two calls on ranges
of size n−3, and so on. Thus, in the worst case, the total number of function calls
is given by the geometric summation

1+ 2+ 4+ · · ·+ 2n−1,

which is equal to 2n− 1 by Proposition 4.5. Thus, the worst-case running time of
function isUnique is O(2n). This is an incredibly inefficient method for solving the
element uniqueness problem. Its inefficiency comes not from the fact that it uses
recursion—it comes from the fact that it uses recursion poorly, which is something
we address in Exercise C-4.2.

i

i

“main” — 2011/1/13 — 9:10 — page 180 — #202
i

i

i

i

i

i

180 Chapter 4. Analysis Tools

An Iterative Method for Solving the Element Uniqueness Problem

We can do much better than the above exponential-time method by using the fol-
lowing iterative algorithm:

bool isUniqueLoop(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
for (int i = start; i < end; i++)

for (int j = i+1; j <= end; j++)
if (arr[i] == arr[j]) return false;

return true;
}

This function solves the element uniqueness problem by looping through all
distinct pairs of indices, i and j, and checking if any of them indexes a pair of
elements that are equal to each other. It does this using two nested for loops, such
that the first iteration of the outer loop causes n−1 iterations of the inner loop, the
second iteration of the outer loop causes n−2 iterations of the inner loop, the third
iteration of the outer loop causes n−3 iterations of the inner loop, and so on. Thus,
the worst-case running time of this function is proportional to

1+ 2+ 3+ · · ·+(n−1),

which is O(n2) as we saw earlier in this chapter (Proposition 4.3).

Using Sorting as a Problem-Solving Tool

An even better algorithm for the element uniqueness problem is based on using
sorting as a problem-solving tool. In this case, by sorting an array of elements, we
are guaranteed that any duplicate elements will be placed next to each other. Thus,
it suffices to sort the array and look for duplicates among consecutive elements. A
C++ implementation of this algorithm follows.

bool isUniqueSort(const vector<int>& arr, int start, int end) {
if (start >= end) return true;
vector<int> buf(arr); // duplicate copy of arr
sort(buf.begin()+start, buf.begin()+end); // sort the subarray
for (int i = start; i < end; i++) // check for duplicates

if (buf[i] == buf[i+1]) return false;
return true;
}

The function sort is provided by the STL. On most systems, it runs in O(n logn)
time. Since the other steps run in O(n) time, the entire algorithm runs in O(n logn)
time. Incidentally, we can solve the element uniqueness problem even faster, at
least in terms of its average-case running time, by using the hash table data structure
we explore in Section 9.2.

i

i

“main” — 2011/1/13 — 9:10 — page 181 — #203
i

i

i

i

i

i

4.3. Simple Justification Techniques 181

4.3 Simple Justification Techniques

Sometimes, we want to make claims about an algorithm, such as showing that it is
correct or that it runs fast. In order to rigorously make such claims, we must use
mathematical language, and in order to back up such claims, we must justify or
prove our statements. Fortunately, there are several simple ways to do this.

4.3.1 By Example

Some claims are of the generic form, “There is an element x in a set S that has
property P.” To justify such a claim, we only need to produce a particular x in S
that has property P. Likewise, some hard-to-believe claims are of the generic form,
“Every element x in a set S has property P.” To justify that such a claim is false, we
only need to produce a particular x from S that does not have property P. Such an
instance is called a counterexample.

Example 4.17: Professor Amongus claims that every number of the form 2i− 1
is a prime, when i is an integer greater than 1. Professor Amongus is wrong.

Justification: To prove Professor Amongus is wrong, we find a counter-example.
Fortunately, we need not look too far, for 24−1 = 15 = 3 ·5.

4.3.2 The “Contra” Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirror. To
justify the statement “if p is true, then q is true” we establish that “if q is not true,
then p is not true” instead. Logically, these two statements are the same, but the
latter, which is called the contrapositive of the first, may be easier to think about.

Example 4.18: Let a and b be integers. If ab is even, then a is even or b is even.

Justification: To justify this claim, consider the contrapositive, “If a is odd and
b is odd, then ab is odd.” So, suppose a = 2i+ 1 and b = 2 j + 1, for some integers
i and j. Then ab = 4i j + 2i+ 2 j + 1 = 2(2i j + i+ j)+ 1; hence, ab is odd.

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan’s Law. This law helps us deal
with negations, for it states that the negation of a statement of the form “p or q” is
“not p and not q.” Likewise, it states that the negation of a statement of the form
“p and q” is “not p or not q.”

i

i

“main” — 2011/1/13 — 9:10 — page 182 — #204
i

i

i

i

i

i

182 Chapter 4. Analysis Tools

Contradiction

Another negative justification technique is justification by contradiction, which
also often involves using DeMorgan’s Law. In applying the justification by con-
tradiction technique, we establish that a statement q is true by first supposing that
q is false and then showing that this assumption leads to a contradiction (such as
2 6= 2 or 1 > 3). By reaching such a contradiction, we show that no consistent sit-
uation exists with q being false, so q must be true. Of course, in order to reach this
conclusion, we must be sure our situation is consistent before we assume q is false.

Example 4.19: Let a and b be integers. If ab is odd, then a is odd and b is odd.

Justification: Let ab be odd. We wish to show that a is odd and b is odd. So,
with the hope of leading to a contradiction, let us assume the opposite, namely,
suppose a is even or b is even. In fact, without loss of generality, we can assume
that a is even (since the case for b is symmetric). Then a = 2i for some integer i.
Hence, ab = (2i)b = 2(ib), that is, ab is even. But this is a contradiction: ab cannot
simultaneously be odd and even. Therefore a is odd and b is odd.

4.3.3 Induction and Loop Invariants

Most of the claims we make about a running time or a space bound involve an inte-
ger parameter n (usually denoting an intuitive notion of the “size” of the problem).
Moreover, most of these claims are equivalent to saying some statement q(n) is true
“for all n ≥ 1.” Since this is making a claim about an infinite set of numbers, we
cannot justify this exhaustively in a direct fashion.

Induction

We can often justify claims such as those above as true, however, by using the
technique of induction. This technique amounts to showing that, for any particular
n ≥ 1, there is a finite sequence of implications that starts with something known
to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a
justification by induction by showing that q(n) is true for n = 1 (and possibly some
other values n = 2,3, . . . ,k, for some constant k). Then we justify that the inductive
“step” is true for n > k, namely, we show “if q(i) is true for i < n, then q(n) is true.”
The combination of these two pieces completes the justification by induction.

i

i

“main” — 2011/1/13 — 9:10 — page 183 — #205
i

i

i

i

i

i

4.3. Simple Justification Techniques 183

Proposition 4.20: Consider the Fibonacci function F(n), where we define F(1)=
1, F(2) = 2, and F(n) = F(n− 1)+ F(n− 2) for n > 2. (See Section 2.2.3.) We
claim that F(n) < 2n.

Justification: We show our claim is right by induction.
Base cases: (n≤ 2). F(1) = 1 < 2 = 21 and F(2) = 2 < 4 = 22.
Induction step: (n > 2). Suppose our claim is true for n′ < n. Consider F(n). Since
n > 2, F(n) = F(n− 1)+ F(n− 2). Moreover, since n− 1 < n and n− 2 < n, we
can apply the inductive assumption (sometimes called the “inductive hypothesis”)
to imply that F(n) < 2n−1 + 2n−2, since

2n−1 + 2n−2 < 2n−1 + 2n−1 = 2 ·2n−1 = 2n.

Let us do another inductive argument, this time for a fact we have seen before.

Proposition 4.21: (which is the same as Proposition 4.3)

n

∑
i=1

i =
n(n+ 1)

2
.

Justification: We justify this equality by induction.
Base case: n = 1. Trivial, for 1 = n(n+ 1)/2, if n = 1.
Induction step: n≥ 2. Assume the claim is true for n′ < n. Consider n.

n

∑
i=1

i = n+
n−1

∑
i=1

i.

By the induction hypothesis, then

n

∑
i=1

i = n+
(n−1)n

2
,

which we can simplify as

n+
(n−1)n

2
=

2n+ n2−n
2

=
n2 + n

2
=

n(n+ 1)

2
.

We may sometimes feel overwhelmed by the task of justifying something true
for all n≥ 1. We should remember, however, the concreteness of the inductive tech-
nique. It shows that, for any particular n, there is a finite step-by-step sequence of
implications that starts with something true and leads to the truth about n. In short,
the inductive argument is a formula for building a sequence of direct justifications.

i

i

“main” — 2011/1/13 — 9:10 — page 184 — #206
i

i

i

i

i

i

184 Chapter 4. Analysis Tools

Loop Invariants

The final justification technique we discuss in this section is the loop invariant. To
prove some statement S about a loop is correct, define S in terms of a series of
smaller statements S0,S1, . . . ,Sk, where:

1. The initial claim, S0, is true before the loop begins.
2. If Si−1 is true before iteration i, then Si is true after iteration i.
3. The final statement, Sk, implies the statement S that we wish to be true.

Let us give a simple example of using a loop-invariant argument to justify the
correctness of an algorithm. In particular, let us consider using a loop invariant to
justify the correctness of arrayFind, shown in Code Fragment 4.5, for finding an
element x in an array A.

Algorithm arrayFind(x,A):
Input: An element x and an n-element array, A.
Output: The index i such that x = A[i] or −1 if no element of A is equal to x.

i← 0
while i < n do

if x = A[i] then
return i

else
i← i+ 1

return −1

Code Fragment 4.5: Algorithm arrayFind for finding a given element in an array.

To show that arrayFind is correct, we inductively define a series of statements,
Si, that lead to the correctness of our algorithm. Specifically, we claim the follow-
ing is true at the beginning of iteration i of the while loop:

Si: x is not equal to any of the first i elements of A.
This claim is true at the beginning of the first iteration of the loop, since there are
no elements among the first 0 in A (this kind of a trivially true claim is said to hold
vacuously). In iteration i, we compare element x to element A[i] and return the
index i if these two elements are equal, which is clearly correct and completes the
algorithm in this case. If the two elements x and A[i] are not equal, then we have
found one more element not equal to x and we increment the index i. Thus, the
claim Si is true for this new value of i; hence, it is true at the beginning of the next
iteration. If the while-loop terminates without ever returning an index in A, then we
have i = n. That is, Sn is true—there are no elements of A equal to x. Therefore,
the algorithm correctly returns −1 to indicate that x is not in A.

i

i

“main” — 2011/1/13 — 9:10 — page 185 — #207
i

i

i

i

i

i

4.4. Exercises 185

4.4 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-4.1 There is a well-known city (which will go nameless here) whose inhabi-
tants have the reputation of enjoying a meal only if that meal is the best
they have ever experienced in their life. Otherwise, they hate it. Assum-
ing meal quality is distributed uniformly across a person’s life, what is
the expected number of times inhabitants of this city are happy with their
meals?

R-4.2 Give a pseudo-code description of the O(n)-time algorithm for computing
the power function p(x,n). Also, draw the recursion trace of this algorithm
for the computation of p(2,5).

R-4.3 Give a C++ description of Algorithm Power for computing the power
function p(x,n) (Code Fragment 4.4).

R-4.4 Draw the recursion trace of the Power algorithm (Code Fragment 4.4,
which computes the power function p(x,n)) for computing p(2,9).

R-4.5 Analyze the running time of Algorithm BinarySum (Code Fragment 3.41)
for arbitrary values of the input parameter n.

R-4.6 Graph the functions 8n, 4n log n, 2n2, n3, and 2n using a logarithmic scale
for the x- and y-axes. That is, if the function is f (n) is y, plot this as a
point with x-coordinate at logn and y-coordinate at logy.

R-4.7 The number of operations executed by algorithms A and B is 8n log n and
2n2, respectively. Determine n0 such that A is better than B for n≥ n0.

R-4.8 The number of operations executed by algorithms A and B is 40n2 and
2n3, respectively. Determine n0 such that A is better than B for n≥ n0.

R-4.9 Give an example of a function that is plotted the same on a log-log scale
as it is on a standard scale.

R-4.10 Explain why the plot of the function nc is a straight line with slope c on a
log-log scale.

R-4.11 What is the sum of all the even numbers from 0 to 2n, for any positive
integer n?

R-4.12 Show that the following two statements are equivalent:

(a) The running time of algorithm A is always O(f (n)).

(b) In the worst case, the running time of algorithm A is O(f (n)).

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 186 — #208
i

i

i

i

i

i

186 Chapter 4. Analysis Tools

R-4.13 Order the following functions by asymptotic growth rate.

4n log n+ 2n 210 2log n

3n+ 100log n 4n 2n

n2 + 10n n3 n log n

R-4.14 Show that if d(n) is O(f (n)), then ad(n) is O(f (n)), for any constant
a > 0.

R-4.15 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then the product d(n)e(n)
is O(f (n)g(n)).

R-4.16 Give a big-Oh characterization, in terms of n, of the running time of the
Ex1 function shown in Code Fragment 4.6.

R-4.17 Give a big-Oh characterization, in terms of n, of the running time of the
Ex2 function shown in Code Fragment 4.6.

R-4.18 Give a big-Oh characterization, in terms of n, of the running time of the
Ex3 function shown in Code Fragment 4.6.

R-4.19 Give a big-Oh characterization, in terms of n, of the running time of the
Ex4 function shown in Code Fragment 4.6.

R-4.20 Give a big-Oh characterization, in terms of n, of the running time of the
Ex5 function shown in Code Fragment 4.6.

R-4.21 Bill has an algorithm, find2D, to find an element x in an n× n array A.
The algorithm find2D iterates over the rows of A, and calls the algorithm
arrayFind, of Code Fragment 4.5, on each row, until x is found or it has
searched all rows of A. What is the worst-case running time of find2D in
terms of n? What is the worst-case running time of find2D in terms of N,
where N is the total size of A? Would it be correct to say that Find2D is a
linear-time algorithm? Why or why not?

R-4.22 For each function f (n) and time t in the following table, determine the
largest size n of a problem P that can be solved in time t if the algorithm
for solving P takes f (n) microseconds (one entry is already completed).

1 Second 1 Hour 1 Month 1 Century

logn ≈ 10300000

n

n logn

n2

2n

R-4.23 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n) + e(n) is
O(f (n)+ g(n)).

i

i

“main” — 2011/1/13 — 9:10 — page 187 — #209
i

i

i

i

i

i

4.4. Exercises 187

Algorithm Ex1(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the elements in A.

s← A[0]
for i← 1 to n−1 do

s← s+ A[i]
return s

Algorithm Ex2(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the elements at even cells in A.

s← A[0]
for i← 2 to n−1 by increments of 2 do

s← s+ A[i]
return s

Algorithm Ex3(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the prefix sums in A.

s← 0
for i← 0 to n−1 do

s← s+ A[0]
for j← 1 to i do

s← s+ A[j]
return s

Algorithm Ex4(A):
Input: An array A storing n≥ 1 integers.
Output: The sum of the prefix sums in A.

s← A[0]
t← s
for i← 1 to n−1 do

s← s+ A[i]
t← t + s

return t
Algorithm Ex5(A,B):

Input: Arrays A and B each storing n≥ 1 integers.
Output: The number of elements in B equal to the sum of prefix sums in A.

c← 0
for i← 0 to n−1 do

s← 0
for j← 0 to n−1 do

s← s+ A[0]
for k← 1 to j do

s← s+ A[k]
if B[i] = s then

c← c + 1
return c

Code Fragment 4.6: Some algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 188 — #210
i

i

i

i

i

i

188 Chapter 4. Analysis Tools

R-4.24 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n)− e(n) is not
necessarily O(f (n)−g(n)).

R-4.25 Show that if d(n) is O(f (n)) and f (n) is O(g(n)), then d(n) is O(g(n)).

R-4.26 Show that O(max{ f (n),g(n)}) = O(f (n)+ g(n)).

R-4.27 Show that f (n) is O(g(n)) if and only if g(n) is Ω(f (n)).

R-4.28 Show that if p(n) is a polynomial in n, then log p(n) is O(logn).

R-4.29 Show that (n+ 1)5 is O(n5).

R-4.30 Show that 2n+1 is O(2n).

R-4.31 Show that n is O(n log n).

R-4.32 Show that n2 is Ω(n log n).

R-4.33 Show that n log n is Ω(n).

R-4.34 Show that ⌈ f (n)⌉ is O(f (n)), if f (n) is a positive nondecreasing function
that is always greater than 1.

R-4.35 Algorithm A executes an O(log n)-time computation for each entry of an
n-element array. What is the worst-case running time of Algorithm A?

R-4.36 Given an n-element array X , Algorithm B chooses log n elements in X
at random and executes an O(n)-time calculation for each. What is the
worst-case running time of Algorithm B?

R-4.37 Given an n-element array X of integers, Algorithm C executes an O(n)-
time computation for each even number in X , and an O(logn)-time com-
putation for each odd number in X . What are the best-case and worst-case
running times of Algorithm C?

R-4.38 Given an n-element array X , Algorithm D calls Algorithm E on each el-
ement X [i]. Algorithm E runs in O(i) time when it is called on element
X [i].What is the worst-case running time of Algorithm D?

R-4.39 Al and Bob are arguing about their algorithms. Al claims his O(n log n)-
time method is always faster than Bob’s O(n2)-time method. To settle the
issue, they perform a set of experiments. To Al’s dismay, they find that if
n < 100, the O(n2)-time algorithm runs faster, and only when n ≥ 100 is
the O(n log n)-time one better. Explain how this is possible.

i

i

“main” — 2011/1/13 — 9:10 — page 189 — #211
i

i

i

i

i

i

4.4. Exercises 189

Creativity

C-4.1 Describe a recursive algorithm to compute the integer part of the base-2
logarithm of n using only addition and integer division.

C-4.2 Describe an efficient recursive method for solving the element uniqueness
problem, which runs in time that is at most O(n2) in the worst case without
using sorting.

C-4.3 Assuming it is possible to sort n numbers in O(n log n) time, show that it
is possible to solve the three-way set disjointness problem in O(n logn)
time.

C-4.4 Describe an efficient algorithm for finding the 10 largest elements in an
array of size n. What is the running time of your algorithm?

C-4.5 Suppose you are given an n-element array A containing distinct integers
that are listed in increasing order. Given a number k, describe a recursive
algorithm to find two integers in A that sum to k, if such a pair exists.
What is the running time of your algorithm?

C-4.6 Given an n-element unsorted array A of n integers and an integer k, de-
scribe a recursive algorithm for rearranging the elements in A so that all
elements less than or equal to k come before any elements larger than k.
What is the running time of your algorithm?

C-4.7 Communication security is extremely important in computer networks,
and one way many network protocols achieve security is to encrypt mes-
sages. Typical cryptographic schemes for the secure transmission of mes-
sages over such networks are based on the fact that no efficient algorithms
are known for factoring large integers. Hence, if we can represent a secret
message by a large prime number p, we can transmit, over the network,
the number r = p ·q, where q > p is another large prime number that acts
as the encryption key. An eavesdropper who obtains the transmitted num-
ber r on the network would have to factor r in order to figure out the secret
message p.
Using factoring to figure out a message is very difficult without knowing
the encryption key q. To understand why, consider the following naive
factoring algorithm:

for p = 2, · · · ,r−1 do
if p divides r then

return “The secret message is p!”

a. Suppose that the eavesdropper uses the above algorithm and has a
computer that can carry out in 1 microsecond (1 millionth of a sec-
ond) a division between two integers of up to 100 bits each. Give an
estimate of the time that it will take in the worst case to decipher the
secret message p if the transmitted message r has 100 bits.

i

i

“main” — 2011/1/13 — 9:10 — page 190 — #212
i

i

i

i

i

i

190 Chapter 4. Analysis Tools

b. What is the worst-case time complexity of the above algorithm?
Since the input to the algorithm is just one large number r, assume
that the input size n is the number of bytes needed to store r, that is,
n = ⌊(log2 r)/8⌋+ 1, and that each division takes time O(n).

C-4.8 Give an example of a positive function f (n) such that f (n) is neither O(n)
nor Ω(n).

C-4.9 Show that ∑n
i=1 i2 is O(n3).

C-4.10 Show that ∑n
i=1 i/2i < 2.

(Hint: Try to bound this sum term by term with a geometric progression.)
C-4.11 Show that logb f (n) is Θ(log f (n)) if b > 1 is a constant.
C-4.12 Describe a method for finding both the minimum and maximum of n num-

bers using fewer than 3n/2 comparisons.
(Hint: First construct a group of candidate minimums and a group of can-
didate maximums.)

C-4.13 Bob built a Web site and gave the URL only to his n friends, which he
numbered from 1 to n. He told friend number i that he/she can visit the
Web site at most i times. Now Bob has a counter, C, keeping track of
the total number of visits to the site (but not the identities of who visits).
What is the minimum value for C such that Bob should know that one of
his friends has visited his/her maximum allowed number of times?

C-4.14 Al says he can prove that all sheep in a flock are the same color:
Base case: One sheep. It is clearly the same color as itself.
Induction step: A flock of n sheep. Take a sheep, a, out. The remaining
n− 1 are all the same color by induction. Now put sheep a back in and
take out a different sheep, b. By induction, the n− 1 sheep (now with a)
are all the same color. Therefore, all the sheep in the flock are the same
color.
What is wrong with Al’s “justification”?

C-4.15 Consider the following “justification” that the Fibonacci function, F(n)
(see Proposition 4.20) is O(n):
Base case (n≤ 2): F(1) = 1 and F(2) = 2.
Induction step (n > 2): Assume the claim true for n′ < n. Consider n.
F(n) = F(n− 1) + F(n− 2). By induction, F(n− 1) is O(n− 1) and
F(n−2) is O(n−2). Then, F(n) is O((n−1)+ (n−2)), by the identity
presented in Exercise R-4.23. Therefore, F(n) is O(n).
What is wrong with this “justification”?

C-4.16 Let p(x) be a polynomial of degree n, that is, p(x) = ∑n
i=0 aixi.

(a) Describe a simple O(n2) time method for computing p(x).
(b) Now consider a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−1 + xan) · · ·))),

i

i

“main” — 2011/1/13 — 9:10 — page 191 — #213
i

i

i

i

i

i

4.4. Exercises 191

which is known as Horner’s method. Using the big-Oh notation, charac-
terize the number of arithmetic operations this method executes.

C-4.17 Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by
induction that F(n) is Ω((3/2)n).

C-4.18 Given a set A = {a1,a2, . . . ,an} of n integers, describe, in pseudo-code,
an efficient method for computing each of partial sums sk = ∑k

i=1 ai, for
k = 1,2, . . . ,n. What is the running time of this method?

C-4.19 Draw a visual justification of Proposition 4.3 analogous to that of Fig-
ure 4.1(b) for the case when n is odd.

C-4.20 An array A contains n− 1 unique integers in the range [0,n− 1], that is,
there is one number from this range that is not in A. Design an O(n)-
time algorithm for finding that number. You are only allowed to use O(1)
additional space besides the array A itself.

C-4.21 Let S be a set of n lines in the plane such that no two are parallel and
no three meet in the same point. Show, by induction, that the lines in S
determine Θ(n2) intersection points.

C-4.22 Show that the summation ∑n
i=1⌈log2 i⌉ is O(n log n).

C-4.23 An evil king has n bottles of wine, and a spy has just poisoned one of
them. Unfortunately, they don’t know which one it is. The poison is very
deadly; just one drop diluted even a billion to one will still kill. Even so,
it takes a full month for the poison to take effect. Design a scheme for
determining exactly which one of the wine bottles was poisoned in just
one month’s time while expending O(logn) taste testers.

C-4.24 An array A contains n integers taken from the interval [0,4n], with repeti-
tions allowed. Describe an efficient algorithm for determining an integer
value k that occurs the most often in A. What is the running time of your
algorithm?

C-4.25 Describe, in pseudo-code, a method for multiplying an n×m matrix A
and an m× p matrix B. Recall that the product C = AB is defined so that
C[i][j] = ∑m

k=1 A[i][k] ·B[k][j]. What is the running time of your method?

C-4.26 Suppose each row of an n×n array A consists of 1’s and 0’s such that, in
any row i of A, all the 1’s come before any 0’s. Also suppose that the num-
ber of 1’s in row i is at least the number in row i+1, for i = 0,1, . . . ,n−2.
Assuming A is already in memory, describe a method running in O(n)
time (not O(n2)) for counting the number of 1’s in A.

C-4.27 Describe a recursive function for computing the nth Harmonic number,
Hn = ∑n

i=1 1/i.

i

i

“main” — 2011/1/13 — 9:10 — page 192 — #214
i

i

i

i

i

i

192 Chapter 4. Analysis Tools

Projects

P-4.1 Implement prefixAverages1 and prefixAverages2 from Section 4.2.5, and
perform an experimental analysis of their running times. Visualize their
running times as a function of the input size with a log-log chart.

P-4.2 Perform a careful experimental analysis that compares the relative running
times of the functions shown in Code Fragments 4.6.

P-4.3 Perform an experimental analysis to test the hypothesis that the STL func-
tion, sort, runs in O(n log n) time on average.

P-4.4 Perform an experimental analysis to determine the largest value of n for
each of the three algorithms given in the chapter for solving the element
uniqueness problem such that the given algorithm runs in one minute or
less.

Chapter Notes

The big-Oh notation has prompted several comments about its proper use [15, 43, 58].
Knuth [59, 58] defines it using the notation f (n) = O(g(n)), but says this “equality” is only
“one way.” We have chosen to take a more standard view of equality and view the big-
Oh notation as a set, following Brassard [15]. The reader interested in studying average-
case analysis is referred to the book chapter by Vitter and Flajolet [101]. We found the
story about Archimedes in [78]. For some additional mathematical tools, please refer to
Appendix A.

i

i

“main” — 2011/1/13 — 9:10 — page 193 — #215
i

i

i

i

i

i

Chapter

5 Stacks, Queues, and Deques

Contents

5.1 Stacks . 194

5.1.1 The Stack Abstract Data Type 195

5.1.2 The STL Stack . 196

5.1.3 A C++ Stack Interface 196

5.1.4 A Simple Array-Based Stack Implementation 198

5.1.5 Implementing a Stack with a Generic Linked List . . 202

5.1.6 Reversing a Vector Using a Stack 203

5.1.7 Matching Parentheses and HTML Tags 204

5.2 Queues . 208

5.2.1 The Queue Abstract Data Type 208

5.2.2 The STL Queue . 209

5.2.3 A C++ Queue Interface 210

5.2.4 A Simple Array-Based Implementation 211

5.2.5 Implementing a Queue with a Circularly Linked List . 213

5.3 Double-Ended Queues 217

5.3.1 The Deque Abstract Data Type 217

5.3.2 The STL Deque . 218

5.3.3 Implementing a Deque with a Doubly Linked List . . 218

5.3.4 Adapters and the Adapter Design Pattern 220

5.4 Exercises . 223

i

i

“main” — 2011/1/13 — 9:10 — page 194 — #216
i

i

i

i

i

i

194 Chapter 5. Stacks, Queues, and Deques

5.1 Stacks

A stack is a container of objects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but
only the most recently inserted (that is, “last”) object can be removed at any time.
The name “stack” is derived from the metaphor of a stack of plates in a spring-
loaded, cafeteria plate dispenser. In this case, the fundamental operations involve
the “pushing” and “popping” of plates on the stack. When we need a new plate
from the dispenser, we “pop” the top plate off the stack, and when we add a plate,
we “push” it down on the stack to become the new top plate. Perhaps an even more
amusing metaphor would be a PEZ R© candy dispenser, which stores mint candies
in a spring-loaded container that “pops” out the top-most candy in the stack when
the top of the dispenser is lifted. (See Figure 5.1.) Stacks are a fundamental data
structure. They are used in many applications, including the following.

Example 5.1: Internet Web browsers store the addresses of recently visited sites
on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the
stack of addresses. The browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Example 5.2: Text editors usually provide an “undo” mechanism that cancels re-
cent editing operations and reverts to former states of a document. This undo oper-
ation can be accomplished by keeping text changes in a stack.

Figure 5.1: A schematic drawing of a PEZ R© dispenser; a physical implementation
of the stack ADT. (PEZ R© is a registered trademark of PEZ Candy, Inc.)

i

i

“main” — 2011/1/13 — 9:10 — page 195 — #217
i

i

i

i

i

i

5.1. Stacks 195

5.1.1 The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most
important, since they are used in a host of different applications that include many
more sophisticated data structures. Formally, a stack is an abstract data type (ADT)
that supports the following operations:

push(e): Insert element e at the top of the stack.

pop(): Remove the top element from the stack; an error occurs
if the stack is empty.

top(): Return a reference to the top element on the stack, with-
out removing it; an error occurs if the stack is empty.

Additionally, let us also define the following supporting functions:

size(): Return the number of elements in the stack.

empty(): Return true if the stack is empty and false otherwise.

Example 5.3: The following table shows a series of stack operations and their
effects on an initially empty stack of integers.

Operation Output Stack Contents
push(5) – (5)
push(3) – (5,3)
pop() – (5)
push(7) – (5,7)
pop() – (5)
top() 5 (5)
pop() – ()
pop() “error” ()
top() “error” ()
empty() true ()
push(9) – (9)
push(7) – (9,7)
push(3) – (9,7,3)
push(5) – (9,7,3,5)
size() 4 (9,7,3,5)
pop() – (9,7,3)
push(8) – (9,7,3,8)
pop() – (9,7,3)
top() 3 (9,7,3)

i

i

“main” — 2011/1/13 — 9:10 — page 196 — #218
i

i

i

i

i

i

196 Chapter 5. Stacks, Queues, and Deques

5.1.2 The STL Stack

The Standard Template Library provides an implementation of a stack. The un-
derlying implementation is based on the STL vector class, which is presented in
Sections 1.5.5 and 6.1.4. In order to declare an object of type stack, it is neces-
sary to first include the definition file, which is called “stack.” As with the STL
vector, the class stack is part of the std namespace, so it is necessary either to use
“std::stack” or to provide a “using” statement. The stack class is templated with
the class of the individual elements. For example, the code fragment below declares
a stack of integers.

#include <stack>
using std::stack; // make stack accessible
stack<int> myStack; // a stack of integers

We refer to the type of individual elements as the stack’s base type. As with STL
vectors, an STL stack dynamically resizes itself as new elements are pushed on.

The STL stack class supports the same operators as our interface. Below, we
list the principal member functions. Let s be declared to be an STL vector, and let
e denote a single object whose type is the same as the base type of the stack. (For
example, s is a vector of integers, and e is an integer.)

size(): Return the number of elements in the stack.

empty(): Return true if the stack is empty and false otherwise.

push(e): Push e onto the top of the stack.

pop(): Pop the element at the top of the stack.

top(): Return a reference to the element at the top of the stack.
There is one significant difference between the STL implementation and our

own definitions of the stack operations. In the STL implementation, the result of
applying either of the operations top or pop to an empty stack is undefined. In
particular, no exception is thrown. Even though no exception is thrown, it may
very likely result in your program aborting. Thus, it is up to the programmer to be
sure that no such illegal accesses are attempted.

5.1.3 A C++ Stack Interface

Before discussing specific implementations of the stack, let us first consider how
to define an abstract data type for a stack. When defining an abstract data type,
our principal concern is specifying the Application Programming Interface (API),
or simply interface, which describes the names of the public members that the
ADT must support and how they are to be declared and used. An interface is not
a complete description of all the public members. For example, it does not include

i

i

“main” — 2011/1/13 — 9:10 — page 197 — #219
i

i

i

i

i

i

5.1. Stacks 197

the private data members. Rather, it is a list of members that any implementation
must provide. The C++ programming language does not provide a simple method
for defining interfaces, and therefore, the interface defined here is not an official
C++ class. It is offered principally for the purpose of illustration.

The informal interface for the stack ADT is given in Code Fragment 5.1. This
interface defines a class template. Recall from Section 2.3 that such a definition
implies that the base type of element being stored in the stack will be provided by
the user. In Code Fragment 5.1, this element type is indicated by E. For example,
E may be any fundamental type (such as int, char, bool, and double), any built-in
or user-defined class (such as string), or a pointer to any of these.

template <typename E>
class Stack { // an interface for a stack
public:

int size() const; // number of items in stack
bool empty() const; // is the stack empty?
const E& top() const throw(StackEmpty); // the top element
void push(const E& e); // push x onto the stack
void pop() throw(StackEmpty); // remove the top element
};

Code Fragment 5.1: An informal Stack interface (not a complete C++ class).

Observe that the member functions size, empty, and top are all declared to be
const, which informs the compiler that they do not alter the contents of the stack.
The member function top returns a constant reference to the top of the stack, which
means that its value may be read but not written.

Note that pop does not return the element that was popped. If the user wants to
know this value, it is necessary to perform a top operation first, and save the value.
The member function push takes a constant reference to an object of type E as its
argument. Recall from Section 1.4 that this is the most efficient way of passing
objects to a function.

An error condition occurs when calling either of the functions pop or top on an
empty stack. This is signaled by throwing an exception of type StackEmpty, which
is defined in Code Fragment 5.2.

// Exception thrown on performing top or pop of an empty stack.
class StackEmpty : public RuntimeException {
public:

StackEmpty(const string& err) : RuntimeException(err) {}
};

Code Fragment 5.2: Exception thrown by functions pop and top when called on an
empty stack. This class is derived from RuntimeException from Section 2.4.

i

i

“main” — 2011/1/13 — 9:10 — page 198 — #220
i

i

i

i

i

i

198 Chapter 5. Stacks, Queues, and Deques

5.1.4 A Simple Array-Based Stack Implementation

We can implement a stack by storing its elements in an array. Specifically, the stack
in this implementation consists of an N-element array S plus an integer variable t
that gives the index of the top element in array S. (See Figure 5.2.)

0 1 2 N−1t

S

Figure 5.2: Realization of a stack by means of an array S. The top element in the
stack is stored in the cell S[t].

Recalling that arrays in C++ start at index 0, we initialize t to −1, and use this
value for t to identify when the stack is empty. Likewise, we can use this variable
to determine the number of elements in a stack (t + 1). We also introduce a new
type of exception, called StackFull, to signal the error condition that arises if we
try to insert a new element and the array S is full. Exception StackFull is specific to
our implementation of a stack and is not defined in the stack ADT. Given this new
exception, we can then implement the stack ADT functions as described in Code
Fragment 5.3.

Algorithm size():

return t + 1
Algorithm empty():

return (t < 0)
Algorithm top():

if empty() then
throw StackEmpty exception

return S[t]
Algorithm push(e):

if size() = N then
throw StackFull exception

t← t + 1
S[t]← e

Algorithm pop():

if empty() then
throw StackEmpty exception

t← t−1
Code Fragment 5.3: Implementation of a stack by means of an array.

The correctness of the functions in the array-based implementation follows im-
mediately from the definition of the functions themselves. Table 5.1 shows the

i

i

“main” — 2011/1/13 — 9:10 — page 199 — #221
i

i

i

i

i

i

5.1. Stacks 199

running times for member functions in a realization of a stack by an array. Each
of the stack functions in the array realization executes a constant number of state-
ments involving arithmetic operations, comparisons, and assignments. Thus, in this
implementation of the Stack ADT, each function runs in constant time, that is, they
each run in O(1) time.

Operation Time
size O(1)

empty O(1)

top O(1)

push O(1)

pop O(1)

Table 5.1: Performance of an array-based stack. The space usage is O(N), where N
is the array’s size. Note that the space usage is independent from the number n≤ N
of elements that are actually in the stack.

A C++ Implementation of a Stack

In this section, we present a concrete C++ implementation of the above pseudo-
code specification by means of a class, called ArrayStack. Our approach is to store
the elements of a stack in an array. To keep the code simple, we have omitted the
standard housekeeping utilities, such as a destructor, an assignment operator, and a
copy constructor. We leave their implementations as an exercise.

We begin by providing the ArrayStack class definition in Code Fragment 5.4.

template <typename E>
class ArrayStack {

enum { DEF CAPACITY = 100 }; // default stack capacity
public:

ArrayStack(int cap = DEF CAPACITY); // constructor from capacity
int size() const; // number of items in the stack
bool empty() const; // is the stack empty?
const E& top() const throw(StackEmpty); // get the top element
void push(const E& e) throw(StackFull); // push element onto stack
void pop() throw(StackEmpty); // pop the stack
// . . .housekeeping functions omitted

private: // member data
E* S; // array of stack elements
int capacity; // stack capacity
int t; // index of the top of the stack
};

Code Fragment 5.4: The class ArrayStack, which implements the Stack interface.

i

i

“main” — 2011/1/13 — 9:10 — page 200 — #222
i

i

i

i

i

i

200 Chapter 5. Stacks, Queues, and Deques

In addition to the member functions required by the interface, we also provide
a constructor, that is given the desired capacity of the stack as its only argument. If
no argument is given, the default value given by DEF CAPACITY is used. This is
an example of using default arguments in function calls. We use an enumeration
to define this default capacity value. This is the simplest way of defining symbolic
integer constants within a C++ class. Our class is templated with the element type,
denoted by E. The stack’s storage, denoted S, is a dynamically allocated array of
type E, that is, a pointer to E.

Next, we present the implementations of the ArrayStack member functions in
Code Fragment 5.5. The constructor allocates the array storage, whose size is set to
the default capacity. The members capacity and t are also set to their initial values.
In spite of the syntactical complexities of defining templated member functions in
C++, the remaining member functions are straightforward implementations of their
definitions in Code 5.3. Observe that functions top and pop first check that the
stack is not empty, and otherwise, they throw an exception. Similarly, push first
checks that the stack is not full, and otherwise, it throws an exception.

template <typename E> ArrayStack<E>::ArrayStack(int cap)
: S(new E[cap]), capacity(cap), t(−1) { } // constructor from capacity

template <typename E> int ArrayStack<E>::size() const
{ return (t + 1); } // number of items in the stack

template <typename E> bool ArrayStack<E>::empty() const
{ return (t < 0); } // is the stack empty?

template <typename E> // return top of stack
const E& ArrayStack<E>::top() const throw(StackEmpty) {

if (empty()) throw StackEmpty("Top of empty stack");
return S[t];
}

template <typename E> // push element onto the stack
void ArrayStack<E>::push(const E& e) throw(StackFull) {

if (size() == capacity) throw StackFull("Push to full stack");
S[++t] = e;
}

template <typename E> // pop the stack
void ArrayStack<E>::pop() throw(StackEmpty) {

if (empty()) throw StackEmpty("Pop from empty stack");
−−t;
}

Code Fragment 5.5: Implementations of the member functions of class ArrayStack
(excluding housekeeping functions).

i

i

“main” — 2011/1/13 — 9:10 — page 201 — #223
i

i

i

i

i

i

5.1. Stacks 201

Example Output

In Code Fragment 5.6 below, we present an example of the use of our ArrayStack
class. To demonstrate the flexibility of our implementation, we show two stacks of
different base types. The instance A is a stack of integers of the default capacity
(100). The instance B is a stack of character strings of capacity 10.

ArrayStack<int> A; // A = [], size = 0
A.push(7); // A = [7*], size = 1
A.push(13); // A = [7, 13*], size = 2
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13
A.push(9); // A = [7, 9*], size = 2
cout << A.top() << endl; // A = [7, 9*], outputs: 9
cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9
ArrayStack<string> B(10); // B = [], size = 0
B.push("Bob"); // B = [Bob*], size = 1
B.push("Alice"); // B = [Bob, Alice*], size = 2
cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice
B.push("Eve"); // B = [Bob, Eve*], size = 2

Code Fragment 5.6: An example of the use of the ArrayStack class. The contents
of the stack are shown in the comment following the operation. The top of the stack
is indicated by an asterisk (“*”).

Note that our implementation, while simple and efficient, could be enhanced
in a number of ways. For example, it assumes a fixed upper bound N on the ulti-
mate size of the stack. In Code Fragment 5.4, we chose the default capacity value
N = 100 more or less arbitrarily (although the user can set the capacity in the con-
structor). An application may actually need much less space than the given initial
size, and this would be wasteful of memory. Alternatively, an application may need
more space than this, in which case our stack implementation might “crash” if too
many elements are pushed onto the stack.

Fortunately, there are other implementations that do not impose an arbitrary size
limitation. One such method is to use the STL stack class, which was introduced
earlier in this chapter. The STL stack is also based on the STL vector class, and
it offers the advantage that it is automatically expanded when the stack overflows
its current storage limits. In practice, the STL stack would be the easiest and most
practical way to implement an array-based stack. Later in this chapter, we see other
methods that use space proportional to the actual size of the stack.

In instances where we have a good estimate on the number of items needing to
go in the stack, the array-based implementation is hard to beat from the perspective
of speed and simplicity. Stacks serve a vital role in a number of computing applica-
tions, so it is helpful to have a fast stack ADT implementation, such as the simple
array-based implementation.

i

i

“main” — 2011/1/13 — 9:10 — page 202 — #224
i

i

i

i

i

i

202 Chapter 5. Stacks, Queues, and Deques

5.1.5 Implementing a Stack with a Generic Linked List

In this section, we show how to implement the stack ADT using a singly linked list.
Our approach is to use the generic singly linked list, called SLinkedList, which was
presented earlier in Section 3.2.4. The definition of our stack, called LinkedStack,
is presented in Code Fragment 5.7.

To avoid the syntactic messiness inherent in C++ templated classes, we have
chosen not to implement a fully generic templated class. Instead, we have opted to
define a type for the stack’s elements, called Elem. In this example, we define Elem
to be of type string. We leave the task of producing a truly generic implementation
as an exercise. (See Exercise R-5.7.)

typedef string Elem; // stack element type
class LinkedStack { // stack as a linked list
public:

LinkedStack(); // constructor
int size() const; // number of items in the stack
bool empty() const; // is the stack empty?
const Elem& top() const throw(StackEmpty); // the top element
void push(const Elem& e); // push element onto stack
void pop() throw(StackEmpty); // pop the stack

private: // member data
SLinkedList<Elem> S; // linked list of elements
int n; // number of elements
};

Code Fragment 5.7: The class LinkedStack, a linked list implementation of a stack.

The principal data member of the class is the generic linked list of type Elem,
called S. Since the SLinkedList class does not provide a member function size, we
store the current size in a member variable, n.

In Code Fragment 5.8, we present the implementations of the constructor and
the size and empty functions. Our constructor creates the initial stack and initial-
izes n to zero. We do not provide an explicit destructor, relying instead on the
SLinkedList destructor to deallocate the linked list S.

LinkedStack::LinkedStack()
: S(), n(0) { } // constructor

int LinkedStack::size() const
{ return n; } // number of items in the stack

bool LinkedStack::empty() const
{ return n == 0; } // is the stack empty?

Code Fragment 5.8: Constructor and size functions for the LinkedStack class.

i

i

“main” — 2011/1/13 — 9:10 — page 203 — #225
i

i

i

i

i

i

5.1. Stacks 203

The definitions of the stack operations, top, push, and pop, are presented in
Code Fragment 5.9. Which side of the list, head or tail, should we chose for the top
of the stack? Since SLinkedList can insert and delete elements in constant time only
at the head, the head is clearly the better choice. Therefore, the member function
top returns S.front(). The functions push and pop invoke the functions addFront
and removeFront, respectively, and update the number of elements.

// get the top element
const Elem& LinkedStack::top() const throw(StackEmpty) {

if (empty()) throw StackEmpty("Top of empty stack");
return S.front();
}
void LinkedStack::push(const Elem& e) { // push element onto stack

++n;
S.addFront(e);
}

// pop the stack
void LinkedStack::pop() throw(StackEmpty) {

if (empty()) throw StackEmpty("Pop from empty stack");
−−n;
S.removeFront();
}

Code Fragment 5.9: Principal operations for the LinkedStack class.

5.1.6 Reversing a Vector Using a Stack

We can use a stack to reverse the elements in a vector, thereby producing a nonre-
cursive algorithm for the array-reversal problem introduced in Section 3.5.1. The
basic idea is to push all the elements of the vector in order into a stack and then
fill the vector back up again by popping the elements off of the stack. In Code
Fragment 5.10, we give a C++ implementation of this algorithm.

template <typename E>
void reverse(vector<E>& V) { // reverse a vector

ArrayStack<E> S(V.size());
for (int i = 0; i < V.size(); i++) // push elements onto stack

S.push(V[i]);
for (int i = 0; i < V.size(); i++) { // pop them in reverse order

V[i] = S.top(); S.pop();
}
}

Code Fragment 5.10: A generic function that uses a stack to reverse a vector.

For example, if the input vector to function reverse contained the five strings
[Jack, Kate, Hurley, Jin, Michael], then on returning from the function, the vector
would contain [Michael, Jin, Hurley, Kate, Jack].

i

i

“main” — 2011/1/13 — 9:10 — page 204 — #226
i

i

i

i

i

i

204 Chapter 5. Stacks, Queues, and Deques

5.1.7 Matching Parentheses and HTML Tags

In this section, we explore two related applications of stacks. The first is matching
parentheses and grouping symbols in arithmetic expressions. Arithmetic expres-
sions can contain various pairs of grouping symbols, such as

• Parentheses: “(” and “)”
• Braces: “{” and “}”
• Brackets: “[” and “]”
• Floor function symbols: “⌊” and “⌋”
• Ceiling function symbols: “⌈” and “⌉,”

and each opening symbol must match with its corresponding closing symbol. For
example, a left bracket symbol (“[”) must match with a corresponding right bracket
(“]”) as in the following expression:

• Correct: ()(()){([()])}
• Correct: ((()(()){([()])}))
• Incorrect:)(()){([()])}
• Incorrect: ({[])}
• Incorrect: (

We leave the precise definition of matching of grouping symbols to Exercise R-5.8.

An Algorithm for Parentheses Matching

An important problem in processing arithmetic expressions is to make sure their
grouping symbols match up correctly. We can use a stack S to perform the matching
of grouping symbols in an arithmetic expression with a single left-to-right scan.
The algorithm tests that left and right symbols match up and also that the left and
right symbols are both of the same type.

Suppose we are given a sequence X = x0x1x2 . . .xn−1, where each xi is a token
that can be a grouping symbol, a variable name, an arithmetic operator, or a number.
The basic idea behind checking that the grouping symbols in S match correctly, is
to process the tokens in X in order. Each time we encounter an opening symbol, we
push that symbol onto S, and each time we encounter a closing symbol, we pop the
top symbol from the stack S (assuming S is not empty) and we check that these two
symbols are of corresponding types. (For example, if the symbol “(” was pushed,
the symbol “)” should be its match.) If the stack is empty after we have processed
the whole sequence, then the symbols in X match.

Assuming that the push and pop operations are implemented to run in constant
time, this algorithm runs in O(n) total time. We give a pseudo-code description of
this algorithm in Code Fragment 5.11.

i

i

“main” — 2011/1/13 — 9:10 — page 205 — #227
i

i

i

i

i

i

5.1. Stacks 205

Algorithm ParenMatch(X ,n):
Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match

Let S be an empty stack
for i← 0 to n−1 do

if X [i] is an opening grouping symbol then
S.push(X [i])

else if X [i] is a closing grouping symbol then
if S.empty() then

return false {nothing to match with}
if S.top() does not match the type of X [i] then

return false {wrong type}
S.pop()

if S.empty() then
return true {every symbol matched}

else
return false {some symbols were never matched}

Code Fragment 5.11: Algorithm for matching grouping symbols in an arithmetic
expression.

Matching Tags in an HTML Document

Another application in which matching is important is in the validation of HTML
documents. HTML is the standard format for hyperlinked documents on the In-
ternet. In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>” and the corresponding closing
tag has the form “</name>.” Commonly used HTML tags include:

• body: document body
• h1: section header
• center: center justify
• p: paragraph
• ol: numbered (ordered) list
• li: list item

We show a sample HTML document and a possible rendering in Figure 5.3. Our
goal is to write a program to check that the tags properly match.

A very similar approach to that given in Code Fragment 5.11 can be used to
match the tags in an HTML document. We push each opening tag on a stack, and
when we encounter a closing tag, we pop the stack and verify that the two tags
match.

i

i

“main” — 2011/1/13 — 9:10 — page 206 — #228
i

i

i

i

i

i

206 Chapter 5. Stacks, Queues, and Deques
<body>

<center>

<h1> The Little Boat </h1>

</center>

<p> The storm tossed the little

boat like a cheap sneaker in an

old washing machine. The three

drunken fishermen were used to

such treatment, of course, but

not the tree salesman, who even

as a stowaway now felt that he

had overpaid for the voyage. </p>

 Will the salesman die?

 What color is the boat?

 And what about Naomi?

</body>

The Little Boat
The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

(a) (b)

Figure 5.3: HTML tags: (a) an HTML document; (b) its rendering.

In Code Fragments 5.12 through 5.14, we present a C++ program for matching
tags in an HTML document read from the standard input stream. For simplicity,
we assume that all tags are syntactically well formed.

First, the procedure getHtmlTags reads the input line by line, extracts all the
tags as strings, and stores them in a vector, which it returns.

vector<string> getHtmlTags() { // store tags in a vector
vector<string> tags; // vector of html tags
while (cin) { // read until end of file

string line;
getline(cin, line); // input a full line of text
int pos = 0; // current scan position
int ts = line.find("<", pos); // possible tag start
while (ts != string::npos) { // repeat until end of string

int te = line.find(">", ts+1); // scan for tag end
tags.push back(line.substr(ts, te−ts+1)); // append tag to the vector
pos = te + 1; // advance our position
ts = line.find("<", pos);
}
}
return tags; // return vector of tags
}

Code Fragment 5.12: Get a vector of HTML tags from the input, and store them in
a vector of strings.

i

i

“main” — 2011/1/13 — 9:10 — page 207 — #229
i

i

i

i

i

i

5.1. Stacks 207

Given the example shown in Figure 5.3(a), this procedure would return the
following vector:

<body>, <center>, <h1>, </h1>, </center>, . . . , </body>
In Code Fragment 5.12, we employ a variable pos, which maintains the current
position in the input line. We use the built-in string member function find to locate
the first occurrence of “<” that follows the current position. (Recall the discussion
of string operations from Section 1.5.5.) This tag start position is stored in the
variable ts. We then find the next occurrence of “>,” and store this tag end position
in te. The tag itself consists of the substring of length te− ts+1 starting at position
ts. This is pushed onto the vector tags. We then update the current position to be
te+ 1 and repeat until we find no further occurrences of “<.” This occurs when the
find function returns the special value string::npos.

Next, the procedure isHtmlMatched, shown in Code Fragments 5.12, imple-
ments the process of matching the tags.

// check for matching tags
bool isHtmlMatched(const vector<string>& tags) {

LinkedStack S; // stack for opening tags
typedef vector<string>::const iterator Iter;// iterator type

// iterate through vector
for (Iter p = tags.begin(); p != tags.end(); ++p) {

if (p−>at(1) != ’/’) // opening tag?
S.push(*p); // push it on the stack

else { // else must be closing tag
if (S.empty()) return false; // nothing to match - failure
string open = S.top().substr(1); // opening tag excluding ’<’
string close = p−>substr(2); // closing tag excluding ’</’
if (open.compare(close) != 0) return false; // fail to match
else S.pop(); // pop matched element
}
}
if (S.empty()) return true; // everything matched - good
else return false; // some unmatched - bad
}

Code Fragment 5.13: Check whether HTML tags stored in the vector tags are
matched.

We create a stack, called S, in which we store the opening tags. We then iterate
through the vector of tags. If the second character tag string is not “/,” then this is
an opening tag, and it is pushed onto the stack. Otherwise, it is a closing tag, and
we check that it matches the tag on top of the stack. To compare the opening and
closing tags, we use the string substr member function to strip the first character off
the opening tag (thus removing the “<”) and the first two characters off the closing
tag (thus removing the “</”). We check that these two substrings are equal, using

i

i

“main” — 2011/1/13 — 9:10 — page 208 — #230
i

i

i

i

i

i

208 Chapter 5. Stacks, Queues, and Deques

the built-in string function compare. When the loop terminates, we know that every
closing tag matches its corresponding opening tag. To finish the job, we need to
check that there were no unmatched opening tags. We test this by checking that the
stack is now empty.

Finally, the main program is presented in Code Fragment 5.14. It invokes the
function getHtmlTags to read the tags, and then it passes these to isHtmlMatched
to test them.

int main() { // main HTML tester
if (isHtmlMatched(getHtmlTags())) // get tags and test them

cout << "The input file is a matched HTML document." << endl;
else

cout << "The input file is not a matched HTML document." << endl;
}

Code Fragment 5.14: The main program to test whether the input file consists of
matching HTML tags.

5.2 Queues

Another fundamental data structure is the queue, which is a close relative of the
stack. A queue is a container of elements that are inserted and removed according
to the first-in first-out (FIFO) principle. Elements can be inserted in a queue at any
time, but only the element that has been in the queue the longest can be removed at
any time. We usually say that elements enter the queue at the rear and are removed
from the front. The metaphor for this terminology is a line of people waiting to get
on an amusement park ride. People enter at the rear of the line and get on the ride
from the front of the line.

5.2.1 The Queue Abstract Data Type

Formally, the queue abstract data type defines a container that keeps elements in
a sequence, where element access and deletion are restricted to the first element
in the sequence, which is called the front of the queue, and element insertion is
restricted to the end of the sequence, which is called the rear of the queue. This
restriction enforces the rule that items are inserted and deleted in a queue according
to the first-in first-out (FIFO) principle.

The queue abstract data type (ADT) supports the following operations:

enqueue(e): Insert element e at the rear of the queue.

dequeue(): Remove element at the front of the queue; an error occurs
if the queue is empty.

i

i

“main” — 2011/1/13 — 9:10 — page 209 — #231
i

i

i

i

i

i

5.2. Queues 209

front(): Return, but do not remove, a reference to the front ele-
ment in the queue; an error occurs if the queue is empty.

The queue ADT also includes the following supporting member functions:

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.

We illustrate the operations in the queue ADT in the following example.

Example 5.4: The following table shows a series of queue operations and their
effects on an initially empty queue, Q, of integers.

Operation Output front← Q← rear

enqueue(5) – (5)
enqueue(3) – (5,3)
front() 5 (5,3)
size() 2 (5,3)
dequeue() – (3)
enqueue(7) – (3,7)
dequeue() – (7)
front() 7 (7)
dequeue() – ()
dequeue() “error” ()
empty() true ()

5.2.2 The STL Queue

The Standard Template Library provides an implementation of a queue. As with
the STL stack, the underlying implementation is based on the STL vector class
(Sections 1.5.5 and 6.1.4). In order to declare an object of type queue, it is neces-
sary to first include the definition file, which is called “queue.” As with the STL
vector, the class queue is part of the std namespace, so it is necessary either to use
“std::queue” or to provide an appropriate “using” statement. The queue class is
templated with the base type of the individual elements. For example, the code
fragment below declares a queue of floats.

#include <queue>
using std::queue; // make queue accessible
queue<float> myQueue; // a queue of floats

As with instances of STL vectors and stacks, an STL queue dynamically resizes
itself as new elements are added.

The STL queue supports roughly the same operators as our interface, but the
syntax and semantics are slightly different. Below, we list the principal member

i

i

“main” — 2011/1/13 — 9:10 — page 210 — #232
i

i

i

i

i

i

210 Chapter 5. Stacks, Queues, and Deques

functions. Let q be declared to be an STL queue, and let e denote a single object
whose type is the same as the base type of the queue. (For example, q is a queue of
floats, and e is a float.)

size(): Return the number of elements in the queue.

empty(): Return true if the queue is empty and false otherwise.

push(e): Enqueue e at the rear of the queue.

pop(): Dequeue the element at the front of the queue.

front(): Return a reference to the element at the queue’s front.

back(): Return a reference to the element at the queue’s rear.

Unlike our queue interface, the STL queue provides access to both the front
and back of the queue. Similar to the STL stack, the result of applying any of
the operations front, back, or pop to an empty STL queue is undefined. Unlike
our interface, no exception is thrown, but it may very likely result in the program
aborting. It is up to the programmer to be sure that no such illegal accesses are
attempted.

5.2.3 A C++ Queue Interface

Our interface for the queue ADT is given in Code Fragment 5.15. As with the stack
ADT, the class is templated. The queue’s base element type E is provided by the
user.

template <typename E>
class Queue { // an interface for a queue
public:

int size() const; // number of items in queue
bool empty() const; // is the queue empty?
const E& front() const throw(QueueEmpty); // the front element
void enqueue (const E& e); // enqueue element at rear
void dequeue() throw(QueueEmpty); // dequeue element at front
};
Code Fragment 5.15: An informal Queue interface (not a complete C++ class).

Note that the size and empty functions have the same meaning as their coun-
terparts in the Stack ADT. These two member functions and front are known as
accessor functions, for they return a value and do not change the contents of the
data structure. Also note the use of the exception QueueEmpty to indicate the error
state of an empty queue.

The member functions size, empty, and front are all declared to be const,
which informs the compiler that they do not alter the contents of the queue. Note

i

i

“main” — 2011/1/13 — 9:10 — page 211 — #233
i

i

i

i

i

i

5.2. Queues 211

that the member function front returns a constant reference to the top of the queue.

An error condition occurs when calling either of the functions front or dequeue
on an empty queue. This is signaled by throwing an exception QueueEmpty, which
is defined in Code Fragment 5.16.

class QueueEmpty : public RuntimeException {
public:

QueueEmpty(const string& err) : RuntimeException(err) { }
};

Code Fragment 5.16: Exception thrown by functions front or dequeue when called
on an empty queue. This class is derived from RuntimeException from Section 2.4.

5.2.4 A Simple Array-Based Implementation

We present a simple realization of a queue by means of an array, Q, with capacity
N, for storing its elements. The main issue with this implementation is deciding
how to keep track of the front and rear of the queue.

One possibility is to adapt the approach we used for the stack implementation.
In particular, let Q[0] be the front of the queue and have the queue grow from
there. This is not an efficient solution, however, for it requires that we move all
the elements forward one array cell each time we perform a dequeue operation.
Such an implementation would therefore require Θ(n) time to perform the dequeue
function, where n is the current number of elements in the queue. If we want to
achieve constant time for each queue function, we need a different approach.

Using an Array in a Circular Way

To avoid moving objects once they are placed in Q, we define three variables, f , r,
n, which have the following meanings:

• f is the index of the cell of Q storing the front of the queue. If the queue is
nonempty, this is the index of the element to be removed by dequeue.

• r is an index of the cell of Q following the rear of the queue. If the queue is
not full, this is the index where the element is inserted by enqueue.

• n is the current number of elements in the queue.

Initially, we set n = 0 and f = r = 0, indicating an empty queue. When we
dequeue an element from the front of the queue, we decrement n and increment f
to the next cell in Q. Likewise, when we enqueue an element, we increment r and
increment n. This allows us to implement the enqueue and dequeue functions in
constant time

i

i

“main” — 2011/1/13 — 9:10 — page 212 — #234
i

i

i

i

i

i

212 Chapter 5. Stacks, Queues, and Deques

Nonetheless, there is still a problem with this approach. Consider, for example,
what happens if we repeatedly enqueue and dequeue a single element N different
times. We would have f = r = N. If we were then to try to insert the element
just one more time, we would get an array-out-of-bounds error, even though there
is plenty of room in the queue in this case. To avoid this problem and be able to
utilize all of the array Q, we let the f and r indices “wrap around” the end of Q.
That is, we now view Q as a “circular array” that goes from Q[0] to Q[N− 1] and
then immediately back to Q[0] again. (See Figure 5.4.)

0 1 2 f N−1r 0 1 2 r N−1f

(a) (b)

Figure 5.4: Using array Q in a circular fashion: (a) the “normal” configuration with
f ≤ r; (b) the “wrapped around” configuration with r < f . The cells storing queue
elements are shaded.

Using the Modulo Operator to Implement a Circular Array

Implementing this circular view of Q is actually pretty easy. Each time we in-
crement f or r, we simply need to compute this increment as “(f + 1) mod N”
or “(r + 1) mod N,” respectively, where the operator “mod” is the modulo oper-
ator. This operator is computed for a positive number by taking the remainder
after an integral division. For example, 48 divided by 5 is 9 with remainder 3,
so 48 mod 5 = 3. Specifically, given integers x and y, such that x ≥ 0 and y > 0,
x mod y is the unique integer 0 ≤ r < y such that x = qy + r, for some integer q.
Recall that C++ uses “%” to denote the modulo operator.

We present our implementation in Code Fragment 5.17. Note that we have
introduced a new exception, called QueueFull, to signal that no more elements can
be inserted in the queue. Our implementation of a queue by means of an array is
similar to that of a stack, and is left as an exercise.

The array-based queue implementation is quite efficient. All of the operations
of the queue ADT are performed in O(1) time. The space usage is O(N), where N
is the size of the array, determined at the time the queue is created. Note that the
space usage is independent from the number n < N of elements that are actually in
the queue.

As with the array-based stack implementation, the only real disadvantage of
the array-based queue implementation is that we artificially set the capacity of the
queue to be some number N. In a real application, we may actually need more
or less queue capacity than this, but if we have a good estimate of the number of

i

i

“main” — 2011/1/13 — 9:10 — page 213 — #235
i

i

i

i

i

i

5.2. Queues 213

Algorithm size():

return n
Algorithm empty():

return (n = 0)
Algorithm front():

if empty() then
throw QueueEmpty exception

return Q[f]
Algorithm dequeue():

if empty() then
throw QueueEmpty exception

f ← (f + 1) mod N
n = n−1

Algorithm enqueue(e):

if size() = N then
throw QueueFull exception

Q[r]← e
r← (r + 1) mod N
n = n+ 1

Code Fragment 5.17: Implementation of a queue using a circular array.

elements that will be in the queue at the same time, then the array-based imple-
mentation is quite efficient. One such possible application of a queue is dynamic
memory allocation in C++, which is discussed in Chapter 14.

5.2.5 Implementing a Queue with a Circularly Linked List

In this section, we present a C++ implementation of the queue ADT using a linked
representation. Recall that we delete from the head of the queue and insert at the
rear. Thus, unlike our linked stack of Code Fragment 5.7, we cannot use our singly
linked list class, since it provides efficient access only to one side of the list. In-
stead, our approach is to use the circularly linked list, called CircleList, which was
introduced earlier in Section 3.4.1.

Recall that CircleList maintains a pointer, called the cursor, which points to one
node of the list. Also recall that CircleList provides two member functions, back
and front. The function back returns a reference to the element to which the cursor
points, and the function front returns a reference to the element that immediately
follows it in the circular list. In order to implement a queue, the element referenced
by back will be the rear of the queue and the element referenced by front will be the
front. (Why would it not work to reverse matters using the back of the circular list

i

i

“main” — 2011/1/13 — 9:10 — page 214 — #236
i

i

i

i

i

i

214 Chapter 5. Stacks, Queues, and Deques

as the front of the queue and the front of the circular list as the rear of the queue?)

Also recall that CircleList supports the following modifier functions. The func-
tion add inserts a new node just after the cursor, the function remove removes the
node immediately following the cursor, and the function advance moves the cursor
forward to the next node of the circular list.

In order to implement the queue operation enqueue, we first invoke the function
add, which inserts a new element just after the cursor, that is, just after the rear
of the queue. We then invoke advance, which advances the cursor to this new
element, thus making the new node the rear of the queue. The process is illustrated
in Figure 5.5.

LAX MSP ATL

(front) (rear)
cursor

(a)

LAX MSP ATL BOS

(front) (rear)
cursor

(b)

LAX MSP ATL BOS

(front) (rear)
cursor

(c)

Figure 5.5: Enqueueing “BOS” into a queue represented as a circularly linked list:
(a) before the operation; (b) after adding the new node; (c) after advancing the
cursor.

In order to implement the queue operation dequeue, we invoke the function
remove, thus removing the node just after the cursor, that is, the front of the queue.
The process is illustrated in Figure 5.6.

The class structure for the resulting class, called LinkedQueue, is shown in
Code Fragment 5.18. To avoid the syntactic messiness inherent in C++ templated
classes, we have chosen not to implement a fully generic templated class. Instead,
we have opted to define a type for the queue’s elements, called Elem. In this ex-
ample, we define Elem to be of type string. The queue is stored in the circular list

i

i

“main” — 2011/1/13 — 9:10 — page 215 — #237
i

i

i

i

i

i

5.2. Queues 215

LAX MSP ATL BOS

(front) (rear)
cursor

(a)

MSP ATL BOS

(front) (rear)
cursor

LAX

(b)

Figure 5.6: Dequeueing an element (in this case “LAX”) from the front queue rep-
resented as a circularly linked list: (a) before the operation; (b) after removing the
node immediately following the cursor.

data structure C. In order to support the size function (which CircleList does not
provide), we also maintain the queue size in the member n.

typedef string Elem; // queue element type
class LinkedQueue { // queue as doubly linked list
public:

LinkedQueue(); // constructor
int size() const; // number of items in the queue
bool empty() const; // is the queue empty?
const Elem& front() const throw(QueueEmpty); // the front element
void enqueue(const Elem& e); // enqueue element at rear
void dequeue() throw(QueueEmpty); // dequeue element at front

private: // member data
CircleList C; // circular list of elements
int n; // number of elements
};

Code Fragment 5.18: The class LinkedQueue, an implementation of a queue based
on a circularly linked list.

In Code Fragment 5.19, we present the implementations of the constructor and
the basic accessor functions, size, empty, and front. Our constructor creates the
initial queue and initializes n to zero. We do not provide an explicit destructor,
relying instead on the destructor provided by CircleList. Observe that the func-
tion front throws an exception if an attempt is made to access the first element of
an empty queue. Otherwise, it returns the element referenced by the front of the
circular list, which, by our convention, is also the front element of the queue.

i

i

“main” — 2011/1/13 — 9:10 — page 216 — #238
i

i

i

i

i

i

216 Chapter 5. Stacks, Queues, and Deques

LinkedQueue::LinkedQueue() // constructor
: C(), n(0) { }

int LinkedQueue::size() const // number of items in the queue
{ return n; }

bool LinkedQueue::empty() const // is the queue empty?
{ return n == 0; }

// get the front element
const Elem& LinkedQueue::front() const throw(QueueEmpty) {

if (empty())
throw QueueEmpty("front of empty queue");

return C.front(); // list front is queue front
}

Code Fragment 5.19: Constructor and accessor functions for the LinkedQueue class.

The definition of the queue operations, enqueue and dequeue are presented in
Code Fragment 5.20. Recall that enqueuing involves invoking the add function to
insert the new item immediately following the cursor and then advancing the cursor.
Before dequeuing, we check whether the queue is empty, and, if so, we throw an
exception. Otherwise, dequeuing involves removing the element that immediately
follows the cursor. In either case, we update the number of elements in the queue.

// enqueue element at rear
void LinkedQueue::enqueue(const Elem& e) {

C.add(e); // insert after cursor
C.advance(); // . . .and advance
n++;
}

// dequeue element at front
void LinkedQueue::dequeue() throw(QueueEmpty) {

if (empty())
throw QueueEmpty("dequeue of empty queue");

C.remove(); // remove from list front
n−−;
}

Code Fragment 5.20: The enqueue and dequeue functions for LinkedQueue.

Observe that, all the operations of the queue ADT are implemented in O(1)
time. Therefore this implementation is quite efficient. Unlike the array-based im-
plementation, by expanding and contracting dynamically, this implementation uses
space proportional to the number of elements that are present in the queue at any
time.

i

i

“main” — 2011/1/13 — 9:10 — page 217 — #239
i

i

i

i

i

i

5.3. Double-Ended Queues 217

5.3 Double-Ended Queues

Consider now a queue-like data structure that supports insertion and deletion at both
the front and the rear of the queue. Such an extension of a queue is called a double-
ended queue, or deque, which is usually pronounced “deck” to avoid confusion
with the dequeue function of the regular queue ADT, which is pronounced like
the abbreviation “D.Q.” An easy way to remember the “deck” pronunciation is to
observe that a deque is like a deck of cards in the hands of a crooked card dealer—it
is possible to deal off both the top and the bottom.

5.3.1 The Deque Abstract Data Type

The functions of the deque ADT are as follows, where D denotes the deque:

insertFront(e): Insert a new element e at the beginning of the deque.

insertBack(e): Insert a new element e at the end of the deque.

eraseFront(): Remove the first element of the deque; an error occurs if
the deque is empty.

eraseBack(): Remove the last element of the deque; an error occurs if
the deque is empty.

Additionally, the deque includes the following support functions:

front(): Return the first element of the deque; an error occurs if
the deque is empty.

back(): Return the last element of the deque; an error occurs if
the deque is empty.

size(): Return the number of elements of the deque.

empty(): Return true if the deque is empty and false otherwise.

Example 5.5: The following example shows a series of operations and their ef-
fects on an initially empty deque, D, of integers.

Operation Output D
insertFront(3) – (3)
insertFront(5) – (5,3)
front() 5 (5,3)
eraseFront() – (3)
insertBack(7) – (3,7)
back() 7 (3,7)
eraseFront() – (7)
eraseBack() – ()

i

i

“main” — 2011/1/13 — 9:10 — page 218 — #240
i

i

i

i

i

i

218 Chapter 5. Stacks, Queues, and Deques

5.3.2 The STL Deque

As with the stack and queue, the Standard Template Library provides an implemen-
tation of a deque. The underlying implementation is based on the STL vector class
(Sections 1.5.5 and 6.1.4). The pattern of usage is similar to that of the STL stack
and STL queue. First, we need to include the definition file “deque.” Since it is a
member of the std namespace, we need to either preface each usage “std::deque”
or provide an appropriate “using” statement. The deque class is templated with
the base type of the individual elements. For example, the code fragment below
declares a deque of strings.

#include <deque>
using std::deque; // make deque accessible
deque<string> myDeque; // a deque of strings

As with STL stacks and queues, an STL deque dynamically resizes itself as new
elements are added.

With minor differences, the STL deque class supports the same operators as
our interface. Here is a list of the principal operations.

size(): Return the number of elements in the deque.

empty(): Return true if the deque is empty and false otherwise.

push front(e): Insert e at the beginning the deque.

push back(e): Insert e at the end of the deque.

pop front(): Remove the first element of the deque.

pop back(): Remove the last element of the deque.

front(): Return a reference to the deque’s first element.

back(): Return a reference to the deque’s last element.

Similar to STL stacks and queues, the result of applying any of the operations
front, back, push front, or push back to an empty STL queue is undefined. Thus,
no exception is thrown, but the program may abort.

5.3.3 Implementing a Deque with a Doubly Linked List

In this section, we show how to implement the deque ADT using a linked repre-
sentation. As with the queue, a deque supports efficient access at both ends of the
list, so our implementation is based on the use of a doubly linked list. Again, we
use the doubly linked list class, called DLinkedList, which was presented earlier in
Section 3.3.3. We place the front of the deque at the head of the linked list and the
rear of the queue at the tail. An illustration is provided in Figure 5.7.

i

i

“main” — 2011/1/13 — 9:10 — page 219 — #241
i

i

i

i

i

i

5.3. Double-Ended Queues 219

Figure 5.7: A doubly linked list with sentinels, header and trailer. The front of our
deque is stored just after the header (“JFK”), and the back of our deque is stored
just before the trailer (“SFO”).

The definition of the resulting class, called LinkedDeque, is shown in Code
Fragment 5.21. The deque is stored in the data member D. In order to support
the size function, we also maintain the queue size in the member n. As in some
of our earlier implementations, we avoid the syntactic messiness inherent in C++
templated classes, and instead use just a type definition to define the deque’s base
element type.

typedef string Elem; // deque element type
class LinkedDeque { // deque as doubly linked list
public:

LinkedDeque(); // constructor
int size() const; // number of items in the deque
bool empty() const; // is the deque empty?
const Elem& front() const throw(DequeEmpty); // the first element
const Elem& back() const throw(DequeEmpty); // the last element
void insertFront(const Elem& e); // insert new first element
void insertBack(const Elem& e); // insert new last element
void removeFront() throw(DequeEmpty); // remove first element
void removeBack() throw(DequeEmpty); // remove last element

private: // member data
DLinkedList D; // linked list of elements
int n; // number of elements
};

Code Fragment 5.21: The class structure for class LinkedDeque.

We have not bothered to provide an explicit destructor, because the DLinkedList
class provides its own destructor, which is automatically invoked when our Linked-
Deque structure is destroyed.

Most of the member functions for the LinkedDeque class are straightforward
generalizations of the corresponding functions of the LinkedQueue class, so we
have omitted them. In Code Fragment 5.22, we present the implementations of
the member functions for performing insertions and removals of elements from the
deque. Observe that, in each case, we simply invoke the appropriate operation from
the underlying DLinkedList object.

i

i

“main” — 2011/1/13 — 9:10 — page 220 — #242
i

i

i

i

i

i

220 Chapter 5. Stacks, Queues, and Deques

// insert new first element
void LinkedDeque::insertFront(const Elem& e) {

D.addFront(e);
n++;
}

// insert new last element
void LinkedDeque::insertBack(const Elem& e) {

D.addBack(e);
n++;
}

// remove first element
void LinkedDeque::removeFront() throw(DequeEmpty) {

if (empty())
throw DequeEmpty("removeFront of empty deque");

D.removeFront();
n−−;
}

// remove last element
void LinkedDeque::removeBack() throw(DequeEmpty) {

if (empty())
throw DequeEmpty("removeBack of empty deque");

D.removeBack();
n−−;
}

Code Fragment 5.22: The insertion and removal functions for LinkedDeque.

Table 5.2 shows the running times of functions in a realization of a deque by a
doubly linked list. Note that every function of the deque ADT runs in O(1) time.

Operation Time
size O(1)

empty O(1)

front, back O(1)

insertFront, insertBack O(1)

eraseFront, eraseBack O(1)

Table 5.2: Performance of a deque realized by a doubly linked list. The space usage
is O(n), where n is number of elements in the deque.

5.3.4 Adapters and the Adapter Design Pattern

An inspection of code fragments of Sections 5.1.5, 5.2.5, and 5.3.3, reveals a com-
mon pattern. In each case, we have taken an existing data structure and adapted it

i

i

“main” — 2011/1/13 — 9:10 — page 221 — #243
i

i

i

i

i

i

5.3. Double-Ended Queues 221

to be used for a special purpose. For example, in Section 5.3.3, we showed how
the DLinkedList class of Section 3.3.3 could be adapted to implement a deque. Ex-
cept for the additional feature of keeping track of the number of elements, we have
simply mapped each deque operation (such as insertFront) to the corresponding
operation of DLinkedList (such as the addFront).

An adapter (also called a wrapper) is a data structure, for example, a class in
C++, that translates one interface to another. You can think of an adapter as the
software analogue to electric power plug adapters, which are often needed when
you want to plug your electric appliances into electric wall sockets in different
countries.

As an example of adaptation, observe that it is possible to implement the stack
ADT by means of a deque data structure. That is, we can translate each stack
operation to a functionally equivalent deque operation. Such a mapping is presented
in Table 5.3.

Stack Method Deque Implementation
size() size()
empty() empty()
top() front()
push(o) insertFront(o)
pop() eraseFront()

Table 5.3: Implementing a stack with a deque.

Note that, because of the deque’s symmetry, performing insertions and re-
movals from the rear of the deque would have been equally efficient.

Likewise, we can develop the correspondences for the queue ADT, as shown in
Table 5.4.

Queue Method Deque Implementation
size() size()
empty() empty()
front() front()
enqueue(e) insertBack(e)
dequeue() eraseFront()

Table 5.4: Implementing a queue with a deque.

As a more concrete example of the adapter design pattern, consider the code
fragment shown in Code Fragment 5.23. In this code fragment, we present a class
DequeStack, which implements the stack ADT. It’s implementation is based on
translating each stack operation to the corresponding operation on a LinkedDeque,
which was introduced in Section 5.3.3.

i

i

“main” — 2011/1/13 — 9:10 — page 222 — #244
i

i

i

i

i

i

222 Chapter 5. Stacks, Queues, and Deques

typedef string Elem; // element type
class DequeStack { // stack as a deque
public:

DequeStack(); // constructor
int size() const; // number of elements
bool empty() const; // is the stack empty?
const Elem& top() const throw(StackEmpty); // the top element
void push(const Elem& e); // push element onto stack
void pop() throw(StackEmpty); // pop the stack

private:
LinkedDeque D; // deque of elements
};

Code Fragment 5.23: Implementation of the Stack interface by means of a deque.

The implementations of the various member functions are presented in Code
Fragment 5.24. In each case, we translate some stack operation into the corre-
sponding deque operation.

DequeStack::DequeStack() // constructor
: D() { }

// number of elements
int DequeStack::size() const
{ return D.size(); }

// is the stack empty?
bool DequeStack::empty() const
{ return D.empty(); }

// the top element
const Elem& DequeStack::top() const throw(StackEmpty) {

if (empty())
throw StackEmpty("top of empty stack");

return D.front();
}

// push element onto stack
void DequeStack::push(const Elem& e)
{ D.insertFront(e); }

// pop the stack
void DequeStack::pop() throw(StackEmpty)
{

if (empty())
throw StackEmpty("pop of empty stack");

D.removeFront();
}

Code Fragment 5.24: Implementation of the Stack interface by means of a deque.

i

i

“main” — 2011/1/13 — 9:10 — page 223 — #245
i

i

i

i

i

i

5.4. Exercises 223

5.4 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-5.1 Describe how to implement a capacity-limited stack, which uses the func-
tions of a capacity-limited deque to perform the functions of the stack
ADT in ways that do not throw exceptions when we attempt to perform a
push on a full stack or a pop on an empty stack.

R-5.2 Describe how to implement a capacity-limited queue, which uses the func-
tions of a capacity-limited deque to perform the functions of the queue
ADT in ways that do not throw exceptions when we attempt to perform a
enqueue on a full queue or a dequeue on an empty queue.

R-5.3 Suppose an initially empty stack S has performed a total of 25 push oper-
ations, 12 top operations, and 10 pop operations, 3 of which generated a
StackEmpty exception that was caught and ignored. What is the current
size of S?

R-5.4 If we implemented the stack S from the previous problem with an array, as
described in this chapter, then what is the current value of the top member
variable?

R-5.5 Describe the output of the following series of stack operations: push(5),
push(3), pop(), push(2), push(8), pop(), pop(), push(9), push(1), pop(),
push(7), push(6), pop(), pop(), push(4), pop(), pop().

R-5.6 Give a recursive function for removing all the elements in a stack.

R-5.7 Modify the stack ADT implementation of Section 5.1.5 as a fully generic
class (through the use of templates).

R-5.8 Give a precise and complete definition of the concept of matching for
grouping symbols in an arithmetic expression.

R-5.9 Describe the output for the following sequence of queue operations:

enqueue(5), enqueue(3), dequeue(), enqueue(2), enqueue(8), dequeue(),
dequeue(), enqueue(9), enqueue(1), dequeue(), enqueue(7), enqueue(6),
dequeue(), dequeue(), enqueue(4), dequeue(), dequeue().

R-5.10 Describe the output for the following sequence of deque operations:

insertFront(3), insertBack(8), insertBack(9), insertFront(5), removeFront(),
eraseBack(), first(), insertBack(7), removeFront(), last(), eraseBack().

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 224 — #246
i

i

i

i

i

i

224 Chapter 5. Stacks, Queues, and Deques

R-5.11 Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8),
in this order. Suppose further that you have an initially empty queue
Q. Give a pseudo-code description of a function that uses only D and
Q (and no other variables or objects) and results in D storing the elements
(1,2,3,5,4,6,7,8), in this order.

R-5.12 Repeat the previous problem using the deque D and an initially empty
stack S.

Creativity

C-5.1 Explain how you can implement all the functions of the deque ADT using
two stacks.

C-5.2 Suppose you have a stack S containing n elements and a queue Q that is
initially empty. Describe how you can use Q to scan S to see if it contains a
certain element x, with the additional constraint that your algorithm must
return the elements back to S in their original order. You may not use
an array or linked list—only S and Q and a constant number of reference
variables.

C-5.3 Give a pseudo-code description for an array-based implementation of the
deque ADT. What is the running time for each operation?

C-5.4 Suppose Alice has picked three distinct integers and placed them into a
stack S in random order. Write a short, straight-line piece of pseudo-code
(with no loops or recursion) that uses only one comparison and only one
variable x, yet guarantees with probability 2/3 that at the end of this code
the variable x will store the largest of Alice’s three integers. Argue why
your method is correct.

C-5.5 Describe how to implement the stack ADT using two queues. What is the
running time of the push and pop functions in this case?

C-5.6 Suppose we have an n×n two-dimensional array A that we want to use to
store integers, but we don’t want to spend the O(n2) work to initialize it to
all 0’s, because we already know that we are only going to use up to n of
these cells in our algorithm, which itself runs in O(n) time (not counting
the time to initialize A). Show how to use an array-based stack S storing
(i, j,k) integer triples to allow us to use the array A without initializing
it and still implement our algorithm in O(n) time, even though the initial
values in the cells of A might be total garbage.

C-5.7 Describe a nonrecursive algorithm for enumerating all permutations of the
numbers {1,2, . . . ,n}.

C-5.8 Postfix notation is an unambiguous way of writing an arithmetic expres-
sion without parentheses. It is defined so that if “(exp1) ◦ (exp2)” is a

i

i

“main” — 2011/1/13 — 9:10 — page 225 — #247
i

i

i

i

i

i

5.4. Exercises 225

normal fully parenthesized expression whose operation is “◦”, then the
postfix version of this is “pexp1 pexp2◦”, where pexp1 is the postfix ver-
sion of exp1 and pexp2 is the postfix version of exp2. The postfix version
of a single number or variable is just that number or variable. So, for ex-
ample, the postfix version of “((5 + 2) ∗ (8− 3))/4” is “5 2 + 8 3 − ∗
4 /”. Describe a nonrecursive way of evaluating an expression in postfix
notation.

C-5.9 Suppose you have two nonempty stacks S and T and a deque D. Describe
how to use D so that S contains all the elements of T below all of its
original elements, with both sets of elements still in their original order.

C-5.10 Alice has three array-based stacks, A, B, and C, such that A has capacity
100, B has capacity 5, and C has capacity 3. Initially, A is full, and B and C
are empty. Unfortunately, the person who programmed the class for these
stacks made the push and pop functions private. The only function Alice
can use is a static function, transfer(S,T), which transfers (by iteratively
applying the private pop and push functions) elements from stack S to
stack T until either S becomes empty or T becomes full. So, for example,
starting from our initial configuration and performing transfer(A,C) re-
sults in A now holding 97 elements and C holding 3. Describe a sequence
of transfer operations that starts from the initial configuration and results
in B holding 4 elements at the end.

C-5.11 Show how to use a stack S and a queue Q to generate all possible subsets
of an n-element set T nonrecursively.

Projects

P-5.1 Give an implementation of the deque ADT using an array, so that each of
the update functions run in O(1) time.

P-5.2 Design an ADT for a two-color, double-stack ADT that consists of two
stacks—one “red” and one “blue”—and has as its operations color-coded
versions of the regular stack ADT operations. For example, this ADT
should allow for both a red push operation and a blue push operation.
Give an efficient implementation of this ADT using a single array whose
capacity is set at some value N that is assumed to always be larger than
the sizes of the red and blue stacks combined.

P-5.3 Implement the stack ADT in a fully generic manner (through the use of
templates) by means of a singly linked list. (Give your implementation
“from scratch,” without the use of any classes from the Standard Template
Library or data structures presented earlier in this book.)

P-5.4 Implement the stack ADT in a fully generic manner using the STL vector
class.

i

i

“main” — 2011/1/13 — 9:10 — page 226 — #248
i

i

i

i

i

i

226 Chapter 5. Stacks, Queues, and Deques

P-5.5 Implement the queue ADT in a fully generic manner using a dynamically
allocated C++ array.

P-5.6 Implement the queue ADT with a singly linked list.
P-5.7 Implement the deque ADT with an array used in a circular fashion.
P-5.8 Implement the deque ADT with a doubly linked list.
P-5.9 Implement a capacity-limited version of the deque ADT based on an ar-

ray used in a circular fashion, similar to queue implementation of Sec-
tion 5.2.4.

P-5.10 Implement the Stack and Queue interfaces with a unique class that is de-
rived from class LinkedDeque (Code Fragment 5.21).

P-5.11 When a share of common stock of some company is sold, the capital
gain (or, sometimes, loss) is the difference between the share’s selling
price and the price originally paid to buy it. This rule is easy to under-
stand for a single share, but if we sell multiple shares of stock bought
over a long period of time, then we must identify the shares actually be-
ing sold. A standard accounting principle for identifying which shares of
a stock were sold in such a case is to use a FIFO protocol—the shares
sold are the ones that have been held the longest (indeed, this is the de-
fault method built into several personal finance software packages). For
example, suppose we buy 100 shares at $20 each on day 1, 20 shares at
$24 on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day
4 at $30 each. Then applying the FIFO protocol means that of the 150
shares sold, 100 were bought on day 1, 20 were bought on day 2, and 30
were bought on day 3. The capital gain in this case would therefore be
100 ·10+ 20 ·6+ 30 · (−6), or $940. Write a program that takes as input
a sequence of transactions of the form “buy x share(s) at $y each”
or “sell x share(s) at $y each,” assuming that the transactions oc-
cur on consecutive days and the values x and y are integers. Given this
input sequence, the output should be the total capital gain (or loss) for the
entire sequence, using the FIFO protocol to identify shares.

P-5.12 Implement a program that can input an expression in postfix notation (see
Exercise C-5.8) and output its value.

Chapter Notes

We were introduced to the approach of defining data structures first in terms of their ADTs
and then in terms of concrete implementations by the classic books by Aho, Hopcroft, and
Ullman [4, 5], which incidentally is where we first saw a problem similar to Exercise C-
5.6. Exercise C-5.10 is similar to interview questions said to be from a well-known software
company. For further study of abstract data types, see Liskov and Guttag [68], Cardelli and
Wegner [19], or Demurjian [27].

i

i

“main” — 2011/1/13 — 9:10 — page 227 — #249
i

i

i

i

i

i

Chapter

6 List and Iterator ADTs

Contents

6.1 Vectors . 228

6.1.1 The Vector Abstract Data Type 228

6.1.2 A Simple Array-Based Implementation 229

6.1.3 An Extendable Array Implementation 231

6.1.4 STL Vectors . 236

6.2 Lists . 238

6.2.1 Node-Based Operations and Iterators 238

6.2.2 The List Abstract Data Type 240

6.2.3 Doubly Linked List Implementation 242

6.2.4 STL Lists . 247

6.2.5 STL Containers and Iterators 248

6.3 Sequences . 255

6.3.1 The Sequence Abstract Data Type 255

6.3.2 Implementing a Sequence with a Doubly Linked List 255

6.3.3 Implementing a Sequence with an Array 257

6.4 Case Study: Bubble-Sort on a Sequence 259

6.4.1 The Bubble-Sort Algorithm 259

6.4.2 A Sequence-Based Analysis of Bubble-Sort 260

6.5 Exercises . 262

i

i

“main” — 2011/1/13 — 9:10 — page 228 — #250
i

i

i

i

i

i

228 Chapter 6. List and Iterator ADTs

6.1 Vectors

Suppose we have a collection S of n elements stored in a certain linear order, so
that we can refer to the elements in S as first, second, third, and so on. Such a
collection is generically referred to as a list or sequence. We can uniquely refer
to each element e in S using an integer in the range [0,n− 1] that is equal to the
number of elements of S that precede e in S. The index of an element e in S is the
number of elements that are before e in S. Hence, the first element in S has index
0 and the last element has index n− 1. Also, if an element of S has index i, its
previous element (if it exists) has index i−1, and its next element (if it exists) has
index i + 1. This concept of index is related to that of the rank of an element in a
list, which is usually defined to be one more than its index; so the first element is at
rank 1, the second is at rank 2, and so on.

A sequence that supports access to its elements by their indices is called a vec-
tor. Since our index definition is more consistent with the way arrays are indexed
in C++ and other common programming languages, we refer to the place where an
element is stored in a vector as its “index,” rather than its “rank.”

This concept of index is a simple yet powerful notion, since it can be used to
specify where to insert a new element into a list or where to remove an old element.

6.1.1 The Vector Abstract Data Type

A vector, also called an array list, is an ADT that supports the following funda-
mental functions (in addition to the standard size() and empty() functions). In all
cases, the index parameter i is assumed to be in the range 0≤ i≤ size()−1.

at(i): Return the element of V with index i; an error condition
occurs if i is out of range.

set(i,e): Replace the element at index i with e; an error condition
occurs if i is out of range.

insert(i,e): Insert a new element e into V to have index i; an error
condition occurs if i is out of range.

erase(i): Remove from V the element at index i; an error condition
occurs if i is out of range.

We do not insist that an array be used to implement a vector, so that the element
at index 0 is stored at index 0 in the array, although that is one (very natural) possi-
bility. The index definition offers us a way to refer to the “place” where an element
is stored in a sequence without having to worry about the exact implementation of
that sequence. The index of an element may change when the sequence is updated,
however, as we illustrate in the following example.

i

i

“main” — 2011/1/13 — 9:10 — page 229 — #251
i

i

i

i

i

i

6.1. Vectors 229

Example 6.1: We show below some operations on an initially empty vector V .

Operation Output V
insert(0,7) – (7)
insert(0,4) – (4,7)
at(1) 7 (4,7)
insert(2,2) – (4,7,2)
at(3) “error” (4,7,2)
erase(1) – (4,2)
insert(1,5) – (4,5,2)
insert(1,3) – (4,3,5,2)
insert(4,9) – (4,3,5,2,9)
at(2) 5 (4,3,5,2,9)
set(3,8) – (4,3,5,8,9)

6.1.2 A Simple Array-Based Implementation

An obvious choice for implementing the vector ADT is to use a fixed size array
A, where A[i] stores the element at index i. We choose the size N of array A to be
sufficiently large, and we maintain the number n < N of elements in the vector in a
member variable.

The details of the implementation of the functions of the vector ADT are rea-
sonably simple. To implement the at(i) operation, for example, we just return A[i].
The implementations of the functions insert(i,e) and erase(i) are given in Code
Fragment 6.1.

Algorithm insert(i,e):

for j = n−1,n−2, . . . , i do
A[j + 1]← A[j] {make room for the new element}

A[i]← e
n← n+ 1

Algorithm erase(i):

for j = i+ 1, i+ 2, . . . ,n−1 do
A[j−1]← A[j] {fill in for the removed element}

n← n−1

Code Fragment 6.1: Methods insert(i,e) and erase(i) in the array implementation
of the vector ADT. The member variable n stores the number of elements.

An important (and time-consuming) part of this implementation involves the
shifting of elements up or down to keep the occupied cells in the array contiguous.
These shifting operations are required to maintain our rule of always storing an

i

i

“main” — 2011/1/13 — 9:10 — page 230 — #252
i

i

i

i

i

i

230 Chapter 6. List and Iterator ADTs

element whose list index i at index i in the array A. (See Figure 6.1.)

S

0 1 2 i n–1 N –1

(a)

S

0 1 2 i n–1 N –1

(b)

Figure 6.1: Array-based implementation of a vector V that is storing n elements:
(a) shifting up for an insertion at index i; (b) shifting down for a removal at index i.

The Performance of a Simple Array-Based Implementation

Table 6.1 shows the worst-case running times of the functions of a vector with n
elements realized by means of an array. Methods empty, size, at, and set clearly
run in O(1) time, but the insertion and removal functions can take much longer
than this. In particular, insert(i,e) runs in time O(n). Indeed, the worst case for this
operation occurs when i = 0, since all the existing n elements have to be shifted
forward. A similar argument applies to function erase(i), which runs in O(n) time,
because we have to shift backward n−1 elements in the worst case (i = 0). In fact,
assuming that each possible index is equally likely to be passed as an argument to
these operations, their average running time is O(n) because we have to shift n/2
elements on average.

Operation Time

size() O(1)

empty() O(1)

at(i) O(1)

set(i,e) O(1)

insert(i,e) O(n)

erase(i) O(n)

Table 6.1: Performance of a vector with n elements realized by an array. The space
usage is O(N), where N is the size of the array.

Looking more closely at insert(i,e) and erase(i), we note that they each run in
time O(n− i + 1), for only those elements at index i and higher have to be shifted

i

i

“main” — 2011/1/13 — 9:10 — page 231 — #253
i

i

i

i

i

i

6.1. Vectors 231

up or down. Thus, inserting or removing an item at the end of a vector, using the
functions insert(n,e) and erase(n−1), take O(1) time each respectively. Moreover,
this observation has an interesting consequence for the adaptation of the vector
ADT to the deque ADT given in Section 5.3.1. If the vector ADT in this case is
implemented by means of an array as described above, then functions insertBack
and eraseBack of the deque each run in O(1) time. However, functions insertFront
and eraseFront of the deque each run in O(n) time.

Actually, with a little effort, we can produce an array-based implementation of
the vector ADT that achieves O(1) time for insertions and removals at index 0, as
well as insertions and removals at the end of the vector. Achieving this requires
that we give up on our rule that an element at index i is stored in the array at index
i, however, as we would have to use a circular array approach like the one we used
in Section 5.2 to implement a queue. We leave the details of this implementation
for an exercise (R-6.17).

6.1.3 An Extendable Array Implementation

A major weakness of the simple array implementation for the vector ADT given
in Section 6.1.2 is that it requires advance specification of a fixed capacity, N, for
the total number of elements that may be stored in the vector. If the actual number
of elements, n, of the vector is much smaller than N, then this implementation will
waste space. Worse, if n increases past N, then this implementation will crash.
Fortunately, there is a simple way to fix this major drawback.

Let us provide a means to grow the array A that stores the elements of a vec-
tor V . Of course, in C++ (and most other programming languages) we cannot
actually grow the array A; its capacity is fixed at some number N, as we have al-
ready observed. Instead, when an overflow occurs, that is, when n = N and function
insert is called, we perform the following steps:

1. Allocate a new array B of capacity N
2. Copy A[i] to B[i], for i = 0, . . . ,N−1
3. Deallocate A and reassign A to point to the new array B

This array replacement strategy is known as an extendable array, for it can
be viewed as extending the end of the underlying array to make room for more
elements. (See Figure 6.2.) Intuitively, this strategy is much like that of the hermit
crab, which moves into a larger shell when it outgrows its previous one.

We give an implementation of the vector ADT using an extendable array in
Code Fragment 6.2. To avoid the complexities of templated classes, we have
adopted our earlier practice of using a type definition to specify the base element
type, which is an int in this case. The class is called ArrayVector. We leave the
details of producing a fully generic templated class as an exercise (R-6.7).

i

i

“main” — 2011/1/13 — 9:10 — page 232 — #254
i

i

i

i

i

i

232 Chapter 6. List and Iterator ADTs

(a)
 (c)

A

A

B

(b)

A

B

Figure 6.2: The three steps for “growing” an extendable array: (a) create new ar-
ray B; (b) copy elements from A to B; (c) reassign A to refer to the new array and
delete the old array.

Our class definition differs slightly from the operations given in our ADT. For
example, we provide two means for accessing individual elements of the vector.
The first involves overriding the C++ array index operator (“[]”), and the second
is the at function. The two functions behave the same, except that the at function
performs a range test before each access. (Note the similarity with the STL vector
class given in Section 6.1.4.) If the index i is not in bounds, this function throws an
exception. Because both of these access operations return a reference, there is no
need to explicitly define a set function. Instead, we can simply use the assignment
operator. For example, the ADT function v.set(i,5) could be implemented either as
v[i] = 5 or, more safely, as v.at(i) = 5.

typedef int Elem; // base element type
class ArrayVector {
public:

ArrayVector(); // constructor
int size() const; // number of elements
bool empty() const; // is vector empty?
Elem& operator[](int i); // element at index
Elem& at(int i) throw(IndexOutOfBounds); // element at index
void erase(int i); // remove element at index
void insert(int i, const Elem& e); // insert element at index
void reserve(int N); // reserve at least N spots
// . . . (housekeeping functions omitted)

private:
int capacity; // current array size
int n; // number of elements in vector
Elem* A; // array storing the elements
};

Code Fragment 6.2: A vector implementation using an extendable array.

The member data for class ArrayVector consists of the array storage A, the
current number n of elements in the vector, and the current storage capacity. The
class ArrayVector also provides the ADT functions insert and remove. We discuss
their implementations below. We have added a new function, called reserve, that

i

i

“main” — 2011/1/13 — 9:10 — page 233 — #255
i

i

i

i

i

i

6.1. Vectors 233

is not part of the ADT. This function allows the user to explicitly request that the
array be expanded to a capacity of a size at least n. If the capacity is already larger
than this, then the function does nothing.

Even though we have not bothered to show them, the class also provides some
of the standard housekeeping functions. These consist of a copy constructor, an
assignment operator, and a destructor. Because this class allocates memory, their
inclusion is essential for a complete and robust class implementation. We leave
them as an exercise (R-6.6). We should also add versions of the indexing operators
that return constant references.

In Code Fragment 6.3, we present the class constructor and a number of simple
member functions. When the vector is constructed, we do not allocate any storage
and simply set A to NULL. Note that the first attempt to add an element results in
array storage being allocated.

ArrayVector::ArrayVector() // constructor
: capacity(0), n(0), A(NULL) { }

int ArrayVector::size() const // number of elements
{ return n; }

bool ArrayVector::empty() const // is vector empty?
{ return size() == 0; }

Elem& ArrayVector::operator[](int i) // element at index
{ return A[i]; }

// element at index (safe)
Elem& ArrayVector::at(int i) throw(IndexOutOfBounds) {

if (i < 0 | | i >= n)
throw IndexOutOfBounds("illegal index in function at()");

return A[i];
}

Code Fragment 6.3: The simple member functions for class ArrayVector.

In Code Fragment 6.4, we present the member function erase. As mentioned
above, it removes an element at index i by shifting all subsequent elements from
index i+ 1 to the last element of the array down by one position.

void ArrayVector::erase(int i) { // remove element at index
for (int j = i+1; j < n; j++) // shift elements down

A[j − 1] = A[j];
n−−; // one fewer element
}

Code Fragment 6.4: The member function remove for class ArrayVector.

i

i

“main” — 2011/1/13 — 9:10 — page 234 — #256
i

i

i

i

i

i

234 Chapter 6. List and Iterator ADTs

Finally, in Code Fragment 6.5, we present the reserve and insert functions. The
reserve function first checks whether the capacity already exceeds n, in which case
nothing needs to be done. Otherwise, it allocates a new array B of the desired sizes,
copies the contents of A to B, deletes A, and makes B the current array. The insert
function first checks whether there is sufficient capacity for one more element. If
not, it sets the capacity to the maximum of 1 and twice the current capacity. Then
starting at the insertion point, it shifts elements up by one position, and stores the
new element in the desired position.

void ArrayVector::reserve(int N) { // reserve at least N spots
if (capacity >= N) return; // already big enough
Elem* B = new Elem[N]; // allocate bigger array
for (int j = 0; j < n; j++) // copy contents to new array

B[j] = A[j];
if (A != NULL) delete [] A; // discard old array
A = B; // make B the new array
capacity = N; // set new capacity
}
void ArrayVector::insert(int i, const Elem& e) {

if (n >= capacity) // overflow?
reserve(max(1, 2 * capacity)); // double array size

for (int j = n − 1; j >= i; j−−) // shift elements up
A[j+1] = A[j];

A[i] = e; // put in empty slot
n++; // one more element
}

Code Fragment 6.5: The member functions reserve and insert for class ArrayVector.

In terms of efficiency, this array replacement strategy might, at first, seem rather
slow. After all, performing just one array replacement required by an element in-
sertion takes O(n) time, which is not very good. Notice, however, that, after we
perform an array replacement, our new array allows us to add n new elements to
the vector before the array must be replaced again.

This simple observation allows us to show that the running time of a series
of operations performed on an initially empty vector is proportional to the total
number of elements added. As a shorthand notation, let us refer to the insertion of
an element meant to be the last element in a vector as a “push” operation. Using a
design pattern called amortization, we show below that performing a sequence of
push operations on a vector implemented with an extendable array is quite efficient.

Proposition 6.2: Let V be a vector implemented by means of an extendable array
A, as described above. The total time to perform a series of n push operations in V ,
starting from V being empty and A having size N = 1, is O(n).

Justification: To perform this analysis, we view the computer as a coin-operated

i

i

“main” — 2011/1/13 — 9:10 — page 235 — #257
i

i

i

i

i

i

6.1. Vectors 235

appliance, which requires the payment of one cyber-dollar for a constant amount
of computing time. When an operation is executed, we should have enough cyber-
dollars available in our current “bank account” to pay for that operation’s running
time. Thus, the total amount of cyber-dollars spent for any computation is propor-
tional to the total time spent on that computation. The beauty of using this analysis
method is that we can overcharge some operations in order to save up cyber-dollars
to pay for others.

Let us assume that one cyber-dollar is enough to pay for the execution of each
push operation in V , excluding the time spent for growing the array. Also, let us
assume that growing the array from size k to size 2k requires k cyber-dollars for the
time spent copying the elements. We shall charge each push operation three cyber-
dollars. Thus, we overcharge each push operation that does not cause an overflow
by two cyber-dollars. Think of the two cyber-dollars profited in an insertion that
does not grow the array as being “stored” at the element inserted.

An overflow occurs when the vector V has 2i elements, for some i≥ 0, and the
size of the array used by V is 2i. Thus, doubling the size of the array requires 2i

cyber-dollars. Fortunately, these cyber-dollars can be found at the elements stored
in cells 2i−1 through 2i − 1. (See Figure 6.3.) Note that the previous overflow
occurred when the number of elements became larger than 2i−1 for the first time,
and thus the cyber-dollars stored in cells 2i−1 through 2i− 1 were not previously
spent. Therefore, we have a valid amortization scheme in which each operation is
charged three cyber-dollars and all the computing time is paid for. That is, we can
pay for the execution of n push operations using 3n cyber-dollars.

(a)

10 2 3 4 5 6 7

$$$$

$ $ $ $

(b)

10 2 3 4 5 6 7

$

$

8 9 10 11 12 13 14 15

Figure 6.3: A series of push operations on a vector: (a) an 8-cell array is full,
with two cyber-dollars “stored” at cells 4 through 7; (b) a push operation causes
an overflow and a doubling of capacity. Copying the eight old elements to the new
array is paid for by the cyber-dollars already stored in the table; inserting the new
element is paid for by one of the cyber-dollars charged to the push operation; and
two cyber-dollars profited are stored at cell 8.

i

i

“main” — 2011/1/13 — 9:10 — page 236 — #258
i

i

i

i

i

i

236 Chapter 6. List and Iterator ADTs

6.1.4 STL Vectors

In Section 1.5.5, we introduced the vector class of the C++ Standard Template
Library (STL). We mentioned that STL vectors behave much like standard arrays
in C++, but they are superior to standard arrays in many respects. In this section
we explore this class in greater detail.

The Standard Template Library provides C++ programmers a number of useful
built-in classes and algorithms. The classes provided by the STL are organized in
various groups. Among the most important of these groups is the set of classes
called containers. A container is a data structure that stores a collection of ob-
jects. Many of the data structures that we study later in this book, such as stacks,
queues, and lists, are examples of STL containers. The class vector is perhaps the
most basic example of an STL container class. We discuss containers further in
Section 6.2.1.

The definition of class vector is given in the system include file named “vec-
tor.” The vector class is part of the std namespace, so it is necessary either to use
“std::vector” or to provide an appropriate using statement. The vector class is tem-
plated with the class of the individual elements. For example, the code fragment
below declares a vector containing 100 integers.

#include <vector> // provides definition of vector
using std::vector; // make vector accessible

vector<int> myVector(100); // a vector with 100 integers

We refer to the type of individual elements as the vector’s base type. Each element
is initialized to the base type’s default value, which for integers is zero.

STL vector objects behave in many respects like standard C++ arrays, but they
provide many additional features.

• As with arrays, individual elements of a vector object can be indexed using
the usual index operator (“[]”). Elements can also be accessed by a member
function called at. The advantage of this member function over the index
operator is that it performs range checking and generates an error exception
if the index is out of bounds.

• Unlike C++ arrays, STL vectors can be dynamically resized, and new ele-
ments may be efficiently appended or removed from the end of an array.

• When an STL vector of class objects is destroyed, it automatically invokes
the destructor for each of its elements. (With C++ arrays, it is the obligation
of the programmer to do this explicitly.)

• STL vectors provide a number of useful functions that operate on entire vec-
tors, not just on individual elements. This includes, for example, the ability
to copy all or part of one vector to another, the ability to compare the contents
of two arrays, and the ability to insert and erase multiple elements.

i

i

“main” — 2011/1/13 — 9:10 — page 237 — #259
i

i

i

i

i

i

6.1. Vectors 237

Here are the principal member functions of the vector class. Let V be declared
to be an STL vector of some base type, and let e denote a single object of this same
base type. (For example, V is a vector of integers, and e is an integer.)

vector(n): Construct a vector with space for n elements; if no argu-
ment is given, create an empty vector.

size(): Return the number of elements in V .

empty(): Return true if V is empty and false otherwise.

resize(n): Resize V , so that it has space for n elements.

reserve(n): Request that the allocated storage space be large enough
to hold n elements.

operator[i]: Return a reference to the ith element of V .

at(i): Same as V [i], but throw an out of range exception if i is
out of bounds, that is, if i < 0 or i≥V.size().

front(): Return a reference to the first element of V .

back(): Return a reference to the last element of V .

push back(e): Append a copy of the element e to the end of V , thus
increasing its size by one.

pop back(): Remove the last element of V , thus reducing its size by
one.

When the base type of an STL vector is class, all copying of elements (for
example, in push back) is performed by invoking the class’s copy constructor.
Also, when elements are destroyed (for example, by invoking the destroyer or the
pop back member function) the class’s destructor is invoked on each deleted ele-
ment. STL vectors are expandable—when the current array space is exhausted, its
storage size is increased.

Although we have not discussed it here, the STL vector also supports functions
for inserting elements at arbitrary positions within the vector, and for removing
arbitrary elements of the vector. These are discussed in Section 6.1.4.

There are both similarities and differences between our ArrayVector class of
Section 6.1.3 and the STL vector class. One difference is that the STL constructor
allows for an arbitrary number of initial elements, whereas our ArrayVect con-
structor always starts with an empty vector. The STL vector functions V.front()
and V.back() are equivalent to our functions V [0] and V [n−1], respectively, where
n is equal to V.size(). The STL vector functions V.push back(e) and V.pop back()
are equivalent to our ArrayVect functions V.insert(n,e) and V.remove(n− 1), re-
spectively.

i

i

“main” — 2011/1/13 — 9:10 — page 238 — #260
i

i

i

i

i

i

238 Chapter 6. List and Iterator ADTs

6.2 Lists

Using an index is not the only means of referring to the place where an element
appears in a list. If we have a list L implemented with a (singly or doubly) linked
list, then it could possibly be more natural and efficient to use a node instead of an
index as a means of identifying where to access and update a list. In this section,
define the list ADT, which abstracts the concrete linked list data structure (presented
in Sections 3.2 and 3.3) using a related position ADT that abstracts the notion of
“place” in a list.

6.2.1 Node-Based Operations and Iterators

Let L be a (singly or doubly) linked list. We would like to define functions for L
that take nodes of the list as parameters and provide nodes as return types. Such
functions could provide significant speedups over index-based functions, because
finding the index of an element in a linked list requires searching through the list
incrementally from its beginning or end, counting elements as we go.

For instance, we might want to define a hypothetical function remove(v) that
removes the element of L stored at node v of the list. Using a node as a parameter
allows us to remove an element in O(1) time by simply going directly to the place
where that node is stored and then “linking out” this node through an update of the
next and prev links of its neighbors. Similarly, in O(1) time, we could insert a new
element e into L with an operation such as insert(v,e), which specifies the node
v before which the node of the new element should be inserted. In this case, we
simply “link in” the new node.

Defining functions of a list ADT by adding such node-based operations raises
the issue of how much information we should be exposing about the implementa-
tion of our list. Certainly, it is desirable for us to be able to use either a singly or
doubly linked list without revealing this detail to a user. Likewise, we do not wish
to allow a user to modify the internal structure of a list without our knowledge.
Such modifications would be possible, however, if we provided a pointer to a node
in our list in a form that allows the user to access internal data in that node (such as
the next or prev field).

To abstract and unify the different ways of storing elements in the various im-
plementations of a list, we introduce a data type that abstracts the notion of the
relative position or place of an element within a list. Such an object might naturally
be called a position. Because we want this object not only to access individual
elements of a list, but also to move around in order to enumerate all the elements
of a list, we adopt the convention used in the C++ Standard Template Library, and
call it an iterator.

i

i

“main” — 2011/1/13 — 9:10 — page 239 — #261
i

i

i

i

i

i

6.2. Lists 239

Containers and Positions

In order to safely expand the set of operations for lists, we abstract a notion of
“position” that allows us to enjoy the efficiency of doubly or singly linked list
implementations without violating object-oriented design principles. In this frame-
work, we think of a list as an instance of a more general class of objects, called
a container. A container is a data structure that stores any collection of elements.
We assume that the elements of a container can be arranged in a linear order. A
position is defined to be an abstract data type that is associated with a particular
container and which supports the following function.

element(): Return a reference to the element stored at this position.

C++’s ability to overload operators provides us with an elegant alternative man-
ner in which to express the element operation. In particular, we overload the deref-
erencing operator (“*”), so that, given a position variable p, the associated element
can be accessed by *p, rather than p.element(). This can be used both for accessing
and modifying the element’s value.

A position is always defined in a relative manner, that is, in terms of its neigh-
bors. Unless it is the first or last of the container, a position q is always “after”
some position p and “before” some position r (see Figure 6.4). A position q, which
is associated with some element e in a container, does not change, even if the index
of e changes in the container, unless we explicitly remove e. If the associated node
is removed, we say that q is invalidated. Moreover, the position q does not change
even if we replace or swap the element e stored at q with another element.

p q r s

Baltimore New York Beijing Delhi

Figure 6.4: A list container. The positions in the current order are p, q, r, and s.

Iterators

Although a position is a useful object, it would be more useful still to be able to
navigate through the container, for example, by advancing to the next position in
the container. Such an object is called an iterator. An iterator is an extension of a
position. It supports the ability to access a node’s element, but it also provides the
ability to navigate forwards (and possibly backwards) through the container.

There are a number of ways in which to define an ADT for an iterator object.
For example, given an iterator object p, we could define an operation p.next(),
which returns an iterator that refers to the node just after p in the container. Be-
cause of C++’s ability to overload operators, there is a more elegant way to do

i

i

“main” — 2011/1/13 — 9:10 — page 240 — #262
i

i

i

i

i

i

240 Chapter 6. List and Iterator ADTs

this by overloading the increment operator (“++”). In particular, the operation
++p advances p to the next position of the container. By repeatedly applying this
operation, we can step through all the elements of the container. For some imple-
mentations of containers, such as a doubly linked list, navigation may be possible
both forwards and backwards. If so, we can also overload the decrement operator
(“– –”) to move the iterator to the previous position in the container.

In addition to navigating through the container, we need some way of initial-
izing an iterator to the first node of a container and determining whether it has
gone beyond the end of the container. To do this, we assume that each container
provides two special iterator values, begin and end. The beginning iterator refers
to the first position of the container. We think of the ending iterator as referring
to an imaginary position that lies just after the last node of the container. Given
a container object L, the operation L.begin() returns an instance of the beginning
iterator for L, and the operation L.end() returns an instance of the ending iterator.
(See Figure 6.5.)

Baltimore New York Beijing Delhi

L.begin() L.end()

Figure 6.5: The special iterators L.begin() and L.end() for a list L.

In order to enumerate all the elements of a given container L, we define an iter-
ator p whose value is initialized to L.begin(). The associated element is accessed
using *p. We can enumerate all of the elements of the container by advancing p to
the next node using the operation ++p. We repeat this until p is equal to L.end(),
which means that we have fallen off the end of the list.

6.2.2 The List Abstract Data Type

Using the concept of an iterator to encapsulate the idea of “node” in a list, we can
define another type of sequence ADT, called simply the list ADT. In addition to the
above functions, we include the generic functions size and empty with the usual
meanings. This ADT supports the following functions for a list L and an iterator p
for this list.

begin(): Return an iterator referring to the first element of L; same
as end() if L is empty.

end(): Return an iterator referring to an imaginary element just
after the last element of L.

insertFront(e): Insert a new element e into L as the first element.

i

i

“main” — 2011/1/13 — 9:10 — page 241 — #263
i

i

i

i

i

i

6.2. Lists 241

insertBack(e): Insert a new element e into L as the last element.

insert(p,e): Insert a new element e into L before position p in L.

eraseFront(): Remove the first element of L.

eraseBack(): Remove the last element of L.

erase(p): Remove from L the element at position p; invalidates p
as a position.

The functions insertFront(e) and insertBack(e) are provided as a convenience,
since they are equivalent to insert(L.begin(),e) and insert(L.end(),e), respectively.
Similarly, eraseFront and eraseBack can be performed by the more general func-
tion erase.

An error condition occurs if an invalid position is passed as an argument to one
of the list operations. Reasons for a position p to be invalid include:
• p was never initialized or was set to a position in a different list
• p was previously removed from the list
• p results from an illegal operation, such as attempting to perform ++p,

where p = L.end(), that is, attempting to access a position beyond the end
position

We do not check for these errors in our implementation. Instead, it is the re-
sponsibility of the programmer to be sure that only legal positions are used.

Example 6.3: We show a series of operations for an initially empty list L below.
We use variables p and q to denote different positions, and we show the object
currently stored at such a position in parentheses in the Output column.

Operation Output L
insertFront(8) – (8)
p = begin() p : (8) (8)
insertBack(5) – (8,5)
q = p; ++ q q : (5) (8,5)
p == begin() true (8,5)
insert(q,3) – (8,3,5)
*q = 7 – (8,3,7)
insertFront(9) – (9,8,3,7)
eraseBack() – (9,8,3)
erase(p) – (9,3)
eraseFront() – (3)

The list ADT, with its built-in notion of position, is useful in a number of set-
tings. For example, a program that models several people playing a game of cards
could model each person’s hand as a list. Since most people like to keep cards of
the same suit together, inserting and removing cards from a person’s hand could

i

i

“main” — 2011/1/13 — 9:10 — page 242 — #264
i

i

i

i

i

i

242 Chapter 6. List and Iterator ADTs

be implemented using the functions of the list ADT, with the positions being de-
termined by a natural ordering of the suits. Likewise, a simple text editor embeds
the notion of positional insertion and removal, since such editors typically perform
all updates relative to a cursor, which represents the current position in the list of
characters of text being edited.

6.2.3 Doubly Linked List Implementation

There are a number of different ways to implement our list ADT in C++. Probably
the most natural and efficient way is to use a doubly linked list, similar to the one
we introduced in Section 3.3. Recall that our doubly linked list structure is based
on two sentinel nodes, called the header and trailer. These are created when the
list is first constructed. The other elements of the list are inserted between these
sentinels.

Following our usual practice, in order to keep the code simple, we sacrifice gen-
erality by forgoing the use of class templates. Instead, we provide a type definition
Elem, which is the base element type of the list. We leave the details of producing
a fully generic templated class as an exercise (R-6.11).

Before defining the class, which we call NodeList, we define two important
structures. The first represents a node of the list and the other represents an iterator
for the list. Both of these objects are defined as nested classes within NodeList.
Since users of the class access nodes exclusively through iterators, the node is de-
clared a private member of NodeList, and the iterator is a public member.

The node object is called Node and is presented in Code Fragment 6.6. This
is a simple C++ structure, which has only (public) data members, consisting of the
node’s element, a link to the previous node of the list, and a link to the next node
of the list. Since it is declared to be private to NodeList, its members are accessible
only within NodeList.

struct Node { // a node of the list
Elem elem; // element value
Node* prev; // previous in list
Node* next; // next in list
};

Code Fragment 6.6: The declaration of a node of a doubly linked list.

Our iterator object is called Iterator. To users of class NodeList, it can be ac-
cessed by the qualified type name NodeList::Iterator. Its definition, which is pre-
sented in Code Fragment 6.7, is placed in the public part of NodeList. An element
associated with an iterator can be accessed by overloading the dereferencing oper-
ator (“*”). In order to make it possible to compare iterator objects, we overload the

i

i

“main” — 2011/1/13 — 9:10 — page 243 — #265
i

i

i

i

i

i

6.2. Lists 243

equality and inequality operators (“==” and “!=”). We provide the ability to move
forward or backward in the list by providing the increment and decrement operators
(“++” and “– –”). We declare NodeList to be a friend, so that it may access the
private members of Iterator. The private data member consists of a pointer v to the
associated node of the list. We also provide a private constructor, which initializes
the node pointer. (The constructor is private so that only NodeList is allowed to
create new iterators.)

class Iterator { // an iterator for the list
public:

Elem& operator*(); // reference to the element
bool operator==(const Iterator& p) const; // compare positions
bool operator!=(const Iterator& p) const;
Iterator& operator++(); // move to next position
Iterator& operator−−(); // move to previous position
friend class NodeList; // give NodeList access

private:
Node* v; // pointer to the node
Iterator(Node* u); // create from node
};

Code Fragment 6.7: Class Iterator, realizing an iterator for a doubly linked list.

In Code Fragment 6.8 we present the implementations of the member functions
for the Iterator class. These all follow directly from the definitions given earlier.

NodeList::Iterator::Iterator(Node* u) // constructor from Node*
{ v = u; }

Elem& NodeList::Iterator::operator*() // reference to the element
{ return v−>elem; }

// compare positions
bool NodeList::Iterator::operator==(const Iterator& p) const
{ return v == p.v; }

bool NodeList::Iterator::operator!=(const Iterator& p) const
{ return v != p.v; }

// move to next position
NodeList::Iterator& NodeList::Iterator::operator++()
{ v = v−>next; return *this; }

// move to previous position
NodeList::Iterator& NodeList::Iterator::operator−−()
{ v = v−>prev; return *this; }

Code Fragment 6.8: Implementations of the Iterator member functions.

i

i

“main” — 2011/1/13 — 9:10 — page 244 — #266
i

i

i

i

i

i

244 Chapter 6. List and Iterator ADTs

To keep the code simple, we have not implemented any error checking. We
assume that the functions of Code Fragment 6.8 are defined outside the class body.
Because of this, when referring to the nested class Iterator, we need to apply the
scope resolution operator, as in NodeList::Iterator, so the compiler knows that we
are referring to the iterator type associated with NodeList. Observe that the incre-
ment and decrement operators not only update the position, but they also return a
reference to the updated position. This makes it possible to use the result of the
increment operation, as in “q = ++p.”

Having defined the supporting structures Node and Iterator, let us now present
the declaration of class NodeList, which is given in Code Fragment 6.9. The class
declaration begins by inserting the Node and Iterator definitions from Code Frag-
ments 6.6 and 6.7. This is followed by the public members, that consist of a simple
default constructor and the members of the list ADT. We have omitted the standard
housekeeping functions from our class definition. These include the class destruc-
tor, a copy constructor, and an assignment operator. The definition of the destructor
is important, since this class allocates memory, so it is necessary to delete this
memory when an object of this type is destroyed. We leave the implementation of
these housekeeping functions as an exercise (R-6.12).

typedef int Elem; // list base element type
class NodeList { // node-based list
private:

// insert Node declaration here. . .
public:

// insert Iterator declaration here. . .
public:

NodeList(); // default constructor
int size() const; // list size
bool empty() const; // is the list empty?
Iterator begin() const; // beginning position
Iterator end() const; // (just beyond) last position
void insertFront(const Elem& e); // insert at front
void insertBack(const Elem& e); // insert at rear
void insert(const Iterator& p, const Elem& e); // insert e before p
void eraseFront(); // remove first
void eraseBack(); // remove last
void erase(const Iterator& p); // remove p
// housekeeping functions omitted. . .

private: // data members
int n; // number of items
Node* header; // head-of-list sentinel
Node* trailer; // tail-of-list sentinel
};

Code Fragment 6.9: Class NodeList realizing the C++-based list ADT.

i

i

“main” — 2011/1/13 — 9:10 — page 245 — #267
i

i

i

i

i

i

6.2. Lists 245

The private data members include pointers to the header and trailer sentinel
nodes. In order to implement the function size efficiently, we also provide a variable
n, which stores the number of elements in the list.

Next, let us see how the various functions of class NodeList are implemented.
In Code Fragment 6.10, we begin by presenting a number of simple functions,
including the constructor, the size and empty functions, and the begin and end
functions. The constructor creates an initially empty list by setting n to zero, then
allocating the header and trailer nodes and linking them together. The function be-
gin returns the position of the first node of the list, which is the node just following
the header sentinel, and the function end returns the position of the trailer. As de-
sired, this is the position following the last element of the list. In both cases, we are
invoking the private constructor declared within class Iterator. We are allowed to
do so because NodeList is a friend of Iterator.

NodeList::NodeList() { // constructor
n = 0; // initially empty
header = new Node; // create sentinels
trailer = new Node;
header−>next = trailer; // have them point to each other
trailer−>prev = header;
}

int NodeList::size() const // list size
{ return n; }

bool NodeList::empty() const // is the list empty?
{ return (n == 0); }

NodeList::Iterator NodeList::begin() const // begin position is first item
{ return Iterator(header−>next); }

NodeList::Iterator NodeList::end() const // end position is just beyond last
{ return Iterator(trailer); }

Code Fragment 6.10: Implementations of a number of simple member functions of
class NodeList.

Let us next see how to implement insertion. There are three different public
insertion functions, insert, insertFront, and insertBack, which are shown in Code
Fragment 6.11. The function insert(p,e) performs insertion into the doubly linked
list using the same approach that we was explained in Section 3.3. In particular, let
w be a pointer to p’s node, let u be a pointer to p’s predecessor. We create a new
node v, and link it before w and after u. Finally, we increment n to indicate that
there is one additional element in the list.

i

i

“main” — 2011/1/13 — 9:10 — page 246 — #268
i

i

i

i

i

i

246 Chapter 6. List and Iterator ADTs

// insert e before p
void NodeList::insert(const NodeList::Iterator& p, const Elem& e) {

Node* w = p.v; // p’s node
Node* u = w−>prev; // p’s predecessor
Node* v = new Node; // new node to insert
v−>elem = e;
v−>next = w; w−>prev = v; // link in v before w
v−>prev = u; u−>next = v; // link in v after u
n++;
}

void NodeList::insertFront(const Elem& e) // insert at front
{ insert(begin(), e); }

void NodeList::insertBack(const Elem& e) // insert at rear
{ insert(end(), e); }

Code Fragment 6.11: Implementations of the insertion functions of class NodeList.

The function insertFront invokes insert on the beginning of the list, and the
function insertBack invokes insert on the list’s trailer.

Finally, in Code Fragment 6.12 we present the implementation of the erase
function, which removes a node from the list. Again, our approach follows directly
from the method described in Section 3.3 for removal of a node from a doubly
linked list. Let v be a pointer to the node to be deleted, and let w be its successor
and u be its predecessor. We unlink v by linking u and w to each other. Once v has
been unlinked from the list, we need to return its allocated storage to the system in
order to avoid any memory leaks. Finally, we decrement the number of elements in
the list.

void NodeList::erase(const Iterator& p) { // remove p
Node* v = p.v; // node to remove
Node* w = v−>next; // successor
Node* u = v−>prev; // predecessor
u−>next = w; w−>prev = u; // unlink p
delete v; // delete this node
n−−; // one fewer element
}

void NodeList::eraseFront() // remove first
{ erase(begin()); }

void NodeList::eraseBack() // remove last
{ erase(−−end()); }

Code Fragment 6.12: Implementations of the function erase of class NodeList.

i

i

“main” — 2011/1/13 — 9:10 — page 247 — #269
i

i

i

i

i

i

6.2. Lists 247

There are number of other enhancements that could be added to our imple-
mentation of NodeList, such as better error checking, a more sophisticated suite of
constructors, and a post-increment operator for the iterator class.

You might wonder why we chose to define the iterator function end to return an
imaginary position that lies just beyond the end of the list, rather than the last node
of the list. This choice offers a number of advantages. First, it is well defined, even
if the list is empty. Second, the function insert(p,e) can be used to insert a new
element at any position of the list. In particular, it is possible to insert an element
at the end of the list by invoking insert(end(),e). If we had instead defined end to
return the last position of the list, this would not be possible, and the only way to
insert an element at the end of the list would be through the insertBack function.

Observe that our implementation is quite efficient with respect to both time and
space. All of the operations of the list ADT run in time O(1). (The only exceptions
to this are the omitted housekeeping functions, the destructor, copy constructor, and
assignment operator. They require O(n) time, where n is the number of elements
in the list.) The space used by the data structure is proportional to the number of
elements in the list.

6.2.4 STL Lists

The C++ Standard Template Library provides an implementation of a list, which is
called list. Like the STL vector, the STL list is an example of an STL container. As
in our implementation of class NodeList, the STL list is implemented as a doubly
linked list.

In order to define an object to be of type list, it is necessary to first include the
appropriate system definition file, which is simply called “list.” As with the STL
vector, the list class is a member of the std namespace, it is necessary either to
preface references to it with the namespace resolution operator, as in “std::list”, or
to provide an appropriate using statement. The list class is templated with the base
type of the individual elements. For example, the code fragment below declares a
list of floats. By default, the initial list is empty.

#include <list>
using std::list; // make list accessible
list<float> myList; // an empty list of floats

Below is a list of the principal member functions of the list class. Let L be
declared to be an STL list of some base type, and let x denote a single object of this
same base type. (For example, L is a list of integers, and e is an integer.)

list(n): Construct a list with n elements; if no argument list is
given, an empty list is created.

size(): Return the number of elements in L.

i

i

“main” — 2011/1/13 — 9:10 — page 248 — #270
i

i

i

i

i

i

248 Chapter 6. List and Iterator ADTs

empty(): Return true if L is empty and false otherwise.

front(): Return a reference to the first element of L.

back(): Return a reference to the last element of L.

push front(e): Insert a copy of e at the beginning of L.

push back(e): Insert a copy of e at the end of L.

pop front(): Remove the fist element of L.

pop back(): Remove the last element of L.

The functions push front and push back are the STL equivalents of our func-
tions insertFront and insertBack, respectively, of our list ADT. Similarly, the func-
tions pop front and pop back are equivalent to the respective functions eraseFront
and eraseBack.

Note that, when the base type of an STL vector is class object, all copying of
elements (for example, in push back) is performed by invoking the base class’s
copy constructor. Whenever elements are destroyed (for example, by invoking the
destroyer or the pop back member function) the class’s destructor is invoked on
each deleted element.

6.2.5 STL Containers and Iterators

In order to develop a fuller understanding of STL vectors and lists, it is necessary
to understand the concepts of STL containers and iterators. Recall that a container
is a data structure that stores a collection of elements. The STL provides a variety
of different container classes, many of which are discussed later.

STL Container Description
vector Vector
deque Double ended queue
list List
stack Last-in, first-out stack
queue First-in, first-out queue
priority queue Priority queue
set (and multiset) Set (and multiset)
map (and multimap) Map (and multi-key map)

Different containers organize their elements in different ways, and hence sup-
port different methods for accessing individual elements. STL iterators provide a
relatively uniform method for accessing and enumerating the elements stored in
containers.

Before introducing how iterators work for STL containers, let us begin with a
simple function that sums the elements of an STL vector, denoted by V , shown in

i

i

“main” — 2011/1/13 — 9:10 — page 249 — #271
i

i

i

i

i

i

6.2. Lists 249

Code Fragment 6.13. The elements are accessed in the standard manner through
the indexing operator.

int vectorSum1(const vector<int>& V) {
int sum = 0;
for (int i = 0; i < V.size(); i++)

sum += V[i];
return sum;
}

Code Fragment 6.13: A simple C++ function that sums the entries of an STL vector.

This particular method of iterating through the elements of a vector should be
quite familiar by now. Unfortunately, this method would not be applicable to other
types of containers, because it relies on the fact that the elements of a vector can
be accessed efficiently through indexing. This is not true for all containers, such as
lists. What we desire is a uniform mechanism for accessing elements.

STL Iterators

Every STL container class defines a special associated class called an iterator. As
mentioned earlier, an iterator is an object that specifies a position within a container
and which is endowed with the ability to navigate to other positions. If p is an
iterator that refers to some position within a container, then *p yields a reference to
the associated element.

Advancing to the next element of the container is done by incrementing the
iterator. For example, either ++p or p++ advances p to point to the next ele-
ment of the container. The former returns the updated value of the iterator, and
the latter returns its original value. (In our implementation of an iterator for class
NodeList in Code Fragment 6.7, we defined only the preincrement operator, but the
postincrement operator would be an easy extension. See Exercise R-6.13.)

Each STL container class provides two member functions, begin and end, each
of which returns an iterator for this container. The first returns an iterator that points
to the first element of the container, and the second returns an iterator that can be
thought of as pointing to an imaginary element just beyond the last element of the
container. An example for the case of lists was shown in Figure 6.5, and an example
of how this works for the STL vector is shown in Figure 6.6.

V [0]

V.begin() V.end()

V [1] V [2] V [n− 1]

Figure 6.6: The special iterators V.begin() and V.end() for an STL vector V .

i

i

“main” — 2011/1/13 — 9:10 — page 250 — #272
i

i

i

i

i

i

250 Chapter 6. List and Iterator ADTs

Using Iterators

Let us see how we can use iterators to enumerate the elements of an STL container
C. Suppose, for example, that C is of type vector<int>, that is, it is an STL list of
integers. The associated iterator type is denoted “vector<int>::iterator.” In general,
if C is an STL container of some type cont and the base type is of type base, then
the iterator type would be denoted “cont<base>::iterator.”

For example, Code Fragment 6.14 demonstrates how to sum the elements of an
STL vector V using an iterator. We begin by providing a type definition to the itera-
tor type, called Iterator. We then create a loop, which is controlled by an iterator p.
We start with V.begin(), and we terminate when p reaches V.end(). Although this
approach is less direct than the approach based on indexing individual elements, it
has the advantage that it can be applied to any STL container class, not just vectors.

int vectorSum2(vector<int> V) {
typedef vector<int>::iterator Iterator; // iterator type
int sum = 0;
for (Iterator p = V.begin(); p != V.end(); ++p)

sum += *p;
return sum;
}

Code Fragment 6.14: Using an iterator to sum the elements of an STL vector.

Different containers provide iterators with different capabilities. Most STL
containers (including lists, sets, and maps) provide the ability to move not only
forwards, but backwards as well. For such containers the decrement operators – –p
and p– – are also defined for their iterators. This is called a bidirectional iterator.

A few STL containers (including vectors and deques) support the additional
feature of allowing the addition and subtraction of an integer. For example, for
such an iterator, p, the value p+ 3 references the element three positions after p in
the container. This is called a random-access iterator.

As with pointers, care is needed in the use of iterators. For example, it is up to
the programmer to be sure that an iterator points to a valid element of the container
before attempting to dereference it. Attempting to dereference an invalid iterator
can result in your program aborting. As mentioned earlier, iterators can be invalid
for various reasons. For example, an iterator becomes invalid if the position that it
refers to is deleted.

Const Iterators

Observe that in Code Fragment 6.14, we passed the vector V into the function
by value (recall Section 1.4). This can be quite inefficient, because the system
constructs a complete copy of the actual argument. Since our function does not

i

i

“main” — 2011/1/13 — 9:10 — page 251 — #273
i

i

i

i

i

i

6.2. Lists 251

modify V , the best approach would be to declare the argument to be a constant
reference instead, that is, “const vector<int>&.”

A problem arises, however, if we declare an iterator for such a vector. Many
STL implementations generate an error message if we attempt to use a regular iter-
ator with a constant vector reference, since such an iterator may lead to an attempt
to modify the vector’s contents.

The solution is a special read-only iterator, called a const iterator. When using
a const iterator, it is possible to read the values of the container by dereferencing the
iterator, but it is not possible to modify the container’s values. For example, if p is a
const iterator, it is possible to read the value of *p, but you cannot assign it a value.
The const iterator type for our vector type is denoted “vector<int>::const iterator.”
We make use of the typedef command to rename this lengthy definition to the more
concise ConstIterator. The final code fragment is presented in Code Fragment 6.15.

int vectorSum3(const vector<int>& V) {
typedef vector<int>::const iterator ConstIterator; // iterator type
int sum = 0;
for (ConstIterator p = V.begin(); p != V.end(); ++p)

sum += *p;
return sum;
}

Code Fragment 6.15: Using a constant iterator to sum the elements of a vector.

STL Iterator-Based Container Functions

STL iterators offer a flexible and uniform way to access the elements of STL con-
tainers. Many of the member functions and predefined algorithms that work with
STL containers use iterators as their arguments. Here are a few of the member
functions of the STL vector class that use iterators as arguments. Let V be an STL
vector of some given base type, and let e be an object of this base type. Let p and
q be iterators over this base type, both drawn from the same container.

vector(p,q): Construct a vector by iterating between p and q, copying
each of these elements into the new vector.

assign(p,q): Delete the contents of V , and assigns its new contents
by iterating between p and q and copying each of these
elements into V .

insert(p,e): Insert a copy of e just prior to the position given by iter-
ator p and shifts the subsequent elements one position to
the right.

erase(p): Remove and destroy the element of V at the position
given by p and shifts the subsequent elements one po-

i

i

“main” — 2011/1/13 — 9:10 — page 252 — #274
i

i

i

i

i

i

252 Chapter 6. List and Iterator ADTs

sition to the left.

erase(p,q): Iterate between p and q, removing and destroying all
these elements and shifting subsequent elements to the
left to fill the gap.

clear(): Delete all these elements of V .

When presenting a range of iterator values (as we have done above with the
constructor V (p,q), assign(p,q), and erase(p,q)), the iterator range is understood
to start with p and end just prior to q. Borrowing from interval notation in math-
ematics, this iterator range is often expressed as [p,q), implying that p is included
in the range, but q is not. This convention holds whenever dealing with iterator
ranges.

Note that the vector member functions insert and erase move elements around
in the vector. They should be used with care, because they can be quite slow. For
example, inserting or erasing an element at the beginning of a vector causes all the
later elements of the vector to be shifted one position.

The above functions are also defined for the STL list and the STL deque (but,
of course, the constructors are named differently). Since the list is defined as a dou-
bly linked list, there is no need to shift elements when performing insert or erase.
These three STL containers (vector, list, and deque) are called sequence contain-
ers, because they explicitly store elements in sequential order. The STL containers
set, multiset, map, and multimap support all of the above functions except assign.
They are called associated containers, because elements are typically accessed by
providing an associated key value. We discuss them in Chapter 9.

It is worthwhile noting that, in the constructor and assignment functions, the
iterators p and q do not need to be drawn from the same type of container as V , as
long as the container they are drawn from has the same base type. For example,
suppose that L is an STL list container of integers. We can create a copy of L in the
form of an STL vector V as follows:

list<int> L; // an STL list of integers
// . . .
vector<int> V(L.begin(), L.end()); // initialize V to be a copy of L

The iterator-based form of the constructor is quite handy, since it provides an
easy way to initialize the contents of an STL container from a standard C++ array.
Here, we make use of a low-level feature of C++, which is inherited from its prede-
cessor, the C programming language. Recall from Section 1.1.3 that a C++ array A
is represented as a pointer to its first element A[0]. In addition, A+1 points to A[1],
A + 2 points to A[2], and generally A + i points to A[i].

Addressing the elements of an array in this manner is called pointer arithmetic.
It is generally frowned upon as poor programming practice, but in this instance it

i

i

“main” — 2011/1/13 — 9:10 — page 253 — #275
i

i

i

i

i

i

6.2. Lists 253

provides an elegant way to initialize a vector from an C++ array, as follows.

int A[] = {2, 5, −3, 8, 6}; // a C++ array of 5 integers
vector<int> V(A, A+5); // V = (2, 5, -3, 8, 6)

Even though the pointers A and A + 5 are not STL iterators, through the magic of
pointer arithmetic, they essentially behave as though they were. This same trick
can be used to initialize any of the STL sequence containers.

STL Vectors and Algorithms

In addition to the above member functions for STL vectors, the STL also provides
a number of algorithms that operate on containers in general, and vectors in partic-
ular. To access these functions, use the include statement “#include <algorithm>.”
Let p and q be iterators over some base type, and let e denote an object of this base
type. As above, these operations apply to the iterator range [p,q), which starts at p
and ends just prior to q.

sort(p,q): Sort the elements in the range from p to q in ascending
order. It is assumed that less-than operator (“<”) is de-
fined for the base type.

random shuffle(p,q): Rearrange the elements in the range from p to q in ran-
dom order.

reverse(p,q): Reverse the elements in the range from p to q.

find(p,q,e): Return an iterator to the first element in the range from p
to q that is equal to e; if e is not found, q is returned.

min element(p,q): Return an iterator to the minimum element in the range
from p to q.

max element(p,q): Return an iterator to the maximum element in the range
from p to q.

for each(p,q, f): Apply the function f the elements in the range from p to
q.

For example, to sort an entire vector V , we would use sort(V.begin(),V.end()).
To sort just the first 10 elements, we could use sort(V.begin(),V.begin()+ 10).

All of the above functions are supported for the STL deque. All of the above
functions, except sort and random shuffle are supported for the STL list.

An Illustrative Example

In Code Fragment 6.16, we provide a short example program of the functional-
ity of the STL vector class. The program begins with the necessary “#include”

i

i

“main” — 2011/1/13 — 9:10 — page 254 — #276
i

i

i

i

i

i

254 Chapter 6. List and Iterator ADTs

statements. We include <vector>, for the definitions of vectors and iterators, and
<algorithm>, for the definitions of sort and random shuffle.

We first initialize a standard C++ array containing six integers, and we then use
the iterator-based constructor to create a six-element vector containing these values.
We show how to use the member functions size, pop back, push back, front, and
back. Observe that popping decreases the array size and pushing increases the array
size. We then show how to use iterator arithmetic to sort a portion of the vector, in
this case, the first four elements. The call to the erase member function removes
two of the last four elements of the vector. After the removal, the remaining two
elements at the end have been shifted forward to fill the empty positions.

Next, we demonstrate how to generate a vector of characters. We apply the
function random shuffle to permute the elements of the vector randomly. Finally,
we show how to use the member function insert, to insert a character at the begin-
ning of the vector. Observe how the other elements are shifted to the right.

#include <cstdlib> // provides EXIT SUCCESS
#include <iostream> // I/O definitions
#include <vector> // provides vector
#include <algorithm> // for sort, random shuffle

using namespace std; // make std:: accessible

int main () {
int a[] = {17, 12, 33, 15, 62, 45};
vector<int> v(a, a + 6); // v: 17 12 33 15 62 45
cout << v.size() << endl; // outputs: 6
v.pop back(); // v: 17 12 33 15 62
cout << v.size() << endl; // outputs: 5
v.push back(19); // v: 17 12 33 15 62 19
cout << v.front() << " " << v.back() << endl; // outputs: 17 19
sort(v.begin(), v.begin() + 4); // v: (12 15 17 33) 62 19
v.erase(v.end() − 4, v.end() − 2); // v: 12 15 62 19
cout << v.size() << endl; // outputs: 4

char b[] = {’b’, ’r’, ’a’, ’v’, ’o’};
vector<char> w(b, b + 5); // w: b r a v o
random shuffle(w.begin(), w.end()); // w: o v r a b
w.insert(w.begin(), ’s’); // w: s o v r a b

for (vector<char>::iterator p = w.begin(); p != w.end(); ++p)
cout << *p << " "; // outputs: s o v r a b

cout << endl;
return EXIT SUCCESS;
}

Code Fragment 6.16: An example of the use of the STL vector and iterators.

i

i

“main” — 2011/1/13 — 9:10 — page 255 — #277
i

i

i

i

i

i

6.3. Sequences 255

6.3 Sequences

In this section, we define an abstract data type that generalizes the vector and list
ADTs. This ADT therefore provides access to its elements using both indices and
positions, and is a versatile data structure for a wide variety of applications.

6.3.1 The Sequence Abstract Data Type

A sequence is an ADT that supports all the functions of the list ADT (discussed in
Section 6.2), but it also provides functions for accessing elements by their index,
as we did in the vector ADT (discussed in Section 6.1). The interface consists of
the operations of the list ADT, plus the following two “bridging” functions, which
provide connections between indices and positions.

atIndex(i): Return the position of the element at index i.

indexOf(p): Return the index of the element at position p.

6.3.2 Implementing a Sequence with a Doubly Linked List

One possible implementation of a sequence, of course, is with a doubly linked list.
By doing so, all of the functions of the list ADT can be easily implemented to run
in O(1) time each. The functions atIndex and indexOf from the vector ADT can
also be implemented with a doubly linked list, though in a less efficient manner.

In particular, if we want the functions from the list ADT to run efficiently (using
position objects to indicate where accesses and updates should occur), then we
can no longer explicitly store the indices of elements in the sequence. Hence, to
perform the operation atIndex(i), we must perform link “hopping” from one of the
ends of the list until we locate the node storing the element at index i. As a slight
optimization, we could start hopping from the closest end of the sequence, which
would achieve a running time of

O(min(i+ 1,n− i)).

This is still O(n) in the worst case (when i is near the middle index), but it would
be more efficient in applications where many calls to atIndex(i) are expected to
involve index values that are significantly closer to either end of the list. In our
implementation, we just use the simple approach of walking from the front of the
list, and we leave the two-sided solution as an exercise (R-6.14).

In Code Fragment 6.17, we present a definition of a class NodeSequence,
which implements the sequence ADT. Observe that, because a sequence extends
the definition of a list, we have inherited our class by extending the NodeList class

i

i

“main” — 2011/1/13 — 9:10 — page 256 — #278
i

i

i

i

i

i

256 Chapter 6. List and Iterator ADTs

that was introduced in Section 6.2. We simply add definitions of our bridging
functions. Through the magic of inheritance, users of our class NodeSequence
have access to all the members of the NodeList class, including its nested class,
NodeList::Iterator.

class NodeSequence : public NodeList {
public:

Iterator atIndex(int i) const; // get position from index
int indexOf(const Iterator& p) const; // get index from position
};

Code Fragment 6.17: The definition of class NodeSequence, which implements the
sequence ADT using a doubly linked list.

Next, in Code Fragment 6.18, we show the implementations of the atIndex and
indexOf member functions. The function atIndex(i) hops i positions to the right,
starting at the beginning, and returns the resulting position. The function indexOf
hops through the list until finding the position that matches the given position p.
Observe that the conditional “q != p” uses the overloaded comparison operator for
positions defined in Code Fragment 6.8.

// get position from index
NodeSequence::Iterator NodeSequence::atIndex(int i) const {

Iterator p = begin();
for (int j = 0; j < i; j++) ++p;
return p;
}

// get index from position
int NodeSequence::indexOf(const Iterator& p) const {

Iterator q = begin();
int j = 0;
while (q != p) { // until finding p

++q; ++j; // advance and count hops
}
return j;
}

Code Fragment 6.18: Definition of the functions atIndex and indexOf of class Node-
Sequence.

Both of these functions are quite fragile, and are likely to abort if their argu-
ments are not in bounds. A more careful implementation of atIndex would first
check that the argument i lies in the range from 0 to n− 1, where n is the size of
the sequence. The function indexOf should check that it does not run past the end
of the sequence. In either case, an appropriate exception should be thrown.

i

i

“main” — 2011/1/13 — 9:10 — page 257 — #279
i

i

i

i

i

i

6.3. Sequences 257

The worst-case running times of both of the functions atIndex and indexOf are
O(n), where n is the size of the list. Although this is not very efficient, we may
take consolation in the fact that all the other operations of the list ADT run in time
O(1). A natural alternative approach would be to implement the sequence ADT
using an array. Although we could now provide very efficient implementations of
atIndex and indexOf, the insertion and removal operations of the list ADT would
now require O(n) time. Thus, neither solution is perfect under all circumstances.
We explore this alternative in the next section.

6.3.3 Implementing a Sequence with an Array

Suppose we want to implement a sequence S by storing each element e of S in
a cell A[i] of an array A. We can define a position object p to hold an index i
and a reference to array A, as member variables. We can then implement function
element(p) by simply returning a reference to A[i]. A major drawback with this ap-
proach, however, is that the cells in A have no way to reference their corresponding
positions. For example, after performing an insertFront operation, the elements
have been shifted to new positions, but we have no way of informing the exist-
ing positions for S that the associated positions of their elements have changed.
(Remember that positions in a sequence are defined relative to their neighboring
positions, not their ranks.) Hence, if we are going to implement a general sequence
with an array, we need to find a different approach.

Consider an alternate solution in which, instead of storing the elements of S
in array A, we store a pointer to a new kind of position object in each cell of A.
Each new position object p stores a pair consisting of the index i and the element
e associated with p. We can easily scan through the array to update the i value
associated with each position whose rank changes as the result of an insertion or
deletion. An example is shown in Figure 6.7, where a new element containing BWI
is inserted at index 1 of an existing sequence. After the insertion, the elements PVD
and SFO are shifted to the right, so we increment the index value associated with
their index-element pairs.

0 JFK 1 PVD 2 SFO

A

0 1 2 3 N-1 0 1 2 3 N-1

0 JFK 1 BWI 2 PVD 3 SFO

A

Figure 6.7: An array-based implementation of the sequence ADT.

i

i

“main” — 2011/1/13 — 9:10 — page 258 — #280
i

i

i

i

i

i

258 Chapter 6. List and Iterator ADTs

In this array-based implementation of a sequence, the functions insertFront,
insert, and erase take O(n) time because we have to shift position objects to make
room for the new position or to fill in the hole created by the removal of the old
position (just as in the insert and remove functions based on rank). All the other
position-based functions take O(1) time.

Note that we can use an array in a circular fashion, as we did for implementing a
queue (see Section 5.2.4). With a little work, we can then perform functions insert-
Front in O(1) time. Note that functions insert and erase still take O(n) time. Now,
the worst case occurs when the element to be inserted or removed has rank ⌊n/2⌋.

Table 6.2 compares the running times of the implementations of the general
sequence ADT, by means of a circular array and a doubly linked list.

Operations Circular Array List
size, empty O(1) O(1)

atIndex, indexOf O(1) O(n)

begin, end O(1) O(1)

*p, ++p, – –p O(1) O(1)

insertFront, insertBack O(1) O(1)

insert, erase O(n) O(1)

Table 6.2: Comparison of the running times of the functions of a sequence imple-
mented with either an array (used in a circular fashion) or a doubly linked list. We
denote with n the number of elements in the sequence at the time the operation is
performed. The space usage is O(n) for the doubly linked list implementation, and
O(N) for the array implementation, where N is the size of the array.

Summarizing this table, we see that the array-based implementation is superior
to the linked-list implementation on the rank-based access operations, atIndex and
indexOf. It is equal in performance to the linked-list implementation on all the
other access operations. Regarding update operations, the linked-list implementa-
tion beats the array-based implementation in the position-based update operations,
insert and erase. For update operations insertFront and insertBack, the two imple-
mentations have comparable performance.

Considering space usage, note that an array requires O(N) space, where N is
the size of the array (unless we utilize an extendable array), while a doubly linked
list uses O(n) space, where n is the number of elements in the sequence. Since n is
less than or equal to N, this implies that the asymptotic space usage of a linked-list
implementation is superior to that of a fixed-size array, although there is a small
constant factor overhead that is larger for linked lists, since arrays do not need links
to maintain the ordering of their cells.

i

i

“main” — 2011/1/13 — 9:10 — page 259 — #281
i

i

i

i

i

i

6.4. Case Study: Bubble-Sort on a Sequence 259

6.4 Case Study: Bubble-Sort on a Sequence

In this section, we illustrate the use of the sequence ADT and its implementation
trade-offs with sample C++ functions using the well-known bubble-sort algorithm.

6.4.1 The Bubble-Sort Algorithm

Consider a sequence of n elements such that any two elements in the sequence
can be compared according to an order relation (for example, companies compared
by revenue, states compared by population, or words compared lexicographically).
The sorting problem is to reorder the sequence so that the elements are in non-
decreasing order. The bubble-sort algorithm (see Figure 6.8) solves this problem
by performing a series of passes over the sequence. In each pass, the elements
are scanned by increasing rank, from rank 0 to the end of the sequence. At each
position in a pass, an element is compared with its neighbor, and if these two con-
secutive elements are found to be in the wrong relative order (that is, the preceding
element is larger than the succeeding one), then the two elements are swapped. The
sequence is sorted by completing n such passes.

pass swaps sequence
(5,7,2,6,9,3)

1st 7↔ 2 7↔ 6 9↔ 3 (5,2,6,7,3,9)
2nd 5↔ 2 7↔ 3 (2,5,6,3,7,9)
3rd 6↔ 3 (2,5,3,6,7,9)
4th 5↔ 3 (2,3,5,6,7,9)

Figure 6.8: The bubble-sort algorithm on a sequence of integers. For each pass, the
swaps performed and the sequence after the pass are shown.

The bubble-sort algorithm has the following properties:

• In the first pass, once the largest element is reached, it keeps on being swapped
until it gets to the last position of the sequence.

• In the second pass, once the second largest element is reached, it keeps on
being swapped until it gets to the second-to-last position of the sequence.

• In general, at the end of the ith pass, the right-most i elements of the sequence
(that is, those at indices from n−1 down to n− i) are in final position.

The last property implies that it is correct to limit the number of passes made
by a bubble-sort on an n-element sequence to n. Moreover, it allows the ith pass to
be limited to the first n− i+ 1 elements of the sequence.

i

i

“main” — 2011/1/13 — 9:10 — page 260 — #282
i

i

i

i

i

i

260 Chapter 6. List and Iterator ADTs

6.4.2 A Sequence-Based Analysis of Bubble-Sort

Assume that the implementation of the sequence is such that the accesses to ele-
ments and the swaps of elements performed by bubble-sort take O(1) time each.
That is, the running time of the ith pass is O(n− i + 1). We have that the overall
running time of bubble-sort is

O

(
n

∑
i=1

(n− i+ 1)

)

.

We can rewrite the sum inside the big-Oh notation as

n+(n−1)+ · · ·+ 2+ 1 =
n

∑
i=1

i.

By Proposition 4.3, we have

n

∑
i=1

i =
n(n+ 1)

2
.

Thus, bubble-sort runs in O(n2) time, provided that accesses and swaps can each
be implemented in O(1) time. As we see in future chapters, this performance for
sorting is quite inefficient. We discuss the bubble-sort algorithm here. Our aim is
to demonstrate, not as an example of a good sorting algorithm.

Code Fragments 6.19 and 6.20 present two implementations of bubble-sort on
a sequence of integers. The parameter S is of type Sequence, but we do not specify
whether it is a node-based or array-based implementation. The two bubble-sort
implementations differ in the preferred choice of functions to access and modify
the sequence. The first is based on accessing elements by their index. We use the
function atIndex to access the two elements of interest.

Since function bubbleSort1 accesses elements only through the index-based
interface functions atIndex, this implementation is suitable only for the array-based
implementation of the sequence, for which atIndex takes O(1) time. Given such an
array-based sequence, this bubble-sort implementation runs in O(n2) time.

On the other hand, if we had used our node-based implementation of the se-
quence, each atIndex call would take O(n) time in the worst case. Since this func-
tion is called with each iteration of the inner loop, the entire function would run in
O(n3) worst-case time, which is quite slow if n is large.

In contrast to bubbleSort1, our second function, bubbleSort2, accesses the el-
ements entirely through the use of iterators. The iterators prec and succ play the
roles that indices j−1 and j play, respectively, in bubbleSort1. Observe that when
we first enter the inner loop of bubbleSort1, the value of j−1 is 0, that is, it refers
to the first element of the sequence. This is why we initialize prec to the beginning

i

i

“main” — 2011/1/13 — 9:10 — page 261 — #283
i

i

i

i

i

i

6.4. Case Study: Bubble-Sort on a Sequence 261

void bubbleSort1(Sequence& S) { // bubble-sort by indices
int n = S.size();
for (int i = 0; i < n; i++) { // i-th pass

for (int j = 1; j < n−i; j++) {
Sequence::Iterator prec = S.atIndex(j−1); // predecessor
Sequence::Iterator succ = S.atIndex(j); // successor
if (*prec > *succ) { // swap if out of order

int tmp = *prec; *prec = *succ; *succ = tmp;
}
}
}
}

Code Fragment 6.19: A C++ implementations of bubble-sort based on indices.

of the sequence before entering the inner loop. Whenever we reenter the inner loop,
we initialize succ to prec and then immediately increment it. Thus, succ refers to
the position immediately after prec. Before resuming the loop, we increment prec.

void bubbleSort2(Sequence& S) { // bubble-sort by positions
int n = S.size();
for (int i = 0; i < n; i++) { // i-th pass

Sequence::Iterator prec = S.begin(); // predecessor
for (int j = 1; j < n−i; j++) {

Sequence::Iterator succ = prec;
++succ; // successor
if (*prec > *succ) { // swap if out of order

int tmp = *prec; *prec = *succ; *succ = tmp;
}
++prec; // advance predecessor
}
}
}

Code Fragment 6.20: Two C++ implementations of bubble-sort.

Since the iterator increment operator takes O(1) time in either the array-based
or node-based implementation of a sequence, this second implementation of bubble-
sort would run in O(n2) worst-case time, irrespective of the manner in which the
sequence was implemented.

The two bubble-sort implementations given above show the importance of pro-
viding efficient implementations of ADTs. Nevertheless, in spite of its implementa-
tion simplicity, computing researchers generally feel that the bubble-sort algorithm
is not a good sorting method, because, even if implemented in the best possible
way, it still takes quadratic time. Indeed, there are much more efficient sorting
algorithms that run in O(n log n) time. We explore these in Chapters 8 and 11.

i

i

“main” — 2011/1/13 — 9:10 — page 262 — #284
i

i

i

i

i

i

262 Chapter 6. List and Iterator ADTs

6.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-6.1 Give a C++ code fragment for reversing an array.

R-6.2 Give a C++ code fragment for randomly permuting an array.

R-6.3 Give a C++ code fragment for circularly rotating an array by distance d.

R-6.4 Draw a representation of an initially empty vector A after performing the
following sequence of operations: insert(0,4), insert(0,3), insert(0,2),
insert(2,1), insert(1,5), insert(1,6), insert(3,7), insert(0,8).

R-6.5 Give an adapter class to support the Stack interface using the functions of
the vector ADT.

R-6.6 Provide the missing housekeeping functions (copy constructor, assign-
ment operator, and destructor) for the class ArrayVector of Code Frag-
ment 6.2.

R-6.7 Provide a fully generic version of the class ArrayVector of Code Frag-
ment 6.2 using a templated class.

R-6.8 Give a templated C++ function sum(v) that returns the sum of elements
in an STL vector v. Use an STL iterator to enumerate the elements of v.
Assume that the element type of v is any numeric type that supports the +
operator.

R-6.9 Rewrite the justification of Proposition 6.2 under the assumption that the
cost of growing the array from size k to size 2k is 3k cyber-dollars. How
much should each push operation be charged to make the amortization
work?

R-6.10 Draw pictures illustrating each of the major steps in the algorithms for
functions insert(p,e), insertFront(e), and insertBack(e) of Code Frag-
ment 6.5.

R-6.11 Provide a fully generic version of the class NodeList of Code Fragment 6.9
using a templated class.

R-6.12 Provide the missing housekeeping functions (copy constructor, assign-
ment operator, and destructor) for the class NodeList, which was pre-
sented in Code Fragment 6.9.

R-6.13 In our implementation of an iterator for class NodeList in Code Frag-
ment 6.7, we defined only the preincrement operator. Provide a definition
for a postincrement operator.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 263 — #285
i

i

i

i

i

i

6.5. Exercises 263

R-6.14 In our implementation of the atRank(i) function in Code Fragment 6.18
for class NodeSequence, we walked from the front of the list. Present a
more efficient implementation, which walks from whichever end of the
list is closer to index i.

R-6.15 Provide the details of an array implementation of the list ADT.

R-6.16 Suppose that we have made kn total accesses to the elements in a list L of
n elements, for some integer k≥ 1. What are the minimum and maximum
number of elements that have been accessed fewer than k times?

R-6.17 Give pseudo-code describing how to implement all the operations in the
sequence ADT using an array used in a circular fashion. What is the
running time for each of these functions?

R-6.18 Using the Sequence interface functions, describe a recursive function for
determining if a sequence S of n integer objects contains a given integer k.
Your function should not contain any loops. How much space does your
function use in addition to the space used for S?

R-6.19 Briefly describe how to perform a new sequence function makeFirst(p)
that moves an element of a sequence S at position p to be the first element
in S while keeping the relative ordering of the remaining elements in S
unchanged. Your function should run in O(1) time if S is implemented
with a doubly linked list.

R-6.20 Describe how to implement an iterator for the class ArrayVector of Code
Fragment 6.2, based on an integer index. Include pseudo-code fragments
describing the dereferencing operator (“*”), equality test (“==”), and in-
crement and decrement (“++” and “– –”).

Creativity

C-6.1 Describe what changes need to be made to the extendable array imple-
mentation given in Code Fragment 6.2 in order to avoid unexpected ter-
mination due to an error. Specify the new types of exceptions you would
add, and when and where they should be thrown.

C-6.2 Give complete C++ code for a new class, ShrinkingVector, that extends
the ArrayVector class shown in Code Fragment 6.2 and adds a function,
shrinkToFit, which replaces the underlying array with an array whose ca-
pacity is exactly equal to the number of elements currently in the vector.

C-6.3 Describe what changes need to be made to the extendable array implemen-
tation given in Code Fragment 6.2 in order to shrink the size N of the array
by half any time the number of elements in the vector goes below N/4.

i

i

“main” — 2011/1/13 — 9:10 — page 264 — #286
i

i

i

i

i

i

264 Chapter 6. List and Iterator ADTs

C-6.4 Show that, using an extendable array that grows and shrinks as in the
previous exercise, the following series of 2n operations takes O(n) time:
(i) n push operations on a vector with initial capacity N = 1; (ii) n pop
(removal of the last element) operations.

C-6.5 Describe a function for performing a card shuffle of an array of 2n el-
ements, by converting it into two lists. A card shuffle is a permutation
where a list L is cut into two lists, L1 and L2, where L1 is the first half of
L and L2 is the second half of L, and then these two lists are merged into
one by taking the first element in L1, then the first element in L2, followed
by the second element in L1, the second element in L2, and so on.

C-6.6 Show how to improve the implementation of function insert(i,e) in Code
Fragment 6.5 so that, in case of an overflow, the elements are copied into
their final place in the new array.

C-6.7 Consider an implementation of the vector ADT using an extendable array,
but instead of copying the elements into an array of double the size (that
is, from N to 2N) when its capacity is reached, we copy the elements into
an array with ⌈N/4⌉ additional cells, going from capacity N to N +⌈N/4⌉.
Show that performing a sequence of n push operations (that is, insertions
at the end) still runs in O(n) time in this case.

C-6.8 The NodeList implementation given in Code Fragments 6.9 through 6.12
does not do any checking to determine whether a given position p is ac-
tually a member of this particular list. For example, if p is a position in
list S and we call T.insert(p,e) on a different list T , then we actually will
add the element to S just before p. Describe how to change the NodeList
implementation in an efficient manner to disallow such misuses.

C-6.9 Describe an implementation of the functions insertBack and insertFront
realized by using combinations of only the functions empty and insert.

C-6.10 Consider the following fragment of C++ code, assuming that the construc-
tor Sequence creates an empty sequence of integer objects. Recall that
division between integers performs truncation (for example, 7/2 = 3).

Sequence<int> seq;
for (int i = 0; i < n; i++)

seq.insertAtRank(i/2, i);

a. Assume that the for loop is executed 10 times, that is, n = 10, and
show the sequence after each iteration of the loop.

b. Draw a schematic illustration of the sequence at the end of the for
loop, for a generic number n of iterations.

C-6.11 Suppose we want to extend the Sequence abstract data type with functions
indexOfElement(e) and positionOfElement(e), which respectively return
the index and the position of the (first occurrence of) element e in the

i

i

“main” — 2011/1/13 — 9:10 — page 265 — #287
i

i

i

i

i

i

6.5. Exercises 265

sequence. Show how to implement these functions by expressing them in
terms of other functions of the Sequence interface.

C-6.12 Describe the structure and pseudo-code for an array-based implementation
of the vector ADT that achieves O(1) time for insertions and removals
at index 0, as well as insertions and removals at the end of the vector.
Your implementation should also provide for a constant time elemAtRank
function.

C-6.13 Describe an efficient way of putting a vector representing a deck of n cards
into random order. You may use a function, randomInteger(n), which
returns a random number between 0 and n− 1, inclusive. Your method
should guarantee that every possible ordering is equally likely. What is
the running time of your function?

C-6.14 Design a circular node list ADT that abstracts a circularly linked list in the
same way that the node list ADT abstracts a doubly linked list.

C-6.15 An array is sparse if most of its entries are NULL. A list L can be used
to implement such an array, A, efficiently. In particular, for each nonnull
cell A[i], we can store an entry (i,e) in L, where e is the element stored at
A[i]. This approach allows us to represent A using O(m) storage, where m
is the number of nonnull entries in A. Describe and analyze efficient ways
of performing the functions of the vector ADT on such a representation.

C-6.16 Show that only n−1 passes are needed in the execution of bubble-sort on
a sequence with n elements.

C-6.17 Give a pseudo-code description of an implementation of the bubble-sort
algorithm that uses only two stacks and, at most, five additional variables
to sort a collection of objects stored initially in one of the stacks. You
may operate on the stacks using only functions of the stack ADT. The
final output should be one of the stacks containing all the elements so that
a sequence of pop operations would list the elements in order.

C-6.18 A useful operation in databases is the natural join. If we view a database
as a list of ordered pairs of objects, then the natural join of databases A
and B is the list of all ordered triples (x,y,z) such that the pair (x,y) is in A
and the pair (y,z) is in B. Describe and analyze an efficient algorithm for
computing the natural join of a list A of n pairs and a list B of m pairs.

C-6.19 When Bob wants to send Alice a message M on the Internet, he breaks M
into n data packets, numbers the packets consecutively, and injects them
into the network. When the packets arrive at Alice’s computer, they may
be out of order, so Alice must assemble the sequence of n packets in order
before she can be sure she has the entire message. Describe an efficient
scheme for Alice to do this. What is the running time of this algorithm?

C-6.20 Given a list L of n positive integers, each represented with k = ⌈logn⌉+1
bits, describe an O(n)-time function for finding a k-bit integer not in L.

i

i

“main” — 2011/1/13 — 9:10 — page 266 — #288
i

i

i

i

i

i

266 Chapter 6. List and Iterator ADTs

C-6.21 Argue why any solution to the previous problem must run in Ω(n) time.

C-6.22 Given a list L of n arbitrary integers, design an O(n)-time function for
finding an integer that cannot be formed as the sum of two integers in L.

Projects

P-6.1 Implement the vector ADT by means of an extendable array used in a
circular fashion, so that insertions and deletions at the beginning and end
of the vector run in constant time.

P-6.2 Implement the vector ADT using a doubly linked list. Show experimen-
tally that this implementation is worse than the array-based approach.

P-6.3 Write a simple text editor, which stores a string of characters using the list
ADT, together with a cursor object that highlights the position of some
character in the string (or possibly the position before the first character).
Your editor should support the following operations and redisplay the cur-
rent text (that is, the list) after performing any one of them.
• left: Move cursor left one character (or nothing if at the beginning)
• right: Move cursor right one character (or do nothing if at the end)
• delete: Delete the character to the right of the cursor (or do nothing

if at the end)
• insert c: Insert the character c just after the cursor

P-6.4 Implement the sequence ADT by means of an extendable array used in a
circular fashion, so that insertions and deletions at the beginning and end
of the sequence run in constant time.

P-6.5 Implement the sequence ADT by means of a singly linked list.

P-6.6 Write a complete adapter class that implements the sequence ADT using
an STL vector object.

Chapter Notes

Sequences and iterators are pervasive concepts in the C++ Standard Template Library
(STL) [81], and they play fundamental roles in JDSL, the data structures library in Java. For
further information on STL vector and list classes, see books by Stroustrup [91], Lippmann
and Lajoie [67], and Musser and Saini [81]. The list ADT was proposed by several authors,
including Aho, Hopcroft, and Ullman [5], who introduce the “position” abstraction, and
Wood [104], who defines a list ADT similar to ours. Implementations of sequences via ar-
rays and linked lists are discussed in Knuth’s seminal book, Fundamental Algorithms [56].
Knuth’s companion volume, Sorting and Searching [57], describes the bubble-sort function
and the history of this and other sorting algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 267 — #289
i

i

i

i

i

i

Chapter

7 Trees

Contents

7.1 General Trees . 268

7.1.1 Tree Definitions and Properties 269

7.1.2 Tree Functions . 272

7.1.3 A C++ Tree Interface 273

7.1.4 A Linked Structure for General Trees 274

7.2 Tree Traversal Algorithms 275

7.2.1 Depth and Height 275

7.2.2 Preorder Traversal 278

7.2.3 Postorder Traversal 281

7.3 Binary Trees . 284

7.3.1 The Binary Tree ADT 285

7.3.2 A C++ Binary Tree Interface 286

7.3.3 Properties of Binary Trees 287

7.3.4 A Linked Structure for Binary Trees 289

7.3.5 A Vector-Based Structure for Binary Trees 295

7.3.6 Traversals of a Binary Tree 297

7.3.7 The Template Function Pattern 303

7.3.8 Representing General Trees with Binary Trees 309

7.4 Exercises . 310

i

i

“main” — 2011/1/13 — 9:10 — page 268 — #290
i

i

i

i

i

i

268 Chapter 7. Trees

7.1 General Trees

Productivity experts say that breakthroughs come by thinking “nonlinearly.” In
this chapter, we discuss one of the most important nonlinear data structures in
computing—trees. Tree structures are indeed a breakthrough in data organization,
for they allow us to implement a host of algorithms much faster than when using
linear data structures, such as lists, vectors, and sequences. Trees also provide a
natural organization for data, and consequently have become ubiquitous structures
in file systems, graphical user interfaces, databases, Web sites, and other computer
systems.

It is not always clear what productivity experts mean by “nonlinear” thinking,
but when we say that trees are “nonlinear,” we are referring to an organizational
relationship that is richer than the simple “before” and “after” relationships be-
tween objects in sequences. The relationships in a tree are hierarchical, with some
objects being “above” and some “below” others. Actually, the main terminology
for tree data structures comes from family trees, with the terms “parent,” “child,”
“ancestor,” and “descendant” being the most common words used to describe rela-
tionships. We show an example of a family tree in Figure 7.1.

Figure 7.1: A family tree showing some descendants of Abraham, as recorded in
Genesis, chapters 25–36.

i

i

“main” — 2011/1/13 — 9:10 — page 269 — #291
i

i

i

i

i

i

7.1. General Trees 269

7.1.1 Tree Definitions and Properties

A tree is an abstract data type that stores elements hierarchically. With the excep-
tion of the top element, each element in a tree has a parent element and zero or
more children elements. A tree is usually visualized by placing elements inside
ovals or rectangles, and by drawing the connections between parents and children
with straight lines. (See Figure 7.2.) We typically call the top element the root
of the tree, but it is drawn as the highest element, with the other elements being
connected below (just the opposite of a botanical tree).

Figure 7.2: A tree with 17 nodes representing the organizational structure of a fic-
titious corporation. Electronics R’Us is stored at the root. The children of the root
store R&D, Sales, Purchasing, and Manufacturing. The internal nodes store Sales,
International, Overseas, Electronics R’Us, and Manufacturing.

Formal Tree Definition

Formally, we define tree T to be a set of nodes storing elements in a parent-child
relationship with the following properties:

• If T is nonempty, it has a special node, called the root of T , that has no
parent.

• Each node v of T different from the root has a unique parent node w; every
node with parent w is a child of w.

Note that according to our definition, a tree can be empty, meaning that it doesn’t
have any nodes. This convention also allows us to define a tree recursively, such
that a tree T is either empty or consists of a node r, called the root of T , and a
(possibly empty) set of trees whose roots are the children of r.

i

i

“main” — 2011/1/13 — 9:10 — page 270 — #292
i

i

i

i

i

i

270 Chapter 7. Trees

Other Node Relationships

Two nodes that are children of the same parent are siblings. A node v is external
if v has no children. A node v is internal if it has one or more children. External
nodes are also known as leaves.

Example 7.1: In most operating systems, files are organized hierarchically into
nested directories (also called folders), which are presented to the user in the form
of a tree. (See Figure 7.3.) More specifically, the internal nodes of the tree are
associated with directories and the external nodes are associated with regular files.
In the UNIX and Linux operating systems, the root of the tree is appropriately
called the “root directory,” and is represented by the symbol “/.”

Figure 7.3: Tree representing a portion of a file system.

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent
of v. Conversely, we say that a node v is a descendent of a node u if u is an ancestor
of v. For example, in Figure 7.3, cs252/ is an ancestor of papers/, and pr3 is a
descendent of cs016/. The subtree of T rooted at a node v is the tree consisting of
all the descendents of v in T (including v itself). In Figure 7.3, the subtree rooted at
cs016/ consists of the nodes cs016/, grades, homeworks/, programs/, hw1, hw2,
hw3, pr1, pr2, and pr3.

i

i

“main” — 2011/1/13 — 9:10 — page 271 — #293
i

i

i

i

i

i

7.1. General Trees 271

Edges and Paths in Trees

An edge of tree T is a pair of nodes (u,v) such that u is the parent of v, or vice
versa. A path of T is a sequence of nodes such that any two consecutive nodes in
the sequence form an edge. For example, the tree in Figure 7.3 contains the path
(cs252/, projects/, demos/, market).

Example 7.2: When using single inheritance, the inheritance relation between
classes in a C++ program forms a tree. The base class is the root of the tree.

Ordered Trees

A tree is ordered if there is a linear ordering defined for the children of each node;
that is, we can identify children of a node as being the first, second, third, and so
on. Such an ordering is determined by how the tree is to be used, and is usually in-
dicated by drawing the tree with siblings arranged from left to right, corresponding
to their linear relationship. Ordered trees typically indicate the linear order rela-
tionship existing between siblings by listing them in a sequence or iterator in the
correct order.

Example 7.3: A structured document, such as a book, is hierarchically organized
as a tree whose internal nodes are chapters, sections, and subsections, and whose
external nodes are paragraphs, tables, figures, the bibliography, and so on. (See
Figure 7.4.) The root of the tree corresponds to the book itself. We could, in fact,
consider expanding the tree further to show paragraphs consisting of sentences,
sentences consisting of words, and words consisting of characters. In any case,
such a tree is an example of an ordered tree, because there is a well-defined ordering
among the children of each node.

Figure 7.4: An ordered tree associated with a book.

i

i

“main” — 2011/1/13 — 9:10 — page 272 — #294
i

i

i

i

i

i

272 Chapter 7. Trees

7.1.2 Tree Functions

The tree ADT stores elements at the nodes of the tree. Because nodes are internal
aspects of our implementation, we do not allow access to them directly. Instead,
each node of the tree is associated with a position object, which provides public
access to nodes. For this reason, when discussing the public interfaces of functions
of our ADT, we use the notation p (rather than v) to clarify that the argument to
the function is a position and not a node. But, given the tight connection between
these two objects, we often blur the distinction between them, and use the terms
“position” and “node” interchangeably for trees.

As we did with positions for lists in Chapter 6, we exploit C++’s ability to
overload the dereferencing operator (“*”) to access the element associated with a
position. Given a position variable p, the associated element is accessed by *p.
This can be used both for reading and modifying the element’s value.

It is useful to store collections of positions. For example, the children of a node
in a tree can be presented to the user as such a list. We define position list, to be a
list whose elements are tree positions.

The real power of a tree position arises from its ability to access the neighboring
elements of the tree. Given a position p of tree T , we define the following:

p.parent(): Return the parent of p; an error occurs if p is the root.

p.children(): Return a position list containing the children of node p.

p.isRoot(): Return true if p is the root and false otherwise.

p.isExternal(): Return true if p is external and false otherwise.
If a tree T is ordered, then the list provided by p.children() provides access to the
children of p in order. If p is an external node, then p.children() returns an empty
list. If we wanted, we could also provide a function p.isInternal(), which would
simply return the complement of p.isExternal().

The tree itself provides the following functions. The first two, size and empty,
are just the standard functions that we defined for the other container types we al-
ready saw. The function root yields the position of the root and positions produces
a list containing all the tree’s nodes.

size(): Return the number of nodes in the tree.

empty(): Return true if the tree is empty and false otherwise.

root(): Return a position for the tree’s root; an error occurs if the
tree is empty.

positions(): Return a position list of all the nodes of the tree.
We have not defined any specialized update functions for a tree here. Instead,

we prefer to describe different tree update functions in conjunction with specific
applications of trees in subsequent chapters. In fact, we can imagine several kinds
of tree update operations beyond those given in this book.

i

i

“main” — 2011/1/13 — 9:10 — page 273 — #295
i

i

i

i

i

i

7.1. General Trees 273

7.1.3 A C++ Tree Interface

Let us present an informal C++ interface for the tree ADT. We begin by presenting
an informal C++ interface for the class Position, which represents a position in a
tree. This is given in Code Fragment 7.1.

template <typename E> // base element type
class Position<E> { // a node position
public:

E& operator*(); // get element
Position parent() const; // get parent
PositionList children() const; // get node’s children
bool isRoot() const; // root node?
bool isExternal() const; // external node?
};

Code Fragment 7.1: An informal interface for a position in a tree (not a complete
C++ class).

We have provided a version of the derferencing operator (“*”) that returns a
standard (readable and writable) reference. (For simplicity, we did not provide a
version that returns a constant reference, but this would be an easy addition.)

Next, in Code Fragment 7.2, we present our informal C++ interface for a tree.
To keep the interface as simple as possible, we ignore error processing; hence, we
do not declare any exceptions to be thrown.

template <typename E> // base element type
class Tree<E> {
public: // public types

class Position; // a node position
class PositionList; // a list of positions

public: // public functions
int size() const; // number of nodes
bool empty() const; // is tree empty?
Position root() const; // get the root
PositionList positions() const; // get positions of all nodes
};

Code Fragment 7.2: An informal interface for the tree ADT (not a complete class).

Although we have not formally defined an interface for the class PositionList,
we may assume that it satisfies the standard list ADT as given in Chapter 6. In
our code examples, we assume that PositionList is implemented as an STL list of
objects of type Position, or more concretely, “std::list<Position>.” In particular, we
assume that PositionList provides an iterator type, which we simply call Iterator in
our later examples.

i

i

“main” — 2011/1/13 — 9:10 — page 274 — #296
i

i

i

i

i

i

274 Chapter 7. Trees

7.1.4 A Linked Structure for General Trees

A natural way to realize a tree T is to use a linked structure, where we represent
each node of T by a position object p (see Figure 7.5(a)) with the following fields:
a reference to the node’s element, a link to the node’s parent, and some kind of
collection (for example, a list or array) to store links to the node’s children. If p
is the root of T , then the parent field of p is NULL. Also, we store a reference to
the root of T and the number of nodes of T in internal variables. This structure is
schematically illustrated in Figure 7.5(b).

element

parent

childrenContainer

PVD

JFKBWIATL LAX

(a) (b)

Figure 7.5: The linked structure for a general tree: (a) the node structure; (b) the
portion of the data structure associated with a node and its children.

Table 7.1 summarizes the performance of the linked-structure implementation
of a tree. The analysis is left as an exercise (C-7.27), but we note that, by using a
container to store the children of each node p, we can implement the children(p)
function by using the iterator for the container to enumerate its elements.

Operation Time
isRoot, isExternal O(1)

parent O(1)

children(p) O(cp)

size, empty O(1)

root O(1)

positions O(n)

Table 7.1: Running times of the functions of an n-node linked tree structure. Let cp

denote the number of children of a node p. The space usage is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 275 — #297
i

i

i

i

i

i

7.2. Tree Traversal Algorithms 275

7.2 Tree Traversal Algorithms

In this section, we present algorithms for performing traversal computations on a
tree by accessing it through the tree ADT functions.

7.2.1 Depth and Height

Let p be a node of a tree T . The depth of p is the number of ancestors of p, exclud-
ing p itself. For example, in the tree of Figure 7.2, the node storing International
has depth 2. Note that this definition implies that the depth of the root of T is 0.
The depth of p’s node can also be recursively defined as follows:

• If p is the root, then the depth of p is 0
• Otherwise, the depth of p is one plus the depth of the parent of p

Based on the above definition, the recursive algorithm depth(T, p) shown in
Code Fragment 7.3, computes the depth of a node referenced by position p of T by
calling itself recursively on the parent of p, and adding 1 to the value returned.

Algorithm depth(T, p):

if p.isRoot() then
return 0

else
return 1+depth(T, p.parent())

Code Fragment 7.3: An algorithm to compute the depth of a node p in a tree T .

A simple C++ implementation of algorithm depth is shown in Code Fragment 7.4.

int depth(const Tree& T, const Position& p) {
if (p.isRoot())

return 0; // root has depth 0
else

return 1 + depth(T, p.parent()); // 1 + (depth of parent)
}

Code Fragment 7.4: A C++ implementation of the algorithm of Code Fragment 7.3.

The running time of algorithm depth(T, p) is O(dp), where dp denotes the
depth of the node p in the tree T , because the algorithm performs a constant-time
recursive step for each ancestor of p. Thus, in the worst case, the depth algorithm
runs in O(n) time, where n is the total number of nodes in the tree T , since some
nodes may have this depth in T . Although such a running time is a function of
the input size, it is more accurate to characterize the running time in terms of the
parameter dp, since it is often much smaller than n.

i

i

“main” — 2011/1/13 — 9:10 — page 276 — #298
i

i

i

i

i

i

276 Chapter 7. Trees

The height of a node p in a tree T is also defined recursively.

• If p is external, then the height of p is 0
• Otherwise, the height of p is one plus the maximum height of a child of p

The height of a tree T is the height of the root of T . For example, the tree of
Figure 7.2 has height 4. In addition, height can also be viewed as follows.

Proposition 7.4: The height of a tree is equal to the maximum depth of its exter-
nal nodes.

We leave the justification of this fact to an exercise (R-7.7). Based on this
proposition, we present an algorithm, height1, for computing the height of a tree T .
It is shown in Code Fragment 7.5. It enumerates all the nodes in the tree and invokes
function depth (Code Fragment 7.3) to compute the depth of each external node.

Algorithm height1(T):

h = 0
for each p ∈ T.positions() do

if p.isExternal() then
h = max(h,depth(T, p))

return h

Code Fragment 7.5: Algorithm height1(T) for computing the height of a tree T
based on computing the maximum depth of the external nodes.

The C++ implementation of this algorithm is shown in Code Fragment 7.6. We
assume that Iterator is the iterator class for PositionList. Given such an iterator q,
we can access the associated position as *q.

int height1(const Tree& T) {
int h = 0;
PositionList nodes = T.positions(); // list of all nodes
for (Iterator q = nodes.begin(); q != nodes.end(); ++q) {

if (q−>isExternal())
h = max(h, depth(T, *q)); // get max depth among leaves

}
return h;
}

Code Fragment 7.6: A C++ implementation of the function height1.

Unfortunately, algorithm height1 is not very efficient. Since height1 calls algo-
rithm depth(p) on each external node p of T , the running time of height1 is given
by O(n+∑p(1+dp)), where n is the number of nodes of T , dp is the depth of node
p, and E is the set of external nodes of T . In the worst case, the sum ∑p(1 + dp)
is proportional to n2. (See Exercise C-7.8.) Thus, algorithm height1 runs in O(n2)
time.

i

i

“main” — 2011/1/13 — 9:10 — page 277 — #299
i

i

i

i

i

i

7.2. Tree Traversal Algorithms 277

Algorithm height2, shown in Code Fragment 7.7 and implemented in C++ in
Code Fragment 7.8, computes the height of tree T in a more efficient manner by
using the recursive definition of height.

Algorithm height2(T, p):

if p.isExternal() then
return 0

else
h = 0
for each q ∈ p.children() do

h = max(h,height2(T,q))
return 1+ h

Code Fragment 7.7: A more efficient algorithm for computing the height of the
subtree of tree T rooted at a node p.

int height2(const Tree& T, const Position& p) {
if (p.isExternal()) return 0; // leaf has height 0
int h = 0;
PositionList ch = p.children(); // list of children
for (Iterator q = ch.begin(); q != ch.end(); ++q)

h = max(h, height2(T, *q));
return 1 + h; // 1 + max height of children
}

Code Fragment 7.8: Method height2 written in C++.

Algorithm height2 is more efficient than height1 (from Code Fragment 7.5).
The algorithm is recursive, and, if it is initially called on the root of T , it will
eventually be called on each node of T . Thus, we can determine the running time
of this method by summing, over all the nodes, the amount of time spent at each
node (on the nonrecursive part). Processing each node in children(p) takes O(cp)
time, where cp denotes the number of children of node p. Also, the while loop
has cp iterations and each iteration of the loop takes O(1) time plus the time for
the recursive call on a child of p. Thus, algorithm height2 spends O(1 + cp) time
at each node p, and its running time is O(∑p(1 + cp)). In order to complete the
analysis, we make use of the following property.

Proposition 7.5: Let T be a tree with n nodes, and let cp denote the number of
children of a node p of T . Then ∑p cp = n−1.

Justification: Each node of T , with the exception of the root, is a child of another
node, and thus contributes one unit to the above sum.

By Proposition 7.5, the running time of algorithm height2, when called on the
root of T , is O(n), where n is the number of nodes of T .

i

i

“main” — 2011/1/13 — 9:10 — page 278 — #300
i

i

i

i

i

i

278 Chapter 7. Trees

7.2.2 Preorder Traversal

A traversal of a tree T is a systematic way of accessing, or “visiting,” all the nodes
of T . In this section, we present a basic traversal scheme for trees, called pre-
order traversal. In the next section, we study another basic traversal scheme, called
postorder traversal.

In a preorder traversal of a tree T , the root of T is visited first and then the
subtrees rooted at its children are traversed recursively. If the tree is ordered, then
the subtrees are traversed according to the order of the children. The specific action
associated with the “visit” of a node depends on the application of this traversal, and
could involve anything from incrementing a counter to performing some complex
computation for this node. The pseudo-code for the preorder traversal of the subtree
rooted at a node referenced by position p is shown in Code Fragment 7.9. We
initially invoke this routine with the call preorder(T,T.root()).

Algorithm preorder(T, p):

perform the “visit” action for node p
for each child q of p do

recursively traverse the subtree rooted at q by calling preorder(T,q)

Code Fragment 7.9: Algorithm preorder for performing the preorder traversal of the
subtree of a tree T rooted at a node p.

The preorder traversal algorithm is useful for producing a linear ordering of
the nodes of a tree where parents must always come before their children in the
ordering. Such orderings have several different applications. We explore a simple
instance of such an application in the next example.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 7.6: Preorder traversal of an ordered tree, where the children of each node
are ordered from left to right.

i

i

“main” — 2011/1/13 — 9:10 — page 279 — #301
i

i

i

i

i

i

7.2. Tree Traversal Algorithms 279

Example 7.6: The preorder traversal of the tree associated with a document, as in
Example 7.3, examines an entire document sequentially, from beginning to end. If
the external nodes are removed before the traversal, then the traversal examines the
table of contents of the document. (See Figure 7.6.)

The preorder traversal is also an efficient way to access all the nodes of a tree.
To justify this, let us consider the running time of the preorder traversal of a tree
T with n nodes under the assumption that visiting a node takes O(1) time. The
analysis of the preorder traversal algorithm is actually similar to that of algorithm
height2 (Code Fragment 7.8), given in Section 7.2.1. At each node p, the nonre-
cursive part of the preorder traversal algorithm requires time O(1 + cp), where cp

is the number of children of p. Thus, by Proposition 7.5, the overall running time
of the preorder traversal of T is O(n).

Algorithm preorderPrint(T, p), implemented in C++ in Code Fragment 7.10,
performs a preorder printing of the subtree of a node p of T , that is, it performs the
preorder traversal of the subtree rooted at p and prints the element stored at a node
when the node is visited. Recall that, for an ordered tree T , function T.children(p)
returns an iterator that accesses the children of p in order. We assume that Iterator
is this iterator type. Given an iterator q, the associated position is given by *q.

void preorderPrint(const Tree& T, const Position& p) {
cout << *p; // print element
PositionList ch = p.children(); // list of children
for (Iterator q = ch.begin(); q != ch.end(); ++q) {

cout << " ";
preorderPrint(T, *q);
}
}

Code Fragment 7.10: Method preorderPrint(T, p) that performs a preorder printing
of the elements in the subtree associated with position p of T .

There is an interesting variation of the preorderPrint function that outputs a
different representation of an entire tree. The parenthetic string representation
P(T) of tree T is recursively defined as follows. If T consists of a single node
referenced by a position p, then

P(T) = *p.

Otherwise,

P(T) = *p+"("+ P(T1)+ P(T2)+ · · ·+ P(Tk)+")",

where p is the root position of T and T1,T2, . . . ,Tk are the subtrees rooted at the
children of p, which are given in order if T is an ordered tree.

i

i

“main” — 2011/1/13 — 9:10 — page 280 — #302
i

i

i

i

i

i

280 Chapter 7. Trees

Note that the definition of P(T) is recursive. Also, we are using “+” here
to denote string concatenation. (Recall the string type from Section 1.1.3.) The
parenthetic representation of the tree of Figure 7.2 is shown in Figure 7.7.

Electronics R’Us (
R&D
Sales (

Domestic
International (

Canada
S.America
Overseas (Africa Europe Asia Australia)))

Purchasing
Manufacturing (TV CD Tuner))

Figure 7.7: Parenthetic representation of the tree of Figure 7.2. Indentation, line
breaks, and spaces have been added for clarity.

Note that, technically speaking, there are some computations that occur be-
tween and after the recursive calls at a node’s children in the above algorithm. We
still consider this algorithm to be a preorder traversal, however, since the primary
action of printing a node’s contents occurs prior to the recursive calls.

The C++ function parenPrint, shown in Code Fragment 7.11, is a variation of
function preorderPrint (Code Fragment 7.10). It implements the definition given
above to output a parenthetic string representation of a tree T . It first prints the ele-
ment associated with each node. For each internal node, we first print “(”, followed
by the parenthetical representation of each of its children, followed by “)”.

void parenPrint(const Tree& T, const Position& p) {
cout << *p; // print node’s element
if (!p.isExternal()) {

PositionList ch = p.children(); // list of children
cout << "("; // open
for (Iterator q = ch.begin(); q != ch.end(); ++q) {

if (q != ch.begin()) cout << " "; // print separator
parenPrint(T, *q); // visit the next child
}
cout << ")"; // close
}
}

Code Fragment 7.11: A C++ implementation of algorithm parenPrint.

We explore a modification of Code Fragment 7.11 in Exercise R-7.10, to dis-
play a tree in a fashion more closely matching that given in Figure 7.7.

i

i

“main” — 2011/1/13 — 9:10 — page 281 — #303
i

i

i

i

i

i

7.2. Tree Traversal Algorithms 281

7.2.3 Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. This algo-
rithm can be viewed as the opposite of the preorder traversal, because it recursively
traverses the subtrees rooted at the children of the root first, and then visits the root.
It is similar to the preorder traversal, however, in that we use it to solve a particular
problem by specializing an action associated with the “visit” of a node p. Still,
as with the preorder traversal, if the tree is ordered, we make recursive calls for
the children of a node p according to their specified order. Pseudo-code for the
postorder traversal is given in Code Fragment 7.12.

Algorithm postorder(T, p):

for each child q of p do
recursively traverse the subtree rooted at q by calling postorder(T,q)

perform the “visit” action for node p

Code Fragment 7.12: Algorithm postorder for performing the postorder traversal of
the subtree of a tree T rooted at a node p.

The name of the postorder traversal comes from the fact that this traversal
method visits a node p after it has visited all the other nodes in the subtree rooted
at p. (See Figure 7.8.)

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 7.8: Postorder traversal of the ordered tree of Figure 7.6.

The analysis of the running time of a postorder traversal is analogous to that of
a preorder traversal. (See Section 7.2.2.) The total time spent in the nonrecursive
portions of the algorithm is proportional to the time spent visiting the children of
each node in the tree. Thus, a postorder traversal of a tree T with n nodes takes
O(n) time, assuming that visiting each node takes O(1) time. That is, the postorder
traversal runs in linear time.

In Code Fragment 7.13, we present a C++ function postorderPrint which per-

i

i

“main” — 2011/1/13 — 9:10 — page 282 — #304
i

i

i

i

i

i

282 Chapter 7. Trees

forms a postorder traversal of a tree T . This function prints the element stored at a
node when it is visited.

void postorderPrint(const Tree& T, const Position& p) {
PositionList ch = p.children(); // list of children
for (Iterator q = ch.begin(); q != ch.end(); ++q) {

postorderPrint(T, *q);
cout << " ";
}
cout << *p; // print element
}

Code Fragment 7.13: The function postorderPrint(T, p), which prints the elements
of the subtree of position p of T .

The postorder traversal method is useful for solving problems where we wish
to compute some property for each node p in a tree, but computing that property
for p requires that we have already computed that same property for p’s children.
Such an application is illustrated in the following example.

Example 7.7: Consider a file-system tree T , where external nodes represent files
and internal nodes represent directories (Example 7.1). Suppose we want to com-
pute the disk space used by a directory, which is recursively given by the sum of
the following (see Figure 7.9):

• The size of the directory itself
• The sizes of the files in the directory
• The space used by the children directories

Figure 7.9: The tree of Figure 7.3 representing a file system, showing the name and
size of the associated file/directory inside each node, and the disk space used by the
associated directory above each internal node.

i

i

“main” — 2011/1/13 — 9:10 — page 283 — #305
i

i

i

i

i

i

7.2. Tree Traversal Algorithms 283

This computation can be done with a postorder traversal of tree T . After the
subtrees of an internal node p have been traversed, we compute the space used by
p by adding the sizes of the directory p itself and of the files contained in p, to
the space used by each internal child of p, which was computed by the recursive
postorder traversals of the children of p.

Motivated by Example 7.7, algorithm diskSpace, which is presented in Code
Fragment 7.14, performs a postorder traversal of a file-system tree T , printing the
name and disk space used by the directory associated with each internal node of
T . When called on the root of tree T , diskSpace runs in time O(n), where n is the
number of nodes of the tree, provided the auxiliary functions name(p) and size(p)
take O(1) time.

int diskSpace(const Tree& T, const Position& p) {
int s = size(p); // start with size of p
if (!p.isExternal()) { // if p is internal

PositionList ch = p.children(); // list of p’s children
for (Iterator q = ch.begin(); q != ch.end(); ++q)

s += diskSpace(T, *q); // sum the space of subtrees
cout << name(p) << ": " << s << endl; // print summary
}
return s;
}

Code Fragment 7.14: The function diskSpace, which prints the name and disk space
used by the directory associated with p, for each internal node p of a file-system
tree T . This function calls the auxiliary functions name and size, which should be
defined to return the name and size of the file/directory associated with a node.

Other Kinds of Traversals

Preorder traversal is useful when we want to perform an action for a node and then
recursively perform that action for its children, and postorder traversal is useful
when we want to first perform an action on the descendents of a node and then
perform that action on the node.

Although the preorder and postorder traversals are common ways of visiting
the nodes of a tree, we can also imagine other traversals. For example, we could
traverse a tree so that we visit all the nodes at depth d before we visit the nodes at
depth d+1. Such a traversal, called a breadth-first traversal, could be implemented
using a queue, whereas the preorder and postorder traversals use a stack. (This stack
is implicit in our use of recursion to describe these functions, but we could make
this use explicit, as well, to avoid recursion.) In addition, binary trees, which we
discuss next, support an additional traversal method known as the inorder traversal.

i

i

“main” — 2011/1/13 — 9:10 — page 284 — #306
i

i

i

i

i

i

284 Chapter 7. Trees

7.3 Binary Trees

A binary tree is an ordered tree in which every node has at most two children.

1. Every node has at most two children.

2. Each child node is labeled as being either a left child or a right child.
3. A left child precedes a right child in the ordering of children of a node.

The subtree rooted at a left or right child of an internal node is called the node’s
left subtree or right subtree, respectively. A binary tree is proper if each node has
either zero or two children. Some people also refer to such trees as being full binary
trees. Thus, in a proper binary tree, every internal node has exactly two children.
A binary tree that is not proper is improper.

Example 7.8: An important class of binary trees arises in contexts where we wish
to represent a number of different outcomes that can result from answering a series
of yes-or-no questions. Each internal node is associated with a question. Starting at
the root, we go to the left or right child of the current node, depending on whether
the answer to the question is “Yes” or “No.” With each decision, we follow an
edge from a parent to a child, eventually tracing a path in the tree from the root
to an external node. Such binary trees are known as decision trees, because each
external node p in such a tree represents a decision of what to do if the questions
associated with p’s ancestors are answered in a way that leads to p. A decision
tree is a proper binary tree. Figure 7.10 illustrates a decision tree that provides
recommendations to a prospective investor.

Figure 7.10: A decision tree providing investment advice.

i

i

“main” — 2011/1/13 — 9:10 — page 285 — #307
i

i

i

i

i

i

7.3. Binary Trees 285

Example 7.9: An arithmetic expression can be represented by a tree whose exter-
nal nodes are associated with variables or constants, and whose internal nodes are
associated with one of the operators +, −, ×, and /. (See Figure 7.11.) Each node
in such a tree has a value associated with it.

• If a node is external, then its value is that of its variable or constant.
• If a node is internal, then its value is defined by applying its operation to the

values of its children.

Such an arithmetic-expression tree is a proper binary tree, since each of the oper-
ators +, −, ×, and / take exactly two operands. Of course, if we were to allow
for unary operators, like negation (−), as in “−x,” then we could have an improper
binary tree.

Figure 7.11: A binary tree representing an arithmetic expression. This tree repre-
sents the expression ((((3+1)×3)/((9−5)+2))−((3×(7−4))+6)). The value
associated with the internal node labeled “/” is 2.

A Recursive Binary Tree Definition

Incidentally, we can also define a binary tree in a recursive way such that a binary
tree is either empty or consists of:

• A node r, called the root of T and storing an element
• A binary tree, called the left subtree of T
• A binary tree, called the right subtree of T

We discuss some of the specialized topics for binary trees below.

7.3.1 The Binary Tree ADT

In this section, we introduce an abstract data type for a binary tree. As with our
earlier tree ADT, each node of the tree stores an element and is associated with a

i

i

“main” — 2011/1/13 — 9:10 — page 286 — #308
i

i

i

i

i

i

286 Chapter 7. Trees

position object, which provides public access to nodes. By overloading the deref-
erencing operator, the element associated with a position p can be accessed by *p.
In addition, a position p supports the following operations.

p.left(): Return the left child of p; an error condition occurs if p
is an external node.

p.right(): Return the right child of p; an error condition occurs if p
is an external node.

p.parent(): Return the parent of p; an error occurs if p is the root.

p.isRoot(): Return true if p is the root and false otherwise.

p.isExternal(): Return true if p is external and false otherwise.

The tree itself provides the same operations as the standard tree ADT. Recall
that a position list is a list of tree positions.

size(): Return the number of nodes in the tree.

empty(): Return true if the tree is empty and false otherwise.

root(): Return a position for the tree’s root; an error occurs if the
tree is empty.

positions(): Return a position list of all the nodes of the tree.

As in Section 7.1.2 for the tree ADT, we do not define specialized update functions
for binary trees, but we consider them later.

7.3.2 A C++ Binary Tree Interface

Let us present an informal C++ interface for the binary tree ADT. We begin in
Code Fragment 7.15 by presenting an informal C++ interface for the class Posi-
tion, which represents a position in a tree. It differs from the tree interface of Sec-
tion 7.1.3 by replacing the tree member function children with the two functions
left and right.

template <typename E> // base element type
class Position<E> { // a node position
public:

E& operator*(); // get element
Position left() const; // get left child
Position right() const; // get right child
Position parent() const; // get parent
bool isRoot() const; // root of tree?
bool isExternal() const; // an external node?
};

Code Fragment 7.15: An informal interface for the binary tree ADT (not a complete
C++ class).

i

i

“main” — 2011/1/13 — 9:10 — page 287 — #309
i

i

i

i

i

i

7.3. Binary Trees 287

Next, in Code Fragment 7.16, we present an informal C++ interface for a binary
tree. To keep the interface as simple as possible, we have ignored error processing,
and hence we do not declare any exceptions to be thrown.

template <typename E> // base element type
class BinaryTree<E> { // binary tree
public: // public types

class Position; // a node position
class PositionList; // a list of positions

public: // member functions
int size() const; // number of nodes
bool empty() const; // is tree empty?
Position root() const; // get the root
PositionList positions() const; // list of nodes
};

Code Fragment 7.16: An informal interface for the binary tree ADT (not a complete
C++ class).

Although we have not formally defined an interface for the class PositionList,
we may assume that it satisfies the standard list ADT as given in Chapter 6. In
our code examples, we assume that PositionList is implemented as an STL list of
objects of type Position.

7.3.3 Properties of Binary Trees

Binary trees have several interesting properties dealing with relationships between
their heights and number of nodes. We denote the set of all nodes of a tree T , at the
same depth d, as the level d of T . In a binary tree, level 0 has one node (the root),
level 1 has, at most, two nodes (the children of the root), level 2 has, at most, four
nodes, and so on. (See Figure 7.12.) In general, level d has, at most, 2d nodes.

We can see that the maximum number of nodes on the levels of a binary tree
grows exponentially as we go down the tree. From this simple observation, we can
derive the following properties relating the height of a binary T to its number of
nodes. A detailed justification of these properties is left as an exercise (R-7.16).

Proposition 7.10: Let T be a nonempty binary tree, and let n, nE , nI and h denote
the number of nodes, number of external nodes, number of internal nodes, and
height of T , respectively. Then T has the following properties:

1. h+ 1 ≤ n ≤ 2h+1−1
2. 1 ≤ nE ≤ 2h

3. h ≤ nI ≤ 2h−1
4. log(n+ 1)−1 ≤ h ≤ n−1

Also, if T is proper, then it has the following properties:

i

i

“main” — 2011/1/13 — 9:10 — page 288 — #310
i

i

i

i

i

i

288 Chapter 7. Trees

1. 2h+ 1 ≤ n ≤ 2h+1−1
2. h+ 1 ≤ nE ≤ 2h

3. h ≤ nI ≤ 2h−1
4. log(n+ 1)−1 ≤ h ≤ (n−1)/2

Figure 7.12: Maximum number of nodes in the levels of a binary tree.

In addition to the binary tree properties above, we also have the following re-
lationship between the number of internal nodes and external nodes in a proper
binary tree.

Proposition 7.11: In a nonempty proper binary tree T , the number of external
nodes is one more than the number of internal nodes.

Justification: We can see this using an argument based on induction. If the
tree consists of a single root node, then clearly we have one external node and no
internal nodes, so the proposition holds.

If, on the other hand, we have two or more, then the root has two subtrees. Since
the subtrees are smaller than the original tree, we may assume that they satisfy the
proposition. Thus, each subtree has one more external node than internal nodes.
Between the two of them, there are two more external nodes than internal nodes.
But, the root of the tree is an internal node. When we consider the root and both
subtrees together, the difference between the number of external and internal nodes
is 2−1 = 1, which is just what we want.

Note that the above relationship does not hold, in general, for improper binary
trees and nonbinary trees, although there are other interesting relationships that can
hold as we explore in an exercise (C-7.9).

i

i

“main” — 2011/1/13 — 9:10 — page 289 — #311
i

i

i

i

i

i

7.3. Binary Trees 289

7.3.4 A Linked Structure for Binary Trees

In this section, we present an implementation of a binary tree T as a linked struc-
ture, called LinkedBinaryTree. We represent each node v of T by a node object
storing the associated element and pointers to its parent and two children. (See
Figure 7.13.) For simplicity, we assume the tree is proper, meaning that each node
has either zero or two children.

Figure 7.13: A node in a linked data structure for representing a binary tree.

In Figure 7.14, we show a linked structure representation of a binary tree. The
structure stores the tree’s size, that is, the number of nodes in the tree, and a pointer
to the root of the tree. The rest of the structure consists of the nodes linked together
appropriately. If v is the root of T , then the pointer to the parent node is NULL, and
if v is an external node, then the pointers to the children of v are NULL.

Figure 7.14: An example of a linked data structure for representing a binary tree.

i

i

“main” — 2011/1/13 — 9:10 — page 290 — #312
i

i

i

i

i

i

290 Chapter 7. Trees

We begin by defining the basic constituents that make up the LinkedBinaryTree
class. The most basic entity is the structure Node, shown in Code Fragment 7.17,
that represents a node of the tree.

struct Node { // a node of the tree
Elem elt; // element value
Node* par; // parent
Node* left; // left child
Node* right; // right child
Node() : elt(), par(NULL), left(NULL), right(NULL) { } // constructor
};

Code Fragment 7.17: Structure Node implementing a node of a binary tree. It is
nested in the protected section of class BinaryTree.

Although all its members are public, class Node is declared within the protected
section of the LinkedBinaryTree class. Thus, it is not publicly accessible. Each
node has a member variable elt, which contains the associated element, and pointers
par, left, and right, which point to the associated relatives.

Next, we define the public class Position in Code Fragment 7.18. Its data mem-
ber consists of a pointer v to a node of the tree. Access to the node’s element
is provided by overloading the dereferencing operator (“*”). We declare Linked-
BinaryTree to be a friend, providing it access to the private data.

class Position { // position in the tree
private:

Node* v; // pointer to the node
public:

Position(Node* v = NULL) : v(v) { } // constructor
Elem& operator*() // get element
{ return v−>elt; }

Position left() const // get left child
{ return Position(v−>left); }

Position right() const // get right child
{ return Position(v−>right); }

Position parent() const // get parent
{ return Position(v−>par); }

bool isRoot() const // root of the tree?
{ return v−>par == NULL; }

bool isExternal() const // an external node?
{ return v−>left == NULL && v−>right == NULL; }

friend class LinkedBinaryTree; // give tree access
};
typedef std::list<Position> PositionList; // list of positions

Code Fragment 7.18: Class Position implementing a position in a binary tree. It is
nested in the public section of class LinkedBinaryTree.

i

i

“main” — 2011/1/13 — 9:10 — page 291 — #313
i

i

i

i

i

i

7.3. Binary Trees 291

Most of the functions of class Position simply involve accessing the appropriate
members of the Node structure. We have also included a declaration of the class
PositionList, as an STL list of positions. This is used to represent collections of
nodes. To keep the code simple, we have omitted error checking, and, rather than
using templates, we simply provide a type definition for the base element type,
called Elem. (See Exercise P-7.2.)

We present the major part of the class LinkedBinaryTree in Code Fragment 7.19.
The class declaration begins by inserting the above declarations of Node and Po-
sition. This is followed by a declaration of the public members, local utility func-
tions, and the private member data. We have omitted housekeeping functions, such
as a destructor, assignment operator, and copy constructor.

typedef int Elem; // base element type
class LinkedBinaryTree {
protected:

// insert Node declaration here. . .
public:

// insert Position declaration here. . .
public:

LinkedBinaryTree(); // constructor
int size() const; // number of nodes
bool empty() const; // is tree empty?
Position root() const; // get the root
PositionList positions() const; // list of nodes
void addRoot(); // add root to empty tree
void expandExternal(const Position& p); // expand external node
Position removeAboveExternal(const Position& p); // remove p and parent
// housekeeping functions omitted. . .

protected: // local utilities
void preorder(Node* v, PositionList& pl) const; // preorder utility

private:
Node* root; // pointer to the root
int n; // number of nodes
};

Code Fragment 7.19: Implementation of a LinkedBinaryTree class.

The private data for class LinkedBinaryTree consists of a pointer root to the
root node and a variable n, containing the number of nodes in the tree. (We added
the underscore to the name root to avoid a name conflict with the member function
root.) In addition to the functions of the ADT, we have introduced a few update
functions, addRoot, expandExternal, and removeAboveExternal, which provide
the means to build and modify trees. They are discussed below. We define a utility
function preorder, which is used in the implementation of the function positions.

In Code Fragment 7.20, we present the definitions of the constructor and sim-

i

i

“main” — 2011/1/13 — 9:10 — page 292 — #314
i

i

i

i

i

i

292 Chapter 7. Trees

pler member functions of class LinkedBinaryTree. The function addRoot assumes
that the tree is empty, and it creates a single root node. (It should not be invoked if
the tree is nonempty, since otherwise a memory leak results.)

LinkedBinaryTree::LinkedBinaryTree() // constructor
: root(NULL), n(0) { }

int LinkedBinaryTree::size() const // number of nodes
{ return n; }

bool LinkedBinaryTree::empty() const // is tree empty?
{ return size() == 0; }

LinkedBinaryTree::Position LinkedBinaryTree::root() const // get the root
{ return Position(root); }

void LinkedBinaryTree::addRoot() // add root to empty tree
{ root = new Node; n = 1; }
Code Fragment 7.20: Simple member functions for class LinkedBinaryTree.

Binary Tree Update Functions

In addition to the BinaryTree interface functions and addRoot, the class LinkedBi-
naryTree also includes the following update functions given a position p. The first
is used for adding nodes to the tree and the second is used for removing nodes.

expandExternal(p): Transform p from an external node into an internal node
by creating two new external nodes and making them the
left and right children of p, respectively; an error condi-
tion occurs if p is an internal node.

removeAboveExternal(p): Remove the external node p together with its parent q,
replacing q with the sibling of p (see Figure 7.15, where
p’s node is w and q’s node is v); an error condition occurs
if p is an internal node or p is the root.

(a) (b) (c)

Figure 7.15: Operation removeAboveExternal(p), which removes the external node
w to which p refers and its parent node v.

i

i

“main” — 2011/1/13 — 9:10 — page 293 — #315
i

i

i

i

i

i

7.3. Binary Trees 293

The function expandExternal(p) is shown in Code Fragment 7.21. Letting v
be p’s associated node, it creates two new nodes. One becomes v’s left child and
the other becomes v’s right child. The constructor for Node initializes the node’s
pointers to NULL, so we need only update the new node’s parent links.

// expand external node
void LinkedBinaryTree::expandExternal(const Position& p) {

Node* v = p.v; // p’s node
v−>left = new Node; // add a new left child
v−>left−>par = v; // v is its parent
v−>right = new Node; // and a new right child
v−>right−>par = v; // v is its parent
n += 2; // two more nodes
}

Code Fragment 7.21: The function expandExternal(p) of class LinkedBinaryTree.

The function removeAboveExternal(p) is shown in Code Fragment 7.22. Let
w be p’s associated node and let v be its parent. We assume that w is external and
is not the root. There are two cases. If w is a child of the root, removing w and its
parent (the root) causes w’s sibling to become the tree’s new root. If not, we replace
w’s parent with w’s sibling. This involves finding w’s grandparent and determining
whether v is the grandparent’s left or right child. Depending on which, we set the
link for the appropriate child of the grandparent. After unlinking w and v, we delete
these nodes. Finally, we update the number of nodes in the tree.

LinkedBinaryTree::Position // remove p and parent
LinkedBinaryTree::removeAboveExternal(const Position& p) {

Node* w = p.v; Node* v = w−>par; // get p’s node and parent
Node* sib = (w == v−>left ? v−>right : v−>left);
if (v == root) { // child of root?

root = sib; // . . .make sibling root
sib−>par = NULL;
}
else {

Node* gpar = v−>par; // w’s grandparent
if (v == gpar−>left) gpar−>left = sib; // replace parent by sib
else gpar−>right = sib;
sib−>par = gpar;
}
delete w; delete v; // delete removed nodes
n −= 2; // two fewer nodes
return Position(sib);
}

Code Fragment 7.22: An implementation of the function removeAboveExternal(p).

i

i

“main” — 2011/1/13 — 9:10 — page 294 — #316
i

i

i

i

i

i

294 Chapter 7. Trees

The function positions is shown in Code Fragment 7.23. It invokes the utility
function preorder, which traverses the tree and stores the node positions in an STL
vector.

// list of all nodes
LinkedBinaryTree::PositionList LinkedBinaryTree::positions() const {

PositionList pl;
preorder(root, pl); // preorder traversal
return PositionList(pl); // return resulting list
}

// preorder traversal
void LinkedBinaryTree::preorder(Node* v, PositionList& pl) const {

pl.push back(Position(v)); // add this node
if (v−>left != NULL) // traverse left subtree

preorder(v−>left, pl);
if (v−>right != NULL) // traverse right subtree

preorder(v−>right, pl);
}

Code Fragment 7.23: An implementation of the function positions.

We have omitted the housekeeping functions (the destructor, copy constructor,
and assignment operator). We leave these as exercises (Exercise C-7.22), but they
also involve performing a traversal of the tree.

Performance of the LinkedBinaryTree Implementation

Let us now analyze the running times of the functions of class LinkedBinaryTree,
which uses a linked structure representation.

• Each of the position functions left, right, parent, isRoot, and isExternal takes
O(1) time.

• By accessing the member variable n, which stores the number of nodes of T ,
functions size and empty each run in O(1) time.

• The accessor function root runs in O(1) time.

• The update functions expandExternal and removeAboveExternal visit only
a constant number of nodes, so they both run in O(1) time.

• Function positions is implemented by performing a preorder traversal, which
takes O(n) time. (We discuss three different binary-tree traversals in Sec-
tion 7.3.6. Any of these suffice.) The nodes visited by the traversal are each
added in O(1) time to an STL list. Thus, function positions takes O(n) time.

Table 7.2 summarizes the performance of this implementation of a binary tree.
There is an object of class Node (Code Fragment 7.17) for each node of tree T .
Thus, the overall space requirement is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 295 — #317
i

i

i

i

i

i

7.3. Binary Trees 295

Operation Time
left, right, parent, isExternal, isRoot O(1)

size, empty O(1)

root O(1)

expandExternal, removeAboveExternal O(1)

positions O(n)

Table 7.2: Running times for the functions of an n-node binary tree implemented
with a linked structure. The space usage is O(n).

7.3.5 A Vector-Based Structure for Binary Trees

A simple structure for representing a binary tree T is based on a way of numbering
the nodes of T . For every node v of T , let f (v) be the integer defined as follows:

• If v is the root of T , then f (v) = 1

• If v is the left child of node u, then f (v) = 2 f (u)

• If v is the right child of node u, then f (v) = 2 f (u)+ 1

The numbering function f is known as a level numbering of the nodes in a binary
tree T , because it numbers the nodes on each level of T in increasing order from
left to right, although it may skip some numbers. (See Figure 7.16.)

The level numbering function f suggests a representation of a binary tree T
by means of a vector S, such that node v of T is associated with the element of
S at rank f (v). (See Figure 7.17.) Typically, we realize the vector S by means
of an extendable array. (See Section 6.1.3.) Such an implementation is simple
and efficient, for we can use it to easily perform the functions root, parent, left,
right, sibling, isExternal, and isRoot by using simple arithmetic operations on the
numbers f (v) associated with each node v involved in the operation. That is, each
position object v is simply a “wrapper” for the index f (v) into the vector S. We
leave the details of such implementations as a simple exercise (R-7.26).

Let n be the number of nodes of T , and let fM be the maximum value of f (v)
over all the nodes of T . The vector S has size N = fM +1, since the element of S at
index 0 is not associated with any node of T . Also, S will have, in general, a number
of empty elements that do not refer to existing nodes of T . For a tree of height h,
N = O(2h). In the worst case, this can be as high as 2n− 1. The justification is
left as an exercise (R-7.24). In Section 8.3, we discuss a class of binary trees called
“heaps,” for which N = n+1. Thus, in spite of the worst-case space usage, there are
applications for which the array-list representation of a binary tree is space efficient.
Still, for general binary trees, the exponential worst-case space requirement of this
representation is prohibitive.

i

i

“main” — 2011/1/13 — 9:10 — page 296 — #318
i

i

i

i

i

i

296 Chapter 7. Trees

Table 7.3 summarizes the running times of the functions of a binary tree imple-
mented with a vector. We do not include any tree update functions here. The vector
implementation of a binary tree is a fast and easy way of realizing the binary-tree
ADT, but it can be very space inefficient if the height of the tree is large.

(a)

(b)

Figure 7.16: Binary tree level numbering: (a) general scheme; (b) an example.

Figure 7.17: Representation of a binary tree T by means of a vector S.

i

i

“main” — 2011/1/13 — 9:10 — page 297 — #319
i

i

i

i

i

i

7.3. Binary Trees 297

Operation Time
left, right, parent, isExternal, isRoot O(1)

size, empty O(1)

root O(1)

expandExternal, removeAboveExternal O(1)

positions O(n)

Table 7.3: Running times for a binary tree T implemented with a vector S. We
denote the number of nodes of T with n, and N denotes the size of S. The space
usage is O(N), which is O(2n) in the worst case.

7.3.6 Traversals of a Binary Tree

As with general trees, binary-tree computations often involve traversals.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preorder traversal
for general trees (Code Fragment 7.9) can be applied to any binary tree. We can
simplify the algorithm in the case of a binary-tree traversal, however, as we show
in Code Fragment 7.24. (Also see Code Fragment 7.23.)

Algorithm binaryPreorder(T, p):

perform the “visit” action for node p
if p is an internal node then

binaryPreorder(T, p.left()) {recursively traverse left subtree}
binaryPreorder(T, p.right()) {recursively traverse right subtree}

Code Fragment 7.24: Algorithm binaryPreorder, which performs the preorder
traversal of the subtree of a binary tree T rooted at node p.

For example, a preorder traversal of the binary tree shown in Figure 7.14 visits
the nodes in the order 〈LAX,BWI,ATL,JFK,PVD〉. As is the case for general
trees, there are many applications of the preorder traversal for binary trees.

Postorder Traversal of a Binary Tree

Analogously, the postorder traversal for general trees (Code Fragment 7.12) can be
specialized for binary trees as shown in Code Fragment 7.25.

A postorder traversal of the binary tree shown in Figure 7.14 visits the nodes in
the order 〈ATL,JFK,BWI,PVD,LAX〉.

i

i

“main” — 2011/1/13 — 9:10 — page 298 — #320
i

i

i

i

i

i

298 Chapter 7. Trees

Algorithm binaryPostorder(T, p):

if p is an internal node then
binaryPostorder(T, p.left()) {recursively traverse left subtree}
binaryPostorder(T, p.right()) {recursively traverse right subtree}

perform the “visit” action for the node p

Code Fragment 7.25: Algorithm binaryPostorder for performing the postorder
traversal of the subtree of a binary tree T rooted at node p.

Evaluating an Arithmetic Expression

The postorder traversal of a binary tree can be used to solve the expression eval-
uation problem. In this problem, we are given an arithmetic-expression tree, that
is, a binary tree where each external node has a value associated with it and each
internal node has an arithmetic operation associated with it (see Example 7.9), and
we want to compute the value of the arithmetic expression represented by the tree.

Algorithm evaluateExpression, given in Code Fragment 7.26, evaluates the ex-
pression associated with the subtree rooted at a node p of an arithmetic-expression
tree T by performing a postorder traversal of T starting at p. In this case, the “visit”
action consists of performing a single arithmetic operation.

Algorithm evaluateExpression(T, p):

if p is an internal node then
x← evaluateExpression(T, p.left())
y← evaluateExpression(T, p.right())
Let ◦ be the operator associated with p
return x◦ y

else
return the value stored at p

Code Fragment 7.26: Algorithm evaluateExpression for evaluating the expression
represented by the subtree of an arithmetic-expression tree T rooted at node p.

The expression-tree evaluation application of the postorder traversal provides
an O(n)-time algorithm for evaluating an arithmetic expression represented by a
binary tree with n nodes. Indeed, like the general postorder traversal, the postorder
traversal for binary trees can be applied to other “bottom-up” evaluation problems
(such as the size computation given in Example 7.7) as well. The specialization
of the postorder traversal for binary trees simplifies that for general trees, however,
because we use the left and right functions to avoid a loop that iterates through the
children of an internal node.

Interestingly, the specialization of the general preorder and postorder traversal

i

i

“main” — 2011/1/13 — 9:10 — page 299 — #321
i

i

i

i

i

i

7.3. Binary Trees 299

methods to binary trees suggests a third traversal in a binary tree that is different
from both the preorder and postorder traversals. We explore this third kind of
traversal for binary trees in the next subsection.

Inorder Traversal of a Binary Tree

An additional traversal method for a binary tree is the inorder traversal. In this
traversal, we visit a node between the recursive traversals of its left and right sub-
trees. The inorder traversal of the subtree rooted at a node p in a binary tree T is
given in Code Fragment 7.27.

Algorithm inorder(T, p):

if p is an internal node then
inorder(T, p.left()) {recursively traverse left subtree}

perform the “visit” action for node p
if p is an internal node then

inorder(T, p.right()) {recursively traverse right subtree}

Code Fragment 7.27: Algorithm inorder for performing the inorder traversal of the
subtree of a binary tree T rooted at a node p.

For example, an inorder traversal of the binary tree shown in Figure 7.14 visits
the nodes in the order 〈ATL,BWI,JFK,LAX,PVD〉. The inorder traversal of a
binary tree T can be informally viewed as visiting the nodes of T “from left to
right.” Indeed, for every node p, the inorder traversal visits p after all the nodes
in the left subtree of p and before all the nodes in the right subtree of p. (See
Figure 7.18.)

Figure 7.18: Inorder traversal of a binary tree.

i

i

“main” — 2011/1/13 — 9:10 — page 300 — #322
i

i

i

i

i

i

300 Chapter 7. Trees

Binary Search Trees

Let S be a set whose elements have an order relation. For example, S could be a set
of integers. A binary search tree for S is a proper binary tree T such that:

• Each internal node p of T stores an element of S, denoted with x(p)

• For each internal node p of T , the elements stored in the left subtree of p are
less than or equal to x(p) and the elements stored in the right subtree of p are
greater than or equal to x(p)

• The external nodes of T do not store any element

An inorder traversal of the internal nodes of a binary search tree T visits the
elements in nondecreasing order. (See Figure 7.19.)

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree T . At each internal node we compare the value of the
current node to our search element x. If the answer to the question is “smaller,”
then the search continues in the left subtree. If the answer is “equal,” then the
search terminates successfully. If the answer is “greater,” then the search continues
in the right subtree. Finally, if we reach an external node (which is empty), then the
search terminates unsuccessfully. (See Figure 7.19.)

Note that the time for searching in a binary search tree T is proportional to the
height of T . Recall from Proposition 7.10 that the height of a tree with n nodes
can be as small as O(logn) or as large as Ω(n). Thus, binary search trees are
most efficient when they have small height. We illustrate an example search in a
binary search tree in Figure 7.19. We study binary search trees in more detail in
Section 10.1.

Figure 7.19: A binary search tree storing integers. The blue solid path is traversed
when searching (successfully) for 36. The blue dashed path is traversed when
searching (unsuccessfully) for 70.

i

i

“main” — 2011/1/13 — 9:10 — page 301 — #323
i

i

i

i

i

i

7.3. Binary Trees 301

Using Inorder Traversal for Tree Drawing

The inorder traversal can also be applied to the problem of computing a drawing of
a binary tree. We can draw a binary tree T with an algorithm that assigns x- and
y-coordinates to a node p of T using the following two rules (see Figure 7.20).

• x(p) is the number of nodes visited before p in the inorder traversal of T .
• y(p) is the depth of p in T .

In this application, we take the convention common in computer graphics that x-
coordinates increase left to right and y-coordinates increase top to bottom. So the
origin is in the upper left corner of the computer screen.

Figure 7.20: The inorder drawing algorithm for a binary tree.

The Euler Tour Traversal of a Binary Tree

The tree-traversal algorithms we have discussed so far are all forms of iterators.
Each traversal visits the nodes of a tree in a certain order, and is guaranteed to visit
each node exactly once. We can unify the tree-traversal algorithms given above into
a single framework, however, by relaxing the requirement that each node be visited
exactly once. The resulting traversal method is called the Euler tour traversal,
which we study next. The advantage of this traversal is that it allows for more
general kinds of algorithms to be expressed easily.

The Euler tour traversal of a binary tree T can be informally defined as a “walk”
around T , where we start by going from the root toward its left child, viewing the
edges of T as being “walls” that we always keep to our left. (See Figure 7.21.)
Each node p of T is encountered three times by the Euler tour:

• “On the left” (before the Euler tour of p’s left subtree)
• “From below” (between the Euler tours of p’s two subtrees)
• “On the right” (after the Euler tour of p’s right subtree)

If p is external, then these three “visits” actually all happen at the same time.

i

i

“main” — 2011/1/13 — 9:10 — page 302 — #324
i

i

i

i

i

i

302 Chapter 7. Trees

Figure 7.21: Euler tour traversal of a binary tree.

We give pseudo-code for the Euler tour of the subtree rooted at a node p in
Code Fragment 7.28.

Algorithm eulerTour(T, p):

perform the action for visiting node p on the left
if p is an internal node then

recursively tour the left subtree of p by calling eulerTour(T, p.left())
perform the action for visiting node p from below
if p is an internal node then

recursively tour the right subtree of p by calling eulerTour(T, p.right())
perform the action for visiting node p on the right

Code Fragment 7.28: Algorithm eulerTour for computing the Euler tour traversal
of the subtree of a binary tree T rooted at a node p.

The preorder traversal of a binary tree is equivalent to an Euler tour traversal
in which each node has an associated “visit” action occur only when it is encoun-
tered on the left. Likewise, the inorder and postorder traversals of a binary tree are
equivalent to an Euler tour, where each node has an associated “visit” action occur
only when it is encountered from below or on the right, respectively.

The Euler tour traversal extends the preorder, inorder, and postorder traversals,
but it can also perform other kinds of traversals. For example, suppose we wish
to compute the number of descendants of each node p in an n node binary tree T .
We start an Euler tour by initializing a counter to 0, and then increment the counter
each time we visit a node on the left. To determine the number of descendants of
a node p, we compute the difference between the values of the counter when p is
visited on the left and when it is visited on the right, and add 1. This simple rule
gives us the number of descendants of p, because each node in the subtree rooted

i

i

“main” — 2011/1/13 — 9:10 — page 303 — #325
i

i

i

i

i

i

7.3. Binary Trees 303

at p is counted between p’s visit on the left and p’s visit on the right. Therefore, we
have an O(n)-time method for computing the number of descendants of each node
in T .

The running time of the Euler tour traversal is easy to analyze, assuming that
visiting a node takes O(1) time. Namely, in each traversal, we spend a constant
amount of time at each node of the tree during the traversal, so the overall running
time is O(n) for an n node tree.

Another application of the Euler tour traversal is to print a fully parenthesized
arithmetic expression from its expression tree (Example 7.9). Algorithm printEx-
pression, shown in Code Fragment 7.29, accomplishes this task by performing the
following actions in an Euler tour:

• “On the left” action: if the node is internal, print “(”
• “From below” action: print the value or operator stored at the node
• “On the right” action: if the node is internal, print “)”

Algorithm printExpression(T, p):

if p.isExternal() then
print the value stored at p

else
print “(”
printExpression(T, p.left())
print the operator stored at p
printExpression(T, p.right())
print “)”

Code Fragment 7.29: An algorithm for printing the arithmetic expression associated
with the subtree of an arithmetic-expression tree T rooted at p.

7.3.7 The Template Function Pattern

The tree traversal functions described above are actually examples of an interesting
object-oriented software design pattern, the template function pattern. This is not
to be confused with templated classes or functions in C++, but the principal is
similar. The template function pattern describes a generic computation mechanism
that can be specialized for a particular application by redefining certain steps.

Euler Tour with the Template Function Pattern

Following the template function pattern, we can design an algorithm, template-
EulerTour, that implements a generic Euler tour traversal of a binary tree. When

i

i

“main” — 2011/1/13 — 9:10 — page 304 — #326
i

i

i

i

i

i

304 Chapter 7. Trees

called on a node p, function templateEulerTour calls several other auxiliary func-
tions at different phases of the traversal. First of all, it creates a three-element
structure r to store the result of the computation calling auxiliary function initRe-
sult. Next, if p is an external node, templateEulerTour calls auxiliary function
visitExternal, else (p is an internal node) templateEulerTour executes the follow-
ing steps:

• Calls auxiliary function visitLeft, which performs the computations associ-
ated with encountering the node on the left

• Recursively calls itself on the left child
• Calls auxiliary function visitBelow, which performs the computations asso-

ciated with encountering the node from below
• Recursively calls itself on the right subtree
• Calls auxiliary function visitRight, which performs the computations associ-

ated with encountering the node on the right

Finally, templateEulerTour returns the result of the computation by calling aux-
iliary function returnResult. Function templateEulerTour can be viewed as a tem-
plate or “skeleton” of an Euler tour. (See Code Fragment 7.30.)

Algorithm templateEulerTour(T, p):

r← initResult()
if p.isExternal() then

r.finalResult← visitExternal(T, p,r)
else

visitLeft(T, p,r)
r.leftResult← templateEulerTour(T, p.left())
visitBelow(T, p,r)
r.rightResult← templateEulerTour(T, p.right())
visitRight(T, p,r)

return returnResult(r)

Code Fragment 7.30: Function templateEulerTour for computing a generic Euler
tour traversal of the subtree of a binary tree T rooted at a node p, following the
template function pattern. This function calls the functions initResult, visitExter-
nal, visitLeft, visitBelow, visitRight, and returnResult.

In an object-oriented context, we can then write a class EulerTour that:

• Contains function templateEulerTour

• Contains all the auxiliary functions called by templateEulerTour as empty
place holders (that is, with no instructions or returning NULL)

• Contains a function execute that calls templateEulerTour(T,T.root())

i

i

“main” — 2011/1/13 — 9:10 — page 305 — #327
i

i

i

i

i

i

7.3. Binary Trees 305

Class EulerTour itself does not perform any useful computation. However, we
can extend it with the inheritance mechanism and override the empty functions to
do useful tasks.

Template Function Examples

As a first example, we can evaluate the expression associated with an arithmetic-
expression tree (see Example 7.9) by writing a new class EvaluateExpression that:

• Extends class EulerTour
• Overrides function initResult by returning an array of three numbers
• Overrides function visitExternal by returning the value stored at the node
• Overrides function visitRight by combining r.leftResult and r.rightResult with

the operator stored at the node, and setting r.finalResult equal to the result of
the operation

• Overrides function returnResult by returning r.finalResult

This approach should be compared with the direct implementation of the algo-
rithm shown in Code Fragment 7.26.

As a second example, we can print the expression associated with an arithmetic-
expression tree (see Example 7.9) using a new class PrintExpression that:

• Extends class EulerTour
• Overrides function visitExternal by printing the value of the variable or con-

stant associated with the node
• Overrides function visitLeft by printing “(”
• Overrides function visitBelow by printing the operator associated with the

node
• Overrides function visitRight by printing “)”

This approach should be compared with the direct implementation of the algo-
rithm shown in Code Fragment 7.29.

C++ Implementation

A complete C++ implementation of the generic EulerTour class and of its spe-
cializations EvaluateExpressionTour and PrintExpressionTour are shown in Code
Fragments 7.31 through 7.34. These are based on a linked binary tree implementa-
tion.

We begin by defining a local structure Result with fields leftResult, rightResult,
and finalResult, which store the intermediate results of the tour. In order to avoid
typing lengthy qualified type names, we give two type definitions, BinaryTree and
Position, for the tree and a position in the tree, respectively. The only data member
is a pointer to the binary tree. We provide a simple function, called initialize, that
sets this pointer to an existing binary tree. The remaining functions are protected,

i

i

“main” — 2011/1/13 — 9:10 — page 306 — #328
i

i

i

i

i

i

306 Chapter 7. Trees

since they are not invoked directly, but rather by the derived classes, which produce
the desired specialized behavior.

template <typename E, typename R> // element and result types
class EulerTour { // a template for Euler tour
protected:

struct Result { // stores tour results
R leftResult; // result from left subtree
R rightResult; // result from right subtree
R finalResult; // combined result
};
typedef BinaryTree<E> BinaryTree; // the tree
typedef typename BinaryTree::Position Position; // a position in the tree

protected: // data member
const BinaryTree* tree; // pointer to the tree

public:
void initialize(const BinaryTree& T) // initialize
{ tree = &T; }

protected: // local utilities
int eulerTour(const Position& p) const; // perform the Euler tour

// functions given by subclasses
virtual void visitExternal(const Position& p, Result& r) const {}
virtual void visitLeft(const Position& p, Result& r) const {}
virtual void visitBelow(const Position& p, Result& r) const {}
virtual void visitRight(const Position& p, Result& r) const {}
Result initResult() const { return Result(); }
int result(const Result& r) const { return r.finalResult; }
};

Code Fragment 7.31: Class EulerTour defining a generic Euler tour of a binary tree.
This class realizes the template function pattern and must be specialized in order to
generate an interesting computation.

Next, in Code Fragment 7.32, we present the principal traversal function, called
eulerTour. This recursive function performs an Euler traversal on the tree and in-
vokes the appropriate functions as it goes. If run on the generic Euler tree, noth-
ing interesting would result, because these functions (as defined in Code Frag-
ment 7.31) do nothing. It is up to the derived functions to provide more interesting
definitions for these generic functions.

In Code Fragment 7.33, we present our first example of a derived class us-
ing the template pattern, called EvaluateExpressionTour. It evaluates an integer
arithmetic-expression tree. We assume that each external node of an expression
tree provides a function called value, which returns the value associated with this
node. We assume that each internal node of an expression tree provides a function
called operation, which performs the operation associated with this node to the two
operands arising from its left and right subtrees, and returns the result.

i

i

“main” — 2011/1/13 — 9:10 — page 307 — #329
i

i

i

i

i

i

7.3. Binary Trees 307

template <typename E, typename R> // do the tour
int EulerTour<E, R>::eulerTour(const Position& p) const {

Result r = initResult();
if (p.isExternal()) { // external node

visitExternal(p, r);
}
else { // internal node

visitLeft(p, r);
r.leftResult = eulerTour(p.left()); // recurse on left
visitBelow(p, r);
r.rightResult = eulerTour(p.right()); // recurse on right
visitRight(p, r);
}
return result(r);
}

Code Fragment 7.32: The principal member function eulerTour, which recursively
traverses the tree and accumulates the results.

Using these two functions, we can evaluate the expression recursively as we
traverse the tree. The main entry point is the function execute, which initializes the
tree, invokes the recursive Euler tour starting at the root, and prints the final result.
For example, given the expression tree of Figure 7.21, this procedure would output
the string “The value is: -13”.

template <typename E, typename R>
class EvaluateExpressionTour : public EulerTour<E, R> {
protected: // shortcut type names

typedef typename EulerTour<E, R>::BinaryTree BinaryTree;
typedef typename EulerTour<E, R>::Position Position;
typedef typename EulerTour<E, R>::Result Result;

public:
void execute(const BinaryTree& T) { // execute the tour

initialize(T);
std::cout << "The value is: " << eulerTour(T.root()) << "\n";
}

protected: // leaf: return value
virtual void visitExternal(const Position& p, Result& r) const
{ r.finalResult = (*p).value(); }

// internal: do operation
virtual void visitRight(const Position& p, Result& r) const
{ r.finalResult = (*p).operation(r.leftResult, r.rightResult); }

};

Code Fragment 7.33: Implementation of class EvaluateExpressionTour which
specializes EulerTour to evaluate the expression associated with an arithmetic-
expression tree.

i

i

“main” — 2011/1/13 — 9:10 — page 308 — #330
i

i

i

i

i

i

308 Chapter 7. Trees

Finally, in Code Fragment 7.34, we present a second example of a derived class,
called PrintExpressionTour. In contrast to the previous function, which evaluates
the value of an expression tree, this one prints the expression. We assume that each
node of an expression tree provides a function called print. For each external node,
this function prints the value associated with this node. For each internal node,
this function prints the operator, for example, printing “+” for addition or “*” for
multiplication.

template <typename E, typename R>
class PrintExpressionTour : public EulerTour<E, R> {
protected: // . . .same type name shortcuts as in EvaluateExpressionTour
public:

void execute(const BinaryTree& T) { // execute the tour
initialize(T);
cout << "Expression: "; eulerTour(T.root()); cout << endl;
}

protected: // leaf: print value
virtual void visitExternal(const Position& p, Result& r) const
{ (*p).print(); }

// left: open new expression
virtual void visitLeft(const Position& p, Result& r) const
{ cout << "("; }

// below: print operator
virtual void visitBelow(const Position& p, Result& r) const
{ (*p).print(); }

// right: close expression
virtual void visitRight(const Position& p, Result& r) const
{ cout << ")"; }

};

Code Fragment 7.34: A class that prints an arithmetic-expression tree.

When entering a subtree, the function visitLeft has been overridden to print “(”
and on exiting a subtree, the function visitRight has been overridden to print “).”
The main entry point is the function execute, which initializes the tree, and invokes
the recursive Euler tour starting at the root. When combined, these functions print
the entire expression (albeit with lots of redundant parentheses). For example, given
the expression tree of Figure 7.21, this procedure would output the following string.

((((3 + 1) * 3) / ((9 - 5) + 2)) - ((3 * (7 - 4)) + 6))

i

i

“main” — 2011/1/13 — 9:10 — page 309 — #331
i

i

i

i

i

i

7.3. Binary Trees 309

7.3.8 Representing General Trees with Binary Trees

An alternative representation of a general tree T is obtained by transforming T into
a binary tree T ′. (See Figure 7.22.) We assume that either T is ordered or that it
has been arbitrarily ordered. The transformation is as follows:

• For each node u of T , there is an internal node u′ of T ′ associated with u

• If u is an external node of T and does not have a sibling immediately follow-
ing it, then the children of u′ in T ′ are external nodes

• If u is an internal node of T and v is the first child of u in T , then v′ is the left
child of u′ in T

• If node v has a sibling w immediately following it, then w′ is the right child
of v′ in T ′

Note that the external nodes of T ′ are not associated with nodes of T , and serve
only as place holders (hence, may even be null).

(a) (b)

Figure 7.22: Representation of a tree by means of a binary tree: (a) tree T ; (b)
binary tree T ′ associated with T . The dashed edges connect nodes of T ′ associated
with sibling nodes of T .

It is easy to maintain the correspondence between T and T ′, and to express
operations in T in terms of corresponding operations in T ′. Intuitively, we can
think of the correspondence in terms of a conversion of T into T ′ that takes each
set of siblings {v1,v2, . . . ,vk} in T with parent v and replaces it with a chain of right
children rooted at v1, which then becomes the left child of v.

i

i

“main” — 2011/1/13 — 9:10 — page 310 — #332
i

i

i

i

i

i

310 Chapter 7. Trees

7.4 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-7.1 Describe an algorithm for counting the number of left external nodes in a
binary tree, using the Binary tree ADT.

R-7.2 The following questions refer to the tree of Figure 7.3.

a. Which node is the root?
b. What are the internal nodes?
c. How many descendents does node cs016/ have?
d. How many ancestors does node cs016/ have?
e. What are the siblings of node homeworks/?
f. Which nodes are in the subtree rooted at node projects/?
g. What is the depth of node papers/?
h. What is the height of the tree?

R-7.3 Find the value of the arithmetic expression associated with each subtree
of the binary tree of Figure 7.11.

R-7.4 Let T be an n-node improper binary tree (that is, each internal node has
one or two children). Describe how to represent T by means of a proper
binary tree T ′ with O(n) nodes.

R-7.5 What are the minimum and maximum number of internal and external
nodes in an improper binary tree with n nodes?

R-7.6 Show a tree achieving the worst-case running time for algorithm depth.

R-7.7 Give a justification of Proposition 7.4.

R-7.8 What is the running time of algorithm height2(T,v) (Code Fragment 7.7)
when called on a node v distinct from the root of T ?

R-7.9 Let T be the tree of Figure 7.3.

a. Give the output of preorderPrint(T,T.root()) (Code Fragment 7.10).
b. Give the output of parenPrint(T,T.root())(Code Fragment cod:paren:Print).

R-7.10 Describe a modification to the parenPrint function given in Code Frag-
ment 7.11, so that it uses the size function for string objects to output the
parenthetic representation of a tree with line breaks and spaces added to
display the tree in a text window that is 80 characters wide.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 311 — #333
i

i

i

i

i

i

7.4. Exercises 311

R-7.11 Draw an arithmetic-expression tree that has four external nodes, storing
the numbers 1, 5, 6, and 7 (with each number stored in a distinct external
node, but not necessarily in this order), and has three internal nodes, each
storing an operator from the set {+,−,×,/}, so that the value of the root
is 21. The operators may return and act on fractions, and an operator may
be used more than once.

R-7.12 Let T be an ordered tree with more than one node. Is it possible that the
preorder traversal of T visits the nodes in the same order as the postorder
traversal of T ? If so, give an example; otherwise, argue why this cannot
occur. Likewise, is it possible that the preorder traversal of T visits the
nodes in the reverse order of the postorder traversal of T ? If so, give an
example; otherwise, argue why this cannot occur.

R-7.13 Answer the previous question for the case when T is a proper binary tree
with more than one node.

R-7.14 Let T be a tree with n nodes. What is the running time of the function
parenPrint(T,T.root())? (See Code Fragment 7.11.)

R-7.15 Draw a (single) binary tree T , such that:

• Each internal node of T stores a single character
• A preorder traversal of T yields EXAMFUN

• An inorder traversal of T yields MAFXUEN

R-7.16 Answer the following questions so as to justify Proposition 7.10.

a. What is the minimum number of external nodes for a binary tree
with height h? Justify your answer.

b. What is the maximum number of external nodes for a binary tree
with height h? Justify your answer.

c. Let T be a binary tree with height h and n nodes. Show that

log(n+ 1)−1≤ h≤ (n−1)/2.

d. For which values of n and h can the above lower and upper bounds
on h be attained with equality?

R-7.17 Describe a generalization of the Euler tour traversal of trees such that each
internal node has three children. Describe how you could use this traversal
to compute the height of each node in such a tree.

R-7.18 Modify the C++ function preorderPrint, given in Code Fragment 7.10, so
that it will print the strings associated with the nodes of a tree one per line,
and indented proportionally to the depth of the node.

R-7.19 Let T be the tree of Figure 7.3. Draw, as best as you can, the output of the
algorithm postorderPrint(T,T.root()) (Code Fragment 7.13).

i

i

“main” — 2011/1/13 — 9:10 — page 312 — #334
i

i

i

i

i

i

312 Chapter 7. Trees

R-7.20 Let T be the tree of Figure 7.9. Compute, in terms of the values given
in this figure, the output of algorithm diskSpace(T,T.root()). (See Code
Fragment 7.14.)

R-7.21 Let T be the binary tree of Figure 7.11.
a. Give the output of preorderPrint(T,T.root()) (Code Fragment 7.10).
b. Give the output of the function printExpression(T,T.root()) (Code
Fragment 7.29).

R-7.22 Describe, in pseudo-code, an algorithm for computing the number of de-
scendents of each node of a binary tree. The algorithm should be based
on the Euler tour traversal.

R-7.23 Let T be a (possibly improper) binary tree with n nodes, and let D be the
sum of the depths of all the external nodes of T . Show that if T has the
minimum number of external nodes possible, then D is O(n) and if T has
the maximum number of external nodes possible, then D is O(n logn).

R-7.24 Let T be a binary tree with n nodes, and let f be the level numbering of
the nodes of T as given in Section 7.3.5.
a. Show that, for every node v of T , f (v)≤ 2n−1.
b. Show an example of a binary tree with seven nodes that attains the
above upper bound on f (v) for some node v.

R-7.25 Draw the binary tree representation of the following arithmetic expres-
sion: “(((5+ 2)∗ (2−1))/((2+ 9)+ ((7−2)−1))∗8) .”

R-7.26 Let T be a binary tree with n nodes that is realized with a vector, S, and let
f be the level numbering of the nodes in T as given in Section 7.3.5. Give
pseudo-code descriptions of each of the functions root, parent, leftChild,
rightChild, isExternal, and isRoot.

R-7.27 Show how to use the Euler tour traversal to compute the level number,
defined in Section 7.3.5, of each node in a binary tree T .

Creativity

C-7.1 Show that there are more than 2n different potentially improper binary
trees with n internal nodes, where two trees are considered different if
they can be drawn as different looking trees.

C-7.2 Describe an efficient algorithm for converting a fully balanced string of
parentheses into an equivalent tree. The tree associated with such a string
is defined recursively. The outer-most pair of balanced parentheses is as-
sociated with the root and each substring inside this pair, defined by the
substring between two balanced parentheses, is associated with a subtree
of this root.

i

i

“main” — 2011/1/13 — 9:10 — page 313 — #335
i

i

i

i

i

i

7.4. Exercises 313

C-7.3 For each node v in a tree T , let pre(v) be the rank of v in a preorder
traversal of T , let post(v) be the rank of v in a postorder traversal of T , let
depth(v) be the depth of v, and let desc(v) be the number of descendents
of v, not counting v itself. Derive a formula defining post(v) in terms of
desc(v), depth(v), and pre(v), for each node v in T .

C-7.4 Let T be a tree whose nodes store strings. Give an algorithm that computes
and prints, for every internal node v of T , the string stored at v and the
height of the subtree rooted at v.

C-7.5 Design algorithms for the following operations for a binary tree T .

• preorderNext(v): return the node visited after node v in a preorder
traversal of T .

• inorderNext(v): return the node visited after node v in an inorder
traversal of T .

• postorderNext(v): return the node visited after node v in a postorder
traversal of T .

What are the worst-case running times of your algorithms?

C-7.6 Give an O(n)-time algorithm for computing the depth of all the nodes of
a tree T , where n is the number of nodes of T .

C-7.7 The indented parenthetic representation of a tree T is a variation of the
parenthetic representation of T (see Figure 7.7) that uses indentation and
line breaks as illustrated in Figure 7.23. Give an algorithm that prints this
representation of a tree.

Sales (
Domestic
International (

Canada
S. America
Overseas (

Africa
Europe
Asia
Australia

)
)

)
(a) (b)

Figure 7.23: (a) Tree T ; (b) indented parenthetic representation of T .

C-7.8 Let T be a (possibly improper) binary tree with n nodes, and let D be the
sum of the depths of all the external nodes of T . Describe a configuration
for T such that D is Ω(n2). Such a tree would be the worst case for the
asymptotic running time of Algorithm height1 (Code Fragment 7.6).

i

i

“main” — 2011/1/13 — 9:10 — page 314 — #336
i

i

i

i

i

i

314 Chapter 7. Trees

C-7.9 For a tree T , let nI denote the number of its internal nodes, and let nE

denote the number of its external nodes. Show that if every internal node
in T has exactly 3 children, then nE = 2nI + 1.

C-7.10 The update operations expandExternal and removeAboveExternal do not
permit the creation of an improper binary tree. Give pseudo-code descrip-
tions for alternate update operations suitable for improper binary trees.
You may need to define new query operations as well.

C-7.11 The balance factor of an internal node v of a binary tree is the difference
between the heights of the right and left subtrees of v. Show how to spe-
cialize the Euler tour traversal of Section 7.3.7 to print the balance factors
of all the nodes of a binary tree.

C-7.12 Two ordered trees T ′ and T ′′ are said to be isomorphic if one of the fol-
lowing holds:

• Both T ′ and T ′′ consist of a single node
• Both T ′ and T ′′ have the same number k of subtrees, and the ith

subtree of T ′ is isomorphic to the ith subtree of T ′′, for i = 1, . . . ,k.

Design an algorithm that tests whether two given ordered trees are iso-
morphic. What is the running time of your algorithm?

C-7.13 Extend the concept of an Euler tour to an ordered tree that is not necessar-
ily a binary tree.

C-7.14 As mentioned in Exercise C-5.8, postfix notation is an unambiguous way
of writing an arithmetic expression without parentheses. It is defined so
that if “(exp1)◦ (exp2)” is a normal (infix) fully parenthesized expression
with operation “◦,” then its postfix equivalent is “pexp1 pexp2◦,” where
pexp1 is the postfix version of exp1 and pexp2 is the postfix version of
exp2. The postfix version of a single number of variables is just that num-
ber or variable. So, for example, the postfix version of the infix expression
“((5+2)∗(8−3))/4” is “5 2 + 8 3− ∗ 4 /.” Give an efficient algorithm,
that when given an expression tree, outputs the expression in postfix nota-
tion.

C-7.15 Given a proper binary tree T , define the reflection of T to be the binary
tree T ′ such that each node v in T is also in T ′, but the left child of v in T
is v’s right child in T ′ and the right child of v in T is v’s left child in T ′.
Show that a preorder traversal of a proper binary tree T is the same as the
postorder traversal of T ’s reflection, but in reverse order.

C-7.16 Algorithm preorderDraw draws a binary tree T by assigning x- and y-
coordinates to each node v such that x(v) is the number of nodes preceding
v in the preorder traversal of T and y(v) is the depth of v in T . Algorithm
postorderDraw is similar to preorderDraw but assigns x-coordinates using
a postorder traversal.

i

i

“main” — 2011/1/13 — 9:10 — page 315 — #337
i

i

i

i

i

i

7.4. Exercises 315

a. Show that the drawing of T produced by preorderDraw has no pairs
of crossing edges.

b. Redraw the binary tree of Figure 7.20 using preorderDraw.
c. Show that the drawing of T produced by postorderDraw has no pairs

of crossing edges.
d. Redraw the binary tree of Figure 7.20 using postorderDraw.

C-7.17 Let a visit action in the Euler tour traversal be denoted by a pair (v,a),
where v is the visited node and a is one of left, below, or right. Design an
algorithm for performing operation tourNext(v,a), which returns the visit
action (w,b) following (v,a). What is the worst-case running time of your
algorithm?

C-7.18 Algorithm preorderDraw draws a binary tree T by assigning x- and y-
coordinates to each node v as follows:

• Set x(v) equal to the number of nodes preceding v in the preorder
traversal of T .

• Set y(v) equal to the depth of v in T .

a. Show that the drawing of T produced by algorithm preorderDraw
has no pairs of crossing edges.

b. Use algorithm preorderDraw to redraw the binary tree shown in Fig-
ure 7.20.

c. Use algorithm postorderDraw, which is similar to preorderDraw but
assigns x-coordinates using a postorder traversal, to redraw the bi-
nary tree of Figure 7.20.

C-7.19 Design an algorithm for drawing general trees that generalizes the inorder
traversal approach for drawing binary trees.

C-7.20 Consider a variation of the linked data structure for binary trees where
each node object has pointers to the node objects of the children but not to
the node object of the parent. Describe an implementation of the functions
of a binary tree with this data structure and analyze the time complexity
for these functions.

C-7.21 Design an alternative implementation of the linked data structure for bi-
nary trees using a class for nodes that specializes into subclasses for an
internal node, an external node, and the root node.

C-7.22 Provide the missing housekeeping functions (destructor, copy constructor,
and assignment operator) for the class LinkedBinaryTree given in Code
Fragment 7.19.

C-7.23 Our linked binary tree implementation given in Code Fragment 7.19 as-
sumes that the tree is proper. Design an alternative implementation of the
linked data structure for a general (possibly improper) binary tree.

i

i

“main” — 2011/1/13 — 9:10 — page 316 — #338
i

i

i

i

i

i

316 Chapter 7. Trees

C-7.24 Let T be a tree with n nodes. Define the lowest common ancestor (LCA)
between two nodes v and w as the lowest node in T that has both v and
w as descendents (where we allow a node to be a descendent of itself).
Given two nodes v and w, describe an efficient algorithm for finding the
LCA of v and w. What is the running time of your method?

C-7.25 Let T be a tree with n nodes, and, for any node v in T , let dv denote
the depth of v in T . The distance between two nodes v and w in T is
dv +dw−2du, where u is the LCA u of v and w (as defined in the previous
exercise). The diameter of T is the maximum distance between two nodes
in T . Describe an efficient algorithm for finding the diameter of T . What
is the running time of your method?

C-7.26 Suppose each node v of a binary tree T is labeled with its value f (v) in
a level numbering of T . Design a fast method for determining f (u) for
the lowest common ancestor (LCA), u, of two nodes v and w in T , given
f (v) and f (w). You do not need to find node u, just compute its level-
numbering label.

C-7.27 Justify Table 7.1, summarizing the running time of the functions of a tree
represented with a linked structure, by providing, for each function, a de-
scription of its implementation, and an analysis of its running time.

C-7.28 Describe efficient implementations of the expandExternal and remove-
AboveExternal binary tree update functions, described in Section 7.3.4,
for the case when the binary tree is implemented using a vector S, where
S is realized using an expandable array. Your functions should work even
for null external nodes, assuming we represent such a node as a wrapper
object storing an index to an empty or nonexistent cell in S. What are the
worst-case running times of these functions? What is the running time
of removeAboveExternal if the internal node removed has only external
node children?

C-7.29 Describe a nonrecursive method for evaluating a binary tree representing
an arithmetic expression.

C-7.30 Let T be a binary tree with n nodes. Define a Roman node to be a node
v in T , such that the number of descendents in v’s left subtree differ from
the number of descendants in v’s right subtree by at most 5. Describe
a linear-time method for finding each node v of T , such that v is not a
Roman node, but all of v descendants are Roman nodes.

C-7.31 Let T ′ be the binary tree representing a tree T . (See Section 7.3.8.)

a. Is a preorder traversal of T ′ equivalent to a preorder traversal of T ?
b. Is a postorder traversal of T ′ equivalent to a postorder traversal of T ?
c. Is an inorder traversal of T ′ equivalent to some well-structured traver-

sal of T ?

i

i

“main” — 2011/1/13 — 9:10 — page 317 — #339
i

i

i

i

i

i

7.4. Exercises 317

C-7.32 Describe a nonrecursive method for performing an Euler tour traversal of
a binary tree that runs in linear time and does not use a stack.
(Hint: You can tell which visit action to perform at a node by taking note
of where you are coming from.)

C-7.33 Describe, in pseudo-code, a nonrecursive method for performing an in-
order traversal of a binary tree in linear time.
(Hint: Use a stack.)

C-7.34 Let T be a binary tree with n nodes (T may or may not be realized with a
vector). Give a linear-time method that uses the functions of the Binary-
Tree interface to traverse the nodes of T by increasing values of the level
numbering function f given in Section 7.3.5. This traversal is known as
the level order traversal.
(Hint: Use a queue.)

C-7.35 The path length of a tree T is the sum of the depths of all the nodes in T .
Describe a linear-time method for computing the path length of a tree T
(which is not necessarily binary).

C-7.36 Define the internal path length, I(T), of a tree T , to be the sum of the
depths of all the internal nodes in T . Likewise, define the external path
length, E(T), of a tree T , to be the sum of the depths of all the external
nodes in T . Show that if T is a binary tree with n internal nodes, then
E(T) = I(T)+ 2n.
(Hint: Use the fact that we can build T from a single root node via a series
of n expandExternal operations.)

Projects

P-7.1 Write a program that takes as input a rooted tree T and a node v of T and
converts T to another tree with the same set of node adjacencies but now
rooted at v.

P-7.2 Give a fully generic implementation of the class LinkedBinaryTree using
class templates and taking into account error conditions.

P-7.3 Implement the binary tree ADT using a vector.

P-7.4 Implement the binary tree ADT using a linked structure.

P-7.5 Write a program that draws a binary tree.

P-7.6 Write a program that draws a general tree.

P-7.7 Write a program that can input and display a person’s family tree.

P-7.8 Implement the binary tree representation of the tree ADT. You may reuse
the LinkedBinaryTree implementation of a binary tree.

i

i

“main” — 2011/1/13 — 9:10 — page 318 — #340
i

i

i

i

i

i

318 Chapter 7. Trees

P-7.9 A slicing floorplan is a decomposition of a rectangle with horizontal and
vertical sides using horizontal and vertical cuts (see Figure 7.24(a)). A
slicing floorplan can be represented by a binary tree, called a slicing tree,
whose internal nodes represent the cuts, and whose external nodes repre-
sent the basic rectangles into which the floorplan is decomposed by the
cuts (see Figure 7.24(b)). The compaction problem is defined as follows.
Assume that each basic rectangle of a slicing floorplan is assigned a min-
imum width w and a minimum height h. The compaction problem is to
find the smallest possible height and width for each rectangle of the slic-
ing floorplan that is compatible with the minimum dimensions of the basic
rectangles. Namely, this problem requires the assignment of values h(v)
and w(v) to each node v of the slicing tree, such that

w(v)=






w
if v is an external node whose basic rect-
angle has minimum width w

max(w(w),w(z))
if v is an internal node associated with a
horizontal cut with left child w and right
child z

w(w)+w(z)
if v is an internal node associated with
a vertical cut with left child w and right
child z

h(v)=






h
if v is an external node whose basic rect-
angle has minimum height h

h(w)+h(z)
if v is an internal node associated with a
horizontal cut with left child w and right
child z

max(h(w),h(z))
if v is an internal node associated with
a vertical cut with left child w and right
child z

Design a data structure for slicing floorplans that supports the following
operations:
• Create a floorplan consisting of a single basic rectangle
• Decompose a basic rectangle by means of a horizontal cut
• Decompose a basic rectangle by means of a vertical cut
• Assign minimum height and width to a basic rectangle
• Draw the slicing tree associated with the floorplan
• Compact the floorplan
• Draw the compacted floorplan

i

i

“main” — 2011/1/13 — 9:10 — page 319 — #341
i

i

i

i

i

i

7.4. Exercises 319

(a) (b)

Figure 7.24: (a) Slicing floorplan; (b) slicing tree associated with the floorplan.

P-7.10 Write a program that takes, as input, a fully parenthesized, arithmetic ex-
pression and converts it to a binary expression tree. Your program should
display the tree in some way and also print the value associated with the
root. For an additional challenge, allow for the leaves to store variables
of the form x1, x2, x3, and so on, which are initially 0 and which can be
updated interactively by your program, with the corresponding update in
the printed value of the root of the expression tree.

P-7.11 Write a program that can play Tic-Tac-Toe effectively. (See Section 3.1.3.)
To do this, you will need to create a game tree T , which is a tree where
each node corresponds to a game configuration, which, in this case, is
a representation of the tic-tac-toe board. The root node corresponds to
the initial configuration. For each internal node v in T , the children of v
correspond to the game states we can reach from v’s game state in a single
legal move for the appropriate player, A (the first player) or B (the second
player). Nodes at even depths correspond to moves for A and nodes at
odd depths correspond to moves for B. External nodes are either final
game states or are at a depth beyond which we don’t want to explore. We
score each external node with a value that indicates how good this state
is for player A. In large games, like chess, we have to use a heuristic
scoring function, but for small games, like tic-tac-toe, we can construct
the entire game tree and score external nodes as +1, 0, −1, indicating
whether player A has a win, draw, or lose in that configuration. A good
algorithm for choosing moves is minimax. In this algorithm, we assign a
score to each internal node v in T , such that if v represents A’s turn, we
compute v’s score as the maximum of the scores of v’s children (which
corresponds to A’s optimal play from v). If an internal node v represents
B’s turn, then we compute v’s score as the minimum of the scores of v’s
children (which corresponds to B’s optimal play from v).

i

i

“main” — 2011/1/13 — 9:10 — page 320 — #342
i

i

i

i

i

i

320 Chapter 7. Trees

Chapter Notes

Our use of the position abstraction derives from the position and node abstractions intro-
duced by Aho, Hopcroft, and Ullman [5]. Discussions of the classic preorder, inorder,
and postorder tree traversal methods can be found in Knuth’s Fundamental Algorithms
book [56]. The Euler tour traversal technique comes from the parallel algorithms commu-
nity, as it is introduced by Tarjan and Vishkin [93] and is discussed by JáJá [49] and by
Karp and Ramachandran [53]. The algorithm for drawing a tree is generally considered
to be a part of the “folklore” of graph drawing algorithms. The reader interested in graph
drawing is referred to the book by Di Battista, Eades, Tamassia and Tollis [28] and the
survey by Tamassia and Liotta [92]. The puzzler in Exercise R-7.11 was communicated by
Micha Sharir.

i

i

“main” — 2011/1/13 — 9:10 — page 321 — #343
i

i

i

i

i

i

Chapter

8 Heaps and Priority Queues

Contents

8.1 The Priority Queue Abstract Data Type 322

8.1.1 Keys, Priorities, and Total Order Relations 322

8.1.2 Comparators . 324

8.1.3 The Priority Queue ADT 327

8.1.4 A C++ Priority Queue Interface 328

8.1.5 Sorting with a Priority Queue 329

8.1.6 The STL priority queue Class 330

8.2 Implementing a Priority Queue with a List 331

8.2.1 A C++ Priority Queue Implementation using a List . 333

8.2.2 Selection-Sort and Insertion-Sort 335

8.3 Heaps . 337

8.3.1 The Heap Data Structure 337

8.3.2 Complete Binary Trees and Their Representation . . 340

8.3.3 Implementing a Priority Queue with a Heap 344

8.3.4 C++ Implementation 349

8.3.5 Heap-Sort . 351

8.3.6 Bottom-Up Heap Construction ⋆ 353

8.4 Adaptable Priority Queues 357

8.4.1 A List-Based Implementation 358

8.4.2 Location-Aware Entries 360

8.5 Exercises . 361

i

i

“main” — 2011/1/13 — 9:10 — page 322 — #344
i

i

i

i

i

i

322 Chapter 8. Heaps and Priority Queues

8.1 The Priority Queue Abstract Data Type

A priority queue is an abstract data type for storing a collection of prioritized ele-
ments that supports arbitrary element insertion but supports removal of elements in
order of priority, that is, the element with first priority can be removed at any time.
This ADT is fundamentally different from the position-based data structures such
as stacks, queues, deques, lists, and even trees, we discussed in previous chapters.
These other data structures store elements at specific positions, which are often
positions in a linear arrangement of the elements determined by the insertion and
deletion operations performed. The priority queue ADT stores elements according
to their priorities, and has no external notion of “position.”

8.1.1 Keys, Priorities, and Total Order Relations

Applications commonly require comparing and ranking objects according to pa-
rameters or properties, called “keys,” that are assigned to each object in a collec-
tion. Formally, we define a key to be an object that is assigned to an element as a
specific attribute for that element and that can be used to identify, rank, or weigh
that element. Note that the key is assigned to an element, typically by a user or ap-
plication; hence, a key might represent a property that an element did not originally
possess.

The key an application assigns to an element is not necessarily unique, however,
and an application may even change an element’s key if it needs to. For example,
we can compare companies by earnings or by number of employees; hence, either
of these parameters can be used as a key for a company, depending on the infor-
mation we wish to extract. Likewise, we can compare restaurants by a critic’s food
quality rating or by average entrée price. To achieve the most generality then, we
allow a key to be of any type that is appropriate for a particular application.

As in the examples above, the key used for comparisons is often more than
a single numerical value, such as price, length, weight, or speed. That is, a key
can sometimes be a more complex property that cannot be quantified with a single
number. For example, the priority of standby passengers is usually determined by
taking into account a host of different factors, including frequent-flyer status, the
fare paid, and check-in time. In some applications, the key for an object is data
extracted from the object itself (for example, it might be a member variable storing
the list price of a book, or the weight of a car). In other applications, the key is not
part of the object but is externally generated by the application (for example, the
quality rating given to a stock by a financial analyst, or the priority assigned to a
standby passenger by a gate agent).

i

i

“main” — 2011/1/13 — 9:10 — page 323 — #345
i

i

i

i

i

i

8.1. The Priority Queue Abstract Data Type 323

Comparing Keys with Total Orders

A priority queue needs a comparison rule that never contradicts itself. In order for
a comparison rule, which we denote by ≤, to be robust in this way, it must define
a total order relation, which is to say that the comparison rule is defined for every
pair of keys and it must satisfy the following properties:

• Reflexive property : k ≤ k
• Antisymmetric property: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2

• Transitive property: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3

Any comparison rule, ≤, that satisfies these three properties never leads to a
comparison contradiction. In fact, such a rule defines a linear ordering relationship
among a set of keys. If a finite collection of keys has a total order defined for it, then
the notion of the smallest key, kmin, is well defined as the key, such that kmin ≤ k,
for any other key k in our collection.

A priority queue is a container of elements, each associated with a key. The
name “priority queue” comes from the fact that keys determine the “priority” used
to pick elements to be removed. The fundamental functions of a priority queue P
are as follows:

insert(e): Insert the element e (with an implicit associated key value)
into P.

min(): Return an element of P with the smallest associated key
value, that is, an element whose key is less than or equal
to that of every other element in P.

removeMin(): Remove from P the element min().
Note that more than one element can have the same key, which is why we were
careful to define removeMin to remove not just any minimum element, but the
same element returned by min. Some people refer to the removeMin function as
extractMin.

There are many applications where operations insert and removeMin play an
important role. We consider such an application in the example that follows.

Example 8.1: Suppose a certain flight is fully booked an hour prior to departure.
Because of the possibility of cancellations, the airline maintains a priority queue of
standby passengers hoping to get a seat. The priority of each passenger is deter-
mined by the fare paid, the frequent-flyer status, and the time when the passenger is
inserted into the priority queue. When a passenger requests to fly standby, the asso-
ciated passenger object is inserted into the priority queue with an insert operation.
Shortly before the flight departure, if seats become available (for example, due to
last-minute cancellations), the airline repeatedly removes a standby passenger with
first priority from the priority queue, using a combination of min and removeMin
operations, and lets this person board.

i

i

“main” — 2011/1/13 — 9:10 — page 324 — #346
i

i

i

i

i

i

324 Chapter 8. Heaps and Priority Queues

8.1.2 Comparators

An important issue in the priority queue ADT that we have so far left undefined
is how to specify the total order relation for comparing the keys associated with
each element. There are a number of ways of doing this, each having its particular
advantages and disadvantages.

The most direct solution is to implement a different priority queue based on
the element type and the manner of comparing elements. While this approach is
arguably simple, it is certainly not very general, since it would require that we
make many copies of essentially the same code. Maintaining multiple copies of the
nearly equivalent code is messy and error prone.

A better approach would be to design the priority queue as a templated class,
where the element type is specified by an abstract template argument, say E . We
assume that each concrete class that could serve as an element of our priority queue
provides a means for comparing two objects of type E . This could be done in
many ways. Perhaps we require that each object of type E provides a function
called comp that compares two objects of type E and determines which is larger.
Perhaps we require that the programmer defines a function that overloads the C++
comparison operator “<” for two objects of type E . (Recall Section 1.4.2 for a
discussion of operator overloading). In C++ jargon this is called a function object.

Let us consider a more concrete example. Suppose that class Point2D defines a
two-dimensional point. It has two public member functions, getX and getY, which
access its x and y coordinates, respectively. We could define a lexicographical less-
than operator as follows. If the x coordinates differ we use their relative values;
otherwise, we use the relative values of the y coordinates.

bool operator<(const Point2D& p, const Point2D& q) {
if (p.getX() == q.getX()) return p.getY() < q.getY();
else return p.getX() < q.getX();
}

This approach of overloading the relational operators is general enough for
many situations, but it relies on the assumption that objects of the same type are
always compared in the same way. There are situations, however, where it is de-
sirable to apply different comparisons to objects of the same type. Consider the
following examples.

Example 8.2: There are at least two ways of comparing the C++ character strings,
"4" and "12". In the lexicographic ordering, which is an extension of the alpha-
betic ordering to character strings, we have "4" > "12". But if we interpret these
strings as integers, then "4" < "12".

i

i

“main” — 2011/1/13 — 9:10 — page 325 — #347
i

i

i

i

i

i

8.1. The Priority Queue Abstract Data Type 325

Example 8.3: A geometric algorithm may compare points p and q in two-dimen-
sional space, by their x-coordinate (that is, p≤ q if px ≤ qx), to sort them from left
to right, while another algorithm may compare them by their y-coordinate (that is,
p ≤ q if py ≤ qy), to sort them from bottom to top. In principle, there is nothing
pertaining to the concept of a point that says whether points should be compared
by x- or y-coordinates. Also, many other ways of comparing points can be defined
(for example, we can compare the distances of p and q from the origin).

There are a couple of ways to achieve the goal of independence of element
type and comparison method. The most general approach, called the composition
method, is based on defining each entry of our priority queue to be a pair (e,k),
consisting of an element e and a key k. The element part stores the data, and the
key part stores the information that defines the priority ordering. Each key object
defines its own comparison function. By changing the key class, we can change the
way in which the queue is ordered. This approach is very general, because the key
part does not need to depend on the data present in the element part. We study this
approach in greater detail in Chapter 9.

The approach that we use is a bit simpler than the composition method. It is
based on defining a special object, called a comparator, whose job is to provide a
definition of the comparison function between any two elements. This can be done
in various ways. In C++, a comparator for element type E can be implemented as
a class that defines a single function whose job is to compare two objects of type
E . One way to do this is to overload the “()” operator. The resulting function takes
two arguments, a and b, and returns a boolean whose value is true if a < b. For
example, if “isLess” is the name of our comparator object, the comparison function
is invoked using the following operation:

isLess(a,b): Return true if a < b and false otherwise.

It might seem at first that defining just a less-than function is rather limited, but
note that it is possible to derive all the other relational operators by combining less-
than comparisons with other boolean operators. For example, we can test whether
a and b are equal with (!isLess(a,b) && ! isLess(b, a)). (See Exercise R-8.3.)

Defining and Using Comparator Objects

Let us consider a more concrete example of a comparator class. As mentioned in
the above example, let us suppose that we have defined a class structure, called
Point2D, for storing a two-dimensional point. In Code Fragment 8.1, we present
two comparators. The comparator LeftRight implements a left-to-right order by
comparing the x-coordinates of the points, and the comparator BottomTop imple-
ments a bottom-to-top order by comparing the y-coordinates of the points.

To use these comparators, we would declare two objects, one of each type.
Let us call them leftRight and bottomTop. Observe that these objects store no

i

i

“main” — 2011/1/13 — 9:10 — page 326 — #348
i

i

i

i

i

i

326 Chapter 8. Heaps and Priority Queues

class LeftRight { // a left-right comparator
public:

bool operator()(const Point2D& p, const Point2D& q) const
{ return p.getX() < q.getX(); }

};
class BottomTop { // a bottom-top comparator
public:

bool operator()(const Point2D& p, const Point2D& q) const
{ return p.getY() < q.getY(); }

};

Code Fragment 8.1: Two comparator classes for comparing points. The first imple-
ments a left-to-right order and the second implements a bottom-to-top order.

data members. They are used solely for the purposes of specifying a particular
comparison operator. Given two objects p and q, each of type Point2D, to test
whether p is to the left of q, we would invoke leftRight(p,q), and to test whether p
is below q, we would invoke bottomTop(p,q). Each invokes the “()” operator for
the corresponding class.

Next, let us see how we can use our comparators to implement two different be-
haviors. Consider the generic function printSmaller shown in Code Fragment 8.2.
It prints the smaller of its two arguments. The function definition is templated by
the element type E and the comparator type C. The comparator class is assumed
to implement a less-than function for two objects of type E . The function is given
three arguments, the two elements p and q to be compared and an instance isLess of
a comparator for these elements. The function invokes the comparator to determine
which element is smaller, and then prints this value.

template <typename E, typename C> // element type and comparator
void printSmaller(const E& p, const E& q, const C& isLess) {

cout << (isLess(p, q) ? p : q) << endl; // print the smaller of p and q
}

Code Fragment 8.2: A generic function that prints the smaller of two elements,
given a comparator for these elements.

Finally, let us see how we can apply our function on two points. The code
is shown in Code Fragment 8.3. We declare to points p and q and initialize their
coordinates. (We have not presented the class definition for Point2D, but let us
assume that the constructor is given the x- and y-coordinates, and we have provided
an output operator.) We then declare two comparator objects, one for a left-to-right
ordering and the other for a bottom-to-top ordering. Finally, we invoke the function
printSmaller on the two points, changing only the comparator objects in each case.

Observe that, depending on which comparator is provided, the call to the func-

i

i

“main” — 2011/1/13 — 9:10 — page 327 — #349
i

i

i

i

i

i

8.1. The Priority Queue Abstract Data Type 327

Point2D p(1.3, 5.7), q(2.5, 0.6); // two points
LeftRight leftRight; // a left-right comparator
BottomTop bottomTop; // a bottom-top comparator
printSmaller(p, q, leftRight); // outputs: (1.3, 5.7)
printSmaller(p, q, bottomTop); // outputs: (2.5, 0.6)

Code Fragment 8.3: The use of two comparators to implement different behaviors
from the function printSmaller.

tion isLess in function printSmaller invokes either the “()” operator of class Left-
Right or BottomTop. In this way, we obtain the desired result, two different be-
haviors for the same two-dimensional point class.

Through the use of comparators, a programmer can write a general priority
queue implementation that works correctly in a wide variety of contexts. In par-
ticular, the priority queues presented in this chapter are generic classes that are
templated by two types, the element E and the comparator C.

The comparator approach is a bit less general than the composition method,
because the comparator bases its decisions on the contents of the elements them-
selves. In the composition method, the key may contain information that is not part
of the element object. The comparator approach has the advantage of being sim-
pler, since we can insert elements directly into our priority queue without creating
element-key pairs. Furthermore, in Exercise R-8.4 we show that there is no real
loss of generality in using comparators.

8.1.3 The Priority Queue ADT

Having described the priority queue abstract data type at an intuitive level, we now
describe it in more detail. As an ADT, a priority queue P supports the following
functions:

size(): Return the number of elements in P.

empty(): Return true if P is empty and false otherwise.

insert(e): Insert a new element e into P.

min(): Return a reference to an element of P with the smallest
associated key value (but do not remove it); an error con-
dition occurs if the priority queue is empty.

removeMin(): Remove from P the element referenced by min(); an er-
ror condition occurs if the priority queue is empty.

As mentioned above, the primary functions of the priority queue ADT are the
insert, min, and removeMin operations. The other functions, size and empty, are
generic collection operations. Note that we allow a priority queue to have multiple
entries with the same key.

i

i

“main” — 2011/1/13 — 9:10 — page 328 — #350
i

i

i

i

i

i

328 Chapter 8. Heaps and Priority Queues

Example 8.4: The following table shows a series of operations and their effects
on an initially empty priority queue P. Each element consists of an integer, which
we assume to be sorted according to the natural ordering of the integers. Note that
each call to min returns a reference to an entry in the queue, not the actual value.
Although the “Priority Queue” column shows the items in sorted order, the priority
queue need not store elements in this order.

Operation Output Priority Queue
insert(5) – {5}
insert(9) – {5,9}
insert(2) – {2,5,9}
insert(7) – {2,5,7,9}
min() [2] {2,5,7,9}
removeMin() – {5,7,9}
size() 3 {5,7,9}
min() [5] {5,7,9}
removeMin() – {7,9}
removeMin() – {9}
removeMin() – {}
empty() true {}
removeMin() “error” {}

8.1.4 A C++ Priority Queue Interface

Before discussing specific implementations of the priority queue, we first define
an informal C++ interface for a priority queue in Code Fragment 8.4. It is not a
complete C++ class, just a declaration of the public functions.

template <typename E, typename C> // element and comparator
class PriorityQueue { // priority-queue interface
public:

int size() const; // number of elements
bool isEmpty() const; // is the queue empty?
void insert(const E& e); // insert element
const E& min() const throw(QueueEmpty); // minimum element
void removeMin() throw(QueueEmpty); // remove minimum
};

Code Fragment 8.4: An informal PriorityQueue interface (not a complete class).

Although the comparator type C is included as a template argument, it does not
appear in the public interface. Of course, its value is relevant to any concrete imple-
mentation. Observe that the function min returns a constant reference to the element

i

i

“main” — 2011/1/13 — 9:10 — page 329 — #351
i

i

i

i

i

i

8.1. The Priority Queue Abstract Data Type 329

in the queue, which means that its value may be read and copied but not modified.
This is important because otherwise a user of the class might inadvertently modify
the element’s associated key value, and this could corrupt the integrity of the data
structure. The member functions size, empty, and min are all declared to be const,
which informs the compiler that they do not alter the contents of the queue.

An error condition occurs if either of the functions min or removeMin is called
on an empty priority queue. This is signaled by throwing an exception of type
QueueEmpty. Its definition is similar to others we have seen. (See Code Frag-
ment 5.2.)

8.1.5 Sorting with a Priority Queue

Another important application of a priority queue is sorting, where we are given a
collection L of n elements that can be compared according to a total order relation,
and we want to rearrange them in increasing order (or at least in nondecreasing
order if there are ties). The algorithm for sorting L with a priority queue Q, called
PriorityQueueSort, is quite simple and consists of the following two phases:

1. In the first phase, we put the elements of L into an initially empty priority
queue P through a series of n insert operations, one for each element.

2. In the second phase, we extract the elements from P in nondecreasing order
by means of a series of n combinations of min and removeMin operations,
putting them back into L in order.

Pseudo-code for this algorithm is given in Code Fragment 8.5. It assumes that
L is given as an STL list, but the code can be adapted to other containers.

Algorithm PriorityQueueSort(L,P):
Input: An STL list L of n elements and a priority queue, P, that compares

elements using a total order relation
Output: The sorted list L

while !L.empty() do
e← L.front
L.pop front() {remove an element e from the list}
P.insert(e) {. . . and it to the priority queue}

while !P.empty() do
e← P.min()
P.removeMin() {remove the smallest element e from the queue}
L.push back(e) {. . . and append it to the back of L}

Code Fragment 8.5: Algorithm PriorityQueueSort, which sorts an STL list L with
the aid of a priority queue P.

i

i

“main” — 2011/1/13 — 9:10 — page 330 — #352
i

i

i

i

i

i

330 Chapter 8. Heaps and Priority Queues

The algorithm works correctly for any priority queue P, no matter how P is
implemented. However, the running time of the algorithm is determined by the
running times of operations insert, min, and removeMin, which do depend on how
P is implemented. Indeed, PriorityQueueSort should be considered more a sorting
“scheme” than a sorting “algorithm,” because it does not specify how the priority
queue P is implemented. The PriorityQueueSort scheme is the paradigm of several
popular sorting algorithms, including selection-sort, insertion-sort, and heap-sort,
which we discuss in this chapter.

8.1.6 The STL priority queue Class

The C++ Standard Template Library (STL) provides an implementation of a pri-
ority queue, called priority queue. As with the other STL classes we have seen,
such as stacks and queues, the STL priority queue is an example of a container.
In order to declare an object of type priority queue, it is necessary to first include
the definition file, which is called “queue.” As with other STL objects, the pri-
ority queue is part of the std namespace, and hence it is necessary either to use
“std::priority queue” or to provide an appropriate “using” statement.

The priority queue class is templated with three parameters: the base type of
the elements, the underlying STL container in which the priority queue is stored,
and the comparator object. Only the first template argument is required. The second
parameter (the underlying container) defaults to the STL vector. The third param-
eter (the comparator) defaults to using the standard C++ less-than operator (“<”).
The STL priority queue uses comparators in the same manner as we defined in Sec-
tion 8.1.2. In particular, a comparator is a class that overrides the “()” operator in
order to define a boolean function that implements the less-than operator.

The code fragment below defines two STL priority queues. The first stores
integers. The second stores two-dimensional points under the left-to-right ordering
(recall Section 8.1.2).

#include <queue>
using namespace std; // make std accessible
priority queue<int> p1; // a priority queue of integers

// a priority queue of points with left-to-right order
priority queue<Point2D, vector<Point2D>, LeftRight> p2;

The principal member functions of the STL priority queue are given below. Let
p be declared to be an STL priority queue, and let e denote a single object whose
type is the same as the base type of the priority queue. (For example, p is a priority
queue of integers, and e is an integer.)

i

i

“main” — 2011/1/13 — 9:10 — page 331 — #353
i

i

i

i

i

i

8.2. Implementing a Priority Queue with a List 331

size(): Return the number of elements in the priority queue.

empty(): Return true if the priority queue is empty and false oth-
erwise.

push(e): Insert e in the priority queue.

top(): Return a constant reference to the largest element of the
priority queue.

pop(): Remove the element at the top of the priority queue.

Other than the differences in function names, the most significant difference
between our interface and the STL priority queue is that the functions top and pop
access the largest item in the queue according to priority order, rather than the
smallest. An example of the usage of the STL priority queue is shown in Code
Fragment 8.6.

priority queue<Point2D, vector<Point2D>, LeftRight> p2;
p2.push(Point2D(8.5, 4.6)); // add three points to p2
p2.push(Point2D(1.3, 5.7));
p2.push(Point2D(2.5, 0.6));
cout << p2.top() << endl; p2.pop(); // output: (8.5, 4.6)
cout << p2.top() << endl; p2.pop(); // output: (2.5, 0.6)
cout << p2.top() << endl; p2.pop(); // output: (1.3, 5.7)

Code Fragment 8.6: An example of the use of the STL priority queue.

Of course, it is possible to simulate the same behavior as our priority queue by
defining the comparator object so that it implements the greater-than relation rather
than the less-than relation. This effectively reverses all order relations, and thus
the top function would instead return the smallest element, just as function min
does in our interface. Note that the STL priority queue does not perform any error
checking.

8.2 Implementing a Priority Queue with a List

In this section, we show how to implement a priority queue by storing its elements
in an STL list. (Recall this data structure from Section 6.2.4.) We consider two
realizations, depending on whether we sort the elements of the list.

Implementation with an Unsorted List

Let us first consider the implementation of a priority queue P by an unsorted doubly
linked list L. A simple way to perform the operation insert(e) on P is by adding
each new element at the end of L by executing the function L.push back(e). This
implementation of insert takes O(1) time.

i

i

“main” — 2011/1/13 — 9:10 — page 332 — #354
i

i

i

i

i

i

332 Chapter 8. Heaps and Priority Queues

Since the insertion does not consider key values, the resulting list L is unsorted.
As a consequence, in order to perform either of the operations min or removeMin
on P, we must inspect all the entries of the list to find one with the minimum key
value. Thus, functions min and removeMin take O(n) time each, where n is the
number of elements in P at the time the function is executed. Moreover, each of
these functions runs in time proportional to n even in the best case, since they each
require searching the entire list to find the smallest element. Using the notation of
Section 4.2.3, we can say that these functions run in Θ(n) time. We implement
functions size and empty by simply returning the output of the corresponding func-
tions executed on list L. Thus, by using an unsorted list to implement a priority
queue, we achieve constant-time insertion, but linear-time search and removal.

Implementation with a Sorted List

An alternative implementation of a priority queue P also uses a list L, except that
this time let us store the elements sorted by their key values. Specifically, we repre-
sent the priority queue P by using a list L of elements sorted by nondecreasing key
values, which means that the first element of L has the smallest key.

We can implement function min in this case by accessing the element associated
with the first element of the list with the begin function of L. Likewise, we can
implement the removeMin function of P as L.pop front(). Assuming that L is
implemented as a doubly linked list, operations min and removeMin in P take O(1)
time, so are quite efficient.

This benefit comes at a cost, however, for now function insert of P requires that
we scan through the list L to find the appropriate position in which to insert the new
entry. Thus, implementing the insert function of P now takes O(n) time, where
n is the number of entries in P at the time the function is executed. In summary,
when using a sorted list to implement a priority queue, insertion runs in linear time
whereas finding and removing the minimum can be done in constant time.

Table 8.1 compares the running times of the functions of a priority queue real-
ized by means of an unsorted and sorted list, respectively. There is an interesting
contrast between the two functions. An unsorted list allows for fast insertions but
slow queries and deletions, while a sorted list allows for fast queries and deletions,
but slow insertions.

Operation Unsorted List Sorted List
size, empty O(1) O(1)

insert O(1) O(n)

min, removeMin O(n) O(1)

Table 8.1: Worst-case running times of the functions of a priority queue of size n,
realized by means of an unsorted or sorted list, respectively. We assume that the
list is implemented by a doubly linked list. The space requirement is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 333 — #355
i

i

i

i

i

i

8.2. Implementing a Priority Queue with a List 333

8.2.1 A C++ Priority Queue Implementation using a List

In Code Fragments 8.7 through 8.10, we present a priority queue implementation
that stores the elements in a sorted list. The list is implemented using an STL list
object (see Section 6.3.2), but any implementation of the list ADT would suffice.

In Code Fragment 8.7, we present the class definition for our priority queue.
The public part of the class is essentially the same as the interface that was pre-
sented earlier in Code Fragment 8.4. In order to keep the code as simple as possi-
ble, we have omitted error checking. The class’s data members consists of a list,
which holds the priority queue’s contents, and an instance of the comparator object,
which we call isLess.

template <typename E, typename C>
class ListPriorityQueue {
public:

int size() const; // number of elements
bool empty() const; // is the queue empty?
void insert(const E& e); // insert element
const E& min() const; // minimum element
void removeMin(); // remove minimum

private:
std::list<E> L; // priority queue contents
C isLess; // less-than comparator
};

Code Fragment 8.7: The class definition for a priority queue based on an STL list.

We have not bothered to give an explicit constructor for our class, relying in-
stead on the default constructor. The default constructor for the STL list produces
an empty list, which is exactly what we want.

Next, in Code Fragment 8.8, we present the implementations of the simple
member functions size and empty. Recall that, when dealing with templated classes,
it is necessary to repeat the full template specifications when defining member func-
tions outside the class. Each of these functions simply invokes the corresponding
function for the STL list.

template <typename E, typename C> // number of elements
int ListPriorityQueue<E,C>::size() const
{ return L.size(); }

template <typename E, typename C> // is the queue empty?
bool ListPriorityQueue<E,C>::empty() const
{ return L.empty(); }

Code Fragment 8.8: Implementations of the functions size and empty.

i

i

“main” — 2011/1/13 — 9:10 — page 334 — #356
i

i

i

i

i

i

334 Chapter 8. Heaps and Priority Queues

Let us now consider how to insert an element e into our priority queue. We
define p to be an iterator for the list. Our approach is to walk through the list until
we first find an element whose key value is larger than e’s, and then we insert e just
prior to p. Recall that *p accesses the element referenced by p, and ++p advances
p to the next element of the list. We stop the search either when we reach the
end of the list or when we first encounter a larger element, that is, one satisfying
isLess(e,*p). On reaching such an entry, we insert e just prior to it, by invoking the
STL list function insert. The code is shown in Code Fragment 8.9.

template <typename E, typename C> // insert element
void ListPriorityQueue<E,C>::insert(const E& e) {

typename std::list<E>::iterator p;
p = L.begin();
while (p != L.end() && !isLess(e, *p)) ++p; // find larger element
L.insert(p, e); // insert e before p
}

Code Fragment 8.9: Implementation of the priority queue function insert.

Consider how the above function behaves when e has a key value larger than
any in the queue. In such a case, the while loop exits under the condition that p is
equal to L.end(). Recall that L.end() refers to an imaginary element that lies just
beyond the end of the list. Thus, by inserting before this element, we effectively
append e to the back of the list, as desired.

You might notice the use of the keyword “typename” in the declaration of the
iterator p. This is due to a subtle issue in C++ involving dependent names, which
arises when processing name bindings within templated objects in C++. We do not
delve into the intricacies of this issue. For now, it suffices to remember to simply

Caution include the keyword typename when using a template parameter (in this case E)
to define another type.

Finally, let us consider the operations min and removeMin. Since the list is
sorted in ascending order by key values, in order to implement min, we simply
return a reference to the front of the list. To implement removeMin, we remove the
front element of the list. The implementations are given in Code Fragment 8.10.

template <typename E, typename C> // minimum element
const E& ListPriorityQueue<E,C>::min() const
{ return L.front(); } // minimum is at the front

template <typename E, typename C> // remove minimum
void ListPriorityQueue<E,C>::removeMin()
{ L.pop front(); }

Code Fragment 8.10: Implementations of the priority queue functions min and
removeMin.

i

i

“main” — 2011/1/13 — 9:10 — page 335 — #357
i

i

i

i

i

i

8.2. Implementing a Priority Queue with a List 335

8.2.2 Selection-Sort and Insertion-Sort

Recall the PriorityQueueSort scheme introduced in Section 8.1.5. We are given an
unsorted list L containing n elements, which we sort using a priority queue P in two
phases. In the first phase, we insert all the elements, and in the second phase, we
repeatedly remove elements using the min and removeMin operations.

Selection-Sort

If we implement the priority queue P with an unsorted list, then the first phase of
PriorityQueueSort takes O(n) time, since we can insert each element in constant
time. In the second phase, the running time of each min and removeMin operation
is proportional to the number of elements currently in P. Thus, the bottleneck
computation in this implementation is the repeated “selection” of the minimum
element from an unsorted list in the second phase. For this reason, this algorithm
is better known as selection-sort. (See Figure 8.1.)

List L Priority Queue P
Input (7,4,8,2,5,3,9) ()

Phase 1 (a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
...

...
...

(g) () (7,4,8,2,5,3,9)

Phase 2 (a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

Figure 8.1: Execution of selection-sort on list L = (7,4,8,2,5,3,9).

As noted above, the bottleneck is the second phase, where we repeatedly re-
move an element with smallest key from the priority queue P. The size of P starts
at n and decreases to 0 with each removeMin. Thus, the first removeMin operation
takes time O(n), the second one takes time O(n−1), and so on. Therefore, the total
time needed for the second phase is

O(n+(n−1)+ · · ·+ 2+ 1) = O(∑n
i=1 i) .

By Proposition 4.3, we have ∑n
i=1 i = n(n + 1)/2. Thus, phase two takes O(n2)

time, as does the entire selection-sort algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 336 — #358
i

i

i

i

i

i

336 Chapter 8. Heaps and Priority Queues

Insertion-Sort

If we implement the priority queue P using a sorted list, then we improve the run-
ning time of the second phase to O(n), because each operation min and removeMin
on P now takes O(1) time. Unfortunately, the first phase now becomes the bottle-
neck for the running time, since, in the worst case, each insert operation takes time
proportional to the size of P. This sorting algorithm is therefore better known as
insertion-sort (see Figure 8.2), for the bottleneck in this sorting algorithm involves
the repeated “insertion” of a new element at the appropriate position in a sorted list.

List L Priority Queue P
Input (7,4,8,2,5,3,9) ()

Phase 1 (a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2 (a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
...

...
...

(g) (2,3,4,5,7,8,9) ()

Figure 8.2: Execution of insertion-sort on list L = (7,4,8,2,5,3,9). In Phase 1,
we repeatedly remove the first element of L and insert it into P, by scanning the
list implementing P until we find the correct place for this element. In Phase 2,
we repeatedly perform removeMin operations on P, each of which returns the first
element of the list implementing P, and we add the element at the end of L.

Analyzing the running time of Phase 1 of insertion-sort, we note that

O(1+ 2+ . . .+(n−1)+ n) = O(∑n
i=1 i) .

Again, by recalling Proposition 4.3, the first phase runs in O(n2) time; hence, so
does the entire algorithm.

Alternately, we could change our definition of insertion-sort so that we insert
elements starting from the end of the priority-queue sequence in the first phase,
in which case performing insertion-sort on a list that is already sorted would run
in O(n) time. Indeed, the running time of insertion-sort is O(n + I) in this case,
where I is the number of inversions in the input list, that is, the number of pairs of
elements that start out in the input list in the wrong relative order.

i

i

“main” — 2011/1/13 — 9:10 — page 337 — #359
i

i

i

i

i

i

8.3. Heaps 337

8.3 Heaps

The two implementations of the PriorityQueueSort scheme presented in the previ-
ous section suggest a possible way of improving the running time for priority-queue
sorting. One algorithm (selection-sort) achieves a fast running time for the first
phase, but has a slow second phase, whereas the other algorithm (insertion-sort)
has a slow first phase, but achieves a fast running time for the second phase. If we
could somehow balance the running times of the two phases, we might be able to
significantly speed up the overall running time for sorting. This approach is, in fact,
exactly what we can achieve using the priority-queue implementation discussed in
this section.

An efficient realization of a priority queue uses a data structure called a heap.
This data structure allows us to perform both insertions and removals in logarith-
mic time, which is a significant improvement over the list-based implementations
discussed in Section 8.2. The fundamental way the heap achieves this improvement
is to abandon the idea of storing elements and keys in a list and take the approach
of storing elements and keys in a binary tree instead.

8.3.1 The Heap Data Structure

A heap (see Figure 8.3) is a binary tree T that stores a collection of elements with
their associated keys at its nodes and that satisfies two additional properties: a
relational property, defined in terms of the way keys are stored in T , and a structural
property, defined in terms of the nodes of T itself. We assume that a total order
relation on the keys is given, for example, by a comparator.

The relational property of T , defined in terms of the way keys are stored, is the
following:

Heap-Order Property: In a heap T , for every node v other than the root, the key
associated with v is greater than or equal to the key associated with v’s parent.

As a consequence of the heap-order property, the keys encountered on a path from
the root to an external node of T are in nondecreasing order. Also, a minimum key
is always stored at the root of T . This is the most important key and is informally
said to be “at the top of the heap,” hence, the name “heap” for the data structure.
By the way, the heap data structure defined here has nothing to do with the free-
store memory heap (Section 14.1.1) used in the run-time environment supporting
programming languages like C++.

You might wonder why heaps are defined with the smallest key at the top,
rather than the largest. The distinction is arbitrary. (This is evidenced by the fact
that the STL priority queue does exactly the opposite.) Recall that a comparator

i

i

“main” — 2011/1/13 — 9:10 — page 338 — #360
i

i

i

i

i

i

338 Chapter 8. Heaps and Priority Queues

Figure 8.3: Example of a heap storing 13 elements. Each element is a key-value
pair of the form (k,v). The heap is ordered based on the key value, k, of each
element.

implements the less-than operator between two keys. Suppose that we had instead
defined our comparator to indicate the opposite of the standard total order relation
between keys (so that, for example, isLess(x,y) would return true if x were greater
than y). Then the root of the resulting heap would store the largest key. This
versatility comes essentially for free from our use of the comparator pattern. By

Caution defining the minimum key in terms of the comparator, the “minimum” key with
a “reverse” comparator is in fact the largest. Thus, without loss of generality, we
assume that we are always interested in the minimum key, which is always at the
root of the heap.

For the sake of efficiency, which becomes clear later, we want the heap T to
have as small a height as possible. We enforce this desire by insisting that the heap
T satisfy an additional structural property, it must be complete. Before we define
this structural property, we need some definitions. We recall from Section 7.3.3
that level i of a binary tree T is the set of nodes of T that have depth i. Given nodes
v and w on the same level of T , we say that v is to the left of w if v is encountered
before w in an inorder traversal of T . That is, there is a node u of T such that v is
in the left subtree of u and w is in the right subtree of u. For example, in the binary
tree of Figure 8.3, the node storing entry (15,K) is to the left of the node storing
entry (7,Q). In a standard drawing of a binary tree, the “to the left of” relation is
visualized by the relative horizontal placement of the nodes.

Complete Binary Tree Property: A heap T with height h is a complete binary
tree, that is, levels 0,1,2, . . . ,h−1 of T have the maximum number of nodes
possible (namely, level i has 2i nodes, for 0 ≤ i ≤ h− 1) and the nodes at
level h fill this level from left to right.

i

i

“main” — 2011/1/13 — 9:10 — page 339 — #361
i

i

i

i

i

i

8.3. Heaps 339

The Height of a Heap

Let h denote the height of T . Another way of defining the last node of T is that
it is the node on level h such that all the other nodes of level h are to the left of
it. Insisting that T be complete also has an important consequence as shown in
Proposition 8.5.

Proposition 8.5: A heap T storing n entries has height

h = ⌊log n⌋.

Justification: From the fact that T is complete, we know that there are 2i nodes
in level, i for 0 ≤ i ≤ h− 1, and level h has at least 1 node. Thus, the number of
nodes of T is at least

(1+ 2+ 4+ · · ·+ 2h−1)+ 1 = (2h−1)+ 1

= 2h.

Level h has at most 2h nodes, and thus the number of nodes of T is at most

(1+ 2+ 4+ · · ·+ 2h−1)+ 2h = 2h+1−1.

Since the number of nodes is equal to the number n of entries, we obtain

2h ≤ n

and
n≤ 2h+1−1.

Thus, by taking logarithms of both sides of these two inequalities, we see that

h≤ log n

and
log(n+ 1)−1≤ h.

Since h is an integer, the two inequalities above imply that

h = ⌊log n⌋.

Proposition 8.5 has an important consequence. It implies that if we can perform
update operations on a heap in time proportional to its height, then those operations
will run in logarithmic time. Therefore, let us turn to the problem of how to effi-
ciently perform various priority queue functions using a heap.

i

i

“main” — 2011/1/13 — 9:10 — page 340 — #362
i

i

i

i

i

i

340 Chapter 8. Heaps and Priority Queues

8.3.2 Complete Binary Trees and Their Representation

Let us discuss more about complete binary trees and how they are represented.

The Complete Binary Tree ADT

As an abstract data type, a complete binary tree T supports all the functions of the
binary tree ADT (Section 7.3.1), plus the following two functions:

add(e): Add to T and return a new external node v storing ele-
ment e, such that the resulting tree is a complete binary
tree with last node v.

remove(): Remove the last node of T and return its element.

By using only these update operations, the resulting tree is guaranteed to be a com-
plete binary. As shown in Figure 8.4, there are essentially two cases for the effect
of an add (and remove is similar).

• If the bottom level of T is not full, then add inserts a new node on the bottom
level of T , immediately after the rightmost node of this level (that is, the last
node); hence, T ’s height remains the same.

• If the bottom level is full, then add inserts a new node as the left child of the
leftmost node of the bottom level of T ; hence, T ’s height increases by one.

w

(a) (b)

w

(c) (d)

Figure 8.4: Examples of operations add and remove on a complete binary tree,
where w denotes the node inserted by add or deleted by remove. The trees shown
in (b) and (d) are the results of performing add operations on the trees in (a) and (c),
respectively. Likewise, the trees shown in (a) and (c) are the results of performing
remove operations on the trees in (b) and (d), respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 341 — #363
i

i

i

i

i

i

8.3. Heaps 341

A Vector Representation of a Complete Binary Tree

The vector-based binary tree representation (recall Section 7.3.5) is especially suit-
able for a complete binary tree T . We recall that in this implementation, the nodes
of T are stored in a vector A such that node v in T is the element of A with index
equal to the level number f (v) defined as follows:

• If v is the root of T , then f (v) = 1

• If v is the left child of node u, then f (v) = 2 f (u)

• If v is the right child of node u, then f (v) = 2 f (u)+ 1

With this implementation, the nodes of T have contiguous indices in the range [1,n]
and the last node of T is always at index n, where n is the number of nodes of T .
Figure 8.5 shows two examples illustrating this property of the last node.

w

w

(a) (b)

w

0
 6
5
4
3
2
1

w

0
 7
6
5
4
3
2
1
 8

(c) (d)

Figure 8.5: Two examples showing that the last node w of a heap with n nodes
has level number n: (a) heap T1 with more than one node on the bottom level;
(b) heap T2 with one node on the bottom level; (c) vector-based representation
of T1; (d) vector-based representation of T2.

The simplifications that come from representing a complete binary tree T with
a vector aid in the implementation of functions add and remove. Assuming that
no array expansion is necessary, functions add and remove can be performed in
O(1) time because they simply involve adding or removing the last element of the
vector. Moreover, the vector associated with T has n + 1 elements (the element at
index 0 is a placeholder). If we use an extendable array that grows and shrinks
for the implementation of the vector (for example, the STL vector class), the space
used by the vector-based representation of a complete binary tree with n nodes is
O(n) and operations add and remove take O(1) amortized time.

i

i

“main” — 2011/1/13 — 9:10 — page 342 — #364
i

i

i

i

i

i

342 Chapter 8. Heaps and Priority Queues

A C++ Implementation of a Complete Binary Tree

We present the complete binary tree ADT as an informal interface, called Com-
pleteTree, in Code Fragment 8.11. As with our other informal interfaces, this is not
a complete C++ class. It just gives the public portion of the class.

The interface defines a nested class, called Position, which represents a node of
the tree. We provide the necessary functions to access the root and last positions and
to navigate through the tree. The modifier functions add and remove are provided,
along with a function swap, which swaps the contents of two given nodes.

template <typename E>
class CompleteTree { // left-complete tree interface
public: // publicly accessible types

class Position; // node position type
int size() const; // number of elements
Position left(const Position& p); // get left child
Position right(const Position& p); // get right child
Position parent(const Position& p); // get parent
bool hasLeft(const Position& p) const; // does node have left child?
bool hasRight(const Position& p) const; // does node have right child?
bool isRoot(const Position& p) const; // is this the root?
Position root(); // get root position
Position last(); // get last node
void addLast(const E& e); // add a new last node
void removeLast(); // remove the last node
void swap(const Position& p, const Position& q); // swap node contents
};
Code Fragment 8.11: Interface CompleteBinaryTree for a complete binary tree.

In order to implement this interface, we store the elements in an STL vector,
called V . We implement a tree position as an iterator to this vector. To convert from
the index representation of a node to this positional representation, we provide a
function pos. The reverse conversion is provided by function idx. This portion of
the class definition is given in Code Fragment 8.12.

private: // member data
std::vector<E> V; // tree contents

public: // publicly accessible types
typedef typename std::vector<E>::iterator Position; // a position in the tree

protected: // protected utility functions
Position pos(int i) // map an index to a position
{ return V.begin() + i; }

int idx(const Position& p) const // map a position to an index
{ return p − V.begin(); }

Code Fragment 8.12: Member data and private utilities for a complete tree class.

i

i

“main” — 2011/1/13 — 9:10 — page 343 — #365
i

i

i

i

i

i

8.3. Heaps 343

Given the index of a node i, the function pos maps it to a position by adding
i to V.begin(). Here we are exploiting the fact that the STL vector supports a
random-access iterator (recall Section 6.2.5). In particular, given an integer i, the
expression V.begin() + i yields the position of the ith element of the vector, and,
given a position p, the expression p−V.begin() yields the index of position p.

We present a full implementation of a vector-based complete tree ADT in Code
Fragment 8.13. Because the class consists of a large number of small one-line
functions, we have chosen to violate our normal coding conventions by placing all
the function definitions inside the class definition.

template <typename E>
class VectorCompleteTree {

//. . . insert private member data and protected utilities here
public:

VectorCompleteTree() : V(1) {} // constructor
int size() const { return V.size() − 1; }
Position left(const Position& p) { return pos(2*idx(p)); }
Position right(const Position& p) { return pos(2*idx(p) + 1); }
Position parent(const Position& p) { return pos(idx(p)/2); }
bool hasLeft(const Position& p) const { return 2*idx(p) <= size(); }
bool hasRight(const Position& p) const { return 2*idx(p) + 1 <= size(); }
bool isRoot(const Position& p) const { return idx(p) == 1; }
Position root() { return pos(1); }
Position last() { return pos(size()); }
void addLast(const E& e) { V.push back(e); }
void removeLast() { V.pop back(); }
void swap(const Position& p, const Position& q)

{ E e = *q; *q = *p; *p = e; }
};
Code Fragment 8.13: A vector-based implementation of the complete tree ADT.

Recall from Section 7.3.5 that the root node is at index 1 of the vector. Since
STL vectors are indexed starting at 0, our constructor creates the initial vector with
one element. This element at index 0 is never used. As a consequence, the size of
the priority queue is one less than the size of the vector.

Recall from Section 7.3.5 that, given a node at index i, its left and right children
are located at indices 2i and 2i+1, respectively. Its parent is located at index ⌊i/2⌋.
Given a position p, the functions left, right, and parent first convert p to an index
using the utility idx, which is followed by the appropriate arithmetic operation on
this index, and finally they convert the index back to a position using the utility pos.

We determine whether a node has a child by evaluating the index of this child
and testing whether the node at that index exists in the vector. Operations add
and remove are implemented by adding or removing the last entry of the vector,
respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 344 — #366
i

i

i

i

i

i

344 Chapter 8. Heaps and Priority Queues

8.3.3 Implementing a Priority Queue with a Heap

We now discuss how to implement a priority queue using a heap. Our heap-based
representation for a priority queue P consists of the following (see Figure 8.6):

• heap: A complete binary tree T whose nodes store the elements of the queue
and whose keys satisfy the heap-order property. We assume the binary tree T
is implemented using a vector, as described in Section 8.3.2. For each node
v of T , we denote the associated key by k(v).

• comp: A comparator that defines the total order relation among the keys.

Figure 8.6: Illustration of the heap-based implementation of a priority queue.

With this data structure, functions size and empty take O(1) time, as usual. In
addition, function min can also be easily performed in O(1) time by accessing the
entry stored at the root of the heap (which is at index 1 in the vector).

Insertion

Let us consider how to perform insert on a priority queue implemented with a
heap T . To store a new element e in T , we add a new node z to T with operation add,
so that this new node becomes the last node of T , and then store e in this node.

After this action, the tree T is complete, but it may violate the heap-order prop-
erty. Hence, unless node z is the root of T (that is, the priority queue was empty
before the insertion), we compare key k(z) with the key k(u) stored at the parent
u of z. If k(z) ≥ k(u), the heap-order property is satisfied and the algorithm ter-
minates. If instead k(z) < k(u), then we need to restore the heap-order property,
which can be locally achieved by swapping the entries stored at z and u. (See Fig-
ures 8.7(c) and (d).) This swap causes the new entry (k,e) to move up one level.
Again, the heap-order property may be violated, and we continue swapping, going

i

i

“main” — 2011/1/13 — 9:10 — page 345 — #367
i

i

i

i

i

i

8.3. Heaps 345

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.7: Insertion of a new entry with key 2 into the heap of Figure8.6: (a) initial
heap; (b) after performing operation add; (c) and (d) swap to locally restore the
partial order property; (e) and (f) another swap; (g) and (h)final swap.

i

i

“main” — 2011/1/13 — 9:10 — page 346 — #368
i

i

i

i

i

i

346 Chapter 8. Heaps and Priority Queues

up in T until no violation of the heap-order property occurs. (See Figures8.7(e)
and (h).)

The upward movement of the newly inserted entry by means of swaps is con-
ventionally called up-heap bubbling. A swap either resolves the violation of the
heap-order property or propagates it one level up in the heap. In the worst case, up-
heap bubbling causes the new entry to move all the way up to the root of heap T .
(See Figure 8.7.) Thus, in the worst case, the number of swaps performed in the
execution of function insert is equal to the height of T , that is, it is ⌊log n⌋ by
Proposition 8.5.

Removal

Let us now turn to function removeMin of the priority queue ADT. The algorithm
for performing function removeMin using heap T is illustrated in Figure 8.8.

We know that an element with the smallest key is stored at the root r of T (even
if there is more than one entry with the smallest key). However, unless r is the
only node of T , we cannot simply delete node r, because this action would disrupt
the binary tree structure. Instead, we access the last node w of T , copy its entry
to the root r, and then delete the last node by performing operation remove of the
complete binary tree ADT. (See Figure 8.8(a) and (b).)

Down-Heap Bubbling after a Removal

We are not necessarily done, however, for, even though T is now complete, T may
now violate the heap-order property. If T has only one node (the root), then the
heap-order property is trivially satisfied and the algorithm terminates. Otherwise,
we distinguish two cases, where r denotes the root of T :
• If r has no right child, let s be the left child of r
• Otherwise (r has both children), let s be a child of r with the smaller key

If k(r) ≤ k(s), the heap-order property is satisfied and the algorithm terminates.
If instead k(r) > k(s), then we need to restore the heap-order property, which can
be locally achieved by swapping the entries stored at r and s. (See Figure 8.8(c)
and (d).) (Note that we shouldn’t swap r with s’s sibling.) The swap we perform
restores the heap-order property for node r and its children, but it may violate this
property at s; hence, we may have to continue swapping down T until no violation
of the heap-order property occurs. (See Figure 8.8(e) and (h).)

This downward swapping process is called down-heap bubbling. A swap either
resolves the violation of the heap-order property or propagates it one level down in
the heap. In the worst case, an entry moves all the way down to the bottom level.
(See Figure 8.8.) Thus, the number of swaps performed in the execution of function
removeMin is, in the worst case, equal to the height of heap T , that is, it is ⌊log n⌋
by Proposition 8.5

i

i

“main” — 2011/1/13 — 9:10 — page 347 — #369
i

i

i

i

i

i

8.3. Heaps 347

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.8: Removing the element with the smallest key from a heap: (a) and (b)
deletion of the last node, whose element is moved to the root; (c) and (d) swap to
locally restore the heap-order property; (e) and (f) another swap; (g) and (h) final
swap.

i

i

“main” — 2011/1/13 — 9:10 — page 348 — #370
i

i

i

i

i

i

348 Chapter 8. Heaps and Priority Queues

Analysis

Table 8.2 shows the running time of the priority queue ADT functions for the heap
implementation of a priority queue, assuming that two keys can be compared in
O(1) time and that the heap T is implemented with either a vector or linked struc-
ture.

Operation Time
size, empty O(1)

min O(1)

insert O(logn)

removeMin O(logn)

Table 8.2: Performance of a priority queue realized by means of a heap, which
is in turn implemented with a vector or linked structure. We denote with n the
number of entries in the priority queue at the time a method is executed. The
space requirement is O(n). The running time of operations insert and removeMin
is worst case for the array-list implementation of the heap and amortized for the
linked representation.

In short, each of the priority queue ADT functions can be performed in O(1)
time or in O(logn) time, where n is the number of elements at the time the function
is executed. This analysis is based on the following:

• The heap T has n nodes, each storing a reference to an entry

• Operations add and remove on T take either O(1) amortized time (vector
representation) or O(logn) worst-case time

• In the worst case, up-heap and down-heap bubbling perform a number of
swaps equal to the height of T

• The height of heap T is O(log n), since T is complete (Proposition 8.5)

Thus, if heap T is implemented with the linked structure for binary trees, the space
needed is O(n). If we use a vector-based implementation for T instead, then the
space is proportional to the size N of the array used for the vector representing T .

We conclude that the heap data structure is a very efficient realization of the
priority queue ADT, independent of whether the heap is implemented with a linked
structure or a vector. The heap-based implementation achieves fast running times
for both insertion and removal, unlike the list-based priority queue implementa-
tions. Indeed, an important consequence of the efficiency of the heap-based imple-
mentation is that it can speed up priority-queue sorting to be much faster than the
list-based insertion-sort and selection-sort algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 349 — #371
i

i

i

i

i

i

8.3. Heaps 349

8.3.4 C++ Implementation

In this section, we present a heap-based priority queue implementation. The heap
is implemented using the vector-based complete tree implementation, which we
presented in Section 8.3.2.

In Code Fragment 8.7, we present the class definition. The public part of the
class is essentially the same as the interface, but, in order to keep the code simple,
we have ignored error checking. The class’s data members consists of the complete
tree, named T , and an instance of the comparator object, named isLess. We have
also provided a type definition for a node position in the tree, called Position.

template <typename E, typename C>
class HeapPriorityQueue {
public:

int size() const; // number of elements
bool empty() const; // is the queue empty?
void insert(const E& e); // insert element
const E& min(); // minimum element
void removeMin(); // remove minimum

private:
VectorCompleteTree<E> T; // priority queue contents
C isLess; // less-than comparator

// shortcut for tree position
typedef typename VectorCompleteTree<E>::Position Position;
};

Code Fragment 8.14: A heap-based implementation of a priority queue.

In Code Fragment 8.15, we present implementations of the simple member
functions size, empty, and min. The function min returns a reference to the root’s
element through the use of the “*” operator, which is provided by the Position class
of VectorCompleteTree.

template <typename E, typename C> // number of elements
int HeapPriorityQueue<E,C>::size() const
{ return T.size(); }

template <typename E, typename C> // is the queue empty?
bool HeapPriorityQueue<E,C>::empty() const
{ return size() == 0; }

template <typename E, typename C> // minimum element
const E& HeapPriorityQueue<E,C>::min()
{ return *(T.root()); } // return reference to root element

Code Fragment 8.15: The member functions size, empty, and min.

i

i

“main” — 2011/1/13 — 9:10 — page 350 — #372
i

i

i

i

i

i

350 Chapter 8. Heaps and Priority Queues

Next, in Code Fragment 8.16, we present an implementation of the insert op-
eration. As outlined in the previous section, this works by adding the new element
to the last position of the tree and then it performs up-heap bubbling by repeatedly
swapping this element with its parent until its parent has a smaller key value.

template <typename E, typename C> // insert element
void HeapPriorityQueue<E,C>::insert(const E& e) {

T.addLast(e); // add e to heap
Position v = T.last(); // e’s position
while (!T.isRoot(v)) { // up-heap bubbling

Position u = T.parent(v);
if (!isLess(*v, *u)) break; // if v in order, we’re done
T.swap(v, u); // . . .else swap with parent
v = u;
}
}

Code Fragment 8.16: An implementation of the function insert.

Finally, let us consider the removeMin operation. If the tree has only one node,
then we simply remove it. Otherwise, we swap the root’s element with the last
element of the tree and remove the last element. We then apply down-heap bubbling
to the root. Letting u denote the current node, this involves determining u’s smaller
child, which is stored in v. If the child’s key is smaller than u’s, we swap u’s
contents with this child’s. The code is presented in Code Fragment 8.17.

template <typename E, typename C> // remove minimum
void HeapPriorityQueue<E,C>::removeMin() {

if (size() == 1) // only one node?
T.removeLast(); // . . .remove it

else {
Position u = T.root(); // root position
T.swap(u, T.last()); // swap last with root
T.removeLast(); // . . .and remove last
while (T.hasLeft(u)) { // down-heap bubbling

Position v = T.left(u);
if (T.hasRight(u) && isLess(*(T.right(u)), *v))

v = T.right(u); // v is u’s smaller child
if (isLess(*v, *u)) { // is u out of order?

T.swap(u, v); // . . .then swap
u = v;
}
else break; // else we’re done
}
}
}

Code Fragment 8.17: A heap-based implementation of a priority queue.

i

i

“main” — 2011/1/13 — 9:10 — page 351 — #373
i

i

i

i

i

i

8.3. Heaps 351

8.3.5 Heap-Sort

As we have previously observed, realizing a priority queue with a heap has the
advantage that all the functions in the priority queue ADT run in logarithmic time or
better. Hence, this realization is suitable for applications where fast running times
are sought for all the priority queue functions. Therefore, let us again consider the
PriorityQueueSort sorting scheme from Section 8.1.5, which uses a priority queue
P to sort a list L.

During Phase 1, the i-th insert operation (1 ≤ i ≤ n) takes O(1 + log i) time,
since the heap has i entries after the operation is performed. Likewise, during
Phase 2, the j-th removeMin operation (1≤ j≤ n) runs in time O(1+ log(n− j+1),
since the heap has n− j + 1 entries at the time the operation is performed. Thus,
each phase takes O(n log n) time, so the entire priority-queue sorting algorithm runs
in O(n log n) time when we use a heap to implement the priority queue. This sorting
algorithm is better known as heap-sort, and its performance is summarized in the
following proposition.

Proposition 8.6: The heap-sort algorithm sorts a list L of n elements in O(n logn)
time, assuming two elements of L can be compared in O(1) time.

Let us stress that the O(n log n) running time of heap-sort is considerably better
than the O(n2) running time of selection-sort and insertion-sort (Section 8.2.2) and
is essentially the best possible for any sorting algorithm.

Implementing Heap-Sort In-Place

If the list L to be sorted is implemented by means of an array, we can speed up heap-
sort and reduce its space requirement by a constant factor using a portion of the list
L itself to store the heap, thus avoiding the use of an external heap data structure.
This performance is accomplished by modifying the algorithm as follows:

1. We use a reverse comparator, which corresponds to a heap where the largest
element is at the top. At any time during the execution of the algorithm, we
use the left portion of L, up to a certain rank i−1, to store the elements in the
heap, and the right portion of L, from rank i to n−1 to store the elements in
the list. Thus, the first i elements of L (at ranks 0, . . . , i−1) provide the vector
representation of the heap (with modified level numbers starting at 0 instead
of 1), that is, the element at rank k is greater than or equal to its “children” at
ranks 2k + 1 and 2k + 2.

2. In the first phase of the algorithm, we start with an empty heap and move the
boundary between the heap and the list from left to right, one step at a time.
In step i (i = 1, . . . ,n), we expand the heap by adding the element at rank i−1
and perform up-heap bubbling.

i

i

“main” — 2011/1/13 — 9:10 — page 352 — #374
i

i

i

i

i

i

352 Chapter 8. Heaps and Priority Queues

3. In the second phase of the algorithm, we start with an empty list and move
the boundary between the heap and the list from right to left, one step at a
time. At step i (i = 1, . . . ,n), we remove a maximum element from the heap
and store it at rank n− i.

The above variation of heap-sort is said to be in-place, since we use only a con-
stant amount of space in addition to the list itself. Instead of transferring elements
out of the list and then back in, we simply rearrange them. We illustrate in-place
heap-sort in Figure 8.9. In general, we say that a sorting algorithm is in-place if it
uses only a constant amount of memory in addition to the memory needed for the
objects being sorted themselves. A sorting algorithm is considered space-efficient
if it can be implemented in-place.

7

3

3
(a)

(b)

(c)

(d)

(e)

4 3 2 1 7

7 4 2 1 3

4

3

1

3

1 2

2

1

1

43 21 7

432 1 7

4321 7

(f)

(g)

(h)

(i)

7

4

1 3

2

2

7 42 13

7 42 13

7 42 13
7

3 2

7

3

1

2

7 42 13

4321 7(j)

Figure 8.9: In-place heap-sort. Parts (a) through (e) show the addition of elements
to the heap; (f) through (j) show the removal of successive elements. The portions
of the array that are used for the heap structure are shown in blue.

i

i

“main” — 2011/1/13 — 9:10 — page 353 — #375
i

i

i

i

i

i

8.3. Heaps 353

8.3.6 Bottom-Up Heap Construction ⋆

The analysis of the heap-sort algorithm shows that we can construct a heap stor-
ing n elements in O(n log n) time, by means of n successive insert operations, and
then use that heap to extract the elements in order. However, if all the elements to
be stored in the heap are given in advance, there is an alternative bottom-up con-
struction function that runs in O(n) time. We describe this function in this section,
observing that it can be included as one of the constructors in a Heap class instead
of filling a heap using a series of n insert operations. For simplicity, we describe
this bottom-up heap construction assuming the number n of keys is an integer of the
type n = 2h− 1. That is, the heap is a complete binary tree with every level being
full, so the heap has height h = log(n+1). Viewed nonrecursively, bottom-up heap
construction consists of the following h = log(n+ 1) steps:

1. In the first step (see Figure 8.10(a)), we construct (n+1)/2 elementary heaps
storing one entry each.

2. In the second step (see Figure 8.10(b)–(c)), we form (n + 1)/4 heaps, each
storing three entries, by joining pairs of elementary heaps and adding a new
entry. The new entry is placed at the root and may have to be swapped with
the entry stored at a child to preserve the heap-order property.

3. In the third step (see Figure 8.10(d)–(e)), we form (n + 1)/8 heaps, each
storing 7 entries, by joining pairs of 3-entry heaps (constructed in the pre-
vious step) and adding a new entry. The new entry is placed initially at the
root, but may have to move down with a down-heap bubbling to preserve the
heap-order property.

...

i. In the generic ith step, 2≤ i≤ h, we form (n+1)/2i heaps, each storing 2i−1
entries, by joining pairs of heaps storing (2i−1−1) entries (constructed in the
previous step) and adding a new entry. The new entry is placed initially at
the root, but may have to move down with a down-heap bubbling to preserve
the heap-order property.

...

h+ 1. In the last step (see Figure 8.10(f)–(g)), we form the final heap, storing all
the n entries, by joining two heaps storing (n− 1)/2 entries (constructed in
the previous step) and adding a new entry. The new entry is placed initially at
the root, but may have to move down with a down-heap bubbling to preserve
the heap-order property.

We illustrate bottom-up heap construction in Figure 8.10 for h = 3.

i

i

“main” — 2011/1/13 — 9:10 — page 354 — #376
i

i

i

i

i

i

354 Chapter 8. Heaps and Priority Queues

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 8.10: Bottom-up construction of a heap with 15 entries: (a) we begin by
constructing one-entry heaps on the bottom level; (b) and (c) we combine these
heaps into three-entry heaps; (d) and (e) seven-entry heaps; (f) and (g) we create
the final heap. The paths of the down-heap bubblings are highlighted in blue. For
simplicity, we only show the key within each node instead of the entire entry.

i

i

“main” — 2011/1/13 — 9:10 — page 355 — #377
i

i

i

i

i

i

8.3. Heaps 355

Recursive Bottom-Up Heap Construction

We can also describe bottom-up heap construction as a recursive algorithm, as
shown in Code Fragment 8.18, which we call by passing a list storing the keys
for which we wish to build a heap.

Algorithm BottomUpHeap(L):
Input: An STL list L storing n = 2h+1−1 entries
Output: A heap T storing the entries of L.

if L.empty() then
return an empty heap

e← L.front()
L.pop front()
Split L into two lists, L1 and L2, each of size (n−1)/2
T1← BottomUpHeap(L1)
T2← BottomUpHeap(L2)
Create binary tree T with root r storing e, left subtree T1, and right subtree T2

Perform a down-heap bubbling from the root r of T , if necessary
return T

Code Fragment 8.18: Recursive bottom-up heap construction.

Although the algorithm has been expressed in terms of an STL list, the con-
struction could have been performed equally well with a vector. In such a case, the
splitting of the vector is performed conceptually, by defining two ranges of indices,
one representing the front half L1 and the other representing the back half L2.

At first glance, it may seem that there is no substantial difference between this
algorithm and the incremental heap construction used in the heap-sort algorithm
of Section 8.3.5. One works by down-heap bubbling and the other uses up-heap
bubbling. It is somewhat surprising, therefore, that the bottom-up heap construction
is actually asymptotically faster than incrementally inserting n keys into an initially
empty heap. The following proposition shows this.

Proposition 8.7: Bottom-up construction of a heap with n entries takes O(n)
time, assuming two keys can be compared in O(1) time.

Justification: We analyze bottom-up heap construction using a “visual” ap-
proach, which is illustrated in Figure 8.11.

Let T be the final heap, let v be a node of T , and let T (v) denote the subtree of
T rooted at v. In the worst case, the time for forming T (v) from the two recursively
formed subtrees rooted at v’s children is proportional to the height of T (v). The
worst case occurs when down-heap bubbling from v traverses a path from v all the
way to a bottommost node of T (v).

i

i

“main” — 2011/1/13 — 9:10 — page 356 — #378
i

i

i

i

i

i

356 Chapter 8. Heaps and Priority Queues

Now consider the path p(v) of T from node v to its inorder successor external
node, that is, the path that starts at v, goes to the right child of v, and then goes down
leftward until it reaches an external node. We say that path p(v) is associated with
node v. Note that p(v) is not necessarily the path followed by down-heap bubbling
when forming T (v). Clearly, the size (number of nodes) of p(v) is equal to the
height of T (v) plus one. Hence, forming T (v) takes time proportional to the size of
p(v), in the worst case. Thus, the total running time of bottom-up heap construction
is proportional to the sum of the sizes of the paths associated with the nodes of T .

Observe that each node v of T belongs to at most two such paths: the path p(v)
associated with v itself and possibly also the path p(u) associated with the closest
ancestor u of v preceding v in an inorder traversal. (See Figure 8.11.) In particular,
the root r of T and the nodes on the leftmost root-to-leaf path each belong only to
one path, the one associated with the node itself. Therefore, the sum of the sizes
of the paths associated with the internal nodes of T is at most 2n−1. We conclude
that the bottom-up construction of heap T takes O(n) time.

Figure 8.11: Visual justification of the linear running time of bottom-up heap con-
struction, where the paths associated with the internal nodes have been highlighted
with alternating colors. For example, the path associated with the root consists of
the nodes storing keys 4, 6, 7, and 11. Also, the path associated with the right child
of the root consists of the internal nodes storing keys 6, 20, and 23.

To summarize, Proposition 8.7 states that the running time for the first phase
of heap-sort can be reduced to be O(n). Unfortunately, the running time of the
second phase of heap-sort cannot be made asymptotically better than O(n logn)
(that is, it will always be Ω(n log n) in the worst case). We do not justify this lower
bound until Chapter 11, however. Instead, we conclude this chapter by discussing
a design pattern that allows us to extend the priority queue ADT to have additional
functionality.

i

i

“main” — 2011/1/13 — 9:10 — page 357 — #379
i

i

i

i

i

i

8.4. Adaptable Priority Queues 357

8.4 Adaptable Priority Queues

The functions of the priority queue ADT given in Section 8.1.3 are sufficient for
most basic applications of priority queues such as sorting. However, there are situ-
ations where additional functions would be useful as shown in the scenarios below
that refer to the standby airline passenger application.

• A standby passenger with a pessimistic attitude may become tired of waiting
and decide to leave ahead of the boarding time, requesting to be removed
from the waiting list. Thus, we would like to remove the entry associated
with this passenger from the priority queue. Operation removeMin is not
suitable for this purpose, since it only removes the entry with the lowest
priority. Instead, we want a new operation that removes an arbitrary entry.

• Another standby passenger finds her gold frequent-flyer card and shows it to
the agent. Thus, her priority has to be modified accordingly. To achieve this
change of priority, we would like to have a new operation that changes the
information associated with a given entry. This might affect the entry’s key
value (such as frequent-flyer status) or not (such as correcting a misspelled
name).

Functions of the Adaptable Priority Queue ADT

The above scenarios motivate the definition of a new ADT for priority queues,
which includes functions for modifying or removing specified entries. In order to
do this, we need some way of indicating which entry of the queue is to be affected
by the operation. Note that we cannot use the entry’s key value, because keys are
not distinct. Instead, we assume that the priority queue operation insert(e) is aug-
mented so that, after inserting the element e, it returns a reference to the newly
created entry, called a position (recall Section 6.2.1). This position is permanently
attached to the entry, so that, even if the location of the entry changes within the
priority queue’s internal data structure (as is done when performing bubbling oper-
ations in a heap), the position remains fixed to this entry. Thus, positions provide
us with a means to uniquely specify the entry to which each operation is applied.

We formally define an adaptable priority queue P to be a priority queue that, in
addition to the standard priority queue operations, supports the following enhance-
ments.

insert(e): Insert the element e into P and return a position referring
to its entry.

remove(p): Remove the entry referenced by p from P.

replace(p,e): Replace with e the element associated with the entry ref-
erenced by p and return the position of the altered entry.

i

i

“main” — 2011/1/13 — 9:10 — page 358 — #380
i

i

i

i

i

i

358 Chapter 8. Heaps and Priority Queues

8.4.1 A List-Based Implementation

In this section, we present a simple implementation of an adaptable priority queue,
called AdaptPriorityQueue. Our implementation is a generalization of the sorted-
list priority queue implementation given in Section 8.2.

In Code Fragment 8.7, we present the class definition, with the exception of the
class Position, which is presented later. The public part of the class is essentially
the same as the standard priority queue interface, which was presented in Code
Fragment 8.4, together with the new functions remove and replace. Note that the
function insert now returns a position.

template <typename E, typename C>
class AdaptPriorityQueue { // adaptable priority queue
protected:

typedef std::list<E> ElementList; // list of elements
public:

// . . .insert Position class definition here
public:

int size() const; // number of elements
bool empty() const; // is the queue empty?
const E& min() const; // minimum element
Position insert(const E& e); // insert element
void removeMin(); // remove minimum
void remove(const Position& p); // remove at position p
Position replace(const Position& p, const E& e); // replace at position p

private:
ElementList L; // priority queue contents
C isLess; // less-than comparator
};

Code Fragment 8.19: The class definition for an adaptable priority queue.

We next define the class Position, which is nested within the public part of
class AdaptPriorityQueue. Its data member is an iterator to the STL list. This list
contains the contents of the priority queue. The main public member is a function
that returns a “const” reference the underlying element, which is implemented by
overloading the “*” operator. This is presented in Code Fragment 8.20.

class Position { // a position in the queue
private:

typename ElementList::iterator q; // a position in the list
public:

const E& operator*() { return *q; } // the element at this position
friend class AdaptPriorityQueue; // grant access
};

Code Fragment 8.20: The class representing a position in AdaptPriorityQueue.

i

i

“main” — 2011/1/13 — 9:10 — page 359 — #381
i

i

i

i

i

i

8.4. Adaptable Priority Queues 359

The operation insert is presented in Code Fragment 8.21. It is essentially the
same as presented in the standard list priority queue (see Code Fragment 8.9). Since
it is declared outside the class, we need to provide the complete template specifi-
cations for the function. We search for the first entry p whose key value exceeds
ours, and insert e just prior to this entry. We then create a position that refers to the
entry just prior to p and return it.

template <typename E, typename C> // insert element
typename AdaptPriorityQueue<E,C>::Position
AdaptPriorityQueue<E,C>::insert(const E& e) {

typename ElementList::iterator p = L.begin();
while (p != L.end() && !isLess(e, *p)) ++p; // find larger element
L.insert(p, e); // insert before p
Position pos; pos.q = −−p;
return pos; // inserted position
}

Code Fragment 8.21: The function insert for class AdaptPriorityQueue.

We omit the definitions of the member functions size, empty, min, and remove-
Min, since they are the same as in the standard list-based priority queue implemen-
tation (see Code Fragments 8.8 and 8.10). Next, in Code Fragment 8.22, we present
the implementations of the functions remove and replace. The function remove in-
vokes the erase function of the STL list to remove the entry referred to by the given
position.

template <typename E, typename C> // remove at position p
void AdaptPriorityQueue<E,C>::remove(const Position& p)
{ L.erase(p.q); }

template <typename E, typename C> // replace at position p
typename AdaptPriorityQueue<E,C>::Position
AdaptPriorityQueue<E,C>::replace(const Position& p, const E& e) {

L.erase(p.q); // remove the old entry
return insert(e); // insert replacement
}

Code Fragment 8.22: The functions remove and replace for AdaptPriorityQueue.

We have chosen perhaps the simplest way to implement the function replace.
We remove the entry to be modified and simply insert the new element e into the
priority queue. In general, the key information may have changed, and therefore it
may need to be moved to a new location in the sorted list. Under the assumption
that key changes are rare, a more clever solution would involve searching forwards
or backwards to determine the proper position for the modified entry. While it may
not be very efficient, our approach has the virtue of simplicity.

i

i

“main” — 2011/1/13 — 9:10 — page 360 — #382
i

i

i

i

i

i

360 Chapter 8. Heaps and Priority Queues

8.4.2 Location-Aware Entries

In our implementation of the adaptable priority queue, AdaptPriorityQueue, pre-
sented in the previous section, we exploited a nice property of the list-based priority
queue implementation. In particular, once a new entry is added to the sorted list,
the element associated with this entry never changes. This means that the positions
returned by the insert and replace functions always refer to the same element.

Note, however, that this same approach would fail if we tried to apply it to
the heap-based priority queue of Section 8.3.3. The reason is that the heap-based
implementation moves the entries around the heap (for example, through up-heap
bubbling and down-heap bubbling). When an element e is inserted, we return a
reference to the entry p containing e. But if e were to be moved as a result of
subsequent operations applied to the priority queue, p does not change. As a result,
p might be pointing to a different element of the priority queue. An attempt to
apply remove(p) or replace(p,e′), would not be applied to e but instead to some
other element.

The solution to this problem involves decoupling positions and entries. In our
implementation of AdaptPriorityQueue, each position p is essentially a pointer to
a node of the underlying data structure (for this is how an STL iterator is imple-
mented). If we move an entry, we need to also change the associated pointer. In
order to deal with moving entries, each time we insert a new element e in the prior-
ity queue, in addition to creating a new entry in the data structure, we also allocate
memory for an object, called a locator. The locator’s job is to store the current
position p of element e in the data structure. Each entry of the priority queue needs
to know its associated locator l. Thus, rather than just storing the element itself in
the priority queue, we store a pair (e,&l), consisting of the element e and a pointer
to its locator. We call this a locator-aware entry. After inserting a new element in
the priority queue, we return the associated locator object, which points to this pair.

How does this solve the decoupling problem? First, observe that whenever
the user of the priority queue wants to locate the position p of a previously inserted
element, it suffices to access the locator that stores this position. Suppose, however,
that the entry moves to a different position p′ within the data structure. To handle
this, we first access the location-aware entry (e,&l) to access the locator l. We then
modify l so that it refers to the new position p′. The user may find the new position
by accessing the locator.

The price we pay for this extra generality is fairly small. For each entry, we
need to two store two additional pointers (the locator and the locator’s address).
Each time we move an object in the data structure, we need to modify a constant
number of pointers. Therefore, the running time increases by just a constant factor.

i

i

“main” — 2011/1/13 — 9:10 — page 361 — #383
i

i

i

i

i

i

8.5. Exercises 361

8.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-8.1 What are the running times of each of the functions of the (standard) prior-
ity queue ADT if we implement it by adapting the STL priority queue?

R-8.2 How long would it take to remove the ⌈logn⌉ smallest elements from a
heap that contains n entries using the removeMin() operation?

R-8.3 Show that, given only the less-than operator (<) and the boolean operators
and (&&), or (||), and not (!), it is possible to implement all of the other
comparators: >, <=, >=, ==, !=.

R-8.4 Explain how to implement a priority queue based on the composition
method (of storing key-element pairs) by adapting a priority queue based
on the comparator approach.

R-8.5 Suppose you label each node v of a binary tree T with a key equal to the
preorder rank of v. Under what circumstances is T a heap?

R-8.6 Show the output from the following sequence of priority queue ADT op-
erations. The entries are key-element pairs, where sorting is based on the
key value: insert(5,a), insert(4,b), insert(7, i), insert(1,d), removeMin(),
insert(3, j), insert(6,c), removeMin(), removeMin(), insert(8,g), remove-
Min(), insert(2,h), removeMin(), removeMin().

R-8.7 An airport is developing a computer simulation of air-traffic control that
handles events such as landings and takeoffs. Each event has a time-stamp
that denotes the time when the event occurs. The simulation program
needs to efficiently perform the following two fundamental operations:
• Insert an event with a given time-stamp (that is, add a future event)
• Extract the event with smallest time-stamp (that is, determine the

next event to process)
Which data structure should be used for the above operations? Why?

R-8.8 Although it is correct to use a “reverse” comparator with our priority
queue ADT so that we retrieve and remove an element with the maxi-
mum key each time, it is confusing to have an element with the maximum
key returned by a function named “removeMin.” Write a short adapter
class that can take any priority queue P and an associated comparator C
and implement a priority queue that concentrates on the element with the
maximum key, using functions with names like removeMax.
(Hint: Define a new comparator C′ in terms of C.)

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 362 — #384
i

i

i

i

i

i

362 Chapter 8. Heaps and Priority Queues

R-8.9 Illustrate the performance of the selection-sort algorithm on the following
input sequence: (22,15,36,44,10,3,9,13,29,25).

R-8.10 Illustrate the performance of the insertion-sort algorithm on the input se-
quence of the previous problem.

R-8.11 Give an example of a worst-case sequence with n elements for insertion-
sort, and show that insertion-sort runs in Ω(n2) time on such a sequence.

R-8.12 At which nodes of a heap can an entry with the largest key be stored?

R-8.13 In defining the relation “to the left of” for two nodes of a binary tree (Sec-
tion 8.3.1), can we use a preorder traversal instead of an inorder traversal?
How about a postorder traversal?

R-8.14 Illustrate the performance of the heap-sort algorithm on the following in-
put sequence: (2,5,16,4,10,23,39,18,26,15).

R-8.15 Let T be a complete binary tree such that node v stores the key-entry pairs
(f (v),0), where f (v) is the level number of v. Is tree T a heap? Why or
why not?

R-8.16 Explain why the case where the right child of r is internal and the left child
is external was not considered in the description of down-heap bubbling.

R-8.17 Is there a heap T storing seven distinct elements such that a preorder
traversal of T yields the elements of T in sorted order? How about an
inorder traversal? How about a postorder traversal?

R-8.18 Consider the numbering of the nodes of a binary tree defined in Sec-
tion 7.3.5, and show that the insertion position in a heap with n keys is
the node with number n+ 1.

R-8.19 Let H be a heap storing 15 entries using the vector representation of a
complete binary tree. What is the sequence of indices of the vector that
are visited in a preorder traversal of H? What about an inorder traversal
of H? What about a postorder traversal of H?

R-8.20 Show that the sum ∑n
i=1 log i, which appears in the analysis of heap-sort,

is Ω(n log n).

R-8.21 Bill claims that a preorder traversal of a heap will list its keys in nonde-
creasing order. Draw an example of a heap that proves him wrong.

R-8.22 Hillary claims that a postorder traversal of a heap will list its keys in non-
increasing order. Draw an example of a heap that proves her wrong.

R-8.23 Show all the steps of the algorithm for removing key 16 from the heap of
Figure 8.3.

R-8.24 Draw an example of a heap whose keys are all the odd numbers from 1 to
59 (with no repeats), such that the insertion of an entry with key 32 would
cause up-heap bubbling to proceed all the way up to a child of the root
(replacing that child’s key with 32).

i

i

“main” — 2011/1/13 — 9:10 — page 363 — #385
i

i

i

i

i

i

8.5. Exercises 363

R-8.25 Give a pseudo-code description of a nonrecursive in-place heap-sort algo-
rithm.

R-8.26 A group of children want to play a game, called Unmonopoly, where in
each turn the player with the most money must give half of his/her money
to the player with the least amount of money. What data structure(s)
should be used to play this game efficiently? Why?

Creativity

C-8.1 An online computer system for trading stock needs to process orders of
the form “buy 100 shares at $x each” or “sell 100 shares at $y each.” A
buy order for $x can only be processed if there is an existing sell order
with price $y such that y ≤ x. Likewise, a sell order for $y can only be
processed if there is an existing buy order with price $x such that x ≥ y.
If a buy or sell order is entered but cannot be processed, it must wait
for a future order that allows it to be processed. Describe a scheme that
allows for buy and sell orders to be entered in O(logn) time, independent
of whether or not they can be immediately processed.

C-8.2 Extend a solution to the previous problem so that users are allowed to
update the prices for their buy or sell orders that have yet to be processed.

C-8.3 Write a comparator for integer objects that determines order based on the
number of 1s in each number’s binary expansion, so that i < j if the num-
ber of 1s in the binary representation of i is less than the number of 1s in
the binary representation of j.

C-8.4 Show how to implement the stack ADT using only a priority queue and
one additional member variable.

C-8.5 Show how to implement the (standard) queue ADT using only a priority
queue and one additional member variable.

C-8.6 Describe, in detail, an implementation of a priority queue based on a
sorted array. Show that this implementation achieves O(1) time for op-
erations min and removeMin and O(n) time for operation insert.

C-8.7 Describe an in-place version of the selection-sort algorithm that uses only
O(1) space for member variables in addition to an input array itself.

C-8.8 Assuming the input to the sorting problem is given in an array A, describe
how to implement the insertion-sort algorithm using only the array A and,
at most, six additional (base-type) variables.

C-8.9 Assuming the input to the sorting problem is given in an array A, describe
how to implement the heap-sort algorithm using only the array A and, at
most, six additional (base-type) variables.

i

i

“main” — 2011/1/13 — 9:10 — page 364 — #386
i

i

i

i

i

i

364 Chapter 8. Heaps and Priority Queues

C-8.10 Describe a sequence of n insertions to a heap that requires Ω(n log n) time
to process.

C-8.11 An alternative method for finding the last node during an insertion in a
heap T is to store, in the last node and each external node of T , a pointer
to the external node immediately to its right (wrapping to the first node
in the next lower level for the rightmost external node). Show how to
maintain such a pointer in O(1) time per operation of the priority queue
ADT, assuming T is implemented as a linked structure.

C-8.12 We can represent a path from the root to a given node of a binary tree by
means of a binary string, where 0 means “go to the left child” and 1 means
“go to the right child.” For example, the path from the root to the node
storing 8 in the heap of Figure 8.3 is represented by the binary string 101.
Design an O(logn)-time algorithm for finding the last node of a complete
binary tree with n nodes based on the above representation. Show how
this algorithm can be used in the implementation of a complete binary
tree by means of a linked structure that does not keep a reference to the
last node.

C-8.13 Suppose the binary tree T used to implement a heap can be accessed using
only the functions of the binary tree ADT. That is, we cannot assume T
is implemented as a vector. Given a pointer to the current last node, v,
describe an efficient algorithm for finding the insertion point (that is, the
new last node) using just the functions of the binary tree interface. Be
sure and handle all possible cases as illustrated in Figure 8.12. What is
the running time of this function?

(a) (b)

Figure 8.12: Updating the last node in a complete binary tree after operation add or
remove. Node w is the last node before operation add or after operation remove.
Node z is the last node after operation add or before operation remove.

C-8.14 Given a heap T and a key k, give an algorithm to compute all the entries in
T with a key less than or equal to k. For example, given the heap of Fig-
ure 8.12(a) and query k = 7, the algorithm should report the entries with
keys 2, 4, 5, 6, and 7 (but not necessarily in this order). Your algorithm
should run in time proportional to the number of entries returned.

i

i

“main” — 2011/1/13 — 9:10 — page 365 — #387
i

i

i

i

i

i

8.5. Exercises 365

C-8.15 Show that, for any n, there is a sequence of insertions in a heap that re-
quires Ω(n log n) time to process.

C-8.16 Provide a justification of the time bounds in Table 8.1.

C-8.17 Develop an algorithm that computes the kth smallest element of a set of n
distinct integers in O(n+ k logn) time.

C-8.18 Suppose the internal nodes of two binary trees, T1 and T2 respectively,
hold items that satisfy the heap-order property. Describe a method for
combining these two trees into a tree T , whose internal nodes hold the
union of the items in T1 and T2 and also satisfy the heap-order property.
Your algorithms should run in time O(h1 + h2) where h1 and h2 are the
respective heights of T1 and T2.

C-8.19 Give an alternative analysis of bottom-up heap construction by showing
that, for any positive integer h, ∑h

i=1(i/2i) is O(1).

C-8.20 Let T be a heap storing n keys. Give an efficient algorithm for reporting
all the keys in T that are smaller than or equal to a given query key x
(which is not necessarily in T). For example, given the heap of Figure 8.3
and query key x = 7, the algorithm should report 4, 5, 6, 7. Note that the
keys do not need to be reported in sorted order. Ideally, your algorithm
should run in O(k) time, where k is the number of keys reported.

C-8.21 Give an alternate description of the in-place heap-sort algorithm that uses
a standard comparator instead of a reverse one.

C-8.22 Describe efficient algorithms for performing operations remove(e) on an
adaptable priority queue realized by means of an unsorted list with location-
aware entries.

C-8.23 Let S be a set of n points in the plane with distinct integer x- and y-
coordinates. Let T be a complete binary tree storing the points from S
at its external nodes, such that the points are ordered left-to-right by in-
creasing x-coordinates. For each node v in T , let S(v) denote the subset of
S consisting of points stored in the subtree rooted at v. For the root r of
T , define top(r) to be the point in S = S(r) with maximum y-coordinate.
For every other node v, define top(r) to be the point in S with highest y-
coordinate in S(v) that is not also the highest y-coordinate in S(u), where
u is the parent of v in T (if such a point exists). Such labeling turns T into
a priority search tree. Describe a linear-time algorithm for turning T into
a priority search tree.

Projects

P-8.1 Generalize the Heap data structure of Section 8.3 from a binary tree to
a k-ary tree, for an arbitrary k ≥ 2. Study the relative efficiencies of the

i

i

“main” — 2011/1/13 — 9:10 — page 366 — #388
i

i

i

i

i

i

366 Chapter 8. Heaps and Priority Queues

resulting data structure for various values of k, by inserting and removing
a large number of randomly generated keys into each data structure.

P-8.2 Give a C++ implementation of a priority queue based on an unsorted list.
P-8.3 Develop a C++ implementation of a priority queue that is based on a heap

and supports the locator-based functions.
P-8.4 Implement the in-place heap-sort algorithm. Compare its running time

with that of the standard heap-sort that uses an external heap.
P-8.5 Implement a heap-based priority queue that supports the following addi-

tional operation in linear time:
replaceComparator(c): Replace the current comparator with c.

After changing the comparator, the heap will need to be restructured.
(Hint: Utilize the bottom-up heap construction algorithm.)

P-8.6 Write a program that can process a sequence of stock buy and sell orders
as described in Exercise C-8.1.

P-8.7 One of the main applications of priority queues is in operating systems—
for scheduling jobs on a CPU. In this project you are to build a program
that schedules simulated CPU jobs. Your program should run in a loop,
each iteration of which corresponds to a time slice for the CPU. Each job
is assigned a priority, which is an integer between −20 (highest priority)
and 19 (lowest priority), inclusive. From among all jobs waiting to be
processed in a time slice, the CPU must work on the job with highest
priority. In this simulation, each job will also come with a length value,
which is an integer between 1 and 100, inclusive, indicating the number
of time slices that are needed to process this job. For simplicity, you may
assume jobs cannot be interrupted—once it is scheduled on the CPU, a job
runs for a number of time slices equal to its length. Your simulator must
output the name of the job running on the CPU in each time slice and must
process a sequence of commands, one per time slice, each of which is of
the form “add job name with length n and priority p” or “no new job this
slice.”

Chapter Notes

Knuth’s book on sorting and searching [57] describes the motivation and history for the
selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due
to Williams [103], and the linear-time heap construction algorithm is due to Floyd [33].
Additional algorithms and analyses for heaps and heap-sort variations can be found in
papers by Bentley [12], Carlsson [20], Gonnet and Munro [38], McDiarmid and Reed [70],
and Schaffer and Sedgewick [88]. The design pattern of using location-aware entries (also
described in [39]), appears to be new.

i

i

“main” — 2011/1/13 — 9:10 — page 367 — #389
i

i

i

i

i

i

Chapter

9 Hash Tables, Maps, and Skip Lists

Contents

9.1 Maps . 368

9.1.1 The Map ADT . 369

9.1.2 A C++ Map Interface 371

9.1.3 The STL map Class 372

9.1.4 A Simple List-Based Map Implementation 374

9.2 Hash Tables . 375

9.2.1 Bucket Arrays . 375

9.2.2 Hash Functions . 376

9.2.3 Hash Codes . 376

9.2.4 Compression Functions 380

9.2.5 Collision-Handling Schemes 382

9.2.6 Load Factors and Rehashing 386

9.2.7 A C++ Hash Table Implementation 387

9.3 Ordered Maps . 394

9.3.1 Ordered Search Tables and Binary Search 395

9.3.2 Two Applications of Ordered Maps 399

9.4 Skip Lists . 402

9.4.1 Search and Update Operations in a Skip List 404

9.4.2 A Probabilistic Analysis of Skip Lists ⋆ 408

9.5 Dictionaries . 411

9.5.1 The Dictionary ADT 411

9.5.2 A C++ Dictionary Implementation 413

9.5.3 Implementations with Location-Aware Entries 415

9.6 Exercises . 417

i

i

“main” — 2011/1/13 — 9:10 — page 368 — #390
i

i

i

i

i

i

368 Chapter 9. Hash Tables, Maps, and Skip Lists

9.1 Maps

key

value
Map

entry

Figure 9.1: A conceptual illustration of the map ADT. Keys (labels) are assigned to
values (folders) by a user. The resulting entries (labeled folders) are inserted into
the map (file cabinet). The keys can be used later to retrieve or remove values.

A map allows us to store elements so they can be located quickly using keys.
The motivation for such searches is that each element typically stores additional
useful information besides its search key, but the only way to get at that information
is to use the search key. Specifically, a map stores key-value pairs (k,v), which we
call entries, where k is the key and v is its corresponding value. In addition, the map
ADT requires that each key be unique, so the association of keys to values defines a
mapping. In order to achieve the highest level of generality, we allow both the keys
and the values stored in a map to be of any object type. (See Figure 9.1.) In a map
storing student records (such as the student’s name, address, and course grades),
the key might be the student’s ID number. In some applications, the key and the
value may be the same. For example, if we had a map storing prime numbers, we
could use each number itself as both a key and its value.

In either case, we use a key as a unique identifier that is assigned by an appli-
cation or user to an associated value object. Thus, a map is most appropriate in
situations where each key is to be viewed as a kind of unique index address for its
value, that is, an object that serves as a kind of location for that value. For exam-
ple, if we wish to store student records, we would probably want to use student ID
objects as keys (and disallow two students having the same student ID). In other
words, the key associated with an object can be viewed as an “address” for that
object. Indeed, maps are sometimes referred to as associative stores or associative
containers, because the key associated with an object determines its “location” in
the data structure.

i

i

“main” — 2011/1/13 — 9:10 — page 369 — #391
i

i

i

i

i

i

9.1. Maps 369

Entries and the Composition Pattern

As mentioned above, a map stores key-value pairs, called entries. An entry is actu-
ally an example of a more general object-oriented design pattern, the composition
pattern, which defines a single object that is composed of other objects. A pair is
the simplest composition, because it combines two objects into a single pair object.

To implement this concept, we define a class that stores two objects in its first
and second member variables, respectively, and provides functions to access and
update these variables. In Code Fragment 9.1, we present such an implementation
storing a single key-value pair. We define a class Entry, which is templated based
on the key and value types. In addition to a constructor, it provides member func-
tions that return references to the key and value. It also provides functions that
allow us to set the key and value members.

template <typename K, typename V>
class Entry { // a (key, value) pair
public: // public functions

Entry(const K& k = K(), const V& v = V()) // constructor
: key(k), value(v) { }

const K& key() const { return key; } // get key
const V& value() const { return value; } // get value
void setKey(const K& k) { key = k; } // set key
void setValue(const V& v) { value = v; } // set value

private: // private data
K key; // key
V value; // value
};

Code Fragment 9.1: A C++ class for an entry storing a key-value pair.

9.1.1 The Map ADT

In this section, we describe a map ADT. Recall that a map is a collection of key-
value entries, with each value associated with a distinct key. We assume that a map
provides a special pointer object, which permits us to reference entries of the map.
Such an object would normally be called a position. As we did in Chapter 6, in
order to be more consistent with the C++ Standard Template Library, we define a
somewhat more general object called an iterator, which can both reference entries
and navigate around the map. Given a map iterator p, the associated entry may be
accessed by dereferencing the iterator, namely as *p. The individual key and value
can be accessed using p->key() and p->value(), respectively.

In order to advance an iterator from its current position to the next, we overload
the increment operator. Thus, ++p advances the iterator p to the next entry of the

i

i

“main” — 2011/1/13 — 9:10 — page 370 — #392
i

i

i

i

i

i

370 Chapter 9. Hash Tables, Maps, and Skip Lists

map. We can enumerate all the entries of a map M by initializing p to M.begin()
and then repeatedly incrementing p as long as it is not equal to M.end().

In order to indicate that an object is not present in the map, we assume that
there exists a special sentinel iterator called end. By convention, this sentinel refers
to an imaginary element that lies just beyond the last element of the map.

The map ADT consists of the following:

size(): Return the number of entries in M.

empty(): Return true if M is empty and false otherwise.

find(k): If M contains an entry e = (k,v), with key equal to k, then
return an iterator p referring to this entry, and otherwise
return the special iterator end.

put(k,v): If M does not have an entry with key equal to k, then
add entry (k,v) to M, and otherwise, replace the value
field of this entry with v; return an iterator to the in-
serted/modified entry.

erase(k): Remove from M the entry with key equal to k; an error
condition occurs if M has no such entry.

erase(p): Remove from M the entry referenced by iterator p; an
error condition occurs if p points to the end sentinel.

begin(): Return an iterator to the first entry of M.

end(): Return an iterator to a position just beyond the end of M.

We have provided two means of removing entries, one given a key and the other
given an iterator. The key-based operation should be used only when it is known
that the key is present in the map. Otherwise, it is necessary to first check that the
key exists using the operation “p = M.find(k),” and if so, then apply the operation
M.erase(p). The iterator-based removal operation has the advantage that it does
not need to repeat the search for the key, and hence is more efficient.

The operation put, may either insert an entry or modify an existing entry. It is
designed explicitly in this way, since we require that the keys be unique. Later, in
Section 9.5, we consider a different data structure, which allows multiple instances
to have the same keys. Note that an iterator remains associated with an entry, even
if its value is changed.

Example 9.1: In the following, we show the effect of a series of operations on an
initially empty map storing entries with integer keys and single-character values.
In the column “Output,” we use the notation pi : [(k,v)] to mean that the operation
returns an iterator denoted by pi that refers to the entry (k,v). The entries of the
map are not listed in any particular order.

i

i

“main” — 2011/1/13 — 9:10 — page 371 — #393
i

i

i

i

i

i

9.1. Maps 371

Operation Output Map
empty() true ∅
put(5,A) p1 : [(5,A)] {(5,A)}
put(7,B) p2 : [(7,B)] {(5,A),(7,B)}
put(2,C) p3 : [(2,C)] {(5,A),(7,B),(2,C)}
put(2,E) p3 : [(2,E)] {(5,A),(7,B),(2,E)}
find(7) p2 : [(7,B)] {(5,A),(7,B),(2,E)}
find(4) end {(5,A),(7,B),(2,E)}
find(2) p3 : [(2,E)] {(5,A),(7,B),(2,E)}
size() 3 {(5,A),(7,B),(2,E)}
erase(5) – {(7,B),(2,E)}
erase(p3) – {(7,B)}
find(2) end {(7,B)}

9.1.2 A C++ Map Interface

Before discussing specific implementations of the map ADT, we first define a C++
interface for a map in Code Fragment 9.2. It is not a complete C++ class, just a
declaration of the public functions. The interface is templated by two types, the
key type K, and the value type V .

template <typename K, typename V>
class Map { // map interface
public:

class Entry; // a (key,value) pair
class Iterator; // an iterator (and position)

int size() const; // number of entries in the map
bool empty() const; // is the map empty?
Iterator find(const K& k) const; // find entry with key k
Iterator put(const K& k, const V& v); // insert/replace pair (k,v)
void erase(const K& k) // remove entry with key k

throw(NonexistentElement);
void erase(const Iterator& p); // erase entry at p
Iterator begin(); // iterator to first entry
Iterator end(); // iterator to end entry
};

Code Fragment 9.2: An informal C++ Map interface (not a complete class).

In addition to its member functions, the interface defines two types, Entry and
Iterator. These two classes provide the types for the entry and iterator objects,
respectively. Outside the class, these would be accessed with Map<K,V>::Entry
and Map<K,V>::Iterator, respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 372 — #394
i

i

i

i

i

i

372 Chapter 9. Hash Tables, Maps, and Skip Lists

We have not presented an interface for the iterator object, but its definition is
similar to the STL iterator. It supports the operator “*”, which returns a reference
to the associated entry. The unary increment and decrement operators “++” and
“– –” move an iterator forward and backwards, respectively. Also, two iterators can
be compared for equality using “==”.

A more sophisticated implementation would have also provided for a third type,
namely a “const” iterator. Such an iterator provides a function for reading entries
without modifying them. (Recall Section 6.1.4.) We omit this type in order to keep
our interface relatively simple.

The remainder of the interface follows from our earlier descriptions of the map
operations. An error condition occurs if the function erase(k) is called with a key
k that is not in the map. This is signaled by throwing an exception of type Nonex-
istentElement. Its definition is similar to other exceptions that we have seen. (See
Code Fragment 5.2.)

9.1.3 The STL map Class

The C++ Standard Template Library (STL) provides an implementation of a map
simply called map. As with many of the other STL classes we have seen, the STL
map is an example of a container, and hence supports access by iterators.

In order to declare an object of type map, it is necessary to first include the
definition file called “map.” The map is part of the std namespace, and hence it is
necessary either to use “std::map” or to provide an appropriate “using” statement.

The STL map is templated with two arguments, the key type and the value type.
The declaration “map<K,V>” defines a map whose keys are of type K and whose
values are of type V. As with the other STL containers, an iterator type is provided
both for referencing individual entries and enumerating multiple entries. The map
iterator type is “map<K,E>::iterator.” The (k,v) entries are stored in a composite
object called pair. Given an iterator p, its associated key and value members can
be referenced using p->first and p->second, respectively. (These are equivalent to
p->key() and p->value() in our map ADT, but note that there are no parentheses
following first and second.)

As with other iterators we have seen, each map object M defines two special
iterators through the functions begin and end, where M.begin() yields an iterator
to the first element of the map, and M.end() yields an iterator to an imaginary
element just beyond the end of the map. A map iterator p is bidirectional, meaning
that we can move forwards and backwards through the map using the increment
and decrement operators, ++p and – –p, respectively.

The principal member functions of the STL map are given below. Let M be
declared to be an STL map, let k be a key object, and let v be a value object for the
class M. Let p be an iterator for M.

i

i

“main” — 2011/1/13 — 9:10 — page 373 — #395
i

i

i

i

i

i

9.1. Maps 373

size(): Return the number of elements in the map.

empty(): Return true if the map is empty and false otherwise.

find(k): Find the entry with key k and return an iterator to it; if no
such key exists return end.

operator[k]: Produce a reference to the value of key k; if no such key
exists, create a new entry for key k.

insert(pair(k,v)): Insert pair (k,v), returning an iterator to its position.

erase(k): Remove the element with key k.

erase(p): Remove the element referenced by iterator p.

begin(): Return an iterator to the beginning of the map.

end(): Return an iterator just past the end of the map.

Our map ADT is quite similar to the above functions. The insert function is a
bit different. In our ADT, it is given two arguments. In the STL map, the argument
is a composite object of type pair, whose first and second elements are the key and
value, respectively.

The STL map provides a very convenient way to search, insert, and modify
entries by overloading the subscript operator (“[]”). Given a map M, the assignment
“M[k] = v” inserts the pair (k,v) if k is not already present, or modifies the value
if it is. Thus, the subscript assignment behaves essentially the same as our ADT
function put(k,v). Reading the value of M[k] is equivalent to performing find(k)
and accessing the value part of the resulting iterator. An example of the use of the
STL map is shown in Code Fragment 9.3.

map<string, int> myMap; // a (string,int) map
map<string, int>::iterator p; // an iterator to the map
myMap.insert(pair<string, int>("Rob", 28)); // insert (“Rob”,28)
myMap["Joe"] = 38; // insert(“Joe”,38)
myMap["Joe"] = 50; // change to (“Joe”,50)
myMap["Sue"] = 75; // insert(“Sue”,75)
p = myMap.find("Joe"); // *p = (“Joe”,50)
myMap.erase(p); // remove (“Joe”,50)
myMap.erase("Sue"); // remove (“Sue”,75)
p = myMap.find("Joe");
if (p == myMap.end()) cout << "nonexistent\n"; // outputs: “nonexistent”
for (p = myMap.begin(); p != myMap.end(); ++p) { // print all entries

cout << "(" << p−>first << "," << p−>second << ")\n";
}

Code Fragment 9.3: Example of the usage of STL map.

As with the other STL containers we have seen, the STL does not check for
errors. It is up to the programmer to be sure that no illegal operations are performed.

i

i

“main” — 2011/1/13 — 9:10 — page 374 — #396
i

i

i

i

i

i

374 Chapter 9. Hash Tables, Maps, and Skip Lists

9.1.4 A Simple List-Based Map Implementation

A simple way of implementing a map is to store its n entries in a list L, imple-
mented as a doubly linked list. Performing the fundamental functions, find(k),
put(k,v), and erase(k), involves simple scans down L looking for an entry with
key k. Pseudo-code is presented in Code Fragments 9.4. We use the notation
[L.begin(),L.end()) to denote all the positions of list L, from L.begin() and up to,
but not including, L.end().

Algorithm find(k):
Input: A key k
Output: The position of the matching entry of L, or end if there is no key k in L

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then

return p
return end {there is no entry with key equal to k}

Algorithm put(k,v):
Input: A key-value pair (k,v)
Output: The position of the inserted/modified entry

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then
*p← (k,v)
return p {return the position of the modified entry}

p← L.insertBack((k,v))
n← n+ 1 {increment variable storing number of entries}
return p {return the position of the inserted entry}

Algorithm erase(k):
Input: A key k
Output: None

for each position p ∈ [L.begin(),L.end()) do
if p.key() = k then

L.erase(p)
n← n−1 {decrement variable storing number of entries}

Code Fragment 9.4: Algorithms for find, put, and erase for a map stored in a list L.

This list-based map implementation is simple, but it is only efficient for very
small maps. Every one of the fundamental functions takes O(n) time on a map
with n entries, because each function involves searching through the entire list in
the worst case. Thus, we would like something much faster.

i

i

“main” — 2011/1/13 — 9:10 — page 375 — #397
i

i

i

i

i

i

9.2. Hash Tables 375

9.2 Hash Tables

The keys associated with values in a map are typically thought of as “addresses” for
those values. Examples of such applications include a compiler’s symbol table and
a registry of environment variables. Both of these structures consist of a collection
of symbolic names where each name serves as the “address” for properties about
a variable’s type and value. One of the most efficient ways to implement a map in
such circumstances is to use a hash table. Although, as we will see, the worst-case
running time of map operations in an n-entry hash table is O(n). A hash table can
usually perform these operations in O(1) expected time. In general, a hash table
consists of two major components, a bucket array and a hash function.

9.2.1 Bucket Arrays

A bucket array for a hash table is an array A of size N, where each cell of A is
thought of as a “bucket” (that is, a collection of key-value pairs) and the integer
N defines the capacity of the array. If the keys are integers well distributed in the
range [0,N − 1], this bucket array is all that is needed. An entry e with key k is
simply inserted into the bucket A[k]. (See Figure 9.2.)

Figure 9.2: A bucket array of size 11 for the entries (1,D), (3,C), (3,F), (3,Z), (6,A),
(6,C), and (7,Q).

If our keys are unique integers in the range [0,N− 1], then each bucket holds
at most one entry. Thus, searches, insertions, and removals in the bucket array take
O(1) time. This sounds like a great achievement, but it has two drawbacks. First,
the space used is proportional to N. Thus, if N is much larger than the number of
entries n actually present in the map, we have a waste of space. The second draw-
back is that keys are required to be integers in the range [0,N−1], which is often not
the case. Because of these two drawbacks, we use the bucket array in conjunction
with a “good” mapping from the keys to the integers in the range [0,N−1].

i

i

“main” — 2011/1/13 — 9:10 — page 376 — #398
i

i

i

i

i

i

376 Chapter 9. Hash Tables, Maps, and Skip Lists

9.2.2 Hash Functions

The second part of a hash table structure is a function, h, called a hash function,
that maps each key k in our map to an integer in the range [0,N − 1], where N is
the capacity of the bucket array for this table. Equipped with such a hash function,
h, we can apply the bucket array method to arbitrary keys. The main idea of this
approach is to use the hash function value, h(k), as an index into our bucket array,
A, instead of the key k (which is most likely inappropriate for use as a bucket array
index). That is, we store the entry (k,v) in the bucket A[h(k)].

Of course, if there are two or more keys with the same hash value, then two
different entries will be mapped to the same bucket in A. In this case, we say
that a collision has occurred. Clearly, if each bucket of A can store only a single
entry, then we cannot associate more than one entry with a single bucket, which
is a problem in the case of collisions. To be sure, there are ways of dealing with
collisions, which we discuss later, but the best strategy is to try to avoid them in
the first place. We say that a hash function is “good” if it maps the keys in our map
in such a way as to minimize collisions as much as possible. For practical reasons,
we also would like a hash function to be fast and easy to compute.

We view the evaluation of a hash function, h(k), as consisting of two actions—
mapping the key k to an integer, called the hash code, and mapping the hash code
to an integer within the range of indices ([0,N − 1]) of a bucket array, called the
compression function. (See Figure 9.3.)

Figure 9.3: The two parts of a hash function: hash code and compression function.

9.2.3 Hash Codes

The first action that a hash function performs is to take an arbitrary key k in our map
and assign it an integer value. The integer assigned to a key k is called the hash
code for k. This integer value need not be in the range [0,N−1], and may even be

i

i

“main” — 2011/1/13 — 9:10 — page 377 — #399
i

i

i

i

i

i

9.2. Hash Tables 377

negative, but we want the set of hash codes assigned to our keys to avoid collisions
as much as possible. If the hash codes of our keys cause collisions, then there is no
hope for our compression function to avoid them. In addition, to be consistent with
all of our keys, the hash code we use for a key k should be the same as the hash
code for any key that is equal to k.

Hash Codes in C++

The hash codes described below are based on the assumption that the number of
bits of each type is known. This information is provided in the standard include file
<limits>. This include file defines a templated class numeric limits. Given a base
type T (such as char, int, or float), the number of bits in a variable of type T is
given by “numeric limits<T>.digits.” Let us consider several common data types
and some example functions for assigning hash codes to objects of these types.

Converting to an Integer

To begin, we note that, for any data type X that is represented using at most as
many bits as our integer hash codes, we can simply take an integer interpretation of
its bits as a hash code for X . Thus, for the C++ fundamental types char, short, and
int, we can achieve a good hash code simply by casting this type to int.

On many machines, the type long has a bit representation that is twice as long
as type int. One possible hash code for a long object is to simply cast it down to
an integer and then apply the integer hash code. The problem is that such a hash
code ignores half of the information present in the original value. If many of the
keys in our map only differ in these bits, they will collide using this simple hash
code. A better hash code, which takes all the original bits into consideration, sums
an integer representation of the high-order bits with an integer representation of the
low-order bits.

Indeed, the approach of summing components can be extended to any object x
whose binary representation can be viewed as a k-tuple (x0,x1, . . . ,xk−1) of integers,
because we can then form a hash code for x as ∑k−1

i=0 xi. For example, given any
floating-point number, we can sum its mantissa and exponent as long integers, and
then apply a hash code for long integers to the result.

Polynomial Hash Codes

The summation hash code, described above, is not a good choice for character
strings or other variable-length objects that can be viewed as tuples of the form
(x0,x1, . . . ,xk−1), where the order of the xi’s is significant. For example, consider
a hash code for a character string s that sums the ASCII values of the characters

i

i

“main” — 2011/1/13 — 9:10 — page 378 — #400
i

i

i

i

i

i

378 Chapter 9. Hash Tables, Maps, and Skip Lists

in s. Unfortunately, this hash code produces lots of unwanted collisions for com-
mon groups of strings. In particular, "temp01" and "temp10" collide using this
function, as do "stop", "tops", "pots", and "spot". A better hash code takes
into consideration the positions of the xi’s. An alternative hash code, which does
exactly this, chooses a nonzero constant, a 6= 1, and uses

x0ak−1 + x1ak−2 + · · ·+ xk−2a+ xk−1

as a hash code value. Mathematically speaking, this is simply a polynomial in a that
takes the components (x0,x1, . . . ,xk−1) of an object x as its coefficients. This hash
code is therefore called a polynomial hash code. By Horner’s rule (see Exercise C-
4.16), this polynomial can be rewritten as

xk−1 + a(xk−2 + a(xk−3 + · · ·+ a(x2 + a(x1 + ax0)) · · ·)).

Intuitively, a polynomial hash code uses multiplication by the constant a as a
way of “making room” for each component in a tuple of values, while also preserv-
ing a characterization of the previous components. Of course, on a typical com-
puter, evaluating a polynomial is done using the finite bit representation for a hash
code; hence, the value periodically overflows the bits used for an integer. Since
we are more interested in a good spread of the object x with respect to other keys,
we simply ignore such overflows. Still, we should be mindful that such overflows
are occurring and choose the constant a so that it has some nonzero, low-order
bits, which serve to preserve some of the information content even if we are in an
overflow situation.

We have done some experimental studies that suggest that 33, 37, 39, and 41
are good choices for a when working with character strings that are English words.
In fact, in a list of over 50,000 English words formed as the union of the word lists
provided in two variants of Unix, we found that taking a to be 33, 37, 39, or 41
produced less than seven collisions in each case! Many implementations of string
hashing choose a polynomial hash function, using one of these constants for a, as
a default hash code. For the sake of speed, however, some implementations only
apply the polynomial hash function to a fraction of the characters in long strings.

Cyclic Shift Hash Codes

A variant of the polynomial hash code replaces multiplication by a with a cyclic
shift of a partial sum by a certain number of bits. Such a function, applied to
character strings in C++ could, for example, look like the following. We assume
a 32-bit integer word length, and we assume access to a function hashCode(x) for
integers. To achieve a 5-bit cyclic shift we form the “bitwise or” (see Section 1.2)
of a 5-bit left shift and a 27-bit right shift. As before, we use an unsigned integer
so that right shifts fill with zeros.

i

i

“main” — 2011/1/13 — 9:10 — page 379 — #401
i

i

i

i

i

i

9.2. Hash Tables 379

int hashCode(const char* p, int len) { // hash a character array
unsigned int h = 0;
for (int i = 0; i < len; i++) {

h = (h << 5) | (h >> 27); // 5-bit cyclic shift
h += (unsigned int) p[i]; // add in next character
}
return hashCode(int(h));
}

As with the traditional polynomial hash code, using the cyclic-shift hash code re-
quires some fine-tuning. In this case, we must wisely choose the amount to shift by
for each new character.

Experimental Results

In Table 9.1, we show the results of some experiments run on a list of just over
25,000 English words, which compare the number of collisions for various shift
amounts.

Collisions Collisions
Shift Total Max Shift Total Max

0 23739 86 9 18 2
1 10517 21 10 277 3
2 2254 6 11 453 4
3 448 3 12 43 2
4 89 2 13 13 2
5 4 2 14 135 3
6 6 2 15 1082 6
7 14 2 16 8760 9
8 105 2

Table 9.1: Comparison of collision behavior for the cyclic shift variant of the poly-
nomial hash code as applied to a list of just over 25,000 English words. The “Total”
column records the total number of collisions and the “Max” column records the
maximum number of collisions for any one hash code. Note that, with a cyclic shift
of 0, this hash code reverts to the one that simply sums all the characters.

These and our previous experiments show that if we choose our constant a
or our shift value wisely, then either the polynomial hash code or its cyclic-shift
variant are suitable for any object that can be written as a tuple (x0,x1, . . . ,xk−1),

i

i

“main” — 2011/1/13 — 9:10 — page 380 — #402
i

i

i

i

i

i

380 Chapter 9. Hash Tables, Maps, and Skip Lists

where the order in tuples matters. In particular, note that using a shift of 5 or 6 is
particularly good for English words. Also, note how poorly a simple addition of
the values would be with no shifting (that is, for a shift of 0).

Hashing Floating-Point Quantities

On most machines, types int and float are both 32-bit quantities. Nonetheless, the
approach of casting a float variable to type int would not produce a good hash
function, since this would truncate the fractional part of the floating-point value.
For the purposes of hashing, we do not really care about the number’s value. It
is sufficient to treat the number as a sequence of bits. Assuming that a char is
stored as an 8-bit byte, we could interpret a 32-bit float as a four-element character
array, and a 64-bit double as an eight-element character array. C++ provides an
operation called a reinterpret cast, to cast between such unrelated types. This cast
treats quantities as a sequence of bits and makes no attempt to intelligently convert
the meaning of one quantity to another.

For example, we could design a hash function for a float by first reinterpreting
it as an array of characters and then applying the character-array hashCode function
defined above. We use the operator sizeof , which returns the number of bytes in a
type.

int hashCode(const float& x) { // hash a float
int len = sizeof(x);
const char* p = reinterpret cast<const char*>(&x);
return hashCode(p, len);
}

Reinterpret casts are generally not portable operations, since the result depends
on the particular machine’s encoding of types as a pattern of bits. In our case,
portability is not an issue since we are interested only in interpreting the floating
point value as a sequence of bits. The only property that we require is that float
variables with equal values must have the same bit sequence.

9.2.4 Compression Functions

The hash code for a key k is typically not suitable for immediate use with a bucket
array, because the range of possible hash codes for our keys typically exceeds the
range of legal indices of our bucket array A. That is, incorrectly using a hash code
as an index into our bucket array may result in an error condition, either because the
index is negative or it exceeds the capacity of A. Thus, once we have determined an
integer hash code for a key object k, there is still the issue of mapping that integer

i

i

“main” — 2011/1/13 — 9:10 — page 381 — #403
i

i

i

i

i

i

9.2. Hash Tables 381

into the range [0,N − 1]. This compression step is the second action that a hash
function performs.

The Division Method

One simple compression function to use is

h(k) = |k| mod N,

which is called the division method. Additionally, if we take N to be a prime
number, then this hash function helps “spread out” the distribution of hashed values.
Indeed, if N is not prime, there is a higher likelihood that patterns in the distribution
of keys will be repeated in the distribution of hash codes, thereby causing collisions.
For example, if we hash the keys {200,205,210,215,220, . . . ,600} to a bucket
array of size 100 using the division method, then each hash code collides with
three others. But if this same set of keys is similarly hashed to a bucket array of
size 101, then there are no collisions. If a hash function is chosen well, it should
ensure that the probability of two different keys getting hashed to the same bucket
is 1/N. Choosing N to be a prime number is not always enough, however, because
if there is a repeated pattern of key values of the form iN + j for several different
i’s, then there are still collisions.

The MAD Method

A more sophisticated compression function, which helps eliminate repeated pat-
terns in a set of integer keys is the multiply add and divide (or “MAD”) method. In
using this method, we define the compression function as

h(k) = |ak + b| mod N,

where N is a prime number, and a and b are nonnegative integers randomly chosen
at the time the compression function is determined, so that a mod N 6= 0. This
compression function is chosen in order to eliminate repeated patterns in the set of
hash codes and to get us closer to having a “good” hash function, that is, one having
the probability that any two different keys collide is 1/N. This good behavior would
be the same as if these keys were “thrown” into A uniformly at random.

With a compression function such as this, that spreads n integers fairly evenly
in the range [0,N− 1], and a mapping of the keys in our map to integers, we have
an effective hash function. Together, such a hash function and a bucket array define
the key ingredients of the hash table implementation of the map ADT.

But before we can give the details of how to perform such operations as find,
insert, and erase, we must first resolve the issue of how we to handle collisions.

i

i

“main” — 2011/1/13 — 9:10 — page 382 — #404
i

i

i

i

i

i

382 Chapter 9. Hash Tables, Maps, and Skip Lists

9.2.5 Collision-Handling Schemes

The main idea of a hash table is to take a bucket array, A, and a hash function,
h, and use them to implement a map by storing each entry (k,v) in the “bucket”
A[h(k)]. This simple idea is challenged, however, when we have two distinct keys,
k1 and k2, such that h(k1) = h(k2). The existence of such collisions prevents us
from simply inserting a new entry (k,v) directly in the bucket A[h(k)]. Collisions
also complicate our procedure for performing the find(k), put(k,v), and erase(k)
operations.

Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[i]
store a small map, Mi, implemented using a list, as described in Section 9.1.4,
holding entries (k,v) such that h(k) = i. That is, each separate Mi chains together
the entries that hash to index i in a linked list. This collision-resolution rule is
known as separate chaining. Assuming that we initialize each bucket A[i] to be an
empty list-based map, we can easily use the separate-chaining rule to perform the
fundamental map operations as shown in Code Fragment 9.5.

Algorithm find(k):
Output: The position of the matching entry of the map, or end if there is no key

k in the map

return A[h(k)].find(k) {delegate the find(k) to the list-based map at A[h(k)]}
Algorithm put(k,v):

p← A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}
n← n+ 1
return p

Algorithm erase(k):
Output: None

A[h(k)].erase(k) {delegate the erase to the list-based map at A[h(k)]}
n← n−1

Code Fragment 9.5: The fundamental functions of the map ADT, implemented with
a hash table that uses separate chaining to resolve collisions among its n entries.

For each fundamental map operation involving a key k, the separate-chaining
approach delegates the handling of this operation to the miniature list-based map
stored at A[h(k)]. So, put(k,v) scans this list looking for an entry with key equal
to k; if it finds one, it replaces its value with v, otherwise, it puts (k,v) at the end
of this list. Likewise, find(k) searches through this list until it reaches the end or

i

i

“main” — 2011/1/13 — 9:10 — page 383 — #405
i

i

i

i

i

i

9.2. Hash Tables 383

finds an entry with key equal to k. And erase(k) performs a similar search but
additionally removes an entry after it is found. We can “get away” with this simple
list-based approach because the spreading properties of the hash function help keep
each bucket’s list small. Indeed, a good hash function tries to minimize collisions
as much as possible, which implies that most of our buckets are either empty or
store just a single entry. In Figure 9.4, we give an illustration of a hash table with
separate chaining.

Figure 9.4: A hash table of size 13, storing 10 entries with integer keys, with colli-
sions resolved by separate chaining. The compression function is h(k) = k mod 13.
For simplicity, we do not show the values associated with the keys.

Assuming we use a good hash function to index the n entries of our map in a
bucket array of capacity N, we expect each bucket to be of size n/N. This value,
called the load factor of the hash table (and denoted with λ), should be bounded
by a small constant, preferably below 1. Given a good hash function, the expected
running time of operations find, put, and erase in a map implemented with a hash
table that uses this function is O(⌈n/N⌉). Thus, we can implement these operations
to run in O(1) expected time provided n is O(N).

Open Addressing

The separate-chaining rule has many nice properties, such as allowing for simple
implementations of map operations, but it nevertheless has one slight disadvan-
tage. It requires the use of an auxiliary data structure—a list—to hold entries with
colliding keys. We can handle collisions in other ways besides using the separate-

i

i

“main” — 2011/1/13 — 9:10 — page 384 — #406
i

i

i

i

i

i

384 Chapter 9. Hash Tables, Maps, and Skip Lists

chaining rule, however. In particular, if space is at a premium (for example, if we
are writing a program for a small handheld device), then we can use the alternative
approach of always storing each entry directly in a bucket, at most one entry per
bucket. This approach saves space because no auxiliary structures are employed,
but it requires a bit more complexity to deal with collisions. There are several vari-
ants of this approach, collectively referred to as open-addressing schemes, which
we discuss next. Open addressing requires that the load factor is always at most 1
and that entries are stored directly in the cells of the bucket array itself.

Linear Probing and its Variants

A simple open-addressing method for collision handling is linear probing. In this
method, if we try to insert an entry (k,v) into a bucket A[i] that is already occupied
(where i = h(k)), then we try next at A[(i+ 1) mod N]. If A[(i+ 1) mod N] is also
occupied, then we try A[(i + 2) mod N], and so on, until we find an empty bucket
that can accept the new entry. Once this bucket is located, we simply insert the en-
try there. Of course, this collision-resolution strategy requires that we change the
implementation of the get(k,v) operation. In particular, to perform such a search,
followed by either a replacement or insertion, we must examine consecutive buck-
ets, starting from A[h(k)], until we either find an entry with key equal to k or we
find an empty bucket. (See Figure 9.5.) The name “linear probing” comes from the
fact that accessing a cell of the bucket array can be viewed as a “probe.”

Figure 9.5: An insertion into a hash table using linear probing to resolve collisions.
Here we use the compression function h(k) = k mod 11.

To implement erase(k), we might, at first, think we need to do a considerable
amount of shifting of entries to make it look as though the entry with key k was
never inserted, which would be very complicated. A typical way to get around this
difficulty is to replace a deleted entry with a special “available” marker object. With
this special marker possibly occupying buckets in our hash table, we modify our
search algorithm for erase(k) or find(k) so that the search for a key k skips over cells

i

i

“main” — 2011/1/13 — 9:10 — page 385 — #407
i

i

i

i

i

i

9.2. Hash Tables 385

containing the available marker and continue probing until reaching the desired
entry or an empty bucket (or returning back to where we started). Additionally, our
algorithm for put(k,v) should remember an available cell encountered during the
search for k, since this is a valid place to put a new entry (k,v). Thus, linear probing
saves space, but it complicates removals.

Even with the use of the available marker object, linear probing suffers from an
additional disadvantage. It tends to cluster the entries of the map into contiguous
runs, which may even overlap (particularly if more than half of the cells in the hash
table are occupied). Such contiguous runs of occupied hash cells causes searches
to slow down considerably.

Quadratic Probing

Another open-addressing strategy, known as quadratic probing, involves iteratively
trying the buckets A[(i + f (j)) mod N], for j = 0,1,2, . . ., where f (j) = j2, until
finding an empty bucket. As with linear probing, the quadratic-probing strategy
complicates the removal operation, but it does avoid the kinds of clustering patterns
that occur with linear probing. Nevertheless, it creates its own kind of clustering,
called secondary clustering, where the set of filled array cells “bounces” around
the array in a fixed pattern. If N is not chosen as a prime, then the quadratic-probing
strategy may not find an empty bucket in A even if one exists. In fact, even if N is
prime, this strategy may not find an empty slot if the bucket array is at least half
full. We explore the cause of this type of clustering in an exercise (Exercise C-9.9).

Double Hashing

Another open-addressing strategy that does not cause clustering of the kind pro-
duced by linear probing or by quadratic probing is the double-hashing strategy. In
this approach, we choose a secondary hash function, h′, and if h maps some key k
to a bucket A[i], with i = h(k), that is already occupied, then we iteratively try the
buckets A[(i+ f (j)) mod N] next, for j = 1,2,3, . . ., where f (j) = j ·h′(k). In this
scheme, the secondary hash function is not allowed to evaluate to zero; a common
choice is h′(k) = q− (k mod q), for some prime number q < N. Also, N should be
a prime. Moreover, we should choose a secondary hash function that attempts to
minimize clustering as much as possible.

These open-addressing schemes save some space over the separate-chaining
method, but they are not necessarily faster. In experimental and theoretical anal-
yses, the chaining method is either competitive or faster than the other methods,
depending on the load factor of the bucket array. So, if memory space is not a ma-
jor issue, the collision-handling method of choice seems to be separate chaining.

i

i

“main” — 2011/1/13 — 9:10 — page 386 — #408
i

i

i

i

i

i

386 Chapter 9. Hash Tables, Maps, and Skip Lists

9.2.6 Load Factors and Rehashing

In all of the hash-table schemes described above, the load factor, λ = n/N, should
be kept below 1. Experiments and average-case analyses suggest that we should
maintain λ < 0.5 for the open-addressing schemes and we should maintain λ < 0.9
for separate chaining.

As we explore in Exercise C-9.9, some open-addressing schemes can start to
fail when λ ≥ 0.5. Although the details of the average-case analysis of hashing
are beyond the scope of this book, its probabilistic basis is quite intuitive. If our
hash function is good, then we expect the hash function values to be uniformly
distributed in the range [0,N− 1]. Thus, to store n items in our map, the expected
number of keys in a bucket would be ⌈n/N⌉ at most, which is O(1) if n is O(N).

With open addressing, as the load factor λ grows beyond 0.5 and starts ap-
proaching 1, clusters of items in the bucket array start to grow as well. These
clusters cause the probing strategies to “bounce around” the bucket array for a con-
siderable amount of time before they can finish. At the limit, when λ is close to
1, all map operations have linear expected running times, since, in this case, we
expect to encounter a linear number of occupied buckets before finding one of the
few remaining empty cells.

Rehashing into a New Table

Keeping the load factor below a certain threshold is vital for open-addressing schemes
and is also of concern to the separate-chaining method. If the load factor of a hash
table goes significantly above a specified threshold, then it is common to require
that the table be resized (to regain the specified load factor) and all the objects in-
serted into this new resized table. Indeed, if we let our hash table become full, some
implementations may crash. When rehashing to a new table, a good requirement
is having the new array’s size be at least double the previous size. Once we have
allocated this new bucket array, we must define a new hash function to go with it
(possibly computing new parameters, as in the MAD method). Given this new hash
function, we then reinsert every item from the old array into the new array using
this new hash function. This process is known as rehashing.

Even with periodic rehashing, a hash table is an efficient means of implement-
ing an unordered map. Indeed, if we always double the size of the table with each
rehashing operation, then we can amortize the cost of rehashing all the elements
in the table against the time used to insert them in the first place. The analysis
of this rehashing process is similar to that used to analyze vector growth. (See
Section 6.1.3.) Each rehashing generally scatters the elements throughout the new
bucket array. Thus, a hash table is a practical and effective implementation for an
unordered map.

i

i

“main” — 2011/1/13 — 9:10 — page 387 — #409
i

i

i

i

i

i

9.2. Hash Tables 387

9.2.7 A C++ Hash Table Implementation

In Code Fragments 9.6 through 9.13, we present a C++ implementation of the map
ADT, called HashMap, which is based on hashing with separate chaining. The
class is templated with the key type K, the value type V , and the hash comparator
type H . The hash comparator defines a function, hash(k), which maps a key into an
integer index. As with less-than comparators (see Section 8.1.2), a hash comparator
class does this by overriding the “()” operator.

We present the general class structure in Code Fragment 9.6. The definition
begins with the public types required by the map interface, the entry type Entry,
and the iterator type Iterator. This is followed by the declarations of the public
member functions. We then give the private member data, which consists of the
number of entries n, the hash comparator function hash, and the bucket array B.
We have omitted two sections, which are filled in later. The first is a declaration
of some utility types and functions and the second is the declaration of the map’s
iterator class.

template <typename K, typename V, typename H>
class HashMap {
public: // public types

typedef Entry<const K,V> Entry; // a (key,value) pair
class Iterator; // a iterator/position

public: // public functions
HashMap(int capacity = 100); // constructor
int size() const; // number of entries
bool empty() const; // is the map empty?
Iterator find(const K& k); // find entry with key k
Iterator put(const K& k, const V& v); // insert/replace (k,v)
void erase(const K& k); // remove entry with key k
void erase(const Iterator& p); // erase entry at p
Iterator begin(); // iterator to first entry
Iterator end(); // iterator to end entry

protected: // protected types
typedef std::list<Entry> Bucket; // a bucket of entries
typedef std::vector<Bucket> BktArray; // a bucket array
// . . .insert HashMap utilities here

private:
int n; // number of entries
H hash; // the hash comparator
BktArray B; // bucket array

public: // public types
// . . .insert Iterator class declaration here
};

Code Fragment 9.6: The class HashMap, which implements the map ADT.

i

i

“main” — 2011/1/13 — 9:10 — page 388 — #410
i

i

i

i

i

i

388 Chapter 9. Hash Tables, Maps, and Skip Lists

We have defined the key part of Entry to be “const K,” rather than “K.” This
prevents a user from inadvertently modifying a key. The class makes use of two
major data types. The first is an STL list of entries, called a Bucket, each storing a
single bucket. The other is an STL vector of buckets, called BktArray.

Before describing the main elements of the class, we introduce a few local (pro-
tected) utilities in Code Fragment 9.7. We declare three helper functions, finder,
inserter, and eraser, which, respectively, handle the low-level details of finding, in-
serting, and removing entries. For convenience, we define two iterator types, one
called BItor for iterating over the buckets of the bucket array, and one called EItor,
for iterating over the entries of a bucket. We also give two utility functions, nextBkt
and endOfBkt, which are used to iterate through the entries of a single bucket.

Iterator finder(const K& k); // find utility
Iterator inserter(const Iterator& p, const Entry& e); // insert utility
void eraser(const Iterator& p); // remove utility
typedef typename BktArray::iterator BItor; // bucket iterator
typedef typename Bucket::iterator EItor; // entry iterator
static void nextEntry(Iterator& p) // bucket’s next entry
{ ++p.ent; }

static bool endOfBkt(const Iterator& p) // end of bucket?
{ return p.ent == p.bkt−>end(); }

Code Fragment 9.7: Declarations of utilities to be inserted into HashMap.

We present the class Iterator in Code Fragment 9.8. An iterator needs to store
enough information about the position of an entry to allow it to navigate. The mem-
bers ent, bkt, and ba store, respectively, an iterator to the current entry, the bucket
containing this entry, and the bucket array containing the bucket. The first two are
of types EItor and BItor, respectively, and the third is a pointer. Our implementa-
tion is minimal. In addition to a constructor, we provide operators for dereferencing
(“*”), testing equality (“==”), and advancing through the map (“++”).

class Iterator { // an iterator (& position)
private:

EItor ent; // which entry
BItor bkt; // which bucket
const BktArray* ba; // which bucket array

public:
Iterator(const BktArray& a, const BItor& b, const EItor& q = EItor())

: ent(q), bkt(b), ba(&a) { }
Entry& operator*() const; // get entry
bool operator==(const Iterator& p) const; // are iterators equal?
Iterator& operator++(); // advance to next entry
friend class HashMap; // give HashMap access
};

Code Fragment 9.8: Declaration of the Iterator class for HashMap.

i

i

“main” — 2011/1/13 — 9:10 — page 389 — #411
i

i

i

i

i

i

9.2. Hash Tables 389

Iterator Dereferencing and Condensed Function Definitions

Let us now present the definitions of the class member functions for our map’s
Iterator class. In Code Fragment 9.9, we present an implementation of the deref-
erencing operator. The function body itself is very simple and involves return-
ing a reference to the corresponding entry. However, the rules of C++ syntax de-
mand an extraordinary number of template qualifiers. First, we need to qualify the
function itself as being a member of HashMap’s iterator class, which we do with
the qualifier HashMap<K,V,H>::Iterator. Second, we need to qualify the func-
tion’s return type as being HashMap’s entry class, which we do with the qualifier
HashMap<K,V,H>::Entry. On top of this, we must recall from Section 8.2.1 that,
since we are using a template parameter to define a type, we need to include the
keyword typename.

template <typename K, typename V, typename H> // get entry
typename HashMap<K,V,H>::Entry&
HashMap<K,V,H>::Iterator::operator*() const
{ return *ent; }

Code Fragment 9.9: The Iterator dereferencing operator (complete form).

In order to make our function definitions more readable, we adopt a notational
convention in some of our future code fragments of specifying the scoping qualifier
for the code fragment in italic blue font. We omit this qualifier from the code frag-
ment, and we also omit the template statement and the typename specifications.
Adding these back is a simple mechanical exercise. Although this is not valid C++

Caution syntax, it conveys the important content in a much more succinct manner. An ex-
ample of the same dereferencing operator is shown in Code Fragment 9.10.

/* HashMap〈K,V,H〉 :: */ // get entry
Entry& Iterator::operator*() const
{ return *ent; }

Code Fragment 9.10: The same dereferencing operator of Code Fragment 9.9 in
condensed form.

Definitions of the Other Iterator Member Functions

Let us next consider the Iterator operator “operator == (p),” which tests whether
this iterator is equal to iterator p. We first check that they belong to the same bucket
array and the same bucket within this array. If not, the iterators certainly differ.
Otherwise, we check whether they both refer to the end of the bucket array. (Since
we have established that the buckets are equal, it suffices to test just one of them.)
If so, they are both equal to HashMap::end(). If not, we check whether they both

i

i

“main” — 2011/1/13 — 9:10 — page 390 — #412
i

i

i

i

i

i

390 Chapter 9. Hash Tables, Maps, and Skip Lists

refer to the same entry of the bucket. This is implemented in Code Fragment 9.11.

/* HashMap〈K,V,H〉 :: */ // are iterators equal?
bool Iterator::operator==(const Iterator& p) const {

if (ba != p.ba | | bkt != p.bkt) return false; // ba or bkt differ?
else if (bkt == ba−>end()) return true; // both at the end?
else return (ent == p.ent); // else use entry to decide
}
Code Fragment 9.11: The Iterator operators for equality testing and increment.

Next, let us consider the Iterator increment operator, shown in Code Frag-
ment 9.12. The objective is to advance the iterator to the next valid entry. Typ-
ically, this involves advancing to the next entry within the current bucket. But, if
we fall off the end of this bucket, we must advance to the first element of the next
nonempty bucket. To do this, we first advance to the next bucket entry by applying
the STL increment operator on the entry iterator ent. We then use the utility func-
tion endOfBkt to determine whether we have arrived at the end of this bucket. If
so, we search for the next nonempty bucket. To do this, we repeatedly increment
bkt and check whether we have fallen off the end of the bucket array. If so, this is
the end of the map and we are done. Otherwise, we check whether the bucket is
empty. When we first find a nonempty bucket, we move ent to the first entry of this
bucket.

/* HashMap〈K,V,H〉 :: */ // advance to next entry
Iterator& Iterator::operator++() {

++ent; // next entry in bucket
if (endOfBkt(*this)) { // at end of bucket?

++bkt; // go to next bucket
while (bkt != ba−>end() && bkt−>empty()) // find nonempty bucket

++bkt;
if (bkt == ba−>end()) return *this; // end of bucket array?
ent = bkt−>begin(); // first nonempty entry
}
return *this; // return self
}
Code Fragment 9.12: The Iterator operators for equality testing and increment.

Definitions of the HashMap Member Functions

Before discussing the main functions of class HashMap, let us present the functions
begin and end. These are given in Code Fragment 9.13. The function end is the
simpler of the two. It involves generating an iterator whose bucket component is the
end of the bucket array. We do not bother to specify a value for the entry part of the

i

i

“main” — 2011/1/13 — 9:10 — page 391 — #413
i

i

i

i

i

i

9.2. Hash Tables 391

iterator. The reason is that our iterator equality test (shown in Code Fragment 9.11)
does not bother to compare the entry iterator values if the bucket iterators are at the
end of the bucket array.

/* HashMap〈K,V,H〉 :: */ // iterator to end
Iterator end()
{ return Iterator(B, B.end()); }

/* HashMap〈K,V,H〉 :: */ // iterator to front
Iterator begin() {

if (empty()) return end(); // emtpty - return end
BItor bkt = B.begin(); // else search for an entry
while (bkt−>empty()) ++bkt; // find nonempty bucket
return Iterator(B, bkt, bkt−>begin()); // return first of bucket
}

Code Fragment 9.13: The functions of HashMap returning iterators to the beginning
and end of the map.

The function begin, shown in the bottom part of Code Fragment 9.13, is more
complex, since we need to search for a nonempty bucket. We first check whether
the map is empty. If so, we simply return the map’s end. Otherwise, starting at the
beginning of the bucket array, we search for a nonempty bucket. (We know we will
succeed in finding one.) Once we find it, we return an iterator that points to the first
entry of this bucket.

Now that we have presented the iterator-related functions, we are ready to
present the functions for class HashMap. We begin with the constructor and sim-
ple container functions. The constructor is given the bucket array’s capacity and
creates a vector of this size. The member n tracks the number of entries. These are
given in Code Fragment 9.14.

/* HashMap〈K,V,H〉 :: */ // constructor
HashMap(int capacity) : n(0), B(capacity) { }

/* HashMap〈K,V,H〉 :: */ // number of entries
int size() const { return n; }

/* HashMap〈K,V,H〉 :: */ // is the map empty?
bool empty() const { return size() == 0; }

Code Fragment 9.14: The constructor and standard functions for HashMap.

Next, we present the functions related to finding keys in the top part of Code
Fragment 9.15. Most of the work is done by the utility function finder. It first
applies the hash function associated with the given hash comparator to the key k.
It converts this to an index into the bucket array by taking the hash value modulo

i

i

“main” — 2011/1/13 — 9:10 — page 392 — #414
i

i

i

i

i

i

392 Chapter 9. Hash Tables, Maps, and Skip Lists

the array size. To obtain an iterator to the desired bucket, we add this index to
the beginning iterator of the bucket array. (We are using the fact mentioned in
Section 6.1.4 that STL vectors provide a random access iterator, so addition is
allowed.) Let bkt be an iterator to this bucket. We create an iterator p, which is
initialized to the beginning of this bucket. We then perform a search for an entry
whose key matches k or until we fall off the end of the list. In either case, we return
the final value of the iterator as the search result.

/* HashMap〈K,V,H〉 :: */ // find utility
Iterator finder(const K& k) {

int i = hash(k) % B.size(); // get hash index i
BItor bkt = B.begin() + i; // the ith bucket
Iterator p(B, bkt, bkt−>begin()); // start of ith bucket
while (!endOfBkt(p) && (*p).key() != k) // search for k

nextEntry(p);
return p; // return final position
}

/* HashMap〈K,V,H〉 :: */ // find key
Iterator find(const K& k) {

Iterator p = finder(k); // look for k
if (endOfBkt(p)) // didn’t find it?

return end(); // return end iterator
else

return p; // return its position
}

Code Fragment 9.15: The functions of HashMap related to finding keys.

The public member function find is shown in the bottom part of Code Frag-
ment 9.15. It invokes the finder utility. If the entry component is at the end of the
bucket, we know that the key was not found, so we return the special iterator end()
to the end of the map. (In this way, all unsuccessful searches produce the same
result.) This is shown in Code Fragment 9.15.

The insertion utility, inserter, is shown in the top part of Code Fragment 9.16.
This utility is given the desired position at which to insert the new entry. It invokes
the STL list insert function to perform the insertion. It also increments the count of
the number of entries in the map and returns an iterator to the inserted position.

The public insert function, put, first applies finder to determine whether any
entry with this key exists in the map. We first determine whether it was not found
by testing whether the iterator as fallen off the end of the bucket. If so, we insert
it at the end of this bucket. Otherwise, we modify the existing value of this entry.
Later, in Section 9.5.2, we present an alternative approach, which inserts a new
entry, even when a duplicate key is discovered.

i

i

“main” — 2011/1/13 — 9:10 — page 393 — #415
i

i

i

i

i

i

9.2. Hash Tables 393
/* HashMap〈K,V,H〉 :: */ // insert utility

Iterator inserter(const Iterator& p, const Entry& e) {
EItor ins = p.bkt−>insert(p.ent, e); // insert before p
n++; // one more entry
return Iterator(B, p.bkt, ins); // return this position
}

/* HashMap〈K,V,H〉 :: */ // insert/replace (v,k)
Iterator put(const K& k, const V& v) {

Iterator p = finder(k); // search for k
if (endOfBkt(p)) { // k not found?

return inserter(p, Entry(k, v)); // insert at end of bucket
}
else { // found it?

p.ent−>setValue(v); // replace value with v
return p; // return this position
}
}

Code Fragment 9.16: The functions of HashMap for inserting and replacing entries.

The removal functions are also quite straightforward and are given in Code
Fragment 9.17. The main utility is the function eraser, which removes an entry at
a given position by invoking the STL list erase function. It also decrements the
number of entries. The iterator-based removal function simply invokes eraser. The
key-based removal function first applies the finder utility to look up the key. If it is
not found, that is, if the returned position is the end of the bucket, an exception is
thrown. Otherwise, the eraser utility is invoked to remove the entry.

/* HashMap〈K,V,H〉 :: */ // remove utility
void eraser(const Iterator& p) {

p.bkt−>erase(p.ent); // remove entry from bucket
n−−; // one fewer entry
}

/* HashMap〈K,V,H〉 :: */ // remove entry at p
void erase(const Iterator& p)
{ eraser(p); }

/* HashMap〈K,V,H〉 :: */ // remove entry with key k
void erase(const K& k) {

Iterator p = finder(k); // find k
if (endOfBkt(p)) // not found?

throw NonexistentElement("Erase of nonexistent"); // . . .error
eraser(p); // remove it
}

Code Fragment 9.17: The functions of HashMap involved with removing entries.

i

i

“main” — 2011/1/13 — 9:10 — page 394 — #416
i

i

i

i

i

i

394 Chapter 9. Hash Tables, Maps, and Skip Lists

9.3 Ordered Maps

In some applications, simply looking up values based on associated keys is not
enough. We often also want to keep the entries in a map sorted according to some
total order and be able to look up keys and values based on this ordering. That is,
in an ordered map, we want to perform the usual map operations, but also maintain
an order relation for the keys in our map and use this order in some of the map
functions. We can use a comparator to provide the order relation among keys,
allowing us to define an ordered map relative to this comparator, which can be
provided to the ordered map as an argument to its constructor.

When the entries of a map are stored in order, we can provide efficient im-
plementations for additional functions in the map ADT. As with the standard map
ADT, in order to indicate that an object is not present, the class provides a spe-
cial sentinel iterator called end. The ordered map includes all the functions of the
standard map ADT plus the following:

firstEntry(k): Return an iterator to the entry with smallest key value; if
the map is empty, it returns end.

lastEntry(k): Return an iterator to the entry with largest key value; if
the map is empty, it returns end.

ceilingEntry(k): Return an iterator to the entry with the least key value
greater than or equal to k; if there is no such entry, it
returns end.

floorEntry(k): Return an iterator to the entry with the greatest key value
less than or equal to k; if there is no such entry, it returns
end.

lowerEntry(k): Return an iterator to the entry with the greatest key value
less than k; if there is no such entry, it returns end.

higherEntry(k): Return an iterator to the entry with the least key value
greater than k; if there is no such entry, it returns end.

Implementing an Ordered Map

The ordered nature of the operations given above for the ordered map ADT makes
the use of an unordered list or a hash table inappropriate, because neither of these
data structures maintains any ordering information for the keys in the map. Indeed,
hash tables achieve their best search speeds when their keys are distributed almost
at random. Thus, we should consider an alternative implementation when dealing
with ordered maps. We discuss one such implementation next, and we discuss other
implementations in Section 9.4 and Chapter 10.

i

i

“main” — 2011/1/13 — 9:10 — page 395 — #417
i

i

i

i

i

i

9.3. Ordered Maps 395

9.3.1 Ordered Search Tables and Binary Search

If the keys in a map come from a total order, we can store the map’s entries in a
vector L in increasing order of the keys. (See Figure 9.6.) We specify that L is
a vector, rather than a node list, because the ordering of the keys in the vector L
allows for faster searching than would be possible had L been, say, implemented
with a linked list. Admittedly, a hash table has good expected running time for
searching. But its worst-case time for searching is no better than a linked list, and
in some applications, such as in real-time processing, we need to guarantee a worst-
case searching bound. The fast algorithm for searching in an ordered vector, which
we discuss in this subsection, has a good worst-case guarantee on its running time.
So it might be preferred over a hash table in certain applications. We refer to this
ordered vector implementation of a map as an ordered search table.

Figure 9.6: Realization of a map by means of an ordered search table. We show
only the keys for this map in order to highlight their ordering.

The space requirement of an ordered search table is O(n), which is similar to
the list-based map implementation (Section 9.1.4), assuming we grow and shrink
the array supporting the vector L to keep the size of this array proportional to the
number of entries in L. Unlike an unordered list, however, performing updates in
a search table takes a considerable amount of time. In particular, performing the
insert(k,v) operation in a search table requires O(n) time in the worst case, since we
need to shift up all the entries in the vector with key greater than k to make room for
the new entry (k,v). A similar observation applies to the operation erase(k), since
it takes O(n) time in the worst case to shift all the entries in the vector with key
greater than k to close the “hole” left by the removed entry (or entries). The search
table implementation is therefore inferior to the linked list implementation in terms
of the worst-case running times of the map update operations. Nevertheless, we
can perform the find function much faster in a search table.

Binary Search

A significant advantage of using an ordered vector L to implement a map with n
entries is that accessing an element of L by its index takes O(1) time. We recall,
from Section 6.1, that the index of an element in a vector is the number of elements
preceding it. Thus, the first element in L has index 0, and the last element has
index n− 1. In this subsection, we give a classic algorithm, binary search, to
locate an entry in an ordered search table. We show how this method can be used

i

i

“main” — 2011/1/13 — 9:10 — page 396 — #418
i

i

i

i

i

i

396 Chapter 9. Hash Tables, Maps, and Skip Lists

to quickly perform the find function of the map ADT, but a similar method can be
used for each of the ordered-map functions, ceilingEntry, floorEntry, lowerEntry,
and higherEntry.

The elements stored in L are the entries of a map, and since L is ordered, the en-
try at index i has a key no smaller than the keys of the entries at indices 0, . . . , i−1,
and no larger than the keys of the entries at indices i+1, . . . ,n−1. This observation
allows us to quickly “home in” on a search key k using a variant of the children’s
game “high-low.” We call an entry of our map a candidate if, at the current stage
of the search, we cannot rule out that this entry has key equal to k. The algorithm
maintains two parameters, low and high, such that all the candidate entries have
index at least low and at most high in L. Initially, low = 0 and high = n− 1. We
then compare k to the key of the median candidate e, that is, the entry e with index

mid = ⌊(low + high)/2⌋.
We consider three cases:
• If k = e.key(), then we have found the entry we were looking for, and the

search terminates successfully returning e
• If k < e.key(), then we recur on the first half of the vector, that is, on the

range of indices from low to mid−1
• If k > e.key(), we recur on the range of indices from mid + 1 to high

This search method is called binary search, and is given in pseudo-code in Code
Fragment 9.18. Operation find(k) on an n-entry map implemented with an ordered
vector L consists of calling BinarySearch(L,k,0,n−1).

Algorithm BinarySearch(L,k, low,high):
Input: An ordered vector L storing n entries and integers low and high
Output: An entry of L with key equal to k and index between low and high, if

such an entry exists, and otherwise the special sentinel end

if low > high then
return end

else
mid← ⌊(low + high)/2⌋
e← L.at(mid)
if k = e.key() then

return e
else if k < e.key() then

return BinarySearch(L,k, low,mid−1)
else

return BinarySearch(L,k,mid + 1,high)

Code Fragment 9.18: Binary search in an ordered vector.

i

i

“main” — 2011/1/13 — 9:10 — page 397 — #419
i

i

i

i

i

i

9.3. Ordered Maps 397

We illustrate the binary search algorithm in Figure 9.7.

Figure 9.7: Example of a binary search to perform operation find(22), in a map
with integer keys, implemented with an ordered vector. For simplicity, we show
the keys, not the whole entries.

Considering the running time of binary search, we observe that a constant num-
ber of primitive operations are executed at each recursive call of function Binary-
Search. Hence, the running time is proportional to the number of recursive calls
performed. A crucial fact is that with each recursive call the number of candidate
entries still to be searched in the vector L is given by the value

high− low+ 1.

Moreover, the number of remaining candidates is reduced by at least one half with
each recursive call. Specifically, from the definition of mid, the number of remain-
ing candidates is either

(mid−1)− low+ 1 =

⌊
low + high

2

⌋
− low≤ high− low+ 1

2

or
high− (mid + 1)+ 1 = high−

⌊
low + high

2

⌋
≤ high− low+ 1

2
.

Initially, the number of candidate entries is n; after the first call to BinarySearch, it
is at most n/2; after the second call, it is at most n/4; and so on. In general, after the
ith call to BinarySearch, the number of candidate entries remaining is at most n/2i.
In the worst case (unsuccessful search), the recursive calls stop when there are no
more candidate entries. Hence, the maximum number of recursive calls performed,
is the smallest integer m, such that

n/2m < 1.

i

i

“main” — 2011/1/13 — 9:10 — page 398 — #420
i

i

i

i

i

i

398 Chapter 9. Hash Tables, Maps, and Skip Lists

In other words (recalling that we omit a logarithm’s base when it is 2), m > logn.
Thus, we have

m = ⌊logn⌋+ 1,

which implies that binary search runs in O(logn) time.

Thus, we can use an ordered search table to perform fast searches in an ordered
map, but using such a table for lots of map updates would take a considerable
amount of time. For this reason, the primary applications for search tables are in
situations where we expect few updates but many searches. Such a situation could
arise, for example, in an ordered list of English words we use to order entries in an
encyclopedia or help file.

Comparing Map Implementations

Note that we can use an ordered search table to implement the map ADT even if
we don’t want to use the additional functions of the ordered map ADT. Table 9.2
compares the running times of the functions of a (standard) map realized by either
an unordered list, a hash table, or an ordered search table. Note that an unordered
list allows for fast insertions but slow searches and removals, whereas a search ta-
ble allows for fast searches but slow insertions and removals. Incidentally, although
we don’t explicitly discuss it, we note that a sorted list implemented with a doubly
linked list would be slow in performing almost all the map operations. (See Exer-
cise R-9.5.) Nevertheless, the list-like data structure we discuss in the next section
can perform the functions of the ordered map ADT quite efficiently.

Method List Hash Table Search Table
size, empty O(1) O(1) O(1)

find O(n) O(1) exp., O(n) worst-case O(log n)

insert O(1) O(1) O(n)

erase O(n) O(1) exp., O(n) worst-case O(n)

Table 9.2: Comparison of the running times of the functions of a map realized
by means of an unordered list, a hash table, or an ordered search table. We let n
denote the number of entries in the map and we let N denote the capacity of the
bucket array in the hash table implementation. The space requirement of all the
implementations is O(n), assuming that the arrays supporting the hash-table and
search-table implementations are maintained such that their capacity is proportional
to the number of entries in the map.

i

i

“main” — 2011/1/13 — 9:10 — page 399 — #421
i

i

i

i

i

i

9.3. Ordered Maps 399

9.3.2 Two Applications of Ordered Maps

As we have mentioned in the preceding sections, unordered and ordered maps have
many applications. In this section, we explore some specific applications of ordered
maps.

Flight Databases

There are several web sites on the Internet that allow users to perform queries on
flight databases to find flights between various cities, typically with the intent of
buying a ticket. To make a query, a user specifies origin and destination cities, a
departure date, and a departure time. To support such queries, we can model the
flight database as a map, where keys are Flight objects that contain fields corre-
sponding to these four parameters. That is, a key is a tuple

k = (origin, destination, date, time).

Additional information about a flight, such as the flight number, the number of seats
still available in first (F) and coach (Y) class, the flight duration, and the fare, can
be stored in the value object.

Finding a requested flight is not simply a matter of finding a key in the map
matching the requested query, however. The main difficulty is that, although a user
typically wants to exactly match the origin and destination cities, as well as the
departure date, he or she will probably be content with any departure time that is
close to his or her requested departure time. We can handle such a query, of course,
by ordering our keys lexicographically. Thus, given a user query key k, we could,
for instance, call ceilingEntry(k) to return the flight between the desired cities on
the desired date, with departure time at the desired time or after. A similar use
of floorEntry(k) would give us the flight with departure time at the desired time
or before. Given these entries, we could then use the higherEntry or lowerEntry
functions to find flights with the next close-by departure times that are respectively
higher or lower than the desired time, k. Therefore, an efficient implementation for
an ordered map would be a good way to satisfy such queries. For example, calling
ceilingEntry(k) on a query key k = (ORD, PVD, 05May, 09:30), followed by the
respective calls to higherEntry, might result in the following sequence of entries:

((ORD, PVD, 05May, 09:53), (AA 1840, F5, Y15, 02:05, $251))
((ORD, PVD, 05May, 13:29), (AA 600, F2, Y0, 02:16, $713))
((ORD, PVD, 05May, 17:39), (AA 416, F3, Y9, 02:09, $365))
((ORD, PVD, 05May, 19:50), (AA 1828, F9, Y25, 02:13, $186))

i

i

“main” — 2011/1/13 — 9:10 — page 400 — #422
i

i

i

i

i

i

400 Chapter 9. Hash Tables, Maps, and Skip Lists

Maxima Sets

Life is full of trade-offs. We often have to trade off a desired performance measure
against a corresponding cost. Suppose, for the sake of an example, we are interested
in maintaining a database rating automobiles by their maximum speeds and their
cost. We would like to allow someone with a certain amount to spend to query our
database to find the fastest car they can possibly afford.

We can model such a trade-off problem as this by using a key-value pair to
model the two parameters that we are trading off, which in this case would be the
pair (cost,speed) for each car. Notice that some cars are strictly better than other
cars using this measure. For example, a car with cost-speed pair (20,000, 100) is
strictly better than a car with cost-speed pair (30,000, 90). At the same time, there
are some cars that are not strictly dominated by another car. For example, a car
with cost-speed pair (20,000, 100) may be better or worse than a car with cost-
speed pair (30,000, 120), depending on how much money we have to spend. (See
Figure 9.8.)

Figure 9.8: The cost-performance trade-off with key-value pairs represented by
points in the plane. Notice that point p is strictly better than points c, d, and e, but
may be better or worse than points a, b, f , g, and h, depending on the price we are
willing to pay. Thus, if we were to add p to our set, we could remove the points c,
d, and e, but not the others.

Formally, we say a price-performance pair (a,b) dominates a pair (c,d) if a < c
and b > d. A pair (a,b) is called a maximum pair if it is not dominated by any other
pairs. We are interested in maintaining the set of maxima of a collection C of price-
performance pairs. That is, we would like to add new pairs to this collection (for
example, when a new car is introduced), and we would like to query this collection
for a given dollar amount, d, to find the fastest car that costs no more than d dollars.

i

i

“main” — 2011/1/13 — 9:10 — page 401 — #423
i

i

i

i

i

i

9.3. Ordered Maps 401

Maintaining a Maxima Set with an Ordered Map

We can store the set of maxima pairs in an ordered map, M, ordered by cost, so that
the cost is the key field and performance (speed) is the value field. We can then
implement operations add(c, p), which adds a new cost-performance pair (c, p),
and best(c), which returns the best pair with cost at most c, as shown in Code
Fragments 9.19 and 9.20.

Algorithm best(c):
Input: A cost c
Output: The cost-performance pair in M with largest cost less than or equal to

c, or the special sentinel end, if there is no such pair

return M.floorEntry(c)

Code Fragment 9.19: The best() function, used in a class maintaining a set of max-
ima implemented with an ordered map M.

Algorithm add(c, p):
Input: A cost-performance pair (c, p)
Output: None (but M will have (c, p) added to the set of cost-performance

pairs)

e←M.floorEntry(c) {the greatest pair with cost at most c}
if e 6= end then

if e.value() > p then
return {(c, p) is dominated, so don’t insert it in M}

e←M.ceilingEntry(c) {next pair with cost at least c}
{Remove all the pairs that are dominated by (c, p)}
while e 6= end and e.value() < p do

M.erase(e.key()) {this pair is dominated by (c, p)}
e←M.higherEntry(e.key()) {the next pair after e}

M.put(c, p) {Add the pair (c, p), which is not dominated}

Code Fragment 9.20: The add(c, p) function used in a class for maintaining a set of
maxima implemented with an ordered map M.

Unfortunately, if we implement M using any of the data structures described
above, it results in a poor running time for the above algorithm. If, on the other
hand, we implement M using a skip list, which we describe next, then we can
perform best(c) queries in O(logn) expected time and add(c, p) updates in O((1+
r) log n) expected time, where r is the number of points removed.

i

i

“main” — 2011/1/13 — 9:10 — page 402 — #424
i

i

i

i

i

i

402 Chapter 9. Hash Tables, Maps, and Skip Lists

9.4 Skip Lists

An interesting data structure for efficiently realizing the ordered map ADT is the
skip list. This data structure makes random choices in arranging the entries in such
a way that search and update times are O(logn) on average, where n is the number
of entries in the dictionary. Interestingly, the notion of average time complexity
used here does not depend on the probability distribution of the keys in the input.
Instead, it depends on the use of a random-number generator in the implementation
of the insertions to help decide where to place the new entry. The running time is
averaged over all possible outcomes of the random numbers used when inserting
entries.

Because they are used extensively in computer games, cryptography, and com-
puter simulations, functions that generate numbers that can be viewed as random
numbers are built into most modern computers. Some functions, called pseudo-
random number generators, generate random-like numbers, starting with an initial
seed. Other functions use hardware devices to extract “true” random numbers from
nature. In any case, we assume that our computer has access to numbers that are
sufficiently random for our analysis.

The main advantage of using randomization in data structure and algorithm
design is that the structures and functions that result are usually simple and efficient.
We can devise a simple randomized data structure, called the skip list, which has the
same logarithmic time bounds for searching as is achieved by the binary searching
algorithm. Nevertheless, the bounds are expected for the skip list, while they are
worst-case bounds for binary searching in a lookup table. On the other hand, skip
lists are much faster than lookup tables for map updates.

A skip list S for a map M consists of a series of lists {S0,S1, . . . ,Sh}. Each list
Si stores a subset of the entries of M sorted by increasing keys plus entries with
two special keys, denoted −∞ and +∞, where −∞ is smaller than every possible
key that can be inserted in M and +∞ is larger than every possible key that can be
inserted in M. In addition, the lists in S satisfy the following:

• List S0 contains every entry of the map M (plus the special entries with keys
−∞ and +∞)

• For i = 1, . . . ,h−1, list Si contains (in addition to −∞ and +∞) a randomly
generated subset of the entries in list Si−1

• List Sh contains only −∞ and +∞.

An example of a skip list is shown in Figure 9.9. It is customary to visualize a skip
list S with list S0 at the bottom and lists S1, . . . ,Sh above it. Also, we refer to h as
the height of skip list S.

i

i

“main” — 2011/1/13 — 9:10 — page 403 — #425
i

i

i

i

i

i

9.4. Skip Lists 403

Figure 9.9: Example of a skip list storing 10 entries. For simplicity, we show only
the keys of the entries.

Intuitively, the lists are set up so that Si+1 contains more or less every other
entry in Si. As can be seen in the details of the insertion method, the entries in Si+1

are chosen at random from the entries in Si by picking each entry from Si to also
be in Si+1 with probability 1/2. That is, in essence, we “flip a coin” for each entry
in Si and place that entry in Si+1 if the coin comes up “heads.” Thus, we expect S1

to have about n/2 entries, S2 to have about n/4 entries, and, in general, Si to have
about n/2i entries. In other words, we expect the height h of S to be about logn.
The halving of the number of entries from one list to the next is not enforced as an
explicit property of skip lists, however. Instead, randomization is used.

Using the position abstraction used for lists and trees, we view a skip list as a
two-dimensional collection of positions arranged horizontally into levels and ver-
tically into towers. Each level is a list Si and each tower contains positions storing
the same entry across consecutive lists. The positions in a skip list can be traversed
using the following operations:

after(p): Return the position following p on the same level.

before(p): Return the position preceding p on the same level.

below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.

We conventionally assume that the above operations return a null position if the
position requested does not exist. Without going into the details, we note that we
can easily implement a skip list by means of a linked structure such that the above
traversal functions each take O(1) time, given a skip-list position p. Such a linked
structure is essentially a collection of h doubly linked lists aligned at towers, which
are also doubly linked lists.

i

i

“main” — 2011/1/13 — 9:10 — page 404 — #426
i

i

i

i

i

i

404 Chapter 9. Hash Tables, Maps, and Skip Lists

9.4.1 Search and Update Operations in a Skip List

The skip list structure allows for simple map search and update algorithms. In fact,
all of the skip list search and update algorithms are based on an elegant SkipSearch
function that takes a key k and finds the position p of the entry e in list S0 such that
e has the largest key (which is possibly −∞) less than or equal to k.

Searching in a Skip List

Suppose we are given a search key k. We begin the SkipSearch function by setting
a position variable p to the top-most, left position in the skip list S, called the start
position of S. That is, the start position is the position of Sh storing the special
entry with key −∞. We then perform the following steps (see Figure 9.10), where
key(p) denotes the key of the entry at position p:

1. If S.below(p) is null, then the search terminates—we are at the bottom and
have located the largest entry in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p← S.below(p).

2. Starting at position p, we move p forward until it is at the right-most position
on the present level such that key(p)≤ k. We call this the scan forward step.
Note that such a position always exists, since each level contains the keys
+∞ and −∞. In fact, after we perform the scan forward for this level, p
may remain where it started. In any case, we then repeat the previous step.

Figure 9.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

We give a pseudo-code description of the skip-list search algorithm, SkipSearch,
in Code Fragment 9.21. Given this function, it is now easy to implement the op-
eration find(k)—we simply perform p← SkipSearch(k) and test whether or not
key(p) = k. If these two keys are equal, we return p; otherwise, we return null.

i

i

“main” — 2011/1/13 — 9:10 — page 405 — #427
i

i

i

i

i

i

9.4. Skip Lists 405

Algorithm SkipSearch(k):
Input: A search key k
Output: Position p in the bottom list S0 such that the entry at p has the largest

key less than or equal to k

p← s
while below(p) 6= null do

p← below(p) {drop down}
while k ≥ key(after(p)) do

p← after(p) {scan forward}
return p.

Code Fragment 9.21: Search in a skip list S. Variable s holds the start position of S.

As it turns out, the expected running time of algorithm SkipSearch on a skip
list with n entries is O(logn). We postpone the justification of this fact, however,
until after we discuss the implementation of the update functions for skip lists.

Insertion in a Skip List

The insertion algorithm for skip lists uses randomization to decide the height of the
tower for the new entry. We begin the insertion of a new entry (k,v) by performing
a SkipSearch(k) operation. This gives us the position p of the bottom-level entry
with the largest key less than or equal to k (note that p may hold the special entry
with key −∞). We then insert (k,v) immediately after position p. After inserting
the new entry at the bottom level, we “flip” a coin. If the flip comes up tails, then
we stop here. Else (the flip comes up heads), we backtrack to the previous (next
higher) level and insert (k,v) in this level at the appropriate position. We again
flip a coin; if it comes up heads, we go to the next higher level and repeat. Thus,
we continue to insert the new entry (k,v) in lists until we finally get a flip that
comes up tails. We link together all the references to the new entry (k,v) created
in this process to create the tower for the new entry. A coin flip can be simulated
with C++’s built-in, pseudo-random number generator by testing whether a random
integer is even or odd.

We give the insertion algorithm for a skip list S in Code Fragment 9.22 and we
illustrate it in Figure 9.11. The algorithm uses function insertAfterAbove(p,q,(k,v))
that inserts a position storing the entry (k,v) after position p (on the same level as
p) and above position q, returning the position r of the new entry (and setting in-
ternal references so that after, before, above, and below functions work correctly
for p, q, and r). The expected running time of the insertion algorithm on a skip list
with n entries is O(logn), which we show in Section 9.4.2.

i

i

“main” — 2011/1/13 — 9:10 — page 406 — #428
i

i

i

i

i

i

406 Chapter 9. Hash Tables, Maps, and Skip Lists

Algorithm SkipInsert(k,v):
Input: Key k and value v
Output: Topmost position of the entry inserted in the skip list

p← SkipSearch(k)
q← null
e← (k,v)
i←−1
repeat

i← i+ 1
if i≥ h then

h← h+ 1 {add a new level to the skip list}
t← after(s)
s← insertAfterAbove(null,s,(−∞,null))
insertAfterAbove(s, t,(+∞,null))

while above(p) = null do
p← before(p) {scan backward}

p← above(p) {jump up to higher level}
q← insertAfterAbove(p,q,e) {add a position to the tower of the new entry}

until coinFlip() = tails
n← n+ 1
return q

Code Fragment 9.22: Insertion in a skip list. Method coinFlip() returns “heads” or
“tails,” each with probability 1/2. Variables n, h, and s hold the number of entries,
the height, and the start node of the skip list.

Figure 9.11: Insertion of an entry with key 42 into the skip list of Figure 9.9. We
assume that the random “coin flips” for the new entry came up heads three times
in a row, followed by tails. The positions visited are highlighted in blue. The
positions inserted to hold the new entry are drawn with thick lines, and the positions
preceding them are flagged.

i

i

“main” — 2011/1/13 — 9:10 — page 407 — #429
i

i

i

i

i

i

9.4. Skip Lists 407

Removal in a Skip List

Like the search and insertion algorithms, the removal algorithm for a skip list is
quite simple. In fact, it is even easier than the insertion algorithm. That is, to
perform an erase(k) operation, we begin by executing function SkipSearch(k). If
the position p stores an entry with key different from k, we return null. Otherwise,
we remove p and all the positions above p, which are easily accessed by using
above operations to climb up the tower of this entry in S starting at position p. The
removal algorithm is illustrated in Figure 9.12 and a detailed description of it is
left as an exercise (Exercise R-9.17). As we show in the next subsection, operation
erase in a skip list with n entries has O(log n) expected running time.

Before we give this analysis, however, there are some minor improvements to
the skip list data structure we would like to discuss. First, we don’t actually need
to store references to entries at the levels of the skip list above the bottom level,
because all that is needed at these levels are references to keys. Second, we don’t
actually need the above function. In fact, we don’t need the before function either.
We can perform entry insertion and removal in strictly a top-down, scan-forward
fashion, thus saving space for “up” and “prev” references. We explore the details
of this optimization in Exercise C-9.10. Neither of these optimizations improve
the asymptotic performance of skip lists by more than a constant factor, but these
improvements can, nevertheless, be meaningful in practice. In fact, experimental
evidence suggests that optimized skip lists are faster in practice than AVL trees and
other balanced search trees, which are discussed in Chapter 10.

The expected running time of the removal algorithm is O(logn), which we
show in Section 9.4.2.

Figure 9.12: Removal of the entry with key 25 from the skip list of Figure 9.11.
The positions visited after the search for the position of S0 holding the entry are
highlighted in blue. The positions removed are drawn with dashed lines.

i

i

“main” — 2011/1/13 — 9:10 — page 408 — #430
i

i

i

i

i

i

408 Chapter 9. Hash Tables, Maps, and Skip Lists

Maintaining the Top-most Level

A skip list S must maintain a reference to the start position (the top-most, left
position in S) as a member variable, and must have a policy for any insertion that
wishes to continue inserting a new entry past the top level of S. There are two
possible courses of action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value that
is a function of n, the number of entries currently in the map (from the analysis
we see that h = max{10,2⌈log n⌉} is a reasonable choice, and picking h = 3⌈log n⌉
is even safer). Implementing this choice means that we must modify the insertion
algorithm to stop inserting a new position once we reach the top-most level (unless
⌈log n⌉< ⌈log(n+ 1)⌉, in which case we can now go at least one more level, since
the bound on the height is increasing).

The other possibility is to let an insertion continue inserting a new position as
long as heads keeps getting returned from the random number generator. This is
the approach taken in Algorithm SkipInsert of Code Fragment 9.22. As we show
in the analysis of skip lists, the probability that an insertion will go to a level that is
more than O(logn) is very low, so this design choice should also work.

Either choice still results in the expected O(logn) time to perform search, in-
sertion, and removal, however, which we show in the next section.

9.4.2 A Probabilistic Analysis of Skip Lists ⋆

As we have shown above, skip lists provide a simple implementation of an ordered
map. In terms of worst-case performance, however, skip lists are not a superior
data structure. In fact, if we don’t officially prevent an insertion from continuing
significantly past the current highest level, then the insertion algorithm can go into
what is almost an infinite loop (it is not actually an infinite loop, however, since
the probability of having a fair coin repeatedly come up heads forever is 0). More-
over, we cannot infinitely add positions to a list without eventually running out of
memory. In any case, if we terminate position insertion at the highest level h, then
the worst-case running time for performing the find, insert, and erase operations in
a skip list S with n entries and height h is O(n + h). This worst-case performance
occurs when the tower of every entry reaches level h−1, where h is the height of S.
However, this event has very low probability. Judging from this worst case, we
might conclude that the skip list structure is strictly inferior to the other map im-
plementations discussed earlier in this chapter. But this would not be a fair analysis
because this worst-case behavior is a gross overestimate.

i

i

“main” — 2011/1/13 — 9:10 — page 409 — #431
i

i

i

i

i

i

9.4. Skip Lists 409

Bounding the Height of a Skip List

Because the insertion step involves randomization, a more accurate analysis of skip
lists involves a bit of probability. At first, this might seem like a major undertaking,
since a complete and thorough probabilistic analysis could require deep mathemat-
ics (and, indeed, there are several such deep analyses that have appeared in the
research literature related to data structures). Fortunately, such an analysis is not
necessary to understand the expected asymptotic behavior of skip lists. The infor-
mal and intuitive probabilistic analysis we give below uses only basic concepts of
probability theory.

Let us begin by determining the expected value of the height h of a skip list S
with n entries (assuming that we do not terminate insertions early). The probability
that a given entry has a tower of height i≥ 1 is equal to the probability of getting i
consecutive heads when flipping a coin, that is, this probability is 1/2i. Hence, the
probability Pi that level i has at least one position is at most

Pi ≤
n
2i ,

because the probability that any one of n different events occurs is at most the sum
of the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability
that level i has at least one position, that is, it is no more than Pi. This means that h
is larger than, say, 3log n with probability at most

P3 logn ≤ n
23 log n

=
n
n3 =

1
n2 .

For example, if n = 1000, this probability is a one-in-a-million long shot. More
generally, given a constant c > 1, h is larger than c log n with probability at most
1/nc−1. That is, the probability that h is smaller than c log n is at least 1−1/nc−1.
Thus, with high probability, the height h of S is O(logn).

Analyzing Search Time in a Skip List

Next, consider the running time of a search in skip list S, and recall that such a
search involves two nested while loops. The inner loop performs a scan forward on
a level of S as long as the next key is no greater than the search key k, and the outer
loop drops down to the next level and repeats the scan forward iteration. Since the
height h of S is O(logn) with high probability, the number of drop-down steps is
O(logn) with high probability.

i

i

“main” — 2011/1/13 — 9:10 — page 410 — #432
i

i

i

i

i

i

410 Chapter 9. Hash Tables, Maps, and Skip Lists

So we have yet to bound the number of scan-forward steps we make. Let ni be
the number of keys examined while scanning forward at level i. Observe that, after
the key at the starting position, each additional key examined in a scan-forward at
level i cannot also belong to level i + 1. If any of these keys were on the previous
level, we would have encountered them in the previous scan-forward step. Thus,
the probability that any key is counted in ni is 1/2. Therefore, the expected value of
ni is exactly equal to the expected number of times we must flip a fair coin before
it comes up heads. This expected value is 2.

Hence, the expected amount of time spent scanning forward at any level i
is O(1). Since S has O(log n) levels with high probability, a search in S takes ex-
pected time O(logn). By a similar analysis, we can show that the expected running
time of an insertion or a removal is O(logn).

Space Usage in a Skip List

Finally, let us turn to the space requirement of a skip list S with n entries. As we
observed above, the expected number of positions at level i is n/2i, which means
that the expected total number of positions in S is

h

∑
i=0

n
2i = n

h

∑
i=0

1
2i .

Using Proposition 4.5 on geometric summations, we have

h

∑
i=0

1
2i =

(
1
2

)h+1−1
1
2 −1

= 2 ·
(

1− 1
2h+1

)
< 2 for all h≥ 0.

Hence, the expected space requirement of S is O(n).
Table 9.3 summarizes the performance of an ordered map realized by a skip

list.

Operation Time
size, empty O(1)

firstEntry, lastEntry O(1)

find, insert, erase O(log n) (expected)
ceilingEntry, floorEntry, lowerEntry, higherEntry O(log n) (expected)

Table 9.3: Performance of an ordered map implemented with a skip list. We use
n to denote the number of entries in the dictionary at the time the operation is
performed. The expected space requirement is O(n).

i

i

“main” — 2011/1/13 — 9:10 — page 411 — #433
i

i

i

i

i

i

9.5. Dictionaries 411

9.5 Dictionaries

Like a map, a dictionary stores key-value pairs (k,v), which we call entries, where
k is the key and v is the value. Similarly, a dictionary allows for keys and values
to be of any object type. But, whereas a map insists that entries have unique keys,
a dictionary allows for multiple entries to have the same key, much like an English
dictionary, which allows for multiple definitions for the same word.

The ability to store multiple entries with the same key has several applications.
For example, we might want to store records for computer science authors indexed
by their first and last names. Since there are a few cases of different authors with
the same first and last name, there will naturally be some instances where we have
to deal with different entries having equal keys. Likewise, a multi-user computer
game involving players visiting various rooms in a large castle might need a map-
ping from rooms to players. It is natural in this application to allow users to be
in the same room simultaneously, however, to engage in battles. Thus, this game
would naturally be another application where it would be useful to allow for multi-
ple entries with equal keys.

9.5.1 The Dictionary ADT

The dictionary ADT is quite similar to the map ADT, which was presented in Sec-
tion 9.1. The principal differences involve the issue of multiple values sharing a
common key. As with the map ADT, we assume that there is an object, called It-
erator, that provides a way to reference entries of the dictionary. There is a special
sentinel value, end, which is used to indicate a nonexistent entry. The iterator may
be incremented from entry to entry, making it possible to enumerate entries from
the collection.

As an ADT, a (unordered) dictionary D supports the following functions:

size(): Return the number of entries in D.

empty(): Return true if D is empty and false otherwise.

find(k): If D contains an entry with key equal to k, then return an
iterator p referring any such entry, else return the special
iterator end.

findAll(k): Return a pair of iterators (b,e), such that all the entries
with key value k lie in the range from b up to, but not
including, e.

insert(k,v): Insert an entry with key k and value v into D, returning
an iterator referring to the newly created entry.

i

i

“main” — 2011/1/13 — 9:10 — page 412 — #434
i

i

i

i

i

i

412 Chapter 9. Hash Tables, Maps, and Skip Lists

erase(k): Remove from D an arbitrary entry with key equal to k;
an error condition occurs if D has no such entry.

erase(p): Remove from D the entry referenced by iterator p; an
error condition occurs if p points to the end sentinel.

begin(): Return an iterator to the first entry of D.

end(): Return an iterator to a position just beyond the end of D.

Note that operation find(k) returns an arbitrary entry, whose key is equal to k, and
erase(k) removes an arbitrary entry with key value k. In order to remove a specific
entry among those having the same key, it would be necessary to remember the
iterator value p returned by insert(k,v), and then use the operation erase(p).

Example 9.2: In the following, we show a series of operations on an initially
empty dictionary storing entries with integer keys and character values. In the
column “Output,” we use the notation pi : [(k,v)] to mean that the operation returns
an iterator denoted by pi that refers to the entry (k,v).

Although the entries are not necessarily stored in any particular order, in order
to implement the operation findAll, we assume that items with the same keys are
stored contiguously. (Alternatively, the operation findAll would need to return a
smarter form of iterator that returns keys of equal value.)

Operation Output Dictionary
empty() true ∅
insert(5,A) p1 : [(5,A)] {(5,A)}
insert(7,B) p2 : [(7,B) {(5,A),(7,B)}
insert(2,C) p3 : [(2,C) {(5,A),(7,B),(2,C)}
insert(8,D) p4 : [(8,D) {(5,A),(7,B),(2,C),(8,D)}
insert(2,E) p5 : [(2,E) {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(7) p2 : [(7,B) {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(4) end {(5,A),(7,B),(2,C),(2,E),(8,D)}
find(2) p3 : [(2,C) {(5,A),(7,B),(2,C),(2,E),(8,D)}
findAll(2) (p3, p4) {(5,A),(7,B),(2,C),(2,E),(8,D)}
size() 5 {(5,A),(7,B),(2,C),(2,E),(8,D)}
erase(5) – {(7,B),(2,C),(2,E),(8,D)}
erase(p3) – {(7,B),(2,E),(8,D)}
find(2) p5 : [(2,E)] {(7,B),(2,E),(8,D)}

The operation findAll(2) returns the iterator pair (p3, p4), referring to the en-
tries (2,C) and (8,D). Assuming that the entries are stored in the order listed
above, iterating from p3 up to, but not including, p4, would enumerate the entries
{(2,C),(2,E)}.

i

i

“main” — 2011/1/13 — 9:10 — page 413 — #435
i

i

i

i

i

i

9.5. Dictionaries 413

9.5.2 A C++ Dictionary Implementation

In this Section, we describe a C++ implementation of the dictionary ADT. Our
implementation, called HashDict, is a subclass of the HashMap class, from Sec-
tion 9.2.7. The map ADT already includes most of the functions of the dictionary
ADT. Our HashDict class implements the new function insert, which inserts a key-
value pair, and the function findAll, which generates an iterator range for all the
values equal to a given key. All the other functions are inherited from HashMap.

In order to support the return type of findAll, we define a nested class called
Range. It is presented in Code Fragment 9.23. This simple class stores a pair of
objects of type Iterator, a constructor, and two member functions for accessing each
of them. This definition will be nested inside the public portion of the HashMap
class definition.

class Range { // an iterator range
private:

Iterator begin; // front of range
Iterator end; // end of range

public:
Range(const Iterator& b, const Iterator& e) // constructor

: begin(b), end(e) { }
Iterator& begin() { return begin; } // get beginning
Iterator& end() { return end; } // get end
};

Code Fragment 9.23: Definition of the Range class to be added to HashMap.

The HashDict class definition is presented in Code Fragment 9.24. As indicated
in the first line of the declaration, this is a subclass of HashMap. The class begins
with type definitions for the Iterator and Entry types from the base class. This is
followed by the code for class Range from Code Fragment 9.23, and the public
function declarations.

template <typename K, typename V, typename H>
class HashDict : public HashMap<K,V,H> {
public: // public functions

typedef typename HashMap<K,V,H>::Iterator Iterator;
typedef typename HashMap<K,V,H>::Entry Entry;
// . . .insert Range class declaration here

public: // public functions
HashDict(int capacity = 100); // constructor
Range findAll(const K& k); // find all entries with k
Iterator insert(const K& k, const V& v); // insert pair (k,v)
};

Code Fragment 9.24: The class HashDict, which implements the dictionary ADT.

i

i

“main” — 2011/1/13 — 9:10 — page 414 — #436
i

i

i

i

i

i

414 Chapter 9. Hash Tables, Maps, and Skip Lists

Observe that, when referring to the parent class, HashMap, we need to specify
its template parameters. To avoid the need for continually repeating these parame-
ters, we have provided type definitions for the iterator and entry classes. Because
most of the dictionary ADT functions are already provided by HashMap, we need
only provide a constructor and the missing dictionary ADT functions.

The constructor definition is presented in Code Fragment 9.25. It simply in-
vokes the constructor for the base class. Note that we employ the condensed func-
tion notation that we introduced in Section 9.2.7.

/* HashDict〈K,V,H〉 :: */ // constructor
HashDict(int capacity) : HashMap<K,V,H>(capacity) { }

Code Fragment 9.25: The class HashDict constructor.

In Code Fragment 9.26, we present an implementation of the function insert. It
first locates the key by invoking the finder utility (see Code Fragment 9.15). Recall
that this utility returns an iterator to an entry containing this key, if found, and
otherwise it returns an iterator to the end of the bucket. In either case, we insert the
new entry immediately prior to this location by invoking the inserter utility. (See
Code Fragment 9.16.) An iterator referencing the resulting location is returned.

/* HashDict〈K,V,H〉 :: */ // insert pair (k,v)
Iterator insert(const K& k, const V& v) {

Iterator p = finder(k); // find key
Iterator q = inserter(p, Entry(k, v)); // insert it here
return q; // return its position
}

Code Fragment 9.26: An implementation of the dictionary function insert.

We exploit a property of how insert works. Whenever a new entry (k,v) is
inserted, if the structure already contains another entry (k,v′) with the same key, the
finder utility function returns an iterator to the first such occurrence. The inserter
utility then inserts the new entry just prior to this. It follows that all the entries
having the same key are stored in a sequence of contiguous positions, all within
the same bucket. (In fact, they appear in the reverse of their insertion order.) This
means that, in order to produce an iterator range (b,e) for the call findAll(k), it
suffices to set b to the first entry of this sequence and set e to the entry immediately
following the last one.

Our implementation of findAll is given in Code Fragment 9.27. We first invoke
the finder function to locate the key. If the finder returns a position at the end of
some bucket, we know that the key is not present, and we return the empty iterator
(end,end). Otherwise, recall from Code Fragment 9.15 that finder returns the first
entry with the given key value. We store this in the entry iterator b. We then traverse

i

i

“main” — 2011/1/13 — 9:10 — page 415 — #437
i

i

i

i

i

i

9.5. Dictionaries 415

the bucket until either coming to the bucket’s end or encountering an entry with a
key of different value. Let p be this iterator value. We return the iterator range
(b, p).

/* HashDict〈K,V,H〉 :: */ // find all entries with k
Range findAll(const K& k) {

Iterator b = finder(k); // look up k
Iterator p = b;
while (!endOfBkt(p) && (*p).key() == (*b).key()) { // find next unequal key

++p;
}
return Range(b, p); // return range of positions
}

Code Fragment 9.27: An implementation of the dictionary function findAll.

9.5.3 Implementations with Location-Aware Entries

As with the map ADT, there are several possible ways we can implement the dic-
tionary ADT, including an unordered list, a hash table, an ordered search table, or
a skip list. As we did for adaptable priority queues (Section 8.4.2), we can also
use location-aware entries to speed up the running time for some operations in a
dictionary. In removing a location-aware entry e, for instance, we could simply
go directly to the place in our data structure where we are storing e and remove
it. We could implement a location-aware entry, for example, by augmenting our
entry class with a private location variable and protected functions location() and
setLocation(p), which return and set this variable respectively. We would then re-
quire that the location variable for an entry e would always refer to e’s position or
index in the data structure. We would, of course, have to update this variable any
time we moved an entry, as follows.

• Unordered list: In an unordered list, L, implementing a dictionary, we can
maintain the location variable of each entry e to point to e’s position in the
underlying linked list for L. This choice allows us to perform erase(e) as
L.erase(e.location()), which would run in O(1) time.

• Hash table with separate chaining: Consider a hash table, with bucket array
A and hash function h, that uses separate chaining for handling collisions.
We use the location variable of each entry e to point to e’s position in the list
L implementing the list A[h(k)]. This choice allows us to perform an erase(e)
as L.erase(e.location()), which would run in constant expected time.

• Ordered search table: In an ordered table, T , implementing a dictionary, we
should maintain the location variable of each entry e to be e’s index in T .
This choice would allow us to perform erase(e) as T.erase(e.location()).

i

i

“main” — 2011/1/13 — 9:10 — page 416 — #438
i

i

i

i

i

i

416 Chapter 9. Hash Tables, Maps, and Skip Lists

(Recall that location() now returns an integer.) This approach would run fast
if entry e was stored near the end of T .

• Skip list: In a skip list, S, implementing a dictionary, we should maintain the
location variable of each entry e to point to e’s position in the bottom level
of S. This choice would allow us to skip the search step in our algorithm for
performing erase(e) in a skip list.

We summarize the performance of entry removal in a dictionary with location-
aware entries in Table 9.4.

List Hash Table Search Table Skip List
O(1) O(1) (expected) O(n) O(logn) (expected)

Table 9.4: Performance of the erase function in dictionaries implemented with
location-aware entries. We use n to denote the number of entries in the dictionary.

i

i

“main” — 2011/1/13 — 9:10 — page 417 — #439
i

i

i

i

i

i

9.6. Exercises 417

9.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-9.1 Which of the hash table collision-handling schemes could tolerate a load
factor above 1 and which could not?

R-9.2 What is the worst-case running time for inserting n key-value entries into
an initially empty map M that is implemented with a list?

R-9.3 What is the worst-case asymptotic running time for performing n (correct)
erase() operations on a map, implemented with an ordered search table,
that initially contains 2n entries?

R-9.4 Describe how to use a skip-list map to implement the dictionary ADT,
allowing the user to insert different entries with equal keys.

R-9.5 Describe how an ordered list implemented as a doubly linked list could be
used to implement the map ADT.

R-9.6 What would be a good hash code for a vehicle identification that is a string
of numbers and letters of the form “9X9XX99X9XX999999,” where a “9”
represents a digit and an “X” represents a letter?

R-9.7 Draw the 11-entry hash table that results from using the hash function,
h(i) = (3i+5) mod 11, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20,
16, and 5, assuming collisions are handled by chaining.

R-9.8 What is the result of the previous exercise, assuming collisions are han-
dled by linear probing?

R-9.9 Show the result of Exercise R-9.7, assuming collisions are handled by
quadratic probing, up to the point where the method fails.

R-9.10 What is the result of Exercise R-9.7 when collisions are handled by double
hashing using the secondary hash function h′(k) = 7− (k mod 7)?

R-9.11 Give a pseudo-code description of an insertion into a hash table that uses
quadratic probing to resolve collisions, assuming we also use the trick of
replacing deleted items with a special “deactivated item” object.

R-9.12 Describe a set of operations for an ordered dictionary ADT that would
correspond to the functions of the ordered map ADT. Be sure to define
the meaning of the functions so that they can deal with the possibility of
different entries with equal keys.

R-9.13 Show the result of rehashing the hash table shown in Figure 9.4, into a
table of size 19, using the new hash function h(k) = 3k mod 17.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 418 — #440
i

i

i

i

i

i

418 Chapter 9. Hash Tables, Maps, and Skip Lists

R-9.14 Explain why a hash table is not suited to implement the ordered dictio-
nary ADT.

R-9.15 What is the worst-case running time for inserting n items into an initially
empty hash table, where collisions are resolved by chaining? What is the
best case?

R-9.16 Draw an example skip list that results from performing the following
series of operations on the skip list shown in Figure 9.12: erase(38),
insert(48,x), insert(24,y), erase(55). Record your coin flips, as well.

R-9.17 Give a pseudo-code description of the erase operation in a skip list.
R-9.18 What is the expected running time of the functions for maintaining a max-

ima set if we insert n pairs such that each pair has lower cost and perfor-
mance than the one before it? What is contained in the ordered dictionary
at the end of this series of operations? What if each pair had a lower cost
and higher performance than the one before it?

R-9.19 Argue why location-aware entries are not really needed for a dictionary
implemented with a good hash table.

Creativity

C-9.1 Describe how you could perform each of the additional functions of the
ordered map ADT using a skip list.

C-9.2 Describe how to use a skip list to implement the vector ADT, so that index-
based insertions and removals both run in O(logn) expected time.

C-9.3 Suppose we are given two ordered dictionaries S and T , each with n items,
and that S and T are implemented by means of array-based ordered se-
quences. Describe an O(log2 n)-time algorithm for finding the kth small-
est key in the union of the keys from S and T (assuming no duplicates).

C-9.4 Give an O(log n)-time solution for the previous problem.
C-9.5 Design a variation of binary search for performing findAll(k) in an ordered

dictionary implemented with an ordered array, and show that it runs in
time O(logn+ s), where n is the number of elements in the dictionary and
s is the size of the iterator returned.

C-9.6 The hash table dictionary implementation requires that we find a prime
number between a number M and a number 2M. Implement a function for
finding such a prime by using the sieve algorithm. In this algorithm, we
allocate a 2M cell Boolean array A, such that cell i is associated with the
integer i. We then initialize the array cells to all be “true” and we “mark
off” all the cells that are multiples of 2, 3, 5, 7, and so on. This process
can stop after it reaches a number larger than

√
2M.

(Hint: Consider a bootstrapping method for computing the primes up to√
2M.)

i

i

“main” — 2011/1/13 — 9:10 — page 419 — #441
i

i

i

i

i

i

9.6. Exercises 419

C-9.7 Describe how to perform a removal from a hash table that uses linear
probing to resolve collisions where we do not use a special marker to
represent deleted elements. That is, we must rearrange the contents so that
it appears that the removed entry was never inserted in the first place.

C-9.8 Given a collection C of n cost-performance pairs (c, p), describe an algo-
rithm for finding the maxima pairs of C in O(n logn) time.

C-9.9 The quadratic probing strategy has a clustering problem that relates to
the way it looks for open slots when a collision occurs. Namely, when
a collision occurs at bucket h(k), we check A[(h(k)+ f (j)) mod N], for
f (j) = j2, using j = 1,2, . . . ,N−1.

a. Show that f (j) mod N will assume at most (N + 1)/2 distinct val-
ues, for N prime, as j ranges from 1 to N − 1. As a part of this
justification, note that f (R) = f (N−R) for all R.

b. A better strategy is to choose a prime N, such that N is congruent
to 3 modulo 4 and then to check the buckets A[(h(k)± j2) mod N]
as j ranges from 1 to (N− 1)/2, alternating between addition and
subtraction. Show that this alternate type of quadratic probing is
guaranteed to check every bucket in A.

C-9.10 Show that the functions above(p) and before(p) are not actually needed
to efficiently implement a dictionary using a skip list. That is, we can
implement entry insertion and removal in a skip list using a strictly top-
down, scan-forward approach, without ever using the above or before
functions.

(Hint: In the insertion algorithm, first repeatedly flip the coin to determine
the level where you should start inserting the new entry.)

C-9.11 Suppose that each row of an n×n array A consists of 1’s and 0’s such that,
in any row of A, all the 1’s come before any 0’s in that row. Assuming A
is already in memory, describe a method running in O(n logn) time (not
O(n2) time!) for counting the number of 1’s in A.

C-9.12 Describe an efficient ordered dictionary structure for storing n elements
that have an associated set of k < n keys that come from a total order.
That is, the set of keys is smaller than the number of elements. Your
structure should perform all the ordered dictionary operations in O(log k+
s) expected time, where s is the number of elements returned.

C-9.13 Describe an efficient dictionary structure for storing n entries whose r < n
keys have distinct hash codes. Your structure should perform operation
findAll in O(1 + s) expected time, where s is the number of entries re-
turned, and the remaining operations of the dictionary ADT in O(1) ex-
pected time.

i

i

“main” — 2011/1/13 — 9:10 — page 420 — #442
i

i

i

i

i

i

420 Chapter 9. Hash Tables, Maps, and Skip Lists

C-9.14 Describe an efficient data structure for implementing the bag ADT, which
supports a function add(e), for adding an element e to the bag, and a
function remove, which removes an arbitrary element in the bag. Show
that both of these functions can be done in O(1) time.

C-9.15 Describe how to modify the skip list data structure to support the function
median(), which returns the position of the element in the “bottom” list
S0 at index ⌊n/2⌋. Show that your implementation of this function runs in
O(logn) expected time.

Projects

P-9.1 Write a spell-checker class that stores a set of words, W , in a hash table
and implements a function, spellCheck(s), which performs a spell check
on the string s with respect to the set of words, W . If s is in W , then
the call to spellCheck(s) returns an iterable collection that contains only
s, since it is assumed to be spelled correctly in this case. Otherwise, if s
is not in W , then the call to spellCheck(s) returns a list of every word in
W that could be a correct spelling of s. Your program should be able to
handle all the common ways that s might be a misspelling of a word in
W , including swapping adjacent characters in a word, inserting a single
character inbetween two adjacent characters in a word, deleting a single
character from a word, and replacing a character in a word with another
character. For an extra challenge, consider phonetic substitutions as well.

P-9.2 Write an implementation of the dictionary ADT using a linked list.

P-9.3 Write an implementation of the map ADT using a vector.

P-9.4 Implement a class that implements a version of an ordered dictionary ADT
using a skip list. Be sure to carefully define and implement dictionary
versions of corresponding functions of the ordered map ADT.

P-9.5 Implement the map ADT with a hash table with separate-chaining colli-
sion handling (do not adapt any of the STL classes).

P-9.6 Implement the ordered map ADT using a skip list.

P-9.7 Extend the previous project by providing a graphical animation of the
skip list operations. Visualize how entries move up the skip list during
insertions and are linked out of the skip list during removals. Also, in a
search operation, visualize the scan-forward and drop-down actions.

P-9.8 Implement a dictionary that supports location-aware entries by means of
an ordered list.

P-9.9 Perform a comparative analysis that studies the collision rates for various
hash codes for character strings, such as various polynomial hash codes
for different values of the parameter a. Use a hash table to determine

i

i

“main” — 2011/1/13 — 9:10 — page 421 — #443
i

i

i

i

i

i

Chapter Notes 421

collisions, but only count collisions where different strings map to the
same hash code (not if they map to the same location in this hash table).
Test these hash codes on text files found on the Internet.

P-9.10 Perform a comparative analysis as in the previous exercise but for 10-digit
telephone numbers instead of character strings.

P-9.11 Design a C++ class that implements the skip-list data structure. Use this
class to create implementations of both the map and dictionary ADTs,
including location-aware functions for the dictionary.

Chapter Notes

Hashing is a well studied technique. The reader interested in further study is encouraged to
explore the book by Knuth [60], as well as the book by Vitter and Chen [100]. Interestingly,
binary search was first published in 1946, but was not published in a fully correct form
until 1962. For further discussions on lessons learned, please see papers by Bentley [11]
and Levisse [64]. Skip lists were introduced by Pugh [86]. Our analysis of skip lists is
a simplification of a presentation given by Motwani and Raghavan [80]. For a more in-
depth analysis of skip lists, please see the various research papers on skip lists that have
appeared in the data structures literature [54, 82, 83]. Exercise C-9.9 was contributed by
James Lee.

This page intentionally left blank

i

i

“main” — 2011/1/13 — 12:30 — page 423 — #445
i

i

i

i

i

i

Chapter

10 Search Trees

Contents

10.1 Binary Search Trees 424

10.1.1 Searching . 426

10.1.2 Update Operations 428

10.1.3 C++ Implementation of a Binary Search Tree 432

10.2 AVL Trees . 438

10.2.1 Update Operations 440

10.2.2 C++ Implementation of an AVL Tree 446

10.3 Splay Trees . 450

10.3.1 Splaying . 450

10.3.2 When to Splay . 454

10.3.3 Amortized Analysis of Splaying ⋆ 456

10.4 (2,4) Trees . 461

10.4.1 Multi-Way Search Trees 461

10.4.2 Update Operations for (2,4) Trees 467

10.5 Red-Black Trees . 473

10.5.1 Update Operations 475

10.5.2 C++ Implementation of a Red-Black Tree 488

10.6 Exercises . 492

i

i

“main” — 2011/1/13 — 12:30 — page 424 — #446
i

i

i

i

i

i

424 Chapter 10. Search Trees

10.1 Binary Search Trees

All of the structures that we discuss in this chapter are search trees, that is, tree data
structures that can be used to implement ordered maps and ordered dictionaries.
Recall from Chapter 9 that a map is a collection of key-value entries, with each
value associated with a distinct key. A dictionary differs in that multiple values
may share the same key value. Our presentation focuses mostly on maps, but we
consider both data structures in this chapter.

We assume that maps and dictionaries provide a special pointer object, called an
iterator, which permits us to reference and enumerate the entries of the structure. In
order to indicate that an object is not present, there exists a special sentinel iterator
called end. By convention, this sentinel refers to an imaginary element that lies just
beyond the last element of the structure.

Let M be a map. In addition to the standard container operations (size, empty,
begin, and end) the map ADT (Section 9.1) includes the following:

find(k): If M contains an entry e = (k,v), with key equal to k, then
return an iterator p referring to this entry, and otherwise
return the special iterator end.

put(k,v): If M does not have an entry with key equal to k, then
add entry (k,v) to M, and otherwise, replace the value
field of this entry with v; return an iterator to the in-
serted/modified entry.

erase(k): Remove from M the entry with key equal to k; an error
condition occurs if M has no such entry.

erase(p): Remove from M the entry referenced by iterator p; an
error condition occurs if p points to the end sentinel.

begin(): Return an iterator to the first entry of M.

end(): Return an iterator to a position just beyond the end of M.

The dictionary ADT (Section 9.5) provides the additional operations insert(k,v),
which inserts the entry (k,v), and findAll(k), which returns an iterator range (b,e)
of all entries whose key value is k.

Given an iterator p, the associated entry may be accessed using *p. The indi-
vidual key and value can be accessed using p->key() and p->value(), respectively.
We assume that the key elements are drawn from a total order, which is defined
by overloading the C++ relational less-than operator (“<”). Given an iterator p to
some entry, it may be advanced to the next entry in this order using the increment
operator (“++p”).

The ordered map and dictionary ADTs also include some additional functions
for finding predecessor and successor entries with respect to a given key, but their

i

i

“main” — 2011/1/13 — 12:30 — page 425 — #447
i

i

i

i

i

i

10.1. Binary Search Trees 425

performance is similar to that of find. So, we focus on find as the primary search
operation in this chapter.

Binary Search Trees and Ordered Maps

Binary trees are an excellent data structure for storing the entries of a map, as-
suming we have an order relation defined on the keys. As mentioned previously
(Section 7.3.6), a binary search tree is a binary tree T such that each internal node
v of T stores an entry (k,x) such that:
• Keys stored at nodes in the left subtree of v are less than or equal to k
• Keys stored at nodes in the right subtree of v are greater than or equal to k.
An example of a search tree storing integer keys is shown in Figure 10.1.

44

17

32

28

29

54

65

82

76

80

97

88

Figure 10.1: A binary search tree T representing a map with integer keys.

As we show below, the keys stored at the nodes of T provide a way of per-
forming a search by making comparisons at a series of internal nodes. The search
can stop at the current node v or continue at v’s left or right child. Thus, we take
the view here that binary search trees are nonempty proper binary trees. That is,
we store entries only at the internal nodes of a binary search tree, and the external
nodes serve as “placeholders.” This approach simplifies several of our search and
update algorithms. Incidentally, we could allow for improper binary search trees,
which have better space usage, but at the expense of more complicated search and
update functions.

Independent of whether we view binary search trees as proper or not, the im-
portant property of a binary search tree is the realization of an ordered map (or
dictionary). That is, a binary search tree should hierarchically represent an order-
ing of its keys, using relationships between parent and children. Specifically, an
inorder traversal (Section 7.3.6) of the nodes of a binary search tree T should visit
the keys in nondecreasing order. Incrementing an iterator through a map visits the
entries in this same order.

i

i

“main” — 2011/1/13 — 12:30 — page 426 — #448
i

i

i

i

i

i

426 Chapter 10. Search Trees

10.1.1 Searching

To perform operation find(k) in a map M that is represented with a binary search
tree T , we view the tree T as a decision tree (recall Figure 7.10). In this case, the
question asked at each internal node v of T is whether the search key k is less than,
equal to, or greater than the key stored at node v, denoted with key(v). If the answer
is “smaller,” then the search continues in the left subtree. If the answer is “equal,”
then the search terminates successfully. If the answer is “greater,” then the search
continues in the right subtree. Finally, if we reach an external node, then the search
terminates unsuccessfully. (See Figure 10.2.)

Figure 10.2: (a) A binary search tree T representing a map with integer keys; (b)
nodes of T visited when executing operations find(76) (successful) and find(25)
(unsuccessful) on M. For simplicity, we show only the keys of the entries.

We describe this approach in detail in Code Fragment 10.1. Given a search key
k and a node v of T , this function, TreeSearch, returns a node (position) w of the
subtree T (v) of T rooted at v, such that one of the following occurs:

• w is an internal node and w’s entry has key equal to k
• w is an external node representing k’s proper place in an inorder traversal of

T (v), but k is not a key contained in T (v)

Thus, function find(k) can be performed by calling TreeSearch(k,T.root()). Let w
be the node of T returned by this call. If w is an internal node, then we return w’s
entry; otherwise, we return null.

Algorithm TreeSearch(k,v):

if T.isExternal(v) then
return v

if k < key(v) then
return TreeSearch(k,T.left(v))

else if k > key(v) then
return TreeSearch(k,T.right(v))

return v {we know k = key(v)}
Code Fragment 10.1: Recursive search in a binary search tree.

i

i

“main” — 2011/1/13 — 12:30 — page 427 — #449
i

i

i

i

i

i

10.1. Binary Search Trees 427

Analysis of Binary Tree Searching

The analysis of the worst-case running time of searching in a binary search tree T
is simple. Algorithm TreeSearch is recursive and executes a constant number of
primitive operations for each recursive call. Each recursive call of TreeSearch is
made on a child of the previous node. That is, TreeSearch is called on the nodes
of a path of T that starts at the root and goes down one level at a time. Thus, the
number of such nodes is bounded by h + 1, where h is the height of T . In other
words, since we spend O(1) time per node encountered in the search, function find
on map M runs in O(h) time, where h is the height of the binary search tree T used
to implement M. (See Figure 10.3.)

Figure 10.3: The running time of searching in a binary search tree. We use a stan-
dard visualization shortcut of viewing a binary search tree as a big triangle and a
path from the root as a zig-zag line.

We can also show that a variation of the above algorithm performs operation
findAll(k) of the dictionary ADT in time O(h+ s), where s is the number of entries
returned. However, this function is slightly more complicated, and the details are
left as an exercise (Exercise C-10.2).

Admittedly, the height h of T can be as large as the number of entries, n, but
we expect that it is usually much smaller. Indeed, we show how to maintain an
upper bound of O(logn) on the height of a search tree T in Section 10.2. Before we
describe such a scheme, however, let us describe implementations for map update
functions.

i

i

“main” — 2011/1/13 — 12:30 — page 428 — #450
i

i

i

i

i

i

428 Chapter 10. Search Trees

10.1.2 Update Operations

Binary search trees allow implementations of the insert and erase operations using
algorithms that are fairly straightforward, but not trivial.

Insertion

Let us assume a proper binary tree T supports the following update operation:
insertAtExternal(v,e): Insert the element e at the external node v, and expand

v to be internal, having new (empty) external node chil-
dren; an error occurs if v is an internal node.

Given this function, we perform insert(k,x) for a dictionary implemented with a
binary search tree T by calling TreeInsert(k,x,T.root()), which is given in Code
Fragment 10.2.

Algorithm TreeInsert(k,x,v):
Input: A search key k, an associated value, x, and a node v of T
Output: A new node w in the subtree T (v) that stores the entry (k,x)

w← TreeSearch(k,v)
if T.isInternal(w) then

return TreeInsert(k,x,T.left(w)) {going to the right would be correct too}
T .insertAtExternal(w,(k,x)) {this is an appropriate place to put (k,x)}
return w

Code Fragment 10.2: Recursive algorithm for insertion in a binary search tree.

This algorithm traces a path from T ’s root to an external node, which is ex-
panded into a new internal node accommodating the new entry. An example of
insertion into a binary search tree is shown in Figure 10.4.

Figure 10.4: Insertion of an entry with key 78 into the search tree of Figure 10.1:
(a) finding the position to insert; (b) the resulting tree.

i

i

“main” — 2011/1/13 — 12:30 — page 429 — #451
i

i

i

i

i

i

10.1. Binary Search Trees 429

Removal

The implementation of the erase(k) operation on a map M implemented with a
binary search tree T is a bit more complex, since we do not wish to create any
“holes” in the tree T . We assume, in this case, that a proper binary tree supports
the following additional update operation:

removeAboveExternal(v): Remove an external node v and its parent, replacing v’s
parent with v’s sibling; an error occurs if v is not external.

Given this operation, we begin our implementation of operation erase(k) of
the map ADT by calling TreeSearch(k,T.root()) on T to find a node of T storing
an entry with key equal to k. If TreeSearch returns an external node, then there
is no entry with key k in map M, and an error condition is signaled. If, instead,
TreeSearch returns an internal node w, then w stores an entry we wish to remove,
and we distinguish two cases:

• If one of the children of node w is an external node, say node z, we simply re-
move w and z from T by means of operation removeAboveExternal(z) on T .
This operation restructures T by replacing w with the sibling of z, removing
both w and z from T . (See Figure 10.5.)

• If both children of node w are internal nodes, we cannot simply remove the
node w from T , since this would create a “hole” in T . Instead, we proceed as
follows (see Figure 10.6):

◦ We find the first internal node y that follows w in an inorder traversal
of T . Node y is the left-most internal node in the right subtree of w,
and is found by going first to the right child of w and then down T
from there, following the left children. Also, the left child x of y is the
external node that immediately follows node w in the inorder traversal
of T .

◦ We move the entry of y into w. This action has the effect of removing
the former entry stored at w.

◦ We remove nodes x and y from T by calling removeAboveExternal(x)
on T . This action replaces y with x’s sibling, and removes both x and y
from T .

As with searching and insertion, this removal algorithm traverses a path from
the root to an external node, possibly moving an entry between two nodes of this
path, and then performs a removeAboveExternal operation at that external node.

The position-based variant of removal is the same, except that we can skip the
initial step of invoking TreeSearch(k,T.root()) to locate the node containing the
key.

i

i

“main” — 2011/1/13 — 12:30 — page 430 — #452
i

i

i

i

i

i

430 Chapter 10. Search Trees

Figure 10.5: Removal from the binary search tree of Figure 10.4b, where the entry
to remove (with key 32) is stored at a node (w) with an external child: (a) before
the removal; (b) after the removal.

Figure 10.6: Removal from the binary search tree of Figure 10.4b, where the entry
to remove (with key 65) is stored at a node (w) whose children are both internal:
(a) before the removal; (b) after the removal.

i

i

“main” — 2011/1/13 — 12:30 — page 431 — #453
i

i

i

i

i

i

10.1. Binary Search Trees 431

Performance of a Binary Search Tree

The analysis of the search, insertion, and removal algorithms are similar. We spend
O(1) time at each node visited, and, in the worst case, the number of nodes visited
is proportional to the height h of T . Thus, in a map M implemented with a binary
search tree T , the find, insert, and erase functions run in O(h) time, where h is the
height of T . Thus, a binary search tree T is an efficient implementation of a map
with n entries only if the height of T is small. In the best case, T has height h =
⌈log(n+1)⌉, which yields logarithmic-time performance for all the map operations.
In the worst case, however, T has height n, in which case it would look and feel like
an ordered list implementation of a map. Such a worst-case configuration arises,
for example, if we insert a series of entries with keys in increasing or decreasing
order. (See Figure 10.7.)

10

20

30

40

Figure 10.7: Example of a binary search tree with linear height, obtained by insert-
ing entries with keys in increasing order.

The performance of a map implemented with a binary search tree is summa-
rized in the following proposition and in Table 10.1.

Proposition 10.1: A binary search tree T with height h for n key-value entries
uses O(n) space and executes the map ADT operations with the following running
times. Operations size and empty each take O(1) time. Operations find, insert, and
erase each take O(h) time.

Operation Time
size, empty O(1)

find, insert, erase O(h)

Table 10.1: Running times of the main functions of a map realized by a binary
search tree. We denote the current height of the tree with h. The space usage
is O(n), where n is the number of entries stored in the map.

Note that the running time of search and update operations in a binary search
tree varies dramatically depending on the tree’s height. We can nevertheless take

i

i

“main” — 2011/1/13 — 12:30 — page 432 — #454
i

i

i

i

i

i

432 Chapter 10. Search Trees

comfort that, on average, a binary search tree with n keys generated from a ran-
dom series of insertions and removals of keys has expected height O(logn). Such a
statement requires careful mathematical language to precisely define what we mean
by a random series of insertions and removals, and sophisticated probability theory
to prove; hence, its justification is beyond the scope of this book. Nevertheless,
keep in mind the poor worst-case performance and take care in using standard bi-
nary search trees in applications where updates are not random. There are, after
all, applications where it is essential to have a map with fast worst-case search and
update times. The data structures presented in the next sections address this need.

10.1.3 C++ Implementation of a Binary Search Tree

In this section, we present a C++ implementation of the dictionary ADT based on
a binary search tree, which we call SearchTree. Recall that a dictionary differs
from a map in that it allows multiple copies of the same key to be inserted. For
simplicity, we have not implemented the findAll function.

To keep the number of template parameters small, rather than templating our
class on the key and value types, we have chosen instead to template our binary
search tree on just the entry type denoted E . To obtain access to the key and value
types, we assume that the entry class defines two public types defining them. Given
an entry object of type E , we may access these types E::Key and E::Value. Oth-
erwise, our entry class is essentially the same as the entry class given in Code
Fragment 9.1. It is presented in Code Fragment 10.3.

template <typename K, typename V>
class Entry { // a (key, value) pair
public: // public types

typedef K Key; // key type
typedef V Value; // value type

public: // public functions
Entry(const K& k = K(), const V& v = V()) // constructor

: key(k), value(v) { }
const K& key() const { return key; } // get key (read only)
const V& value() const { return value; } // get value (read only)
void setKey(const K& k) { key = k; } // set key
void setValue(const V& v) { value = v; } // set value

private: // private data
K key; // key
V value; // value
};

Code Fragment 10.3: A C++ class for a key-value entry.

i

i

“main” — 2011/1/13 — 12:30 — page 433 — #455
i

i

i

i

i

i

10.1. Binary Search Trees 433

In Code Fragment 10.4, we present the main parts of the class definition for
our binary search tree. We begin by defining the publicly accessible types for the
entry, key, value, and the class iterator. This is followed by a declaration of the
public member functions. We define two local types, BinaryTree and TPos, which
represent a binary search tree and position within this binary tree, respectively.
We also declare a number of local utility functions to help in finding, inserting,
and erasing entries. The member data consists of a binary tree and the number of
entries in the tree.

template <typename E>
class SearchTree { // a binary search tree
public: // public types

typedef typename E::Key K; // a key
typedef typename E::Value V; // a value
class Iterator; // an iterator/position

public: // public functions
SearchTree(); // constructor
int size() const; // number of entries
bool empty() const; // is the tree empty?
Iterator find(const K& k); // find entry with key k
Iterator insert(const K& k, const V& x); // insert (k,x)
void erase(const K& k) throw(NonexistentElement); // remove key k entry
void erase(const Iterator& p); // remove entry at p
Iterator begin(); // iterator to first entry
Iterator end(); // iterator to end entry

protected: // local utilities
typedef BinaryTree<E> BinaryTree; // linked binary tree
typedef typename BinaryTree::Position TPos; // position in the tree
TPos root() const; // get virtual root
TPos finder(const K& k, const TPos& v); // find utility
TPos inserter(const K& k, const V& x); // insert utility
TPos eraser(TPos& v); // erase utility
TPos restructure(const TPos& v) // restructure

throw(BoundaryViolation);
private: // member data

BinaryTree T; // the binary tree
int n; // number of entries

public:
// . . .insert Iterator class declaration here
};

Code Fragment 10.4: Class SearchTree, which implements a binary search tree.

We have omitted the definition of the iterator class for our binary search tree.
This is presented in Code Fragment 10.5. An iterator consists of a single position
in the tree. We overload the dereferencing operator (“*”) to provide both read-

i

i

“main” — 2011/1/13 — 12:30 — page 434 — #456
i

i

i

i

i

i

434 Chapter 10. Search Trees

only and read-write access to the node referenced by the iterator. We also provide
an operator for checking the equality of two iterators. This is useful for checking
whether an iterator is equal to end.

class Iterator { // an iterator/position
private:

TPos v; // which entry
public:

Iterator(const TPos& vv) : v(vv) { } // constructor
const E& operator*() const { return *v; } // get entry (read only)
E& operator*() { return *v; } // get entry (read/write)
bool operator==(const Iterator& p) const // are iterators equal?
{ return v == p.v; }

Iterator& operator++(); // inorder successor
friend class SearchTree; // give search tree access
};

Code Fragment 10.5: Declaration of the Iterator class, which is part of SearchTree.

Code Fragment 10.6 presents the definition of the iterator’s increment operator,
which advances the iterator from a given position of the tree to its inorder successor.
Only internal nodes are visited, since external nodes do not contain entries. If the
node v has a right child, the inorder successor is the leftmost internal node of its
right subtree. Otherwise, v must be the largest key in the left subtree of some node
w. To find w, we walk up the tree through successive ancestors. As long as we are
the right child of the current ancestor, we continue to move upwards. When this is
no longer true, the parent is the desired node w. Note that we employ the condensed
function notation, which we introduced in Section 9.2.7, where the messy scoping
qualifiers involving SearchTree have been omitted.

/* SearchTree〈E〉 :: */ // inorder successor
Iterator& Iterator::operator++() {

TPos w = v.right();
if (w.isInternal()) { // have right subtree?

do { v = w; w = w.left(); } // move down left chain
while (w.isInternal());
}
else {

w = v.parent(); // get parent
while (v == w.right()) // move up right chain
{ v = w; w = w.parent(); }

v = w; // and first link to left
}
return *this;
}

Code Fragment 10.6: The increment operator (“++”) for Iterator.

i

i

“main” — 2011/1/13 — 12:30 — page 435 — #457
i

i

i

i

i

i

10.1. Binary Search Trees 435

The implementation of the increment operator appears to contain an obvious
bug. If the iterator points to the rightmost node of the entire tree, then the above
function would loop until arriving at the root, which has no parent. The rightmost
node of the tree has no successor, so the iterator should return the value end.

There is a simple and elegant way to achieve the desired behavior. We add a
special sentinel node to our tree, called the super root, which is created when the
initial tree is constructed. The root of the binary search tree, which we call the
virtual root, is made the left child of the super root. We define end to be an iterator
that returns the position of the super root. Observe that, if we attempt to increment
an iterator that points to the rightmost node of the tree, the function given in Code
Fragment 10.6 moves up the right chain until reaching the virtual root, and then
stops at its parent, the super root, since the virtual root is its left child. Therefore,
it returns an iterator pointing to the super root, which is equivalent to end. This is
exactly the behavior we desire.

To implement this strategy, we define the constructor to create the super root.
We also define a function root, which returns the virtual root’s position, that is, the
left child of the super root. These functions are given in Code Fragment 10.7.

/* SearchTree〈E〉 :: */ // constructor
SearchTree() : T(), n(0)
{ T.addRoot(); T.expandExternal(T.root()); } // create the super root

/* SearchTree〈E〉 :: */ // get virtual root
TPos root() const
{ return T.root().left(); } // left child of super root

Code Fragment 10.7: The constructor and the utility function root. The constructor
creates the super root, and root returns the virtual root of the binary search tree.

Next, in Code Fragment 10.8, we define the functions begin and end. The
function begin returns the first node according to an inorder traversal, which is the
leftmost internal node. The function end returns the position of the super root.

/* SearchTree〈E〉 :: */ // iterator to first entry
Iterator begin() {

TPos v = root(); // start at virtual root
while (v.isInternal()) v = v.left(); // find leftmost node
return Iterator(v.parent());
}

/* SearchTree〈E〉 :: */ // iterator to end entry
Iterator end()
{ return Iterator(T.root()); } // return the super root

Code Fragment 10.8: The begin and end functions of class SearchTree. The func-
tion end returns a pointer to the super root.

i

i

“main” — 2011/1/13 — 12:30 — page 436 — #458
i

i

i

i

i

i

436 Chapter 10. Search Trees

We are now ready to present implementations of the principal class functions,
for finding, inserting, and removing entries. We begin by presenting the func-
tion find(k) in Code Fragment 10.9. It invokes the recursive utility function finder
starting at the root. This utility function is based on the algorithm given in Code
Fragment 10.1. The code has been structured so that only the less-than operator
needs to be defined on keys.

/* SearchTree〈E〉 :: */ // find utility
TPos finder(const K& k, const TPos& v) {

if (v.isExternal()) return v; // key not found
if (k < v−>key()) return finder(k, v.left()); // search left subtree
else if (v−>key() < k) return finder(k, v.right()); // search right subtree
else return v; // found it here
}

/* SearchTree〈E〉 :: */ // find entry with key k
Iterator find(const K& k) {

TPos v = finder(k, root()); // search from virtual root
if (v.isInternal()) return Iterator(v); // found it
else return end(); // didn’t find it
}

Code Fragment 10.9: The functions of SearchTree related to finding keys.

The insertion functions are shown in Code Fragment 10.10. The inserter utility
does all the work. First, it searches for the key. If found, we continue to search until
reaching an external node. (Recall that we allow duplicate keys.) We then create
a node, copy the entry information into this node, and update the entry count. The
insert function simply invokes the inserter utility, and converts the resulting node
position into an iterator.

/* SearchTree〈E〉 :: */ // insert utility
TPos inserter(const K& k, const V& x) {

TPos v = finder(k, root()); // search from virtual root
while (v.isInternal()) // key already exists?

v = finder(k, v.right()); // look further
T.expandExternal(v); // add new internal node
v−>setKey(k); v−>setValue(x); // set entry
n++; // one more entry
return v; // return insert position
}

/* SearchTree〈E〉 :: */ // insert (k,x)
Iterator insert(const K& k, const V& x)
{ TPos v = inserter(k, x); return Iterator(v); }

Code Fragment 10.10: The functions of SearchTree for inserting entries.

i

i

“main” — 2011/1/13 — 12:30 — page 437 — #459
i

i

i

i

i

i

10.1. Binary Search Trees 437

Finally, we present the removal functions in Code Fragment 10.11. We imple-
ment the approach presented in Section 10.1.2. If the node has an external child,
we set w to point to this child. Otherwise, we let w be the leftmost external node in
v’s right subtree. Let u be w’s parent. We copy u’s entry contents to v. In all cases,
we then remove the external node w and its parent through the use of the binary
tree functions removeAboveExternal.

/* SearchTree〈E〉 :: */ // remove utility
TPos eraser(TPos& v) {

TPos w;
if (v.left().isExternal()) w = v.left(); // remove from left
else if (v.right().isExternal()) w = v.right(); // remove from right
else { // both internal?

w = v.right(); // go to right subtree
do { w = w.left(); } while (w.isInternal()); // get leftmost node
TPos u = w.parent();
v−>setKey(u−>key()); v−>setValue(u−>value()); // copy w’s parent to v
}
n−−; // one less entry
return T.removeAboveExternal(w); // remove w and parent
}

/* SearchTree〈E〉 :: */ // remove key k entry
void erase(const K& k) throw(NonexistentElement) {

TPos v = finder(k, root()); // search from virtual root
if (v.isExternal()) // not found?

throw NonexistentElement("Erase of nonexistent");
eraser(v); // remove it
}

/* SearchTree〈E〉 :: */ // erase entry at p
void erase(const Iterator& p)
{ eraser(p.v); }

Code Fragment 10.11: The functions of SearchTree involved with removing entries.

When updating node entries (in inserter and eraser), we explicitly change only
the key and value (using setKey and setValue). You might wonder, what else is
there to change? Later in this chapter, we present data structures that are based
on modifying the Entry class. It is important that only the key and value data are
altered when copying nodes for these structures.

Our implementation has focused on the main elements of the binary search tree
implementation. There are a few more things that could have been included. It is
a straightforward exercise to implement the dictionary operation findAll. It would
also be worthwhile to implement the decrement operator (“– –”), which moves an
iterator to its inorder predecessor.

i

i

“main” — 2011/1/13 — 12:30 — page 438 — #460
i

i

i

i

i

i

438 Chapter 10. Search Trees

10.2 AVL Trees

In the previous section, we discussed what should be an efficient map data struc-
ture, but the worst-case performance it achieves for the various operations is linear
time, which is no better than the performance of list- and array-based map imple-
mentations (such as the unordered lists and search tables discussed in Chapter 9).
In this section, we describe a simple way of correcting this problem in order to
achieve logarithmic time for all the fundamental map operations.

Definition of an AVL Tree

The simple correction is to add a rule to the binary search tree definition that main-
tains a logarithmic height for the tree. The rule we consider in this section is the
following height-balance property, which characterizes the structure of a binary
search tree T in terms of the heights of its internal nodes (recall from Section 7.2.1
that the height of a node v in a tree is the length of the longest path from v to an
external node):
Height-Balance Property: For every internal node v of T , the heights of the chil-

dren of v differ by at most 1.
Any binary search tree T that satisfies the height-balance property is said to be an
AVL tree, named after the initials of its inventors, Adel’son-Vel’skii and Landis.
An example of an AVL tree is shown in Figure 10.8.

Figure 10.8: An example of an AVL tree. The keys of the entries are shown inside
the nodes, and the heights of the nodes are shown next to the nodes.

An immediate consequence of the height-balance property is that a subtree of an
AVL tree is itself an AVL tree. The height-balance property has also the important
consequence of keeping the height small, as shown in the following proposition.

i

i

“main” — 2011/1/13 — 12:30 — page 439 — #461
i

i

i

i

i

i

10.2. AVL Trees 439

Proposition 10.2: The height of an AVL tree storing n entries is O(logn).

Justification: Instead of trying to find an upper bound on the height of an AVL
tree directly, it turns out to be easier to work on the “inverse problem” of finding a
lower bound on the minimum number of internal nodes n(h) of an AVL tree with
height h. We show that n(h) grows at least exponentially. From this, it is an easy
step to derive that the height of an AVL tree storing n entries is O(logn).

To start with, notice that n(1) = 1 and n(2) = 2, because an AVL tree of height
1 must have at least one internal node and an AVL tree of height 2 must have at least
two internal nodes. Now, for h ≥ 3, an AVL tree with height h and the minimum
number of nodes is such that both its subtrees are AVL trees with the minimum
number of nodes: one with height h−1 and the other with height h−2. Taking the
root into account, we obtain the following formula that relates n(h) to n(h−1) and
n(h−2), for h≥ 3:

n(h) = 1+ n(h−1)+ n(h−2). (10.1)

At this point, the reader familiar with the properties of Fibonacci progressions (Sec-
tion 2.2.3 and Exercise C-4.17) already sees that n(h) is a function exponential in h.
For the rest of the readers, we will proceed with our reasoning.

Formula 10.1 implies that n(h) is a strictly increasing function of h. Thus, we
know that n(h− 1) > n(h− 2). Replacing n(h− 1) with n(h− 2) in Formula 10.1
and dropping the 1, we get, for h≥ 3,

n(h) > 2 ·n(h−2). (10.2)

Formula 10.2 indicates that n(h) at least doubles each time h increases by 2, which
intuitively means that n(h) grows exponentially. To show this fact in a formal way,
we apply Formula 10.2 repeatedly, yielding the following series of inequalities:

n(h) > 2 ·n(h−2)

> 4 ·n(h−4)

> 8 ·n(h−6)

...

> 2i ·n(h−2i). (10.3)

That is, n(h) > 2i ·n(h−2i), for any integer i, such that h−2i≥ 1. Since we already
know the values of n(1) and n(2), we pick i so that h−2i is equal to either 1 or 2.
That is, we pick

i =

⌈
h
2

⌉
−1.

i

i

“main” — 2011/1/13 — 12:30 — page 440 — #462
i

i

i

i

i

i

440 Chapter 10. Search Trees

By substituting the above value of i in formula 10.3, we obtain, for h≥ 3,

n(h) > 2⌈ h
2⌉−1 ·n

(
h−2

⌈
h
2

⌉
+ 2

)

≥ 2⌈ h
2⌉−1n(1)

≥ 2
h
2−1. (10.4)

By taking logarithms of both sides of formula 10.4, we obtain

logn(h) >
h
2
−1,

from which we get
h < 2log n(h)+ 2, (10.5)

which implies that an AVL tree storing n entries has height at most 2logn+ 2.

By Proposition 10.2 and the analysis of binary search trees given in Section 10.1,
the operation find, in a map implemented with an AVL tree, runs in time O(log n),
where n is the number of entries in the map. Of course, we still have to show how
to maintain the height-balance property after an insertion or removal.

10.2.1 Update Operations

The insertion and removal operations for AVL trees are similar to those for binary
search trees, but with AVL trees we must perform additional computations.

Insertion

An insertion in an AVL tree T begins as in an insert operation described in Sec-
tion 10.1.2 for a (simple) binary search tree. Recall that this operation always
inserts the new entry at a node w in T that was previously an external node, and
it makes w become an internal node with operation insertAtExternal. That is, it
adds two external node children to w. This action may violate the height-balance
property, however, for some nodes increase their heights by one. In particular, node
w, and possibly some of its ancestors, increase their heights by one. Therefore, let
us describe how to restructure T to restore its height balance.

Given a binary search tree T , we say that an internal node v of T is balanced
if the absolute value of the difference between the heights of the children of v is
at most 1, and we say that it is unbalanced otherwise. Thus, the height-balance
property characterizing AVL trees is equivalent to saying that every internal node
is balanced.

Suppose that T satisfies the height-balance property, and hence is an AVL tree,
prior to our inserting the new entry. As we have mentioned, after performing the

i

i

“main” — 2011/1/13 — 12:30 — page 441 — #463
i

i

i

i

i

i

10.2. AVL Trees 441

operation insertAtExternal on T , the heights of some nodes of T , including w,
increase. All such nodes are on the path of T from w to the root of T , and these are
the only nodes of T that may have just become unbalanced. (See Figure 10.9(a).)
Of course, if this happens, then T is no longer an AVL tree; hence, we need a
mechanism to fix the “unbalance” that we have just caused.

Figure 10.9: An example insertion of an entry with key 54 in the AVL tree of
Figure 10.8: (a) after adding a new node for key 54, the nodes storing keys 78
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance
property. We show the heights of nodes next to them, and we identify the nodes x,
y, and z participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple
“search-and-repair” strategy. In particular, let z be the first node we encounter in go-
ing up from w toward the root of T such that z is unbalanced. (See Figure 10.9(a).)
Also, let y denote the child of z with higher height (and note that node y must be
an ancestor of w). Finally, let x be the child of y with higher height (there cannot
be a tie and node x must be an ancestor of w). Also, node x is a grandchild of z
and could be equal to w. Since z became unbalanced because of an insertion in the
subtree rooted at its child y, the height of y is 2 greater than its sibling.

We now rebalance the subtree rooted at z by calling the trinode restructur-
ing function, restructure(x), given in Code Fragment 10.12 and illustrated in Fig-
ures 10.9 and 10.10. A trinode restructuring temporarily renames the nodes x, y,
and z as a, b, and c, so that a precedes b and b precedes c in an inorder traversal
of T . There are four possible ways of mapping x, y, and z to a, b, and c, as shown
in Figure 10.10, which are unified into one case by our relabeling. The trinode
restructuring then replaces z with the node called b, makes the children of this node
be a and c, and makes the children of a and c be the four previous children of x,
y, and z (other than x and y) while maintaining the inorder relationships of all the
nodes in T .

i

i

“main” — 2011/1/13 — 12:30 — page 442 — #464
i

i

i

i

i

i

442 Chapter 10. Search Trees

Algorithm restructure(x):
Input: A node x of a binary search tree T that has both a parent y and a grand-

parent z
Output: Tree T after a trinode restructuring (which corresponds to a single or

double rotation) involving nodes x, y, and z

1: Let (a,b,c) be a left-to-right (inorder) listing of the nodes x, y, and z, and let
(T0,T1,T2,T3) be a left-to-right (inorder) listing of the four subtrees of x, y, and
z not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b.
3: Let a be the left child of b and let T0 and T1 be the left and right subtrees of a,

respectively.
4: Let c be the right child of b and let T2 and T3 be the left and right subtrees of c,

respectively.

Code Fragment 10.12: The trinode restructuring operation in a binary search tree.

The modification of a tree T caused by a trinode restructuring operation is often
called a rotation, because of the geometric way we can visualize the way it changes
T . If b = y, the trinode restructuring method is called a single rotation, for it can
be visualized as “rotating” y over z. (See Figure 10.10(a) and (b).) Otherwise,
if b = x, the trinode restructuring operation is called a double rotation, for it can
be visualized as first “rotating” x over y and then over z. (See Figure 10.10(c)
and (d), and Figure 10.9.) Some computer researchers treat these two kinds of
rotations as separate methods, each with two symmetric types. We have chosen,
however, to unify these four types of rotations into a single trinode restructuring
operation. No matter how we view it, though, the trinode restructuring method
modifies parent-child relationships of O(1) nodes in T , while preserving the inorder
traversal ordering of all the nodes in T .

In addition to its order-preserving property, a trinode restructuring changes the
heights of several nodes in T , so as to restore balance. Recall that we execute the
function restructure(x) because z, the grandparent of x, is unbalanced. Moreover,
this unbalance is due to one of the children of x now having too large a height
relative to the height of z’s other child. As a result of a rotation, we move up the
“tall” child of x while pushing down the “short” child of z. Thus, after performing
restructure(x), all the nodes in the subtree now rooted at the node we called b are
balanced. (See Figure 10.10.) Thus, we restore the height-balance property locally
at the nodes x, y, and z. In addition, since after performing the new entry insertion
the subtree rooted at b replaces the one formerly rooted at z, which was taller by one
unit, all the ancestors of z that were formerly unbalanced become balanced. (See
Figure 10.9.) (The justification of this fact is left as Exercise C-10.14.) Therefore,
this one restructuring also restores the height-balance property globally.

i

i

“main” — 2011/1/13 — 12:30 — page 443 — #465
i

i

i

i

i

i

10.2. AVL Trees 443

(a)

(b)

(c)

(d)

Figure 10.10: Schematic illustration of a trinode restructuring operation (Code
Fragment 10.12): (a) and (b) a single rotation; (c) and (d) a double rotation.

i

i

“main” — 2011/1/13 — 12:30 — page 444 — #466
i

i

i

i

i

i

444 Chapter 10. Search Trees

Removal

As was the case for the insert map operation, we begin the implementation of the
erase map operation on an AVL tree T by using the algorithm for performing this
operation on a regular binary search tree. The added difficulty in using this ap-
proach with an AVL tree is that it may violate the height-balance property. In
particular, after removing an internal node with operation removeAboveExternal
and elevating one of its children into its place, there may be an unbalanced node in
T on the path from the parent w of the previously removed node to the root of T .
(See Figure 10.11(a).) In fact, there can be one such unbalanced node at most. (The
justification of this fact is left as Exercise C-10.13.)

Figure 10.11: Removal of the entry with key 32 from the AVL tree of Figure 10.8:
(a) after removing the node storing key 32, the root becomes unbalanced; (b) a
(single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .
In particular, let z be the first unbalanced node encountered going up from w toward
the root of T . Also, let y be the child of z with larger height (note that node y is the
child of z that is not an ancestor of w), and let x be the child of y defined as follows:
if one of the children of y is taller than the other, let x be the taller child of y; else
(both children of y have the same height), let x be the child of y on the same side as
y (that is, if y is a left child, let x be the left child of y, else let x be the right child
of y). In any case, we then perform a restructure(x) operation, which restores the
height-balance property locally, at the subtree that was formerly rooted at z and is
now rooted at the node we temporarily called b. (See Figure 10.11(b).)

Unfortunately, this trinode restructuring may reduce the height of the subtree
rooted at b by 1, which may cause an ancestor of b to become unbalanced. So,
after rebalancing z, we continue walking up T looking for unbalanced nodes. If we
find another, we perform a restructure operation to restore its balance, and continue
marching up T looking for more, all the way to the root. Still, since the height of T
is O(logn), where n is the number of entries, by Proposition 10.2, O(logn) trinode
restructurings are sufficient to restore the height-balance property.

i

i

“main” — 2011/1/13 — 12:30 — page 445 — #467
i

i

i

i

i

i

10.2. AVL Trees 445

Performance of AVL Trees

We summarize the analysis of the performance of an AVL tree T as follows. Op-
erations find, insert, and erase visit the nodes along a root-to-leaf path of T , plus,
possibly, their siblings, and spend O(1) time per node. Thus, since the height of T
is O(logn) by Proposition 10.2, each of the above operations takes O(logn) time.
In Table 10.2, we summarize the performance of a map implemented with an AVL
tree. We illustrate this performance in Figure 10.12.

Operation TimeTime
size, empty O(1)

find, insert, erase O(logn)

Table 10.2: Performance of an n-entry map realized by an AVL tree. The space
usage is O(n).

Figure 10.12: Illustrating the running time of searches and updates in an AVL tree.
The time performance is O(1) per level, broken into a down phase, which typi-
cally involves searching, and an up phase, which typically involves updating height
values and performing local trinode restructurings (rotations).

i

i

“main” — 2011/1/13 — 12:30 — page 446 — #468
i

i

i

i

i

i

446 Chapter 10. Search Trees

10.2.2 C++ Implementation of an AVL Tree

Let us now turn to the implementation details and analysis of using an AVL tree T
with n internal nodes to implement an ordered dictionary of n entries. The insertion
and removal algorithms for T require that we are able to perform trinode restruc-
turings and determine the difference between the heights of two sibling nodes. Re-
garding restructurings, we now need to make sure our underlying implementation
of a binary search tree includes the method restructure(x), which performs a trinode
restructuring operation (Code Fragment 10.12). (We do not provide an implemen-
tation of this function, but it is a straightforward addition to the linked binary tree
class given in Section 7.3.4.) It is easy to see that a restructure operation can be
performed in O(1) time if T is implemented with a linked structure. We assume
that the SearchTree class includes this function.

Regarding height information, we have chosen to store the height of each inter-
nal node, v, explicitly in each node. Alternatively, we could have stored the balance
factor of v at v, which is defined as the height of the left child of v minus the height
of the right child of v. Thus, the balance factor of v is always equal to −1, 0, or 1,
except during an insertion or removal, when it may become temporarily equal to
−2 or +2. During the execution of an insertion or removal, the heights and balance
factors of O(logn) nodes are affected and can be maintained in O(logn) time.

In order to store the height information, we derive a subclass, called AVLEntry,
from the standard entry class given earlier in Code Fragment 10.3. It is templated
with the base entry type, from which it inherits the key and value members. It
defines a member variable ht, which stores the height of the subtree rooted at the
associated node. It provides member functions for accessing and setting this value.
These functions are protected, so that a user cannot access them, but AVLTree can.

template <typename E>
class AVLEntry : public E { // an AVL entry
private:

int ht; // node height
protected: // local types

typedef typename E::Key K; // key type
typedef typename E::Value V; // value type
int height() const { return ht; } // get height
void setHeight(int h) { ht = h; } // set height

public: // public functions
AVLEntry(const K& k = K(), const V& v = V()) // constructor

: E(k,v), ht(0) { }
friend class AVLTree<E>; // allow AVLTree access
};

Code Fragment 10.13: An enhanced key-value entry for class AVLTree, containing
the height of the associated node.

i

i

“main” — 2011/1/13 — 12:30 — page 447 — #469
i

i

i

i

i

i

10.2. AVL Trees 447

In Code Fragment 10.14, we present the class definition for AVLTree. This
class is derived from the class SearchTree, but using our enhanced AVLEntry in
order to maintain height information for the nodes of the tree. The class defines a
number of typedef shortcuts for referring to entities such as keys, values, and tree
positions. The class declares all the standard dictionary public member functions.
At the end, it also defines a number of protected utility functions, which are used
in maintaining the AVL tree balance properties.

template <typename E> // an AVL tree
class AVLTree : public SearchTree< AVLEntry<E> > {
public: // public types

typedef AVLEntry<E> AVLEntry; // an entry
typedef typename SearchTree<AVLEntry>::Iterator Iterator; // an iterator

protected: // local types
typedef typename AVLEntry::Key K; // a key
typedef typename AVLEntry::Value V; // a value
typedef SearchTree<AVLEntry> ST; // a search tree
typedef typename ST::TPos TPos; // a tree position

public: // public functions
AVLTree(); // constructor
Iterator insert(const K& k, const V& x); // insert (k,x)
void erase(const K& k) throw(NonexistentElement); // remove key k entry
void erase(const Iterator& p); // remove entry at p

protected: // utility functions
int height(const TPos& v) const; // node height utility
void setHeight(TPos v); // set height utility
bool isBalanced(const TPos& v) const; // is v balanced?
TPos tallGrandchild(const TPos& v) const; // get tallest grandchild
void rebalance(const TPos& v); // rebalance utility
};

Code Fragment 10.14: Class AVLTree, an AVL tree implementation of a dictionary.

Next, in Code Fragment 10.15, we present the constructor and height utility
function. The constructor simply invokes the constructor for the binary search tree,
which creates a tree having no entries. The function height returns the height of
a node, by extracting the height information from the AVLEntry. We employ the
condensed function notation that we introduced in Section 9.2.7.
/* AVLTree〈E〉 :: */ // constructor

AVLTree() : ST() { }

/* AVLTree〈E〉 :: */ // node height utility
int height(const TPos& v) const
{ return (v.isExternal() ? 0 : v−>height()); }

Code Fragment 10.15: The constructor for class AVLTree and a utility for extracting
heights.

i

i

“main” — 2011/1/13 — 12:30 — page 448 — #470
i

i

i

i

i

i

448 Chapter 10. Search Trees

In Code Fragment 10.16, we present a few utility functions needed for main-
taining the tree’s balance. The function setHeight sets the height information for a
node as one more than the maximum of the heights of its two children. The func-
tion isBalanced determines whether a node satisfies the AVL balance condition, by
checking that the height difference between its children is at most 1. Finally, the
function tallGrandchild determines the tallest grandchild of a node. Recall that this
procedure is needed by the removal operation to determine the node to which the
restructuring operation will be applied.

/* AVLTree〈E〉 :: */ // set height utility
void setHeight(TPos v) {

int hl = height(v.left());
int hr = height(v.right());
v−>setHeight(1 + std::max(hl, hr)); // max of left & right
}

/* AVLTree〈E〉 :: */ // is v balanced?
bool isBalanced(const TPos& v) const {

int bal = height(v.left()) − height(v.right());
return ((−1 <= bal) && (bal <= 1));
}

/* AVLTree〈E〉 :: */ // get tallest grandchild
TPos tallGrandchild(const TPos& z) const {

TPos zl = z.left();
TPos zr = z.right();
if (height(zl) >= height(zr)) // left child taller

if (height(zl.left()) >= height(zl.right()))
return zl.left();

else
return zl.right();

else // right child taller
if (height(zr.right()) >= height(zr.left()))

return zr.right();
else

return zr.left();
}

Code Fragment 10.16: Some utility functions used for maintaining balance in the
AVL tree.

Next, we present the principal function for rebalancing the AVL tree after an
insertion or removal. The procedure starts at the node v affected by the operation.
It then walks up the tree to the root level. On visiting each node z, it updates
z’s height information (which may have changed due to the update operation) and

i

i

“main” — 2011/1/13 — 12:30 — page 449 — #471
i

i

i

i

i

i

10.2. AVL Trees 449

checks whether z is balanced. If not, it finds z’s tallest grandchild, and applies the
restructuring operation to this node. Since heights may have changed as a result, it
updates the height information for z’s children and itself.

/* AVLTree〈E〉 :: */ // rebalancing utility
void rebalance(const TPos& v) {

TPos z = v;
while (!(z == ST::root())) { // rebalance up to root

z = z.parent();
setHeight(z); // compute new height
if (!isBalanced(z)) { // restructuring needed

TPos x = tallGrandchild(z);
z = restructure(x); // trinode restructure
setHeight(z.left()); // update heights
setHeight(z.right());
setHeight(z);
}
}
}

Code Fragment 10.17: Rebalancing the tree after an update operation.

Finally, in Code Fragment 10.18, we present the functions for inserting and
erasing keys. (We have omitted the iterator-based erase function, since it is very
simple.) Each invokes the associated utility function (inserter or eraser, respec-
tively) from the base class SearchTree. Each then invokes rebalance to restore
balance to the tree.

/* AVLTree〈E〉 :: */ // insert (k,x)
Iterator insert(const K& k, const V& x) {

TPos v = inserter(k, x); // insert in base tree
setHeight(v); // compute its height
rebalance(v); // rebalance if needed
return Iterator(v);
}

/* AVLTree〈E〉 :: */ // remove key k entry
void erase(const K& k) throw(NonexistentElement) {

TPos v = finder(k, ST::root()); // find in base tree
if (Iterator(v) == ST::end()) // not found?

throw NonexistentElement("Erase of nonexistent");
TPos w = eraser(v); // remove it
rebalance(w); // rebalance if needed
}

Code Fragment 10.18: The insertion and erasure functions.

i

i

“main” — 2011/1/13 — 12:30 — page 450 — #472
i

i

i

i

i

i

450 Chapter 10. Search Trees

10.3 Splay Trees

Another way we can implement the fundamental map operations is to use a bal-
anced search tree data structure known as a splay tree. This structure is conceptu-
ally quite different from the other balanced search trees we discuss in this chapter,
for a splay tree does not use any explicit rules to enforce its balance. Instead, it ap-
plies a certain move-to-root operation, called splaying, after every access, in order
to keep the search tree balanced in an amortized sense. The splaying operation is
performed at the bottom-most node x reached during an insertion, deletion, or even
a search. The surprising thing about splaying is that it allows us to guarantee an
amortized running time for insertions, deletions, and searches, that is logarithmic.
The structure of a splay tree is simply a binary search tree T . In fact, there are no
additional height, balance, or color labels that we associate with the nodes of this
tree.

10.3.1 Splaying

Given an internal node x of a binary search tree T , we splay x by moving x to
the root of T through a sequence of restructurings. The particular restructurings
we perform are important, for it is not sufficient to move x to the root of T by
just any sequence of restructurings. The specific operation we perform to move
x up depends upon the relative positions of x, its parent y, and (if it exists) x’s
grandparent z. There are three cases that we consider.

zig-zig: The node x and its parent y are both left children or both right children.
(See Figure 10.13.) We replace z by x, making y a child of x and z a child of
y, while maintaining the inorder relationships of the nodes in T .

(a) (b)

Figure 10.13: Zig-zig: (a) before; (b) after. There is another symmetric configura-
tion where x and y are left children.

i

i

“main” — 2011/1/13 — 12:30 — page 451 — #473
i

i

i

i

i

i

10.3. Splay Trees 451

zig-zag: One of x and y is a left child and the other is a right child. (See Fig-
ure 10.14.) In this case, we replace z by x and make x have y and z as its
children, while maintaining the inorder relationships of the nodes in T .

(a) (b)

Figure 10.14: Zig-zag: (a) before; (b) after. There is another symmetric configura-
tion where x is a right child and y is a left child.

zig: x does not have a grandparent (or we are not considering x’s grandparent for
some reason). (See Figure 10.15.) In this case, we rotate x over y, making x’s
children be the node y and one of x’s former children w, in order to maintain
the relative inorder relationships of the nodes in T .

(a) (b)

Figure 10.15: Zig: (a) before; (b) after. There is another symmetric configuration
where x and w are left children.

We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a
zig when x has a parent but not a grandparent. A splaying step consists of repeating
these restructurings at x until x becomes the root of T . Note that this is not the
same as a sequence of simple rotations that brings x to the root. An example of the
splaying of a node is shown in Figures 10.16 and 10.17.

i

i

“main” — 2011/1/13 — 12:30 — page 452 — #474
i

i

i

i

i

i

452 Chapter 10. Search Trees

(a)

(b)

(c)

Figure 10.16: Example of splaying a node: (a) splaying the node storing 14 starts
with a zig-zag; (b) after the zig-zag; (c) the next step is a zig-zig. (Continues in
Figure 10.17.)

i

i

“main” — 2011/1/13 — 12:30 — page 453 — #475
i

i

i

i

i

i

10.3. Splay Trees 453

(d)

(e)

(f)

Figure 10.17: Example of splaying a node: (d) after the zig-zig; (e) the next step is
again a zig-zig; (f) after the zig-zig (Continued from Figure 10.17.)

i

i

“main” — 2011/1/13 — 12:30 — page 454 — #476
i

i

i

i

i

i

454 Chapter 10. Search Trees

10.3.2 When to Splay

The rules that dictate when splaying is performed are as follows:
• When searching for key k, if k is found at a node x, we splay x, else we splay

the parent of the external node at which the search terminates unsuccessfully.
For example, the splaying in Figures 10.16 and 10.17 would be performed
after searching successfully for key 14 or unsuccessfully for key 14.5.

• When inserting key k, we splay the newly created internal node where k
gets inserted. For example, the splaying in Figures 10.16 and 10.17 would
be performed if 14 were the newly inserted key. We show a sequence of
insertions in a splay tree in Figure 10.18.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 10.18: A sequence of insertions in a splay tree: (a) initial tree; (b) after
inserting 2; (c) after splaying; (d) after inserting 3; (e) after splaying; (f) after
inserting 4; (g) after splaying.

i

i

“main” — 2011/1/13 — 12:30 — page 455 — #477
i

i

i

i

i

i

10.3. Splay Trees 455

• When deleting a key k, we splay the parent of the node w that gets removed,
that is, w is either the node storing k or one of its descendents. (Recall the re-
moval algorithm for binary search trees.) An example of splaying following
a deletion is shown in Figure 10.19.

(a) (b)

(c) (d)

(e)

Figure 10.19: Deletion from a splay tree: (a) the deletion of 8 from node r is per-
formed by moving the key of the right-most internal nodr v to r, in the left subtree
of r, deleting v, and splaying the parent u of v; (b) splaying u starts with a zig-zig;
(c) after the zig-zig; (d) the next step is a zig; (e) after the zig.

i

i

“main” — 2011/1/13 — 12:30 — page 456 — #478
i

i

i

i

i

i

456 Chapter 10. Search Trees

10.3.3 Amortized Analysis of Splaying ⋆

After a zig-zig or zig-zag, the depth of x decreases by two, and after a zig the depth
of x decreases by one. Thus, if x has depth d, splaying x consists of a sequence of
⌊d/2⌋ zig-zigs and/or zig-zags, plus one final zig if d is odd. Since a single zig-zig,
zig-zag, or zig effects a constant number of nodes, it can be done in O(1) time.
Thus, splaying a node x in a binary search tree T takes time O(d), where d is the
depth of x in T . In other words, the time for performing a splaying step for a node x
is asymptotically the same as the time needed just to reach that node in a top-down
search from the root of T .

Worst-Case Time

In the worst case, the overall running time of a search, insertion, or deletion in a
splay tree of height h is O(h), since the node we splay might be the deepest node in
the tree. Moreover, it is possible for h to be as large as n, as shown in Figure 10.18.
Thus, from a worst-case point of view, a splay tree is not an attractive data structure.

In spite of its poor worst-case performance, a splay tree performs well in an
amortized sense. That is, in a sequence of intermixed searches, insertions, and
deletions, each operation takes, on average, logarithmic time. We perform the
amortized analysis of splay trees using the accounting method.

Amortized Performance of Splay Trees

For our analysis, we note that the time for performing a search, insertion, or deletion
is proportional to the time for the associated splaying. So let us consider only
splaying time.

Let T be a splay tree with n keys, and let v be a node of T . We define the size
n(v) of v as the number of nodes in the subtree rooted at v. Note that this definition
implies that the size of an internal node is one more than the sum of the sizes of
its two children. We define the rank r(v) of a node v as the logarithm in base 2 of
the size of v, that is, r(v) = log(n(v)). Clearly, the root of T has the maximum size
(2n + 1) and the maximum rank, log(2n + 1), while each external node has size 1
and rank 0.

We use cyber-dollars to pay for the work we perform in splaying a node x in
T , and we assume that one cyber-dollar pays for a zig, while two cyber-dollars pay
for a zig-zig or a zig-zag. Hence, the cost of splaying a node at depth d is d cyber-
dollars. We keep a virtual account storing cyber-dollars at each internal node of T .
Note that this account exists only for the purpose of our amortized analysis, and
does not need to be included in a data structure implementing the splay tree T .

i

i

“main” — 2011/1/13 — 12:30 — page 457 — #479
i

i

i

i

i

i

10.3. Splay Trees 457

An Accounting Analysis of Splaying

When we perform a splaying, we pay a certain number of cyber-dollars (the exact
value of the payment will be determined at the end of our analysis). We distinguish
three cases:

• If the payment is equal to the splaying work, then we use it all to pay for the
splaying.

• If the payment is greater than the splaying work, we deposit the excess in the
accounts of several nodes.

• If the payment is less than the splaying work, we make withdrawals from the
accounts of several nodes to cover the deficiency.

We show below that a payment of O(logn) cyber-dollars per operation is sufficient
to keep the system working, that is, to ensure that each node keeps a nonnegative
account balance.

An Accounting Invariant for Splaying

We use a scheme in which transfers are made between the accounts of the nodes
to ensure that there will always be enough cyber-dollars to withdraw for paying for
splaying work when needed.

In order to use the accounting method to perform our analysis of splaying, we
maintain the following invariant:

Before and after a splaying, each node v of T has r(v) cyber-dollars
in its account.

Note that the invariant is “financially sound,” since it does not require us to make a
preliminary deposit to endow a tree with zero keys.

Let r(T) be the sum of the ranks of all the nodes of T . To preserve the invariant
after a splaying, we must make a payment equal to the splaying work plus the total
change in r(T). We refer to a single zig, zig-zig, or zig-zag operation in a splaying
as a splaying substep. Also, we denote the rank of a node v of T before and after a
splaying substep with r(v) and r′(v), respectively. The following proposition gives
an upper bound on the change of r(T) caused by a single splaying substep. We
repeatedly use this lemma in our analysis of a full splaying of a node to the root.

i

i

“main” — 2011/1/13 — 12:30 — page 458 — #480
i

i

i

i

i

i

458 Chapter 10. Search Trees

Proposition 10.3: Let δ be the variation of r(T) caused by a single splaying sub-
step (a zig, zig-zig, or zig-zag) for a node x in T . We have the following:

• δ≤ 3(r′(x)− r(x))−2 if the substep is a zig-zig or zig-zag
• δ≤ 3(r′(x)− r(x)) if the substep is a zig

Justification: We use the fact (see Proposition A.1, Appendix A) that, if a > 0,
b > 0, and c > a+ b,

log a+ logb≤ 2log c−2. (10.6)

Let us consider the change in r(T) caused by each type of splaying substep.

zig-zig: (Recall Figure 10.13.) Since the size of each node is one more than the
size of its two children, note that only the ranks of x, y, and z change in a
zig-zig operation, where y is the parent of x and z is the parent of y. Also,
r′(x) = r(z), r′(y)≤ r′(x), and r(y) ≥ r(x) . Thus

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

≤ r′(y)+ r′(z)− r(x)− r(y)

≤ r′(x)+ r′(z)−2r(x). (10.7)

Note that n(x)+ n′(z)≤ n′(x). By 10.6, r(x)+ r′(z)≤ 2r′(x)−2, that is,

r′(z)≤ 2r′(x)− r(x)−2.

This inequality and 10.7 imply

δ ≤ r′(x)+ (2r′(x)− r(x)−2)−2r(x)

≤ 3(r′(x)− r(x))−2.

zig-zag: (Recall Figure 10.14.) Again, by the definition of size and rank, only the
ranks of x, y, and z change, where y denotes the parent of x and z denotes the
parent of y. Also, r′(x) = r(z) and r(x) ≤ r(y). Thus

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

≤ r′(y)+ r′(z)− r(x)− r(y)

≤ r′(y)+ r′(z)−2r(x). (10.8)

Note that n′(y) + n′(z) ≤ n′(x); hence, by 10.6, r′(y) + r′(z) ≤ 2r′(x)− 2.
Thus

δ ≤ 2r′(x)−2−2r(x)

≤ 3(r′(x)− r(x))−2.

zig: (Recall Figure 10.15.) In this case, only the ranks of x and y change, where y
denotes the parent of x. Also, r′(y)≤ r(y) and r′(x) ≥ r(x). Thus

δ = r′(y)+ r′(x)− r(y)− r(x)

≤ r′(x)− r(x)

≤ 3(r′(x)− r(x)).

i

i

“main” — 2011/1/13 — 12:30 — page 459 — #481
i

i

i

i

i

i

10.3. Splay Trees 459

Proposition 10.4: Let T be a splay tree with root t, and let ∆ be the total variation
of r(T) caused by splaying a node x at depth d. We have

∆≤ 3(r(t)− r(x))−d + 2.
Justification: Splaying node x consists of p = ⌈d/2⌉ splaying substeps, each
of which is a zig-zig or a zig-zag, except possibly the last one, which is a zig if d
is odd. Let r0(x) = r(x) be the initial rank of x, and for i = 1, . . . , p, let ri(x) be
the rank of x after the ith substep and δi be the variation of r(T) caused by the ith
substep. By Lemma 10.3, the total variation ∆ of r(T) caused by splaying x is

∆ =
p

∑
i=1

δi

≤
p

∑
i=1

(3(ri(x)− ri−1(x))−2)+ 2

= 3(rp(x)− r0(x))−2p+ 2

≤ 3(r(t)− r(x))−d + 2.

By Proposition 10.4, if we make a payment of 3(r(t)− r(x))+ 2 cyber-dollars
towards the splaying of node x, we have enough cyber-dollars to maintain the in-
variant, keeping r(v) cyber-dollars at each node v in T , and pay for the entire splay-
ing work, which costs d dollars. Since the size of the root t is 2n + 1, its rank
r(t) = log(2n + 1). In addition, we have r(x) < r(t). Thus, the payment to be
made for splaying is O(logn) cyber-dollars. To complete our analysis, we have to
compute the cost for maintaining the invariant when a node is inserted or deleted.

When inserting a new node v into a splay tree with n keys, the ranks of all the
ancestors of v are increased. Namely, let v0,vi, . . . ,vd be the ancestors of v, where
v0 = v, vi is the parent of vi−1, and vd is the root. For i = 1, . . . ,d, let n′(vi) and
n(vi) be the size of vi before and after the insertion, respectively, and let r′(vi) and
r(vi) be the rank of vi before and after the insertion, respectively. We have

n′(vi) = n(vi)+ 1.

Also, since n(vi) + 1 ≤ n(vi+1), for i = 0,1, . . . ,d− 1, we have the following for
each i in this range

r′(vi) = log(n′(vi)) = log(n(vi)+ 1)≤ log(n(vi+1)) = r(vi+1).

Thus, the total variation of r(T) caused by the insertion is
d

∑
i=1

(
r′(vi)− r(vi)

)
≤ r′(vd)+

d−1

∑
i=1

(r(vi+1)− r(vi))

= r′(vd)− r(v0)

≤ log(2n+ 1).

Therefore, a payment of O(logn) cyber-dollars is sufficient to maintain the invariant
when a new node is inserted.

i

i

“main” — 2011/1/13 — 12:30 — page 460 — #482
i

i

i

i

i

i

460 Chapter 10. Search Trees

When deleting a node v from a splay tree with n keys, the ranks of all the
ancestors of v are decreased. Thus, the total variation of r(T) caused by the deletion
is negative, and we do not need to make any payment to maintain the invariant
when a node is deleted. Therefore, we may summarize our amortized analysis in
the following proposition (which is sometimes called the “balance proposition” for
splay trees).

Proposition 10.5: Consider a sequence of m operations on a splay tree, each one
a search, insertion, or deletion, starting from a splay tree with zero keys. Also, let
ni be the number of keys in the tree after operation i, and n be the total number of
insertions. The total running time for performing the sequence of operations is

O

(
m +

m

∑
i=1

logni

)
,

which is O(m logn).

In other words, the amortized running time of performing a search, insertion, or
deletion in a splay tree is O(logn), where n is the size of the splay tree at the time.
Thus, a splay tree can achieve logarithmic-time amortized performance for imple-
menting an ordered map ADT. This amortized performance matches the worst-case
performance of AVL trees, (2,4) trees, and red-black trees, but it does so using a
simple binary tree that does not need any extra balance information stored at each
of its nodes. In addition, splay trees have a number of other interesting properties
that are not shared by these other balanced search trees. We explore one such addi-
tional property in the following proposition (which is sometimes called the “Static
Optimality” proposition for splay trees).

Proposition 10.6: Consider a sequence of m operations on a splay tree, each one
a search, insertion, or deletion, starting from a splay tree T with zero keys. Also, let
f (i) denote the number of times the entry i is accessed in the splay tree, that is, its
frequency, and let n denote the total number of entries. Assuming that each entry is
accessed at least once, then the total running time for performing the sequence of
operations is

O

(
m +

n

∑
i=1

f (i) log(m/ f (i))

)
.

We omit the proof of this proposition, but it is not as hard to justify as one might
imagine. The remarkable thing is that this proposition states that the amortized
running time of accessing an entry i is O(log(m/ f (i))).

i

i

“main” — 2011/1/13 — 12:30 — page 461 — #483
i

i

i

i

i

i

10.4. (2,4) Trees 461

10.4 (2,4) Trees

Some data structures we discuss in this chapter, including (2,4) trees, are multi-
way search trees, that is, trees with internal nodes that have two or more children.
Thus, before we define (2,4) trees, let us discuss multi-way search trees.

10.4.1 Multi-Way Search Trees

Recall that multi-way trees are defined so that each internal node can have many
children. In this section, we discuss how multi-way trees can be used as search
trees. Recall that the entries that we store in a search tree are pairs of the form
(k,x), where k is the key and x is the value associated with the key. However, we
do not discuss how to perform updates in multi-way search trees now, since the
details for update methods depend on additional properties we want to maintain for
multi-way trees, which we discuss in Section 14.3.1.

Definition of a Multi-way Search Tree

Let v be a node of an ordered tree. We say that v is a d-node if v has d children.
We define a multi-way search tree to be an ordered tree T that has the following
properties, which are illustrated in Figure 10.1(a):

• Each internal node of T has at least two children. That is, each internal node
is a d-node such that d ≥ 2.

• Each internal d-node v of T with children v1, . . . ,vd stores an ordered set of
d−1 key-value entries (k1,x1), . . ., (kd−1,xd−1), where k1 ≤ ·· · ≤ kd−1.

• Let us conventionally define k0 = −∞ and kd = +∞. For each entry (k,x)
stored at a node in the subtree of v rooted at vi, i = 1, . . . ,d, we have that
ki−1 ≤ k ≤ ki.

That is, if we think of the set of keys stored at v as including the special fictitious
keys k0 = −∞ and kd = +∞, then a key k stored in the subtree of T rooted at a
child node vi must be “in between” two keys stored at v. This simple viewpoint
gives rise to the rule that a d-node stores d− 1 regular keys, and it also forms the
basis of the algorithm for searching in a multi-way search tree.

By the above definition, the external nodes of a multi-way search do not store
any entries and serve only as “placeholders,” as has been our convention with binary
search trees (Section 10.1); hence, a binary search tree can be viewed as a special
case of a multi-way search tree, where each internal node stores one entry and has
two children. In addition, while the external nodes could be null, we make the
simplifying assumption here that they are actual nodes that don’t store anything.

i

i

“main” — 2011/1/13 — 12:30 — page 462 — #484
i

i

i

i

i

i

462 Chapter 10. Search Trees

(a)

(b)

(c)

Figure 10.20: (a) A multi-way search tree T ; (b) search path in T for key 12 (un-
successful search); (c) search path in T for key 24 (successful search).

i

i

“main” — 2011/1/13 — 12:30 — page 463 — #485
i

i

i

i

i

i

10.4. (2,4) Trees 463

Whether internal nodes of a multi-way tree have two children or many, however,
there is an interesting relationship between the number of entries and the number
of external nodes.

Proposition 10.7: An n-entry multi-way search tree has n+ 1 external nodes.

We leave the justification of this proposition as an exercise (Exercise C-10.17).

Searching in a Multi-Way Tree

Given a multi-way search tree T , we note that searching for an entry with key k is
simple. We perform such a search by tracing a path in T starting at the root. (See
Figure 10.1(b) and (c).) When we are at a d-node v during this search, we compare
the key k with the keys k1, . . . ,kd−1 stored at v. If k = ki for some i, the search is
successfully completed. Otherwise, we continue the search in the child vi of v such
that ki−1 < k < ki. (Recall that we conventionally define k0 =−∞ and kd = +∞.)
If we reach an external node, then we know that there is no entry with key k in T ,
and the search terminates unsuccessfully.

Data Structures for Representing Multi-way Search Trees

In Section 7.1.4, we discuss a linked data structure for representing a general tree.
This representation can also be used for a multi-way search tree. In fact, in using a
general tree to implement a multi-way search tree, the only additional information
that we need to store at each node is the set of entries (including keys) associated
with that node. That is, we need to store with v a reference to some collection that
stores the entries for v.

Recall that when we use a binary search tree to represent an ordered map M,
we simply store a reference to a single entry at each internal node. In using a multi-
way search tree T to represent M, we must store a reference to the ordered set of
entries associated with v at each internal node v of T . This reasoning may at first
seem like a circular argument, since we need a representation of an ordered map to
represent an ordered map. We can avoid any circular arguments, however, by using
the bootstrapping technique, where we use a previous (less advanced) solution to
a problem to create a new (more advanced) solution. In this case, bootstrapping
consists of representing the ordered set associated with each internal node using
a map data structure that we have previously constructed (for example, a search
table based on a sorted array, as shown in Section 9.3.1). In particular, assuming
we already have a way of implementing ordered maps, we can realize a multi-way
search tree by taking a tree T and storing such a map at each node of T .

i

i

“main” — 2011/1/13 — 12:30 — page 464 — #486
i

i

i

i

i

i

464 Chapter 10. Search Trees

The map we store at each node v is known as a secondary data structure, be-
cause we are using it to support the bigger, primary data structure. We denote the
map stored at a node v of T as M(v). The entries we store in M(v) allow us to find
which child node to move to next during a search operation. Specifically, for each
node v of T , with children v1, . . . ,vd and entries (k1,x1), . . . , (kd−1,xd−1), we store,
in the map M(v), the entries

(k1,(x1,v1)),(k2,(x2,v2)), . . . ,(kd−1,(xd−1,vd−1)),(+∞, (∅, vd)).

That is, an entry (ki,(xi,vi)) of map M(v) has key ki and value (xi,vi). Note that the
last entry stores the special key +∞.

With the realization of the multi-way search tree T above, processing a d-node
v while searching for an entry of T with key k can be done by performing a search
operation to find the entry (ki,(xi,vi)) in M(v) with smallest key greater than or
equal to k. We distinguish two cases:

• If k < ki, then we continue the search by processing child vi. (Note that if the
special key kd = +∞ is returned, then k is greater than all the keys stored at
node v, and we continue the search processing child vd .)

• Otherwise (k = ki), then the search terminates successfully.

Consider the space requirement for the above realization of a multi-way search
tree T storing n entries. By Proposition 10.7, using any of the common realizations
of an ordered map (Chapter 9) for the secondary structures of the nodes of T , the
overall space requirement for T is O(n).

Consider next the time spent answering a search in T . The time spent at a d-
node v of T during a search depends on how we realize the secondary data structure
M(v). If M(v) is realized with a sorted array (that is, an ordered search table),
then we can process v in O(log d) time. If M(v) is realized using an unsorted list
instead, then processing v takes O(d) time. Let dmax denote the maximum number
of children of any node of T , and let h denote the height of T . The search time in a
multi-way search tree is either O(hdmax) or O(h log dmax), depending on the specific
implementation of the secondary structures at the nodes of T (the map M(v)). If
dmax is a constant, the running time for performing a search is O(h), irrespective of
the implementation of the secondary structures.

Thus, the primary efficiency goal for a multi-way search tree is to keep the
height as small as possible, that is, we want h to be a logarithmic function of n, the
total number of entries stored in the map. A search tree with logarithmic height
such as this is called a balanced search tree.

i

i

“main” — 2011/1/13 — 12:30 — page 465 — #487
i

i

i

i

i

i

10.4. (2,4) Trees 465

Definition of a (2,4) Tree

A multi-way search tree that keeps the secondary data structures stored at each node
small and also keeps the primary multi-way tree balanced is the (2,4) tree, which
is sometimes called 2-4 tree or 2-3-4 tree. This data structure achieves these goals
by maintaining two simple properties (see Figure 10.21):

Size Property: Every internal node has at most four children

Depth Property: All the external nodes have the same depth

Figure 10.21: A (2,4) tree.

Again, we assume that external nodes are empty and, for the sake of simplicity,
we describe our search and update methods assuming that external nodes are real
nodes, although this latter requirement is not strictly needed.

Enforcing the size property for (2,4) trees keeps the nodes in the multi-way
search tree simple. It also gives rise to the alternative name “2-3-4 tree,” since it
implies that each internal node in the tree has 2, 3, or 4 children. Another implica-
tion of this rule is that we can represent the map M(v) stored at each internal node
v using an unordered list or an ordered array, and still achieve O(1)-time perfor-
mance for all operations (since dmax = 4). The depth property, on the other hand,
enforces an important bound on the height of a (2,4) tree.

i

i

“main” — 2011/1/13 — 12:30 — page 466 — #488
i

i

i

i

i

i

466 Chapter 10. Search Trees

Proposition 10.8: The height of a (2,4) tree storing n entries is O(log n).

Justification: Let h be the height of a (2,4) tree T storing n entries. We justify
the proposition by showing that the claims

1
2

log(n+ 1)≤ h (10.9)

and

h≤ log(n+ 1) (10.10)

are true.
To justify these claims note first that, by the size property, we can have at most

4 nodes at depth 1, at most 42 nodes at depth 2, and so on. Thus, the number of
external nodes in T is at most 4h. Likewise, by the depth property and the definition
of a (2,4) tree, we must have at least 2 nodes at depth 1, at least 22 nodes at depth
2, and so on. Thus, the number of external nodes in T is at least 2h. In addition, by
Proposition 10.7, the number of external nodes in T is n+ 1. Therefore, we obtain

2h ≤ n+ 1

and

n+ 1≤ 4h.

Taking the logarithm in base 2 of each of the above terms, we get that

h≤ log(n+ 1)

and

log(n+ 1)≤ 2h,

which justifies our claims (10.9 and 10.10).

Proposition 10.8 states that the size and depth properties are sufficient for keep-
ing a multi-way tree balanced (Section 10.4.1). Moreover, this proposition implies
that performing a search in a (2,4) tree takes O(logn) time and that the specific
realization of the secondary structures at the nodes is not a crucial design choice,
since the maximum number of children dmax is a constant (4). We can, for exam-
ple, use a simple ordered map implementation, such as an array-list search table,
for each secondary structure.

i

i

“main” — 2011/1/13 — 12:30 — page 467 — #489
i

i

i

i

i

i

10.4. (2,4) Trees 467

10.4.2 Update Operations for (2,4) Trees

Maintaining the size and depth properties requires some effort after performing
insertions and removals in a (2,4) tree, however. We discuss these operations next.

Insertion

To insert a new entry (k,x), with key k, into a (2,4) tree T , we first perform a
search for k. Assuming that T has no entry with key k, this search terminates
unsuccessfully at an external node z. Let v be the parent of z. We insert the new
entry into node v and add a new child w (an external node) to v on the left of z. That
is, we add entry (k,x,w) to the map M(v).

Our insertion method preserves the depth property, since we add a new external
node at the same level as existing external nodes. Nevertheless, it may violate the
size property. Indeed, if a node v was previously a 4-node, then it may become a
5-node after the insertion, which causes the tree T to no longer be a (2,4) tree. This
type of violation of the size property is called an overflow at node v, and it must
be resolved in order to restore the properties of a (2,4) tree. Let v1, . . . ,v5 be the
children of v, and let k1, . . . ,k4 be the keys stored at v. To remedy the overflow at
node v, we perform a split operation on v as follows (see Figure 10.22):

• Replace v with two nodes v′ and v′′, where

◦ v′ is a 3-node with children v1,v2,v3 storing keys k1 and k2

◦ v′′ is a 2-node with children v4,v5 storing key k4

• If v was the root of T , create a new root node u; else, let u be the parent of v

• Insert key k3 into u and make v′ and v′′ children of u, so that if v was child i
of u, then v′ and v′′ become children i and i+ 1 of u, respectively

We show a sequence of insertions in a (2,4) tree in Figure 10.23.

(a) (b) (c)

Figure 10.22: A node split: (a) overflow at a 5-node v; (b) the third key of v inserted
into the parent u of v; (c) node v replaced with a 3-node v′ and a 2-node v′′.

i

i

“main” — 2011/1/13 — 12:30 — page 468 — #490
i

i

i

i

i

i

468 Chapter 10. Search Trees

(a) (b) (c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 10.23: A sequence of insertions into a (2,4) tree: (a) initial tree with one
entry; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an
overflow; (e) split, which causes the creation of a new root node; (f) after the split;
(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the
split; (k) insertion of 10; (l) insertion of 8.

i

i

“main” — 2011/1/13 — 12:30 — page 469 — #491
i

i

i

i

i

i

10.4. (2,4) Trees 469

Analysis of Insertion in a (2,4) Tree

A split operation affects a constant number of nodes of the tree and O(1) entries
stored at such nodes. Thus, it can be implemented to run in O(1) time.

As a consequence of a split operation on node v, a new overflow may occur at
the parent u of v. If such an overflow occurs, it triggers a split at node u in turn. (See
Figure 10.24.) A split operation either eliminates the overflow or propagates it into
the parent of the current node. Hence, the number of split operations is bounded by
the height of the tree, which is O(logn) by Proposition 10.8. Therefore, the total
time to perform an insertion in a (2,4) tree is O(logn).

(a) (b)

(c) (d)

(e) (f)

Figure 10.24: An insertion in a (2,4) tree that causes a cascading split: (a) before
the insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split
a new overflow occurs; (e) another split, creating a new root node; (f) final tree.

i

i

“main” — 2011/1/13 — 12:30 — page 470 — #492
i

i

i

i

i

i

470 Chapter 10. Search Trees

Removal

Let us now consider the removal of an entry with key k from a (2,4) tree T . We
begin such an operation by performing a search in T for an entry with key k. Re-
moving such an entry from a (2,4) tree can always be reduced to the case where
the entry to be removed is stored at a node v whose children are external nodes.
Suppose, for instance, that the entry with key k that we wish to remove is stored in
the ith entry (ki,xi) at a node z that has only internal-node children. In this case,
we swap the entry (ki,xi) with an appropriate entry that is stored at a node v with
external-node children as follows (see Figure 10.25(d)):

1. We find the right-most internal node v in the subtree rooted at the ith child of
z, noting that the children of node v are all external nodes.

2. We swap the entry (ki,xi) at z with the last entry of v.

Once we ensure that the entry to remove is stored at a node v with only external-
node children (because either it was already at v or we swapped it into v), we simply
remove the entry from v (that is, from the map M(v)) and remove the ith external
node of v.

Removing an entry (and a child) from a node v as described above preserves
the depth property, because we always remove an external node child from a node
v with only external-node children. However, in removing such an external node
we may violate the size property at v. Indeed, if v was previously a 2-node, then
it becomes a 1-node with no entries after the removal (Figure 10.25(d) and (e)),
which is not allowed in a (2,4) tree. This type of violation of the size property
is called an underflow at node v. To remedy an underflow, we check whether an
immediate sibling of v is a 3-node or a 4-node. If we find such a sibling w, then
we perform a transfer operation, in which we move a child of w to v, a key of w to
the parent u of v and w, and a key of u to v. (See Figure 10.25(b) and (c).) If v has
only one sibling, or if both immediate siblings of v are 2-nodes, then we perform a
fusion operation, in which we merge v with a sibling, creating a new node v′, and
move a key from the parent u of v to v′. (See Figure 10.26(e) and (f).)

A fusion operation at node v may cause a new underflow to occur at the parent u
of v, which in turn triggers a transfer or fusion at u. (See Figure 10.26.) Hence, the
number of fusion operations is bounded by the height of the tree, which is O(logn)
by Proposition 10.8. If an underflow propagates all the way up to the root, then
the root is simply deleted. (See Figure 10.26(c) and (d).) We show a sequence of
removals from a (2,4) tree in Figures 10.25 and 10.26.

i

i

“main” — 2011/1/13 — 12:30 — page 471 — #493
i

i

i

i

i

i

10.4. (2,4) Trees 471

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.25: A sequence of removals from a (2,4) tree: (a) removal of 4, causing
an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal
of 12, causing an underflow; (e) a fusion operation; (f) after the fusion operation;
(g) removal of 13; (h) after removing 13.

i

i

“main” — 2011/1/13 — 12:30 — page 472 — #494
i

i

i

i

i

i

472 Chapter 10. Search Trees

(a) (b)

(c) (d)

Figure 10.26: A propagating sequence of fusions in a (2,4) tree: (a) removal of 14,
which causes an underflow; (b) fusion, which causes another underflow; (c) second
fusion operation, which causes the root to be removed; (d) final tree.

Performance of (2,4) Trees

Table 10.3 summarizes the running times of the main operations of a map realized
with a (2,4) tree. The time complexity analysis is based on the following:

• The height of a (2,4) tree storing n entries is O(logn), by Proposition 10.8
• A split, transfer, or fusion operation takes O(1) time
• A search, insertion, or removal of an entry visits O(logn) nodes.

Operation Time
size, empty O(1)

find, insert, erase O(logn)

Table 10.3: Performance of an n-entry map realized by a (2,4) tree. The space
usage is O(n).

Thus, (2,4) trees provide for fast map search and update operations. (2,4) trees
also have an interesting relationship to the data structure we discuss next.

i

i

“main” — 2011/1/13 — 12:30 — page 473 — #495
i

i

i

i

i

i

10.5. Red-Black Trees 473

10.5 Red-Black Trees

Although AVL trees and (2,4) trees have a number of nice properties, there are
some map applications for which they are not well suited. For instance, AVL trees
may require many restructure operations (rotations) to be performed after a re-
moval, and (2,4) trees may require many fusing or split operations to be performed
after either an insertion or removal. The data structure we discuss in this section,
the red-black tree, does not have these drawbacks, however, as it requires that only
O(1) structural changes be made after an update in order to stay balanced.

A red-black tree is a binary search tree (see Section 10.1) with nodes colored
red and black in a way that satisfies the following properties:

Root Property: The root is black.

External Property: Every external node is black.

Internal Property: The children of a red node are black.

Depth Property: All the external nodes have the same black depth, defined as the
number of black ancestors minus one. (Recall that a node is an ancestor of
itself.)

An example of a red-black tree is shown in Figure 10.27.

Figure 10.27: Red-black tree associated with the (2,4) tree of Figure 10.21. Each
external node of this red-black tree has 4 black ancestors (including itself); hence, it
has black depth 3. We use the color blue instead of red. Also, we use the convention
of giving an edge of the tree the same color as the child node.

As for previous types of search trees, we assume that entries are stored at the
internal nodes of a red-black tree, with the external nodes being empty placehold-
ers. Also, we assume that the external nodes are actual nodes, but we note that, at
the expense of slightly more complicated methods, external nodes could be null.

i

i

“main” — 2011/1/13 — 12:30 — page 474 — #496
i

i

i

i

i

i

474 Chapter 10. Search Trees

We can make the red-black tree definition more intuitive by noting an interest-
ing correspondence between red-black trees and (2,4) trees as illustrated in Fig-
ure 10.28. Namely, given a red-black tree, we can construct a corresponding (2,4)
tree by merging every red node v into its parent and storing the entry from v at its
parent. Conversely, we can transform any (2,4) tree into a corresponding red-black
tree by coloring each node black and performing the following transformation for
each internal node v:

• If v is a 2-node, then keep the (black) children of v as is

• If v is a 3-node, then create a new red node w, give v’s first two (black)
children to w, and make w and v’s third child be the two children of v

• If v is a 4-node, then create two new red nodes w and z, give v’s first two
(black) children to w, give v’s last two (black) children to z, and make w and
z be the two children of v

−→

(a)

−→

(b)

−→

(c)

Figure 10.28: Correspondence between a (2,4) tree and a red-black tree: (a) 2-node;
(b) 3-node; (c) 4-node.

The correspondence between (2,4) trees and red-black trees provides important
intuition that we use in our discussion of how to perform updates in red-black trees.
In fact, the update algorithms for red-black trees are mysteriously complex without
this intuition.

i

i

“main” — 2011/1/13 — 12:30 — page 475 — #497
i

i

i

i

i

i

10.5. Red-Black Trees 475

Proposition 10.9: The height of a red-black tree storing n entries is O(logn).

Justification: Let T be a red-black tree storing n entries, and let h be the height
of T . We justify this proposition by establishing the following fact

log(n+ 1)≤ h≤ 2log(n+ 1).

Let d be the common black depth of all the external nodes of T . Let T ′ be the
(2,4) tree associated with T , and let h′ be the height of T ′. Because of the corre-
spondence between red-black trees and (2,4) trees, we know that h′ = d. Hence,
by Proposition 10.8, d = h′ ≤ log(n + 1). By the internal node property, h ≤ 2d.
Thus, we obtain h ≤ 2log(n + 1). The other inequality, log(n + 1) ≤ h, follows
from Proposition 7.10 and the fact that T has n internal nodes.

We assume that a red-black tree is realized with a linked structure for binary
trees (Section 7.3.4), in which we store a map entry and a color indicator at each
node. Thus, the space requirement for storing n keys is O(n). The algorithm for
searching in a red-black tree T is the same as that for a standard binary search tree
(Section 10.1). Thus, searching in a red-black tree takes O(logn) time.

10.5.1 Update Operations

Performing the update operations in a red-black tree is similar to that of a binary
search tree, except that we must additionally restore the color properties.

Insertion

Now consider the insertion of an entry with key k into a red-black tree T , keeping
in mind the correspondence between T and its associated (2,4) tree T ′ and the
insertion algorithm for T ′. The algorithm initially proceeds as in a binary search
tree (Section 10.1.2). Namely, we search for k in T until we reach an external node
of T , and we replace this node with an internal node z, storing (k,x) and having two
external-node children. If z is the root of T , we color z black, else we color z red.
We also color the children of z black. This action corresponds to inserting (k,x) into
a node of the (2,4) tree T ′ with external children. In addition, this action preserves
the root, external, and depth properties of T , but it may violate the internal property.
Indeed, if z is not the root of T and the parent v of z is red, then we have a parent and
a child (namely, v and z) that are both red. Note that by the root property, v cannot
be the root of T , and by the internal property (which was previously satisfied), the
parent u of v must be black. Since z and its parent are red, but z’s grandparent u is
black, we call this violation of the internal property a double red at node z.

To remedy a double red, we consider two cases.

i

i

“main” — 2011/1/13 — 12:30 — page 476 — #498
i

i

i

i

i

i

476 Chapter 10. Search Trees

Case 1: The Sibling w of v is Black. (See Figure 10.29.) In this case, the double
red denotes the fact that we have created in our red-black tree T a malformed
replacement for a corresponding 4-node of the (2,4) tree T ′, which has as its
children the four black children of u, v, and z. Our malformed replacement
has one red node (v) that is the parent of another red node (z), while we want
it to have the two red nodes as siblings instead. To fix this problem, we
perform a trinode restructuring of T . The trinode restructuring is done by
the operation restructure(z), which consists of the following steps (see again
Figure 10.29; this operation is also discussed in Section 10.2):

• Take node z, its parent v, and grandparent u, and temporarily relabel
them as a, b, and c, in left-to-right order, so that a, b, and c will be
visited in this order by an inorder tree traversal.

• Replace the grandparent u with the node labeled b, and make nodes a
and c the children of b, keeping inorder relationships unchanged.

After performing the restructure(z) operation, we color b black and we color
a and c red. Thus, the restructuring eliminates the double red problem.

(a)

(b)

Figure 10.29: Restructuring a red-black tree to remedy a double red: (a) the four
configurations for u, v, and z before restructuring; (b) after restructuring.

i

i

“main” — 2011/1/13 — 12:30 — page 477 — #499
i

i

i

i

i

i

10.5. Red-Black Trees 477

Case 2: The Sibling w of v is Red. (See Figure 10.30.) In this case, the double red
denotes an overflow in the corresponding (2,4) tree T . To fix the problem,
we perform the equivalent of a split operation. Namely, we do a recoloring:
we color v and w black and their parent u red (unless u is the root, in which
case, it is colored black). It is possible that, after such a recoloring, the
double red problem reappears, although higher up in the tree T , since u may
have a red parent. If the double red problem reappears at u, then we repeat
the consideration of the two cases at u. Thus, a recoloring either eliminates
the double red problem at node z, or propagates it to the grandparent u of z.
We continue going up T performing recolorings until we finally resolve the
double red problem (with either a final recoloring or a trinode restructuring).
Thus, the number of recolorings caused by an insertion is no more than half
the height of tree T , that is, no more than log(n+ 1) by Proposition 10.9.

(a)

(b)

Figure 10.30: Recoloring to remedy the double red problem: (a) before recoloring
and the corresponding 5-node in the associated (2,4) tree before the split; (b) after
the recoloring (and corresponding nodes in the associated (2,4) tree after the split).

Figures 10.31 and 10.32 show a sequence of insertion operations in a red-black
tree.

i

i

“main” — 2011/1/13 — 12:30 — page 478 — #500
i

i

i

i

i

i

478 Chapter 10. Search Trees

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

Figure 10.31: A sequence of insertions in a red-black tree: (a) initial tree; (b) in-
sertion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring;
(e) insertion of 15, which causes a double red; (f) after recoloring (the root remains
black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a
double red; (j) after restructuring; (k) insertion of 18, which causes a double red;
(l) after recoloring. (Continues in Figure 10.32.)

i

i

“main” — 2011/1/13 — 12:30 — page 479 — #501
i

i

i

i

i

i

10.5. Red-Black Trees 479

(m) (n)

(o) (p)

(q)

Figure 10.32: A sequence of insertions in a red-black tree: (m) insertion of 16,
which causes a double red; (n) after restructuring; (o) insertion of 17, which causes
a double red; (p) after recoloring there is again a double red, to be handled by a
restructuring; (q) after restructuring. (Continued from Figure 10.31.)

i

i

“main” — 2011/1/13 — 12:30 — page 480 — #502
i

i

i

i

i

i

480 Chapter 10. Search Trees

The cases for insertion imply an interesting property for red-black trees. Namely,
since the Case 1 action eliminates the double-red problem with a single trinode re-
structuring and the Case 2 action performs no restructuring operations, at most one
restructuring is needed in a red-black tree insertion. By the above analysis and the
fact that a restructuring or recoloring takes O(1) time, we have the following.

Proposition 10.10: The insertion of a key-value entry in a red-black tree storing
n entries can be done in O(log n) time and requires O(logn) recolorings and one
trinode restructuring (a restructure operation).

Removal

Suppose now that we are asked to remove an entry with key k from a red-black
tree T . Removing such an entry initially proceeds like a binary search tree (Sec-
tion 10.1.2). First, we search for a node u storing such an entry. If node u does
not have an external child, we find the internal node v following u in the inorder
traversal of T , move the entry at v to u, and perform the removal at v. Thus, we may
consider only the removal of an entry with key k stored at a node v with an external
child w. Also, as we did for insertions, we keep in mind the correspondence be-
tween red-black tree T and its associated (2,4) tree T ′ (and the removal algorithm
for T ′).

To remove the entry with key k from a node v of T with an external child w we
proceed as follows. Let r be the sibling of w and x be the parent of v. We remove
nodes v and w, and make r a child of x. If v was red (hence r is black) or r is red
(hence v was black), we color r black and we are done. If, instead, r is black and v
was black, then, to preserve the depth property, we give r a fictitious double black
color. We now have a color violation, called the double black problem. A double
black in T denotes an underflow in the corresponding (2,4) tree T ′. Recall that x
is the parent of the double black node r. To remedy the double-black problem at r,
we consider three cases.

Case 1: The Sibling y of r is Black and Has a Red Child z. (See Figure 10.33.)
Resolving this case corresponds to a transfer operation in the (2,4) tree T ′.
We perform a trinode restructuring by means of operation restructure(z).
Recall that the operation restructure(z) takes the node z, its parent y, and
grandparent x, labels them temporarily left to right as a, b, and c, and replaces
x with the node labeled b, making it the parent of the other two. (See the
description of restructure in Section 10.2.) We color a and c black, give b
the former color of x, and color r black. This trinode restructuring eliminates
the double black problem. Hence, at most one restructuring is performed in
a removal operation in this case.

i

i

“main” — 2011/1/13 — 12:30 — page 481 — #503
i

i

i

i

i

i

10.5. Red-Black Trees 481

(a)

(b)

(c)

Figure 10.33: Restructuring of a red-black tree to remedy the double black problem:
(a) and (b) configurations before the restructuring, where r is a right child and
the associated nodes in the corresponding (2,4) tree before the transfer (two other
symmetric configurations where r is a left child are possible); (c) configuration after
the restructuring and the associated nodes in the corresponding (2,4) tree after the
transfer. The grey color for node x in parts (a) and (b) and for node b in part (c)
denotes the fact that this node may be colored either red or black.

i

i

“main” — 2011/1/13 — 12:30 — page 482 — #504
i

i

i

i

i

i

482 Chapter 10. Search Trees

Case 2: The Sibling y of r is Black and Both Children of y Are Black. (See Fig-
ures 10.34 and 10.35.) Resolving this case corresponds to a fusion operation
in the corresponding (2,4) tree T ′. We do a recoloring; we color r black, we
color y red, and, if x is red, we color it black (Figure 10.34); otherwise, we
color x double black (Figure 10.35). Hence, after this recoloring, the double
black problem may reappear at the parent x of r. (See Figure 10.35.) That
is, this recoloring either eliminates the double black problem or propagates
it into the parent of the current node. We then repeat a consideration of these
three cases at the parent. Thus, since Case 1 performs a trinode restructuring
operation and stops (and, as we will soon see, Case 3 is similar), the number
of recolorings caused by a removal is no more than log(n+ 1).

(a)

(b)

Figure 10.34: Recoloring of a red-black tree that fixes the double black problem: (a)
before the recoloring and corresponding nodes in the associated (2,4) tree before
the fusion (other similar configurations are possible); (b) after the recoloring and
corresponding nodes in the associated (2,4) tree after the fusion.

i

i

“main” — 2011/1/13 — 12:30 — page 483 — #505
i

i

i

i

i

i

10.5. Red-Black Trees 483

(a)

(b)

Figure 10.35: Recoloring of a red-black tree that propagates the double black prob-
lem: (a) configuration before the recoloring and corresponding nodes in the asso-
ciated (2,4) tree before the fusion (other similar configurations are possible); (b)
configuration after the recoloring and corresponding nodes in the associated (2,4)
tree after the fusion.

i

i

“main” — 2011/1/13 — 12:30 — page 484 — #506
i

i

i

i

i

i

484 Chapter 10. Search Trees

Case 3: The Sibling y of r Is Red. (See Figure 10.36.) In this case, we perform
an adjustment operation, as follows. If y is the right child of x, let z be the
right child of y; otherwise, let z be the left child of y. Execute the trinode
restructuring operation restructure(z), which makes y the parent of x. Color
y black and x red. An adjustment corresponds to choosing a different rep-
resentation of a 3-node in the (2,4) tree T ′. After the adjustment operation,
the sibling of r is black, and either Case 1 or Case 2 applies, with a different
meaning of x and y. Note that if Case 2 applies, the double-black problem
cannot reappear. Thus, to complete Case 3 we make one more application
of either Case 1 or Case 2 above and we are done. Therefore, at most one
adjustment is performed in a removal operation.

(a)

(b)

Figure 10.36: Adjustment of a red-black tree in the presence of a double black
problem: (a) configuration before the adjustment and corresponding nodes in the
associated (2,4) tree (a symmetric configuration is possible); (b) configuration after
the adjustment with the same corresponding nodes in the associated (2,4) tree.

i

i

“main” — 2011/1/13 — 12:30 — page 485 — #507
i

i

i

i

i

i

10.5. Red-Black Trees 485

From the above algorithm description, we see that the tree updating needed
after a removal involves an upward march in the tree T , while performing at most
a constant amount of work (in a restructuring, recoloring, or adjustment) per node.
Thus, since any changes we make at a node in T during this upward march takes
O(1) time (because it affects a constant number of nodes), we have the following.

Proposition 10.11: The algorithm for removing an entry from a red-black tree
with n entries takes O(log n) time and performs O(log n) recolorings and at most
one adjustment plus one additional trinode restructuring. Thus, it performs at most
two restructure operations.

In Figures 10.37 and 10.38, we show a sequence of removal operations on a
red-black tree. We illustrate Case 1 restructurings in Figure 10.37(c) and (d). We
illustrate Case 2 recolorings at several places in Figures 10.37 and 10.38. Finally,
in Figure 10.38(i) and (j), we show an example of a Case 3 adjustment.

(a) (b)

(c) (d)

Figure 10.37: Sequence of removals from a red-black tree: (a) initial tree; (b) re-
moval of 3; (c) removal of 12, causing a double black (handled by restructuring);
(d) after restructuring. (Continues in Figure 10.38.)

i

i

“main” — 2011/1/13 — 12:30 — page 486 — #508
i

i

i

i

i

i

486 Chapter 10. Search Trees

(e) (f)

(g) (h)

(i) (j)

(k)

Figure 10.38: Sequence of removals in a red-black tree : (e) removal of 17; (f) re-
moval of 18, causing a double black (handled by recoloring); (g) after recoloring;
(h) removal of 15; (i) removal of 16, causing a double black (handled by an adjust-
ment); (j) after the adjustment the double black needs to be handled by a recoloring;
(k) after the recoloring. (Continued from Figure 10.37.)

i

i

“main” — 2011/1/13 — 12:30 — page 487 — #509
i

i

i

i

i

i

10.5. Red-Black Trees 487

Performance of Red-Black Trees

Table 10.4 summarizes the running times of the main operations of a map realized
by means of a red-black tree. We illustrate the justification for these bounds in
Figure 10.39.

Operation Time
size, empty O(1)

find, insert, erase O(logn)

Table 10.4: Performance of an n-entry map realized by a red-black tree. The space
usage is O(n).

Figure 10.39: The running time of searches and updates in a red-black tree. The
time performance is O(1) per level, broken into a down phase, which typically
involves searching, and an up phase, which typically involves recolorings and per-
forming local trinode restructurings (rotations).

Thus, a red-black tree achieves logarithmic worst-case running times for both
searching and updating in a map. The red-black tree data structure is slightly more
complicated than its corresponding (2,4) tree. Even so, a red-black tree has a
conceptual advantage that only a constant number of trinode restructurings are ever
needed to restore the balance in a red-black tree after an update.

i

i

“main” — 2011/1/13 — 12:30 — page 488 — #510
i

i

i

i

i

i

488 Chapter 10. Search Trees

10.5.2 C++ Implementation of a Red-Black Tree

In this section, we discuss a C++ implementation of the dictionary ADT by means
of a red-black tree. It is interesting to note that the C++ Standard Template Li-
brary uses a red-black tree in its implementation of its classes map and multimap.
The difference between the two is similar to the difference between our map and
dictionary ADTs. The STL map class does not allow entries with duplicate keys,
whereas the STL multimap does. There is a significant difference, however, in the
behavior of the map’s insert(k,x) function and our map’s put(k,x) function. If the
key k is not present, both functions insert the new entry (k,x) in the map. If the key
is already present, the STL map simply ignores the request, and the current entry is
unchanged. In contrast, our put function replaces the existing value with the new
value x. The implementation presented in this section allows for multiple keys.

We present the major portions of the implementation in this section. To keep the
presentation concise, we have omitted the implementations of a number of simpler
utility functions.

We begin by presenting the enhanced entry class, called RBEntry. It is derived
from the entry class of Code Fragment 10.3. It inherits the key and value members,
and it defines a member variable col, which stores the color of the node. The color
is either RED or BLACK. It provides member functions for accessing and setting
this value. These functions have been protected, so a user cannot access them, but
RBTree can.

enum Color {RED, BLACK}; // node colors

template <typename E>
class RBEntry : public E { // a red-black entry
private:

Color col; // node color
protected: // local types

typedef typename E::Key K; // key type
typedef typename E::Value V; // value type
Color color() const { return col; } // get color
bool isRed() const { return col == RED; }
bool isBlack() const { return col == BLACK; }
void setColor(Color c) { col = c; }

public: // public functions
RBEntry(const K& k = K(), const V& v = V()) // constructor

: E(k,v), col(BLACK) { }
friend class RBTree<E>; // allow RBTree access
};

Code Fragment 10.19: A key-value entry for class RBTree, containing the associ-
ated node’s color.

i

i

“main” — 2011/1/13 — 12:30 — page 489 — #511
i

i

i

i

i

i

10.5. Red-Black Trees 489

In Code Fragment 10.20, we present the class definition for RBTree. The dec-
laration is almost entirely analogous to that of AVLTree, except that the utility func-
tions used to maintain the structure are different. We have chosen to present only
the two most interesting utility functions, remedyDoubleRed and remedyDouble-
Black. The meanings of most of the omitted utilities are easy to infer. (For ex-
ample hasTwoExternalChildren(v) determines whether a node v has two external
children.)

template <typename E> // a red-black tree
class RBTree : public SearchTree< RBEntry<E> > {
public: // public types

typedef RBEntry<E> RBEntry; // an entry
typedef typename SearchTree<RBEntry>::Iterator Iterator; // an iterator

protected: // local types
typedef typename RBEntry::Key K; // a key
typedef typename RBEntry::Value V; // a value
typedef SearchTree<RBEntry> ST; // a search tree
typedef typename ST::TPos TPos; // a tree position

public: // public functions
RBTree(); // constructor
Iterator insert(const K& k, const V& x); // insert (k,x)
void erase(const K& k) throw(NonexistentElement); // remove key k entry
void erase(const Iterator& p); // remove entry at p

protected: // utility functions
void remedyDoubleRed(const TPos& z); // fix double-red z
void remedyDoubleBlack(const TPos& r); // fix double-black r
// . . .(other utilities omitted)
};

Code Fragment 10.20: Class RBTree, which implements a dictionary ADT using a
red-black tree.

We first discuss the implementation of the function insert(k,x), which is given
in Code Fragment 10.21. We invoke the inserter utility function of SearchTree,
which returns the position of the inserted node. If this node is the root of the search
tree, we set its color to black. Otherwise, we set its color to red and check whether
restructuring is needed by invoking remedyDoubleRed.

This latter utility performs the necessary checks and restructuring presented in
the discussion of insertion in Section 10.5.1. Let z denote the location of the newly
inserted node. If both z and its parent are red, we need to remedy the situation.
To do so, we consider two cases. Let v denote z’s parent and let w be v’s sibling.
If w is black, we fall under Case 1 of the insertion update procedure. We apply
restructuring at z. The top vertex of the resulting subtree, denoted by v, is set to
black, and its two children are set to red.

On the other hand, if w is red, then we fall under Case 2 of the update procedure.

i

i

“main” — 2011/1/13 — 12:30 — page 490 — #512
i

i

i

i

i

i

490 Chapter 10. Search Trees

We resolve the situation by coloring both v and its sibling w black. If their common
parent is not the root, we set its color to red. This may induce another double-red
problem at v’s parent u, so we invoke the function recursively on u.

/* RBTree〈E〉 :: */ // insert (k,x)
Iterator insert(const K& k, const V& x) {

TPos v = inserter(k, x); // insert in base tree
if (v == ST::root())

setBlack(v); // root is always black
else {

setRed(v);
remedyDoubleRed(v); // rebalance if needed
}
return Iterator(v);
}

/* RBTree〈E〉 :: */ // fix double-red z
void remedyDoubleRed(const TPos& z) {

TPos v = z.parent(); // v is z’s parent
if (v == ST::root() | | v−>isBlack()) return; // v is black, all ok

// z, v are double-red
if (sibling(v)−>isBlack()) { // Case 1: restructuring

v = restructure(z);
setBlack(v); // top vertex now black
setRed(v.left()); setRed(v.right()); // set children red
}
else { // Case 2: recoloring

setBlack(v); setBlack(sibling(v)); // set v and sibling black
TPos u = v.parent(); // u is v’s parent
if (u == ST::root()) return;
setRed(u); // make u red
remedyDoubleRed(u); // may need to fix u now
}
}

Code Fragment 10.21: The functions related to insertion for class RBTree. The
function insert invokes the inserter utility function, which was given in Code Frag-
ment 10.10.

Finally, in Code Fragment 10.22, we present the implementation of the removal
function for the red-black tree. (We have omitted the simpler iterator-based erase
function.) The removal follows the process discussed in Section 10.5.1. We first
search for the key to be removed, and generate an exception if it is not found. Oth-
erwise, we invoke the eraser utility of class SearchTree, which returns the position
of the node r that replaced the deleted node. If either r or its former parent was
red, we color r black and we are done. Otherwise, we face a potential double-black
problem. We handle this by invoking the function remedyDoubleBlack.

i

i

“main” — 2011/1/13 — 12:30 — page 491 — #513
i

i

i

i

i

i

10.5. Red-Black Trees 491

/* RBTree〈E〉 :: */ // remove key k entry
void erase(const K& k) throw(NonexistentElement) {

TPos u = finder(k, ST::root()); // find the node
if (Iterator(u) == ST::end())

throw NonexistentElement("Erase of nonexistent");
TPos r = eraser(u); // remove u
if (r == ST::root() | | r−>isRed() | | wasParentRed(r))

setBlack(r); // fix by color change
else // r, parent both black

remedyDoubleBlack(r); // fix double-black r
}

/* RBTree〈E〉 :: */ // fix double-black r
void remedyDoubleBlack(const TPos& r) {

TPos x = r.parent(); // r’s parent
TPos y = sibling(r); // r’s sibling
if (y−>isBlack()) {

if (y.left()−>isRed() | | y.right()−>isRed()) { // Case 1: restructuring
// z is y’s red child

TPos z = (y.left()−>isRed() ? y.left() : y.right());
Color topColor = x−>color(); // save top vertex color
z = restructure(z); // restructure x,y,z
setColor(z, topColor); // give z saved color
setBlack(r); // set r black
setBlack(z.left()); setBlack(z.right()); // set z’s children black
}
else { // Case 2: recoloring

setBlack(r); setRed(y); // r=black, y=red
if (x−>isBlack() && !(x == ST::root()))
remedyDoubleBlack(x); // fix double-black x
setBlack(x);
}
}
else { // Case 3: adjustment

TPos z = (y == x.right() ? y.right() : y.left()); // grandchild on y’s side
restructure(z); // restructure x,y,z
setBlack(y); setRed(x); // y=black, x=red
remedyDoubleBlack(r); // fix r by Case 1 or 2
}
}

Code Fragment 10.22: The functions related to removal for class RBTree. The
function erase invokes the eraser utility function, which was given in Code Frag-
ment 10.11.

i

i

“main” — 2011/1/13 — 12:30 — page 492 — #514
i

i

i

i

i

i

492 Chapter 10. Search Trees

10.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-10.1 If we insert the entries (1,A), (2,B), (3,C), (4,D), and (5,E), in this order,
into an initially empty binary search tree, what will it look like?

R-10.2 We defined a binary search tree so that keys equal to a node’s key can
be in either the left or right subtree of that node. Suppose we change the
definition so that we restrict equal keys to the right subtree. What must a
subtree of a binary search tree containing only equal keys look like in this
case?

R-10.3 Insert, into an empty binary search tree, entries with keys 30, 40, 24, 58,
48, 26, 11, 13 (in this order). Draw the tree after each insertion.

R-10.4 How many different binary search trees can store the keys {1,2,3}?
R-10.5 Jack claims that the order in which a fixed set of entries is inserted into a

binary search tree does not matter—the same tree results every time. Give
a small example that proves he is wrong.

R-10.6 Rose claims that the order in which a fixed set of entries is inserted into
an AVL tree does not matter—the same AVL tree results every time. Give
a small example that proves she is wrong.

R-10.7 Are the rotations in Figures 10.9 and 10.11 single or double rotations?
R-10.8 Draw the AVL tree resulting from the insertion of an entry with key 52

into the AVL tree of Figure 10.11(b).
R-10.9 Draw the AVL tree resulting from the removal of the entry with key 62

from the AVL tree of Figure 10.11(b).
R-10.10 Explain why performing a rotation in an n-node binary tree represented

using a vector takes Ω(n) time.
R-10.11 Is the search tree of Figure 10.1(a) a (2,4) tree? Why or why not?
R-10.12 An alternative way of performing a split at a node v in a (2,4) tree is to

partition v into v′ and v′′, with v′ being a 2-node and v′′ a 3-node. Which
of the keys k1, k2, k3, or k4 do we store at v’s parent in this case? Why?

R-10.13 Cal claims that a (2,4) tree storing a set of entries will always have the
same structure, regardless of the order in which the entries are inserted.
Show that he is wrong.

R-10.14 Draw four different red-black trees that correspond to the same (2,4)
tree.

R-10.15 Consider the set of keys K = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 12:30 — page 493 — #515
i

i

i

i

i

i

10.6. Exercises 493

a. Draw a (2,4) tree storing K as its keys using the fewest number of
nodes.

b. Draw a (2,4) tree storing K as its keys using the maximum number
of nodes.

R-10.16 Consider the sequence of keys (5,16,22,45,2,10,18,30,50,12,1). Draw
the result of inserting entries with these keys (in the given order) into

a. An initially empty (2,4) tree.
b. An initially empty red-black tree.

R-10.17 For the following statements about red-black trees, provide a justification
for each true statement and a counterexample for each false one.

a. A subtree of a red-black tree is itself a red-black tree.
b. The sibling of an external node is either external or it is red.
c. There is a unique (2,4) tree associated with a given red-black tree.
d. There is a unique red-black tree associated with a given (2,4) tree.

R-10.18 Draw an example red-black tree that is not an AVL tree.

R-10.19 Consider a tree T storing 100,000 entries. What is the worst-case height
of T in the following cases?

a. T is an AVL tree.
b. T is a (2,4) tree.
c. T is a red-black tree.
d. T is a splay tree.
e. T is a binary search tree.

R-10.20 Perform the following sequence of operations in an initially empty splay
tree and draw the tree after each set of operations.

a. Insert keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.
b. Search for keys 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, in this order.
c. Delete keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

R-10.21 What does a splay tree look like if its entries are accessed in increasing
order by their keys?

R-10.22 Explain how to use an AVL tree or a red-black tree to sort n comparable
elements in O(n log n) time in the worst case.

R-10.23 Can we use a splay tree to sort n comparable elements in O(n logn) time
in the worst case? Why or why not?

R-10.24 Explain why you would get the same output in an inorder listing of the
entries in a binary search tree, T , independent of whether T is maintained
to be an AVL tree, splay tree, or red-black tree.

i

i

“main” — 2011/1/13 — 12:30 — page 494 — #516
i

i

i

i

i

i

494 Chapter 10. Search Trees

Creativity

C-10.1 Describe a modification to the binary search tree data structure that would
allow you to find the median entry, that is the entry with rank ⌊n/2⌋, in a
binary search tree. Describe both the modification and the algorithm for
finding the median assuming all keys are distinct.

C-10.2 Design a variation of algorithm TreeSearch for performing the operation
findAll(k) in an ordered dictionary implemented with a binary search tree
T , and show that it runs in time O(h+ s), where h is the height of T and s
is the size of the collection returned.

C-10.3 Describe how to perform an operation eraseAll(k), which removes all the
entries whose keys equal k in an ordered dictionary implemented with a
binary search tree T , and show that this method runs in time O(h + s),
where h is the height of T and s is the size of the iterator returned.

C-10.4 Draw a schematic of an AVL tree such that a single erase operation could
require Ω(log n) trinode restructurings (or rotations) from a leaf to the root
in order to restore the height-balance property.

C-10.5 Show how to perform an operation, eraseAll(k), which removes all entries
with keys equal to K, in an ordered dictionary implemented with an AVL
tree in time O(s log n), where n is the number of entries in the map and s
is the size of the iterator returned.

C-10.6 Describe the changes that would need to be made to the binary search
tree implementation given in the book to allow it to be used to support an
ordered dictionary, where we allow for different entries with equal keys.

C-10.7 If we maintain a reference to the position of the left-most internal node of
an AVL tree, then operation first (Section 9.3) can be performed in O(1)
time. Describe how the implementation of the other map functions needs
to be modified to maintain a reference to the left-most position.

C-10.8 Show that any n-node binary tree can be converted to any other n-node
binary tree using O(n) rotations.

C-10.9 Let M be an ordered map with n entries implemented by means of an
AVL tree. Show how to implement the following operation on M in time
O(logn+ s), where s is the size of the iterator returned.

findAllInRange(k1,k2): Return an iterator of all the entries in M with
key k such that k1 ≤ k ≤ k2.

C-10.10 Let M be an ordered map with n entries. Show how to modify the AVL
tree to implement the following function for M in time O(log n).

countAllInRange(k1,k2): Compute and return the number of entries in M
with key k such that k1 ≤ k ≤ k2.

i

i

“main” — 2011/1/13 — 12:30 — page 495 — #517
i

i

i

i

i

i

10.6. Exercises 495

C-10.11 Draw a splay tree, T1, together with the sequence of updates that produced
it, and a red-black tree, T2, on the same set of ten entries, such that a
preorder traversal of T1 would be the same as a preorder traversal of T2.

C-10.12 Show that the nodes that become unbalanced in an AVL tree during an
insert operation may be nonconsecutive on the path from the newly in-
serted node to the root.

C-10.13 Show that at most one node in an AVL tree becomes unbalanced after
operation removeAboveExternal is performed within the execution of a
erase map operation.

C-10.14 Show that at most one trinode restructuring operation is needed to restore
balance after any insertion in an AVL tree.

C-10.15 Let T and U be (2,4) trees storing n and m entries, respectively, such
that all the entries in T have keys less than the keys of all the entries in
U . Describe an O(log n + logm) time method for joining T and U into a
single tree that stores all the entries in T and U .

C-10.16 Repeat the previous problem for red-black trees T and U .
C-10.17 Justify Proposition 10.7.
C-10.18 The Boolean indicator used to mark nodes in a red-black tree as being

“red” or “black” is not strictly needed when we have distinct keys. De-
scribe a scheme for implementing a red-black tree without adding any
extra space to standard binary search tree nodes.

C-10.19 Let T be a red-black tree storing n entries, and let k be the key of an entry
in T . Show how to construct from T , in O(logn) time, two red-black trees
T ′ and T ′′, such that T ′ contains all the keys of T less than k, and T ′′

contains all the keys of T greater than k. This operation destroys T .
C-10.20 Show that the nodes of any AVL tree T can be colored “red” and “black”

so that T becomes a red-black tree.
C-10.21 The mergeable heap ADT consists of operations insert(k,x), removeMin(),

unionWith(h), and min(), where the unionWith(h) operation performs a
union of the mergeable heap h with the present one, destroying the old
versions of both. Describe a concrete implementation of the mergeable
heap ADT that achieves O(logn) performance for all its operations.

C-10.22 Consider a variation of splay trees, called half-splay trees, where splaying
a node at depth d stops as soon as the node reaches depth ⌊d/2⌋. Perform
an amortized analysis of half-splay trees.

C-10.23 The standard splaying step requires two passes, one downward pass to
find the node x to splay, followed by an upward pass to splay the node
x. Describe a method for splaying and searching for x in one downward
pass. Each substep now requires that you consider the next two nodes
in the path down to x, with a possible zig substep performed at the end.
Describe how to perform the zig-zig, zig-zag, and zig steps.

i

i

“main” — 2011/1/13 — 12:30 — page 496 — #518
i

i

i

i

i

i

496 Chapter 10. Search Trees

C-10.24 Describe a sequence of accesses to an n-node splay tree T , where n is odd,
that results in T consisting of a single chain of internal nodes with external
node children, such that the internal-node path down T alternates between
left children and right children.

C-10.25 Explain how to implement a vector of n elements so that the functions
insert and at take O(logn) time in the worst case.

Projects

P-10.1 Write a program that performs a simple n-body simulation, called “Jump-
ing Leprechauns.” This simulation involves n leprechauns, numbered 1 to
n. It maintains a gold value gi for each leprechaun i, which begins with
each leprechaun starting out with a million dollars worth of gold, that is,
gi = 1000000 for each i = 1,2, . . . ,n. In addition, the simulation also
maintains, for each leprechaun, i, a place on the horizon, which is repre-
sented as a double-precision floating point number, xi. In each iteration
of the simulation, the simulation processes the leprechauns in order. Pro-
cessing a leprechaun i during this iteration begins by computing a new
place on the horizon for i, which is determined by the assignment

xi← xi + rgi,

where r is a random floating-point number between −1 and 1. The lep-
rechaun i then steals half the gold from the nearest leprechauns on either
side of him and adds this gold to his gold value, gi. Write a program that
can perform a series of iterations in this simulation for a given number, n,
of leprechauns. You must maintain the set of horizon positions using an
ordered map data structure described in this chapter.

P-10.2 Extend class BinarySearchTree (Section 10.1.3) to support the functions
of the ordered map ADT (see Section 9.3).

P-10.3 Implement a class RestructurableNodeBinaryTree that supports the func-
tions of the binary tree ADT, plus a function restructure for performing a
rotation operation. This class is a component of the implementation of an
AVL tree given in Section 10.2.2.

P-10.4 Write a C++ class that implements all the functions of the ordered map
ADT (see Section 9.3) using an AVL tree.

P-10.5 Write a C++ class that implements all the functions of the ordered map
ADT (see Section 9.3) using a (2,4) tree.

P-10.6 Write a C++ class that implements all the functions of the ordered map
ADT (see Section 9.3) using a red-black tree.

i

i

“main” — 2011/1/13 — 12:30 — page 497 — #519
i

i

i

i

i

i

Chapter Notes 497

P-10.7 Form a three-programmer team and have each member implement a map
using a different search tree data structure. Perform a cooperative experi-
mental study to compare the speed of these three implementations.

P-10.8 Write a C++ class that can take any red-black tree and convert it into its
corresponding (2,4) tree and can take any (2,4) tree and convert it into its
corresponding red-black tree.

P-10.9 Implement the map ADT using a splay tree, and compare its performance
experimentally with the STL map class, which uses a red-black tree.

P-10.10 Prepare an implementation of splay trees that uses bottom-up splaying
as described in this chapter and another that uses top-down splaying as
described in Exercise C-10.23. Perform extensive experimental studies to
see which implementation is better in practice, if any.

P-10.11 Implement a binary search tree data structure so that it can support the
dictionary ADT, where different entries can have equal keys. In addi-
tion, implement the functions entrySetPreorder(), entrySetInorder(), and
entrySetPostorder(), which produce an iterable collection of the entries in
the binary search tree in the same order they would respectively be visited
in a preorder, inorder, and postorder traversal of the tree.

Chapter Notes

Some of the data structures discussed in this chapter are extensively covered by Knuth in his
Sorting and Searching book [60], and by Mehlhorn in [73]. AVL trees are due to Adel’son-
Vel’skii and Landis [1], who invented this class of balanced search trees in 1962. Binary
search trees, AVL trees, and hashing are described in Knuth’s Sorting and Searching [60]
book. Average-height analyses for binary search trees can be found in the books by Aho,
Hopcroft, and Ullman [5] and Cormen, Leiserson, Rivest and Stein [25]. The handbook
by Gonnet and Baeza-Yates [37] contains a number of theoretical and experimental com-
parisons among map implementations. Aho, Hopcroft, and Ullman [4] discuss (2,3) trees,
which are similar to (2,4) trees. [9]. Variations and interesting properties of red-black trees
are presented in a paper by Guibas and Sedgewick [42]. The reader interested in learning
more about different balanced tree data structures is referred to the books by Mehlhorn [73]
and Tarjan [95], and the book chapter by Mehlhorn and Tsakalidis [75]. Knuth [60] is ex-
cellent additional reading that includes early approaches to balancing trees. Splay trees
were invented by Sleator and Tarjan [89] (see also [95]).

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page 499 — #521
i

i

i

i

i

i

Chapter

11 Sorting, Sets, and Selection

Contents

11.1 Merge-Sort . 500

11.1.1 Divide-and-Conquer 500

11.1.2 Merging Arrays and Lists 505

11.1.3 The Running Time of Merge-Sort 508

11.1.4 C++ Implementations of Merge-Sort 509

11.1.5 Merge-Sort and Recurrence Equations ⋆ 511

11.2 Quick-Sort . 513

11.2.1 Randomized Quick-Sort 521

11.2.2 C++ Implementations and Optimizations 523

11.3 Studying Sorting through an Algorithmic Lens 526

11.3.1 A Lower Bound for Sorting 526

11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort . . 528

11.3.3 Comparing Sorting Algorithms 531

11.4 Sets and Union/Find Structures 533

11.4.1 The Set ADT . 533

11.4.2 Mergable Sets and the Template Method Pattern . . 534

11.4.3 Partitions with Union-Find Operations 538

11.5 Selection . 542

11.5.1 Prune-and-Search 542

11.5.2 Randomized Quick-Select 543

11.5.3 Analyzing Randomized Quick-Select 544

11.6 Exercises . 545

i

i

“main” — 2011/1/13 — 9:10 — page 500 — #522
i

i

i

i

i

i

500 Chapter 11. Sorting, Sets, and Selection

11.1 Merge-Sort

In this section, we present a sorting technique, called merge-sort, which can be
described in a simple and compact way using recursion.

11.1.1 Divide-and-Conquer

Merge-sort is based on an algorithmic design pattern called divide-and-conquer.
The divide-and-conquer pattern consists of the following three steps:

1. Divide: If the input size is smaller than a certain threshold (say, one or two
elements), solve the problem directly using a straightforward method and
return the solution obtained. Otherwise, divide the input data into two or
more disjoint subsets.

2. Recur: Recursively solve the subproblems associated with the subsets.

3. Conquer: Take the solutions to the subproblems and “merge” them into a
solution to the original problem.

Using Divide-and-Conquer for Sorting

Recall that in a sorting problem we are given a sequence of n objects, stored in a
linked list or an array, together with some comparator defining a total order on these
objects, and we are asked to produce an ordered representation of these objects. To
allow for sorting of either representation, we describe our sorting algorithm at a
high level for sequences and explain the details needed to implement it for linked
lists and arrays. To sort a sequence S with n elements using the three divide-and-
conquer steps, the merge-sort algorithm proceeds as follows:

1. Divide: If S has zero or one element, return S immediately; it is already
sorted. Otherwise (S has at least two elements), remove all the elements
from S and put them into two sequences, S1 and S2, each containing about
half of the elements of S; that is, S1 contains the first ⌈n/2⌉ elements of S,
and S2 contains the remaining ⌊n/2⌋ elements.

2. Recur: Recursively sort sequences S1 and S2.

3. Conquer: Put back the elements into S by merging the sorted sequences S1

and S2 into a sorted sequence.

In reference to the divide step, we recall that the notation ⌈x⌉ indicates the ceiling
of x, that is, the smallest integer m, such that x ≤ m. Similarly, the notation ⌊x⌋
indicates the floor of x, that is, the largest integer k, such that k ≤ x.

i

i

“main” — 2011/1/13 — 9:10 — page 501 — #523
i

i

i

i

i

i

11.1. Merge-Sort 501

We can visualize an execution of the merge-sort algorithm by means of a binary
tree T , called the merge-sort tree. Each node of T represents a recursive invocation
(or call) of the merge-sort algorithm. We associate the sequence S that is processed
by the invocation associated with v, with each node v of T . The children of node v
are associated with the recursive calls that process the subsequences S1 and S2 of S.
The external nodes of T are associated with individual elements of S, corresponding
to instances of the algorithm that make no recursive calls.

Figure 11.1 summarizes an execution of the merge-sort algorithm by showing
the input and output sequences processed at each node of the merge-sort tree. The
step-by-step evolution of the merge-sort tree is shown in Figures 11.2 through 11.4.

This algorithm visualization in terms of the merge-sort tree helps us analyze
the running time of the merge-sort algorithm. In particular, since the size of the
input sequence roughly halves at each recursive call of merge-sort, the height of
the merge-sort tree is about logn (recall that the base of log is 2 if omitted).

(a)

(b)

Figure 11.1: Merge-sort tree T for an execution of the merge-sort algorithm on a
sequence with eight elements: (a) input sequences processed at each node of T ;
(b) output sequences generated at each node of T .

i

i

“main” — 2011/1/13 — 9:10 — page 502 — #524
i

i

i

i

i

i

502 Chapter 11. Sorting, Sets, and Selection

(a) (b)

(c) (d)

(e) (f)

Figure 11.2: Visualization of an execution of merge-sort. Each node of the tree
represents a recursive call of merge-sort. The nodes drawn with dashed lines repre-
sent calls that have not been made yet. The node drawn with thick lines represents
the current call. The empty nodes drawn with thin lines represent completed calls.
The remaining nodes (drawn with thin lines and not empty) represent calls that are
waiting for a child invocation to return. (Continues in Figure 11.3.)

i

i

“main” — 2011/1/13 — 9:10 — page 503 — #525
i

i

i

i

i

i

11.1. Merge-Sort 503

(g) (h)

(i) (j)

(k) (l)

Figure 11.3: Visualization of an execution of merge-sort. (Continues in Fig-
ure 11.4.)

i

i

“main” — 2011/1/13 — 9:10 — page 504 — #526
i

i

i

i

i

i

504 Chapter 11. Sorting, Sets, and Selection

(m) (n)

(o) (p)

Figure 11.4: Visualization of an execution of merge-sort. Several invocations are
omitted between (l) and (m) and between (m) and (n). Note the conquer step per-
formed in step (p). (Continued from Figure 11.3.)

Proposition 11.1: The merge-sort tree associated with an execution of merge-
sort on a sequence of size n has height ⌈log n⌉.

We leave the justification of Proposition 11.1 as a simple exercise (R-11.4). We
use this proposition to analyze the running time of the merge-sort algorithm.

Having given an overview of merge-sort and an illustration of how it works,
let us consider each of the steps of this divide-and-conquer algorithm in more de-
tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a
sequence of size n involves separating it at the element with index ⌈n/2⌉, and the
recursive calls simply involve passing these smaller sequences as parameters. The
difficult step is the conquer step, which merges two sorted sequences into a single
sorted sequence. Thus, before we present our analysis of merge-sort, we need to
say more about how this is done.

i

i

“main” — 2011/1/13 — 9:10 — page 505 — #527
i

i

i

i

i

i

11.1. Merge-Sort 505

11.1.2 Merging Arrays and Lists

To merge two sorted sequences, it is helpful to know if they are implemented as
arrays or lists. We begin with the array implementation, which we show in Code
Fragment 11.1. We illustrate a step in the merge of two sorted arrays in Figure 11.5.

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S, all of which are

implemented as arrays
Output: Sorted sequence S containing the elements from S1 and S2

i← j← 0
while i < S1.size() and j < S2.size() do

if S1[i]≤ S2[j] then
S.insertBack(S1[i]) {copy ith element of S1 to end of S}
i← i+ 1

else
S.insertBack(S2[j]) {copy jth element of S2 to end of S}
j← j + 1

while i < S1.size() do {copy the remaining elements of S1 to S}
S.insertBack(S1[i])
i← i+ 1

while j < S2.size() do {copy the remaining elements of S2 to S}
S.insertBack(S2[j])
j← j + 1

Code Fragment 11.1: Algorithm for merging two sorted array-based sequences.

(a) (b)

Figure 11.5: A step in the merge of two sorted arrays: (a) before the copy step; (b)
after the copy step.

i

i

“main” — 2011/1/13 — 9:10 — page 506 — #528
i

i

i

i

i

i

506 Chapter 11. Sorting, Sets, and Selection

Merging Two Sorted Lists

In Code Fragment 11.2, we give a list-based version of algorithm merge, for merg-
ing two sorted sequences, S1 and S2, implemented as linked lists. The main idea is
to iteratively remove the smallest element from the front of one of the two lists and
add it to the end of the output sequence, S, until one of the two input lists is empty,
at which point we copy the remainder of the other list to S. We show an example
execution of this version of algorithm merge in Figure 11.6.

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S, implemented as

linked lists
Output: Sorted sequence S containing the elements from S1 and S2

while S1 is not empty and S2 is not empty do
if S1.front().element()≤ S2.front().element() then
{move the first element of S1 at the end of S}
S.insertBack(S1.eraseFront())

else
{move the first element of S2 at the end of S}
S.insertBack(S2.eraseFront())

{move the remaining elements of S1 to S}
while S1 is not empty do

S.insertBack(S1.eraseFront())
{move the remaining elements of S2 to S}
while S2 is not empty do

S.insertBack(S2.eraseFront())

Code Fragment 11.2: Algorithm merge for merging two sorted sequences imple-
mented as linked lists.

The Running Time for Merging

We analyze the running time of the merge algorithm by making some simple ob-
servations. Let n1 and n2 be the number of elements of S1 and S2, respectively.
Algorithm merge has three while loops. Independent of whether we are analyzing
the array-based version or the list-based version, the operations performed inside
each loop take O(1) time each. The key observation is that during each iteration
of one of the loops, one element is copied or moved from either S1 or S2 into S
(and that element is no longer considered). Since no insertions are performed into
S1 or S2, this observation implies that the overall number of iterations of the three
loops is n1 + n2. Thus, the running time of algorithm merge is O(n1 + n2).

i

i

“main” — 2011/1/13 — 9:10 — page 507 — #529
i

i

i

i

i

i

11.1. Merge-Sort 507

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)

Figure 11.6: An execution of the algorithm merge shown in Code Fragment 11.2.

i

i

“main” — 2011/1/13 — 9:10 — page 508 — #530
i

i

i

i

i

i

508 Chapter 11. Sorting, Sets, and Selection

11.1.3 The Running Time of Merge-Sort

Now that we have given the details of the merge-sort algorithm in both its array-
based and list-based versions, and we have analyzed the running time of the crucial
merge algorithm used in the conquer step, let us analyze the running time of the
entire merge-sort algorithm, assuming it is given an input sequence of n elements.
For simplicity, we restrict our attention to the case where n is a power of 2. We
leave it as an exercise (Exercise R-11.7) to show that the result of our analysis also
holds when n is not a power of 2.

As we did in the analysis of the merge algorithm, we assume that the input
sequence S and the auxiliary sequences S1 and S2, created by each recursive call of
merge-sort, are implemented by either arrays or linked lists (the same as S), so that
merging two sorted sequences can be done in linear time.

As we mentioned earlier, we analyze the merge-sort algorithm by referring to
the merge-sort tree T . (Recall Figures 11.2 through 11.4.) We call the time spent
at a node v of T the running time of the recursive call associated with v, excluding
the time taken waiting for the recursive calls associated with the children of v to
terminate. In other words, the time spent at node v includes the running times of the
divide and conquer steps, but excludes the running time of the recur step. We have
already observed that the details of the divide step are straightforward; this step
runs in time proportional to the size of the sequence for v. In addition, as discussed
above, the conquer step, which consists of merging two sorted subsequences, also
takes linear time, independent of whether we are dealing with arrays or linked lists.
That is, letting i denote the depth of node v, the time spent at node v is O(n/2i),
since the size of the sequence handled by the recursive call associated with v is
equal to n/2i.

Looking at the tree T more globally, as shown in Figure 11.7, we see that, given
our definition of “time spent at a node,” the running time of merge-sort is equal to
the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes at
depth i. This simple observation has an important consequence, for it implies that
the overall time spent at all the nodes of T at depth i is O(2i ·n/2i), which is O(n).
By Proposition 11.1, the height of T is ⌈logn⌉. Thus, since the time spent at each
of the ⌈log n⌉+ 1 levels of T is O(n), we have the following result.

Proposition 11.2: Algorithm merge-sort sorts a sequence S of size n in O(n logn)
time, assuming two elements of S can be compared in O(1) time.

In other words, the merge-sort algorithm asymptotically matches the fast run-
ning time of the heap-sort algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 509 — #531
i

i

i

i

i

i

11.1. Merge-Sort 509

Figure 11.7: A visual time analysis of the merge-sort tree T . Each node is shown
labeled with the size of its subproblem.

11.1.4 C++ Implementations of Merge-Sort

In this subsection, we present two complete C++ implementations of the merge-
sort algorithm, one for lists and one for vectors. In both cases a comparator object
(see Section 8.1.2) is used to decide the relative order of the elements. Recall that a
comparator is a class that implements the less-than operator by overloading the “()”
operator. For example, given a comparator object less, the relational test x < y can
be implemented with less(x,y), and the test x≤ y can be implemented as !less(y,x).

First, in Code Fragment 11.3, we present a C++ implementation of a list-based
merge-sort algorithm as the recursive function mergeSort. We represent each se-
quence as an STL list (Section 6.2.4). The merge process is loosely based on the
algorithm presented in Code Fragment 11.2. The main function mergeSort parti-
tions the input list S into two auxiliary lists, S1 and S2, of roughly equal sizes. They
are each sorted recursively, and the results are then combined by invoking the func-
tion merge. The function merge repeatedly moves the smaller element of the two
lists S1 and S2 into the output list S.

Functions from our list ADT, such as front and insertBack, have been replaced
by their STL equivalents, such as begin and push back, respectively. Access to
elements of the list is provided by list iterators. Given an iterator p, recall that *p
accesses the current element, and *p++ accesses the current element and incre-
ments the iterator to the next element of the list.

i

i

“main” — 2011/1/13 — 9:10 — page 510 — #532
i

i

i

i

i

i

510 Chapter 11. Sorting, Sets, and Selection

Each list is modified by insertions and deletions only at the head and tail; hence,
each list update takes O(1) time, assuming any list implementation based on doubly
linked lists (see Table 6.2). For a list S of size n, function mergeSort(S,c) runs in
time O(n log n).

template <typename E, typename C> // merge-sort S
void mergeSort(list<E>& S, const C& less) {

typedef typename list<E>::iterator Itor; // sequence of elements
int n = S.size();
if (n <= 1) return; // already sorted
list<E> S1, S2;
Itor p = S.begin();
for (int i = 0; i < n/2; i++) S1.push back(*p++); // copy first half to S1
for (int i = n/2; i < n; i++) S2.push back(*p++); // copy second half to S2
S.clear(); // clear S’s contents
mergeSort(S1, less); // recur on first half
mergeSort(S2, less); // recur on second half
merge(S1, S2, S, less); // merge S1 and S2 into S
}

template <typename E, typename C> // merge utility
void merge(list<E>& S1, list<E>& S2, list<E>& S, const C& less) {

typedef typename list<E>::iterator Itor; // sequence of elements
Itor p1 = S1.begin();
Itor p2 = S2.begin();
while(p1 != S1.end() && p2 != S2.end()) { // until either is empty

if(less(*p1, *p2)) // append smaller to S
S.push back(*p1++);

else
S.push back(*p2++);

}
while(p1 != S1.end()) // copy rest of S1 to S

S.push back(*p1++);
while(p2 != S2.end()) // copy rest of S2 to S

S.push back(*p2++);
}

Code Fragment 11.3: Functions mergeSort and merge implementing a list-based
merge-sort algorithm.

Next, in Code Fragment 11.4, we present a nonrecursive vector-based version
of merge-sort, which also runs in O(n log n) time. It is a bit faster than recursive
list-based merge-sort in practice, as it avoids the extra overheads of recursive calls
and node creation. The main idea is to perform merge-sort bottom-up, performing
the merges level-by-level going up the merge-sort tree. The input is an STL vector
S.

We begin by merging every odd-even pair of elements into sorted runs of length

i

i

“main” — 2011/1/13 — 9:10 — page 511 — #533
i

i

i

i

i

i

11.1. Merge-Sort 511

two. In order to keep from overwriting the vector elements, we copy elements
from an input vector in to an output vector out. For example, we merge in[0] and
in[1] into the subvector out[0..1], then we merge in[2] and in[3] into the subvector
out[2..3], and so on.

We then swap the rolls of in and out, and we merge these runs of length two into
runs of length four. For example we merge in[0..1] with in[2..3] into the subvector
out[0..3], then we merge in[4..5] with in[6..7] into the subvector out[4..7]. We then
merge consecutive runs of length four into new runs of length eight, and so on, until
the array is sorted.

The variable b stores the start of the runs and m stores their length. The vari-
ables i, j, and k store the current indices in the various subvectors. When swapping
vectors, we do not copy their entire contents. Instead, we maintain pointers to the
two arrays and swap these pointers at the end of each round of subvector merges.

11.1.5 Merge-Sort and Recurrence Equations ⋆
There is another way to justify that the running time of the merge-sort algorithm is
O(n log n) (Proposition 11.2). Namely, we can deal more directly with the recursive
nature of the merge-sort algorithm. In this section, we present such an analysis of
the running time of merge-sort, and in so doing introduce the mathematical concept
of a recurrence equation (also known as recurrence relation).

Let the function t(n) denote the worst-case running time of merge-sort on an
input sequence of size n. Since merge-sort is recursive, we can characterize func-
tion t(n) by means of an equation where the function t(n) is recursively expressed
in terms of itself. In order to simplify our characterization of t(n), let us focus our
attention on the case where n is a power of 2. We leave the problem of showing
that our asymptotic characterization still holds in the general case as an exercise
(Exercise R-11.7). In this case, we can specify the definition of t(n) as

t(n) =

{
b if n≤ 1
2t(n/2)+ cn otherwise.

An expression such as the one above is called a recurrence equation, since the
function appears on both the left- and right-hand sides of the equal sign. Although
such a characterization is correct and accurate, what we really want is a big-Oh
type of characterization of t(n) that does not involve the function t(n) itself. That
is, we want a closed-form characterization of t(n).

We can obtain a closed-form solution by applying the definition of a recurrence
equation, assuming n is relatively large. For example, after one more application
of the equation above, we can write a new recurrence for t(n) as

t(n) = 2(2t(n/22)+ (cn/2))+ cn

= 22t(n/22)+ 2(cn/2)+ cn = 22t(n/22)+ 2cn.

i

i

“main” — 2011/1/13 — 9:10 — page 512 — #534
i

i

i

i

i

i

512 Chapter 11. Sorting, Sets, and Selection

template <typename E, typename C> // merge-sort S
void mergeSort(vector<E>& S, const C& less) {

typedef vector<E> vect;
int n = S.size();
vect v1(S); vect* in = &v1; // initial input vector
vect v2(n); vect* out = &v2; // initial output vector
for (int m = 1; m < n; m *= 2) { // list sizes doubling

for (int b = 0; b < n; b += 2*m) { // beginning of list
merge(*in, *out, less, b, m); // merge sublists
}
std::swap(in, out); // swap input with output
}
S = *in; // copy sorted array to S
}

// merge in[b. .b+m-1] and in[b+m. .b+2*m-1]
template <typename E, typename C>
void merge(vector<E>& in, vector<E>& out, const C& less, int b, int m) {

int i = b; // index into run #1
int j = b + m; // index into run #2
int n = in.size();
int e1 = std::min(b + m, n); // end of run #1
int e2 = std::min(b + 2*m, n); // end of run #2
int k = b;
while ((i < e1) && (j < e2)) {

if(!less(in[j], in[i])) // append smaller to S
out[k++] = in[i++];

else
out[k++] = in[j++];

}
while (i < e1) // copy rest of run 1 to S

out[k++] = in[i++];
while (j < e2) // copy rest of run 2 to S

out[k++] = in[j++];
}

Code Fragment 11.4: Functions mergeSort and merge implementing a vector-based
merge-sort algorithm. We employ the STL functions swap, which swaps two val-
ues, and min, which returns the minimum of two values. Note that the call to swap
swaps only the pointers to the arrays and, hence, runs in O(1) time.

i

i

“main” — 2011/1/13 — 9:10 — page 513 — #535
i

i

i

i

i

i

11.2. Quick-Sort 513

If we apply the equation again, we get t(n) = 23t(n/23)+ 3cn. At this point, we
should see a pattern emerging, so that after applying this equation i times we get

t(n) = 2it(n/2i)+ icn.

The issue that remains, then, is to determine when to stop this process. To see when
to stop, recall that we switch to the closed form t(n) = b when n≤ 1, which occurs
when 2i = n. In other words, this occurs when i = logn. Making this substitution,
then, yields

t(n) = 2log nt(n/2log n)+ (logn)cn

= nt(1)+ cn log n

= nb+ cn log n.

That is, we get an alternative justification of the fact that t(n) is O(n log n).

11.2 Quick-Sort

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this
algorithm is also based on the divide-and-conquer paradigm, but it uses this tech-
nique in a somewhat opposite manner, as all the hard work is done before the
recursive calls.

High-Level Description of Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple recursive approach.
The main idea is to apply the divide-and-conquer technique, whereby we divide
S into subsequences, recur to sort each subsequence, and then combine the sorted
subsequences by a simple concatenation. In particular, the quick-sort algorithm
consists of the following three steps (see Figure 11.8):

1. Divide: If S has at least two elements (nothing needs to be done if S has
zero or one element), select a specific element x from S, which is called the
pivot. As is common practice, choose the pivot x to be the last element in S.
Remove all the elements from S and put them into three sequences:
• L, storing the elements in S less than x
• E , storing the elements in S equal to x
• G, storing the elements in S greater than x.

Of course, if the elements of S are all distinct, then E holds just one element—
the pivot itself.

2. Recur: Recursively sort sequences L and G.
3. Conquer: Put back the elements into S in order by first inserting the elements

of L, then those of E , and finally those of G.

i

i

“main” — 2011/1/13 — 9:10 — page 514 — #536
i

i

i

i

i

i

514 Chapter 11. Sorting, Sets, and Selection

E
 (=
x
)

L
 (<
x
)
 G
 (>
x
)

2. Recur.

3. Concatenate.

1. Split using pivot
x
.

2. Recur.

Figure 11.8: A visual schematic of the quick-sort algorithm.

Like merge-sort, the execution of quick-sort can be visualized by means of a bi-
nary recursion tree, called the quick-sort tree. Figure 11.9 summarizes an execution
of the quick-sort algorithm by showing the input and output sequences processed at
each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree
is shown in Figures 11.10, 11.11, and 11.12.

Unlike merge-sort, however, the height of the quick-sort tree associated with
an execution of quick-sort is linear in the worst case. This happens, for example,
if the sequence consists of n distinct elements and is already sorted. Indeed, in this
case, the standard choice of the pivot as the largest element yields a subsequence
L of size n−1, while subsequence E has size 1 and subsequence G has size 0. At
each invocation of quick-sort on subsequence L, the size decreases by 1. Hence,
the height of the quick-sort tree is n−1.

Performing Quick-Sort on Arrays and Lists

In Code Fragment 11.5, we give a pseudo-code description of the quick-sort algo-
rithm that is efficient for sequences implemented as arrays or linked lists. The algo-
rithm follows the template for quick-sort given above, adding the detail of scanning
the input sequence S backwards to divide it into the lists L, E , and G of elements
that are respectively less than, equal to, and greater than the pivot. We perform this
scan backwards, since removing the last element in a sequence is a constant-time
operation independent of whether the sequence is implemented as an array or a
linked list. We then recur on the L and G lists, and copy the sorted lists L, E , and
G back to S. We perform this latter set of copies in the forward direction, since in-
serting elements at the end of a sequence is a constant-time operation independent
of whether the sequence is implemented as an array or a linked list.

i

i

“main” — 2011/1/13 — 9:10 — page 515 — #537
i

i

i

i

i

i

11.2. Quick-Sort 515

(a)

(b)

Figure 11.9: Quick-sort tree T for an execution of the quick-sort algorithm on a
sequence with eight elements: (a) input sequences processed at each node of T ;
(b) output sequences generated at each node of T . The pivot used at each level of
the recursion is shown in bold.

i

i

“main” — 2011/1/13 — 9:10 — page 516 — #538
i

i

i

i

i

i

516 Chapter 11. Sorting, Sets, and Selection

(a) (b)

(c) (d)

(e) (f)
Figure 11.10: Visualization of quick-sort. Each node of the tree represents a re-
cursive call. The nodes drawn with dashed lines represent calls that have not been
made yet. The node drawn with thick lines represents the running invocation. The
empty nodes drawn with thin lines represent terminated calls. The remaining nodes
represent suspended calls (that is, active invocations that are waiting for a child in-
vocation to return). Note the divide steps performed in (b), (d), and (f). (Continues
in Figure 11.11.)

i

i

“main” — 2011/1/13 — 9:10 — page 517 — #539
i

i

i

i

i

i

11.2. Quick-Sort 517

(g) (h)

(i) (j)

(k) (l)

Figure 11.11: Visualization of an execution of quick-sort. Note the conquer step
performed in (k). (Continues in Figure 11.12.)

i

i

“main” — 2011/1/13 — 9:10 — page 518 — #540
i

i

i

i

i

i

518 Chapter 11. Sorting, Sets, and Selection

(m) (n)

(o) (p)

(q) (r)

Figure 11.12: Visualization of an execution of quick-sort. Several invocations be-
tween (p) and (q) have been omitted. Note the conquer steps performed in (o)
and (r). (Continued from Figure 11.11.)

i

i

“main” — 2011/1/13 — 9:10 — page 519 — #541
i

i

i

i

i

i

11.2. Quick-Sort 519

Algorithm QuickSort(S):
Input: A sequence S implemented as an array or linked list
Output: The sequence S in sorted order

if S.size()≤ 1 then
return {S is already sorted in this case}

p← S.back().element() {the pivot}
Let L, E , and G be empty list-based sequences
while !S.empty() do {scan S backwards, dividing it into L, E , and G}

if S.back().element() < p then
L.insertBack(S.eraseBack())

else if S.back().element() = p then
E.insertBack(S.eraseBack())

else {the last element in S is greater than p}
G.insertBack(S.eraseBack())

QuickSort(L) {Recur on the elements less than p}
QuickSort(G) {Recur on the elements greater than p}
while !L.empty() do {copy back to S the sorted elements less than p}

S.insertBack(L.eraseFront())
while !E.empty() do {copy back to S the elements equal to p}

S.insertBack(E.eraseFront())
while !G.empty() do {copy back to S the sorted elements greater than p}

S.insertBack(G.eraseFront())
return {S is now in sorted order}

Code Fragment 11.5: Quick-sort for an input sequence S implemented with a linked
list or an array.

i

i

“main” — 2011/1/13 — 9:10 — page 520 — #542
i

i

i

i

i

i

520 Chapter 11. Sorting, Sets, and Selection

Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for
merge-sort in Section 11.1.3. Namely, we can identify the time spent at each node
of the quick-sort tree T and sum up the running times for all the nodes.

Examining Code Fragment 11.5, we see that the divide step and the conquer
step of quick-sort can be implemented in linear time. Thus, the time spent at a node
v of T is proportional to the input size s(v) of v, defined as the size of the sequence
handled by the invocation of quick-sort associated with node v. Since subsequence
E has at least one element (the pivot), the sum of the input sizes of the children of
v is at most s(v)−1.

Given a quick-sort tree T , let si denote the sum of the input sizes of the nodes
at depth i in T . Clearly, s0 = n, since the root r of T is associated with the entire
sequence. Also, s1 ≤ n− 1, since the pivot is not propagated to the children of r.
Consider next s2. If both children of r have nonzero input size, then s2 = n− 3.
Otherwise (one child of the root has zero size, the other has size n−1), s2 = n−2.
Thus, s2 ≤ n− 2. Continuing this line of reasoning, we obtain that si ≤ n− i.
As observed in Section 11.2, the height of T is n− 1 in the worst case. Thus, the
worst-case running time of quick-sort is O

(
∑n−1

i=0 si
)
, which is O

(
∑n−1

i=0 (n− i)
)
, that

is, O(∑n
i=1 i) . By Proposition 4.3, ∑n

i=1 i is O(n2). Thus, quick-sort runs in O(n2)
worst-case time.

Given its name, we would expect quick-sort to run quickly. However, the
quadratic bound above indicates that quick-sort is slow in the worst case. Paradox-
ically, this worst-case behavior occurs for problem instances when sorting should
be easy—if the sequence is already sorted.

Going back to our analysis, note that the best case for quick-sort on a sequence
of distinct elements occurs when subsequences L and G happen to have roughly the
same size. That is, in the best case, we have

s0 = n
s1 = n−1
s2 = n− (1+ 2) = n−3

...
si = n− (1+ 2+ 22 + · · ·+ 2i−1) = n− (2i−1).

Thus, in the best case, T has height O(logn) and quick-sort runs in O(n log n) time.
We leave the justification of this fact as an exercise (Exercise R-11.12).

The informal intuition behind the expected behavior of quick-sort is that at each
invocation the pivot will probably divide the input sequence about equally. Thus,
we expect the average running time quick-sort to be similar to the best-case running
time, that is, O(n log n). In the next section, we see that introducing randomization
makes quick-sort behave exactly in this way.

i

i

“main” — 2011/1/13 — 9:10 — page 521 — #543
i

i

i

i

i

i

11.2. Quick-Sort 521

11.2.1 Randomized Quick-Sort

One common method for analyzing quick-sort is to assume that the pivot always
divides the sequence almost equally. We feel such an assumption would presuppose
knowledge about the input distribution that is typically not available, however. For
example, we would have to assume that we will rarely be given “almost” sorted
sequences to sort, which are actually common in many applications. Fortunately,
this assumption is not needed in order for us to match our intuition to quick-sort’s
behavior.

In general, we desire some way of getting close to the best-case running time
for quick-sort. The way to get close to the best-case running time, of course, is for
the pivot to divide the input sequence S almost equally. If this outcome were to
occur, then it would result in a running time that is asymptotically the same as the
best-case running time. That is, having pivots close to the “middle” of the set of
elements leads to an O(n log n) running time for quick-sort.

Picking Pivots at Random

Since the goal of the partition step of the quick-sort method is to divide the se-
quence S almost equally, let us introduce randomization into the algorithm and
pick a random element of the input sequence as the pivot. That is, instead of pick-
ing the pivot as the last element of S, we pick an element of S at random as the
pivot, keeping the rest of the algorithm unchanged. This variation of quick-sort is
called randomized quick-sort. The following proposition shows that the expected
running time of randomized quick-sort on a sequence with n elements is O(n log n).
This expectation is taken over all the possible random choices the algorithm makes,
and is independent of any assumptions about the distribution of the possible input
sequences the algorithm is likely to be given.

Proposition 11.3: The expected running time of randomized quick-sort on a se-
quence S of size n is O(n log n).

Justification: We assume two elements of S can be compared in O(1) time.
Consider a single recursive call of randomized quick-sort, and let n denote the size
of the input for this call. Say that this call is “good” if the pivot chosen is such that
subsequences L and G have size at least n/4 and at most 3n/4 each; otherwise, a
call is “bad.”

Now, consider the implications of our choosing a pivot uniformly at random.
Note that there are n/2 possible good choices for the pivot for any given call of
size n of the randomized quick-sort algorithm. Thus, the probability that any call is
good is 1/2. Note further that a good call will at least partition a list of size n into
two lists of size 3n/4 and n/4, and a bad call could be as bad as producing a single
call of size n−1.

i

i

“main” — 2011/1/13 — 9:10 — page 522 — #544
i

i

i

i

i

i

522 Chapter 11. Sorting, Sets, and Selection

Now consider a recursion trace for randomized quick-sort. This trace defines a
binary tree, T , such that each node in T corresponds to a different recursive call on
a subproblem of sorting a portion of the original list.

Say that a node v in T is in size group i if the size of v’s subproblem is greater
than (3/4)i+1n and at most (3/4)in. Let us analyze the expected time spent working
on all the subproblems for nodes in size group i. By the linearity of expectation
(Proposition A.19), the expected time for working on all these subproblems is the
sum of the expected times for each one. Some of these nodes correspond to good
calls and some correspond to bad calls. But note that, since a good call occurs with
probability 1/2, the expected number of consecutive calls we have to make before
getting a good call is 2. Moreover, notice that as soon as we have a good call for
a node in size group i, its children will be in size groups higher than i. Thus, for
any element x from the input list, the expected number of nodes in size group i
containing x in their subproblems is 2. In other words, the expected total size of all
the subproblems in size group i is 2n. Since the nonrecursive work we perform for
any subproblem is proportional to its size, this implies that the total expected time
spent processing subproblems for nodes in size group i is O(n).

The number of size groups is log4/3 n, since repeatedly multiplying by 3/4 is
the same as repeatedly dividing by 4/3. That is, the number of size groups is
O(logn). Therefore, the total expected running time of randomized quick-sort is
O(n log n). (See Figure 11.13.)

Figure 11.13: A visual time analysis of the quick-sort tree T . Each node is shown
labeled with the size of its subproblem.

Actually, we can show that the running time of randomized quick-sort is O(n log n)
with high probability.

i

i

“main” — 2011/1/13 — 9:10 — page 523 — #545
i

i

i

i

i

i

11.2. Quick-Sort 523

11.2.2 C++ Implementations and Optimizations

Recall from Section 8.3.5 that a sorting algorithm is in-place if it uses only a small
amount of memory in addition to that needed for the objects being sorted them-
selves. The merge-sort algorithm, as described above, does not use this optimiza-
tion technique, and making it be in-place seems to be quite difficult. In-place sort-
ing is not inherently difficult, however. For, as with heap-sort, quick-sort can be
adapted to be in-place, and this is the version of quick-sort that is used in most
deployed implementations.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-
ever, for we must use the input sequence itself to store the subsequences for all
the recursive calls. We show algorithm inPlaceQuickSort, which performs in-place
quick-sort, in Code Fragment 11.6. Algorithm inPlaceQuickSort assumes that the
input sequence, S, is given as an array of distinct elements. The reason for this
restriction is explored in Exercise R-11.15. The extension to the general case is
discussed in Exercise C-11.9.

Algorithm inPlaceQuickSort(S,a,b):
Input: An array S of distinct elements; integers a and b
Output: Array S with elements originally from indices from a to b, inclusive,

sorted in nondecreasing order from indices a to b

if a≥ b then return {at most one element in subrange}
p← S[b] {the pivot}
l← a {will scan rightward}
r← b−1 {will scan leftward}
while l ≤ r do
{find an element larger than the pivot}
while l ≤ r and S[l]≤ p do

l← l + 1
{find an element smaller than the pivot}
while r ≥ l and S[r]≥ p do

r← r−1
if l < r then

swap the elements at S[l] and S[r]
{put the pivot into its final place}
swap the elements at S[l] and S[b]
{recursive calls}
inPlaceQuickSort(S,a, l−1)
inPlaceQuickSort(S, l + 1,b)
{we are done at this point, since the sorted subarrays are already consecutive}

Code Fragment 11.6: In-place quick-sort for an input array S.

i

i

“main” — 2011/1/13 — 9:10 — page 524 — #546
i

i

i

i

i

i

524 Chapter 11. Sorting, Sets, and Selection

In-place quick-sort modifies the input sequence using element swapping and
does not explicitly create subsequences. Indeed, a subsequence of the input se-
quence is implicitly represented by a range of positions specified by a left-most
index l and a right-most index r. The divide step is performed by scanning the
array simultaneously from l forward and from r backward, swapping pairs of ele-
ments that are in reverse order as shown in Figure 11.14. When these two indices
“meet,” subvectors L and G are on opposite sides of the meeting point. The algo-
rithm completes by recurring on these two subvectors.

In-place quick-sort reduces the running time caused by the creation of new
sequences and the movement of elements between them by a constant factor. It is
so efficient that the STL’s sorting algorithm is based in part on quick-sort.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 11.14: Divide step of in-place quick-sort. Index l scans the sequence from
left to right, and index r scans the sequence from right to left. A swap is performed
when l is at an element larger than the pivot and r is at an element smaller than the
pivot. A final swap with the pivot completes the divide step.

i

i

“main” — 2011/1/13 — 9:10 — page 525 — #547
i

i

i

i

i

i

11.2. Quick-Sort 525

We show a C++ version of in-place quick-sort in Code Fragment 11.7. The
input to the sorting procedure is an STL vector of elements and a comparator object,
which provides the less-than function. Our implementation is a straightforward
adaptation of Code Fragment 11.6. The main procedure, quickSort, invokes the
recursive procedure quickSortStep to do most of the work.

template <typename E, typename C> // quick-sort S
void quickSort(std::vector<E>& S, const C& less) {

if (S.size() <= 1) return; // already sorted
quickSortStep(S, 0, S.size()−1, less); // call sort utility
}
template <typename E, typename C>
void quickSortStep(std::vector<E>& S, int a, int b, const C& less) {

if (a >= b) return; // 0 or 1 left? done
E pivot = S[b]; // select last as pivot
int l = a; // left edge
int r = b − 1; // right edge
while (l <= r) {

while (l <= r && !less(pivot, S[l])) l++; // scan right till larger
while (r >= l && !less(S[r], pivot)) r−−; // scan left till smaller
if (l < r) // both elements found

std::swap(S[l], S[r]);
} // until indices cross
std::swap(S[l], S[b]); // store pivot at l
quickSortStep(S, a, l−1, less); // recur on both sides
quickSortStep(S, l+1, b, less);
}

Code Fragment 11.7: A coding of in-place quick-sort, assuming distinct elements.

The function quickSortStep is given indices a and b, which indicate the bounds
of the subvector to be sorted. The pivot element is chosen to be the last element
of the vector. The indices l and r mark the left and right ends of the subvectors
being processed in the partitioning function. They are initialized to a and b− 1,
respectively. During each round, elements that are on the wrong side of the pivot
are swapped with each other, until these markers bump into each other.

Much of the efficiency of quick-sort depends on how the pivot is chosen. As
we have seen, quick-sort is most efficient if the pivot is near the middle of the
subvector being sorted. Our choice of setting the pivot to the last element of the
subvector relies on the assumption that the last element is reflective of the median
key valye. A better choice, if the subvector is moderately sized, is to select the
pivot as the median of three values, taken respectively from the front, middle, and
tail of the array. This is referred to as the median-of-three heuristic. It tends to
perform well in practice, and is faster than selecting a random pivot through the use
of a random-number generator.

i

i

“main” — 2011/1/13 — 9:10 — page 526 — #548
i

i

i

i

i

i

526 Chapter 11. Sorting, Sets, and Selection

11.3 Studying Sorting through an Algorithmic Lens

Recapping our discussions on sorting to this point, we have described several meth-
ods with either a worst-case or expected running time of O(n logn) on an input se-
quence of size n. These methods include merge-sort and quick-sort, described in
this chapter, as well as heap-sort (Section 8.3.5). In this section, we study sorting
as an algorithmic problem, addressing general issues about sorting algorithms.

11.3.1 A Lower Bound for Sorting

A natural first question to ask is whether we can sort any faster than O(n logn)
time. Interestingly, if the computational primitive used by a sorting algorithm is the
comparison of two elements, then this is, in fact, the best we can do—comparison-
based sorting has an Ω(n log n) worst-case lower bound on its running time. (Recall
the notation Ω(·) from Section 4.2.3.) To focus on the main cost of comparison-
based sorting, let us only count comparisons, for the sake of a lower bound.

Suppose we are given a sequence S = (x0,x1, . . . ,xn−1) that we wish to sort, and
assume that all the elements of S are distinct (this is not really a restriction since
we are deriving a lower bound). We do not care if S is implemented as an array or a
linked list, for the sake of our lower bound, since we are only counting comparisons.
Each time a sorting algorithm compares two elements xi and x j, that is, it asks,
“is xi < x j?”, there are two outcomes: “yes” or “no.” Based on the result of this
comparison, the sorting algorithm may perform some internal calculations (which
we are not counting here) and eventually performs another comparison between two
other elements of S, which again has two outcomes. Therefore, we can represent
a comparison-based sorting algorithm with a decision tree T (recall Example 7.8).
That is, each internal node v in T corresponds to a comparison and the edges from
node v′ to its children correspond to the computations resulting from either a “yes”
or “no” answer. It is important to note that the hypothetical sorting algorithm in
question probably has no explicit knowledge of the tree T . T simply represents
all the possible sequences of comparisons that a sorting algorithm might make,
starting from the first comparison (associated with the root) and ending with the
last comparison (associated with the parent of an external node).

Each possible initial ordering, or permutation, of the elements in S causes our
hypothetical sorting algorithm to execute a series of comparisons, traversing a path
in T from the root to some external node. Let us associate with each external
node v in T , then, the set of permutations of S that cause our sorting algorithm to
end up in v. The most important observation in our lower-bound argument is that
each external node v in T can represent the sequence of comparisons for at most
one permutation of S. The justification for this claim is simple: if two different

i

i

“main” — 2011/1/13 — 9:10 — page 527 — #549
i

i

i

i

i

i

11.3. Studying Sorting through an Algorithmic Lens 527

permutations P1 and P2 of S are associated with the same external node, then there
are at least two objects xi and x j, such that xi is before x j in P1 but xi is after x j

in P2. At the same time, the output associated with v must be a specific reordering
of S, with either xi or x j appearing before the other. But if P1 and P2 both cause the
sorting algorithm to output the elements of S in this order, then that implies there is
a way to trick the algorithm into outputting xi and x j in the wrong order. Since this
cannot be allowed by a correct sorting algorithm, each external node of T must be
associated with exactly one permutation of S. We use this property of the decision
tree associated with a sorting algorithm to prove the following result.

Proposition 11.4: The running time of any comparison-based algorithm for sort-
ing an n-element sequence is Ω(n log n) in the worst case.

Justification: The running time of a comparison-based sorting algorithm must
be greater than or equal to the height of the decision tree T associated with this
algorithm, as described above. (See Figure 11.15.) By the argument above, each
external node in T must be associated with one permutation of S. Moreover, each
permutation of S must result in a different external node of T . The number of
permutations of n objects is n! = n(n−1)(n−2) · · · 2 ·1. Thus, T must have at least
n! external nodes. By Proposition 7.10, the height of T is at least log(n!). This
immediately justifies the proposition, because there are at least n/2 terms that are
greater than or equal to n/2 in the product n!; hence

log(n!) ≥ log
(n

2

) n
2
=

n
2

log
n
2
,

which is Ω(n log n).

Figure 11.15: Visualizing the lower bound for comparison-based sorting.

i

i

“main” — 2011/1/13 — 9:10 — page 528 — #550
i

i

i

i

i

i

528 Chapter 11. Sorting, Sets, and Selection

11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort

In the previous section, we showed that Ω(n log n) time is necessary, in the worst
case, to sort an n-element sequence with a comparison-based sorting algorithm. A
natural question to ask, then, is whether there are other kinds of sorting algorithms
that can be designed to run asymptotically faster than O(n log n) time. Interest-
ingly, such algorithms exist, but they require special assumptions about the input
sequence to be sorted. Even so, such scenarios often arise in practice, so discussing
them is worthwhile. In this section, we consider the problem of sorting a sequence
of entries, each a key-value pair, where the keys have a restricted type.

Bucket-Sort

Consider a sequence S of n entries whose keys are integers in the range [0,N−1],
for some integer N ≥ 2, and suppose that S should be sorted according to the keys
of the entries. In this case, it is possible to sort S in O(n+ N) time. It might seem
surprising, but this implies, for example, that if N is O(n), then we can sort S in
O(n) time. Of course, the crucial point is that, because of the restrictive assumption
about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort, which is not based on
comparisons, but on using keys as indices into a bucket array B that has cells in-
dexed from 0 to N− 1. An entry with key k is placed in the “bucket” B[k], which
itself is a sequence (of entries with key k). After inserting each entry of the input
sequence S into its bucket, we can put the entries back into S in sorted order by enu-
merating the contents of the buckets B[0],B[1], . . . ,B[N− 1] in order. We describe
the bucket-sort algorithm in Code Fragment 11.8.

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0,N−1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty
for each entry e in S do

k← e.key()
remove e from S and insert it at the end bucket (sequence) B[k]

for i← 0 to N−1 do
for each entry e in sequence B[i] do

remove e from B[i] and insert it at the end of S

Code Fragment 11.8: Bucket-sort.

i

i

“main” — 2011/1/13 — 9:10 — page 529 — #551
i

i

i

i

i

i

11.3. Studying Sorting through an Algorithmic Lens 529

It is easy to see that bucket-sort runs in O(n + N) time and uses O(n + N)
space. Hence, bucket-sort is efficient when the range N of values for the keys is
small compared to the sequence size n, say N = O(n) or N = O(n logn). Still, its
performance deteriorates as N grows compared to n.

An important property of the bucket-sort algorithm is that it works correctly
even if there are many different elements with the same key. Indeed, we described
it in a way that anticipates such occurrences.

Stable Sorting

When sorting key-value pairs, an important issue is how equal keys are handled. Let
S = ((k0,x0), . . . ,(kn−1,xn−1)) be a sequence of such entries. We say that a sorting
algorithm is stable if, for any two entries (ki,xi) and (k j,x j) of S, such that ki = k j

and (ki,xi) precedes (k j,x j) in S before sorting (that is, i < j), entry (ki,xi) also
precedes entry (k j,x j) after sorting. Stability is important for a sorting algorithm
because applications may want to preserve the initial ordering of elements with the
same key.

Our informal description of bucket-sort in Code Fragment 11.8 does not guar-
antee stability. This is not inherent in the bucket-sort method itself, however, for we
can easily modify our description to make bucket-sort stable, while still preserving
its O(n + N) running time. Indeed, we can obtain a stable bucket-sort algorithm
by always removing the first element from sequence S and from the sequences B[i]
during the execution of the algorithm.

Radix-Sort

One of the reasons that stable sorting is so important is that it allows the bucket-sort
approach to be applied to more general contexts than to sort integers. Suppose, for
example, that we want to sort entries with keys that are pairs (k, l), where k and
l are integers in the range [0,N − 1], for some integer N ≥ 2. In a context such
as this, it is natural to define an ordering on these keys using the lexicographical
(dictionary) convention, where (k1, l1) < (k2, l2) if k1 < k2 or if k1 = k2 and l1 <
l2 (Section 8.1.2). This is a pair-wise version of the lexicographic comparison
function, usually applied to equal-length character strings (and it easily generalizes
to tuples of d numbers for d > 2).

The radix-sort algorithm sorts a sequence S of entries with keys that are pairs,
by applying a stable bucket-sort on the sequence twice; first using one component
of the pair as the ordering key and then using the second component. But which
order is correct? Should we first sort on the k’s (the first component) and then on
the l’s (the second component), or should it be the other way around?

i

i

“main” — 2011/1/13 — 9:10 — page 530 — #552
i

i

i

i

i

i

530 Chapter 11. Sorting, Sets, and Selection

Before we answer this question, we consider the following example.

Example 11.5: Consider the following sequence S (we show only the keys):

S = ((3,3),(1,5),(2,5), (1,2), (2,3), (1,7), (3,2),(2,2)).

If we sort S stably on the first component, then we get the sequence

S1 = ((1,5),(1,2),(1,7),(2,5),(2,3),(2,2),(3,3),(3,2)).

If we then stably sort this sequence S1 using the second component, then we get the
sequence

S1,2 = ((1,2),(2,2),(3,2),(2,3),(3,3),(1,5),(2,5),(1,7)),

which is not exactly a sorted sequence. On the other hand, if we first stably sort S
using the second component, then we get the sequence

S2 = ((1,2),(3,2),(2,2),(3,3),(2,3),(1,5),(2,5),(1,7)).

If we then stably sort sequence S2 using the first component, then we get the se-
quence

S2,1 = ((1,2),(1,5),(1,7),(2,2),(2,3),(2,5),(3,2),(3,3)),

which is indeed sequence S lexicographically ordered.

So, from this example, we are led to believe that we should first sort using
the second component and then again using the first component. This intuition is
exactly right. By first stably sorting by the second component and then again by
the first component, we guarantee that if two entries are equal in the second sort
(by the first component), then their relative order in the starting sequence (which
is sorted by the second component) is preserved. Thus, the resulting sequence is
guaranteed to be sorted lexicographically every time. We leave the determination
of how this approach can be extended to triples and other d-tuples of numbers as a
simple exercise (Exercise R-11.20). We can summarize this section as follows:

Proposition 11.6: Let S be a sequence of n key-value pairs, each of which has a
key (k1,k2, . . . ,kd), where ki is an integer in the range [0,N − 1] for some integer
N ≥ 2. We can sort S lexicographically in time O(d(n+ N)) using radix-sort.

As important as it is, sorting is not the only interesting problem dealing with
a total order relation on a set of elements. There are some applications, for ex-
ample, that do not require an ordered listing of an entire set, but nevertheless call
for some amount of ordering information about the set. Before we study such a
problem (called “selection”), let us step back and briefly compare all of the sorting
algorithms we have studied so far.

i

i

“main” — 2011/1/13 — 9:10 — page 531 — #553
i

i

i

i

i

i

11.3. Studying Sorting through an Algorithmic Lens 531

11.3.3 Comparing Sorting Algorithms

At this point, it might be useful for us to take a breath and consider all the algo-
rithms we have studied in this book to sort an n-element vector, node list, or general
sequence.

Considering Running Time and Other Factors

We have studied several methods, such as insertion-sort and selection-sort, that
have O(n2)-time behavior in the average and worst case. We have also studied sev-
eral methods with O(n log n)-time behavior, including heap-sort, merge-sort, and
quick-sort. Finally, we have studied a special class of sorting algorithms, namely,
the bucket-sort and radix-sort methods, that run in linear time for certain types of
keys. Certainly, the selection-sort algorithm is a poor choice in any application,
since it runs in O(n2) time even in the best case. But, of the remaining sorting
algorithms, which is the best?

As with many things in life, there is no clear “best” sorting algorithm from the
remaining candidates. The sorting algorithm best suited for a particular application
depends on several properties of that application. We can offer some guidance
and observations, therefore, based on the known properties of the “good” sorting
algorithms.

Insertion-Sort

If implemented well, the running time of insertion-sort is O(n + m), where m is
the number of inversions (that is, the number of pairs of elements out of order).
Thus, insertion-sort is an excellent algorithm for sorting small sequences (say, less
than 50 elements), because insertion-sort is simple to program, and small sequences
necessarily have few inversions. Also, insertion-sort is quite effective for sorting
sequences that are already “almost” sorted. By “almost,” we mean that the number
of inversions is small. But the O(n2)-time performance of insertion-sort makes it a
poor choice outside of these special contexts.

Merge-Sort

Merge-sort, on the other hand, runs in O(n logn) time in the worst case, which is
optimal for comparison-based sorting methods. Still, experimental studies have
shown that, since it is difficult to make merge-sort run in-place, the overheads
needed to implement merge-sort make it less attractive than the in-place implemen-
tations of heap-sort and quick-sort for sequences that can fit entirely in a computer’s
main memory area. Even so, merge-sort is an excellent algorithm for situations

i

i

“main” — 2011/1/13 — 9:10 — page 532 — #554
i

i

i

i

i

i

532 Chapter 11. Sorting, Sets, and Selection

where the input cannot all fit into main memory, but must be stored in blocks on an
external memory device, such as a disk. In these contexts, the way that merge-sort
processes runs of data in long merge streams makes the best use of all the data
brought into main memory in a block from disk. Thus, for external memory sort-
ing, the merge-sort algorithm tends to minimize the total number of disk reads and
writes needed, which makes the merge-sort algorithm superior in such contexts.

Quick-Sort

Experimental studies have shown that if an input sequence can fit entirely in main
memory, then the in-place versions of quick-sort and heap-sort run faster than
merge-sort. The extra overhead needed for copying nodes or entries puts merge-
sort at a disadvantage to quick-sort and heap-sort in these applications. In fact,
quick-sort tends, on average, to beat heap-sort in these tests. So, quick-sort is an
excellent choice as a general-purpose, in-memory sorting algorithm. Indeed, it is
included in the qsort sorting utility provided in C language libraries. Still, its O(n2)
time worst-case performance makes quick-sort a poor choice in real-time applica-
tions where we must make guarantees on the time needed to complete a sorting
operation.

Heap-Sort

In real-time scenarios where we have a fixed amount of time to perform a sorting
operation and the input data can fit into main memory, the heap-sort algorithm is
probably the best choice. It runs in O(n log n) worst-case time and can easily be
made to execute in-place.

Bucket-Sort and Radix-Sort

Finally, if our application involves sorting entries with small integer keys or d-
tuples of small integer keys, then bucket-sort or radix-sort is an excellent choice,
because it runs in O(d(n + N)) time, where [0,N− 1] is the range of integer keys
(and d = 1 for bucket sort). Thus, if d(n + N) is significantly “below” the n log n
function, then this sorting method should run faster than even quick-sort or heap-
sort.

Thus, our study of all these different sorting algorithms provides us with a
versatile collection of sorting methods in our algorithm engineering “toolbox.”

i

i

“main” — 2011/1/13 — 9:10 — page 533 — #555
i

i

i

i

i

i

11.4. Sets and Union/Find Structures 533

11.4 Sets and Union/Find Structures

In this section, we study sets, including operations that define them and operations
that can be applied to entire sets.

11.4.1 The Set ADT

A set is a collection of distinct objects. That is, there are no duplicate elements in a
set, and there is no explicit notion of keys or even an order. Even so, if the elements
in a set are comparable, then we can maintain sets to be ordered. The fundamental
functions of the set ADT for a set S are the following:

insert(e): Insert the element e into S and return an iterator referring
to its location; if the element already exists the operation
is ignored.

find(e): If S contains e, return an iterator p referring to this entry,
else return end.

erase(e): Remove the element e from S.

begin(): Return an iterator to the beginning of S.

end(): Return an iterator to an imaginary position just beyond
the end of S.

The C++ Standard Template Library provides a class set that contains all of
these functions. It actually implements an ordered set, and supports the following
additional operations as well.

lower bound(e): Return an iterator to the largest element less than or equal
to e.

upper bound(e): Return an iterator to the smallest element greater than or
equal to e.

equal range(e): Return an iterator range of elements that are equal to e.

The STL set is templated with the element type. As with the other STL classes
we have seen so far, the set is an example of a container, and hence supports access
by iterators. In order to declare an object of type set, it is necessary to first include
the definition file called “set.” The set is part of the std namespace, and hence it is
necessary either to use “std::set” or to provide an appropriate “using” statement.

The STL set is implemented by adapting the STL ordered map (which is based
on a red-black tree). Each entry has the property that the key and element are both
equal to e. That is, each entry is of the form (e,e).

i

i

“main” — 2011/1/13 — 9:10 — page 534 — #556
i

i

i

i

i

i

534 Chapter 11. Sorting, Sets, and Selection

11.4.2 Mergable Sets and the Template Method Pattern

Let us explore a further extension of the ordered set ADT that allows for operations
between pairs of sets. This also serves to motivate a software engineering design
pattern known as the template method.

First, we recall the mathematical definitions of the union, intersection, and
subtraction of two sets A and B:

A∪B = {x: x is in A or x is in B},
A∩B = {x: x is in A and x is in B},
A−B = {x: x is in A and x is not in B}.

Example 11.7: Most Internet search engines store, for each word x in their dic-
tionary database, a set, W (x), of Web pages that contain x, where each Web page
is identified by a unique Internet address. When presented with a query for a word
x, such a search engine need only return the Web pages in the set W (x), sorted
according to some proprietary priority ranking of page “importance.” But when
presented with a two-word query for words x and y, such a search engine must first
compute the intersection W (x)∩W (y), and then return the Web pages in the result-
ing set sorted by priority. Several search engines use the set intersection algorithm
described in this section for this computation.

Fundamental Methods of the Mergable Set ADT

The fundamental functions of the mergable set ADT, acting on a set A, are as fol-
lows:

union(B): Replace A with the union of A and B, that is, execute
A← A∪B.

intersect(B): Replace A with the intersection of A and B, that is, exe-
cute A← A∩B.

subtract(B): Replace A with the difference of A and B, that is, execute
A← A−B.

A Simple Mergable Set Implementation

One of the simplest ways of implementing a set is to store its elements in an or-
dered sequence. This implementation is included in several software libraries for
generic data structures, for example. Therefore, let us consider implementing the
set ADT with an ordered sequence (we consider other implementations in several
exercises). Any consistent total order relation among the elements of the set can be
used, provided the same order is used for all the sets.

i

i

“main” — 2011/1/13 — 9:10 — page 535 — #557
i

i

i

i

i

i

11.4. Sets and Union/Find Structures 535

We implement each of the three fundamental set operations using a generic ver-
sion of the merge algorithm that takes, as input, two sorted sequences representing
the input sets, and constructs a sequence representing the output set, be it the union,
intersection, or subtraction of the input sets. Incidentally, we have defined these op-
erations so that they modify the contents of the set A involved. Alternatively, we
could have defined these functions so that they do not modify A but return a new
set instead.

The generic merge algorithm iteratively examines and compares the current el-
ements a and b of the input sequence A and B, respectively, and finds out whether
a < b, a = b, or a > b. Then, based on the outcome of this comparison, it deter-
mines whether it should copy one of the elements a and b to the end of the output
sequence C. This determination is made based on the particular operation we are
performing, be it a union, intersection, or subtraction. For example, in a union
operation, we proceed as follows:
• If a < b, we copy a to the end of C and advance to the next element of A
• If a = b, we copy a to the end of C and advance to the next elements of A

and B
• If a > b, we copy b to the end of C and advance to the next element of B

Performance of Generic Merging

Let us analyze the running time of generic merging. At each iteration, we compare
two elements of the input sequences A and B, possibly copy one element to the
output sequence, and advance the current element of A, B, or both. Assuming
that comparing and copying elements takes O(1) time, the total running time is
O(nA + nB), where nA is the size of A and nB is the size of B; that is, generic
merging takes time proportional to the number of elements. Thus, we have the
following:

Proposition 11.8: The set ADT can be implemented with an ordered sequence
and a generic merge scheme that supports operations union, intersect, and subtract
in O(n) time, where n denotes the sum of sizes of the sets involved.

Generic Merging as a Template Method Pattern

The generic merge algorithm is based on the template method pattern (see Sec-
tion 7.3.7). The template method pattern is a software engineering design pattern
describing a generic computation mechanism that can be specialized by redefining
certain steps. In this case, we describe a method that merges two sequences into
one and can be specialized by the behavior of three abstract methods.

Code Fragments 11.9 and 11.10 show the class Merge providing a C++ im-
plementation of the generic merge algorithm. This class has no data members. It
defines a public function merge, which merges the two lists A and B, and stores the

i

i

“main” — 2011/1/13 — 9:10 — page 536 — #558
i

i

i

i

i

i

536 Chapter 11. Sorting, Sets, and Selection

result in C. It provides three virtual functions, fromA, fromB, and fromBoth. These
are pure virtual functions (that is, they are not defined here), but are overridden in
subclasses of Merge, to achieve a desired effect. The function fromA specifies the
action to be taken when the next element to be selected in the merger is from A.
Similarly, fromB specifies the action when the next element to be selected is from
B. Finally, fromBoth is the action to be taken when the two elements of A and B
are equal, and hence both are to be selected.

template <typename E>
class Merge { // generic Merge
public: // global types

typedef std::list<E> List; // list type
void merge(List& A, List& B, List& C); // generic merge function

protected: // local types
typedef typename List::iterator Itor; // iterator type

// overridden functions
virtual void fromA(const E& a, List& C) = 0;
virtual void fromBoth(const E& a, const E& b, List& C) = 0;
virtual void fromB(const E& b, List& C) = 0;
};

Code Fragment 11.9: Definition of the class Merge for generic merging.

The function merge, which is presented in Code Fragment 11.10 performs the
actual merger. It is structurally similar to the list-based merge procedure given in
Code Fragment 11.3. Rather than simply taking an element from list A or list B,
it invokes one of the virtual functions to perform the appropriate specialized task.
The final result is stored in the list C.

template <typename E> // generic merge
void Merge<E>::merge(List& A, List& B, List& C) {

Itor pa = A.begin(); // A’s elements
Itor pb = B.begin(); // B’s elements
while (pa != A.end() && pb != B.end()) { // main merging loop

if (*pa < *pb)
fromA(*pa++, C); // take from A

else if (*pa == *pb)
fromBoth(*pa++, *pb++, C); // take from both

else
fromB(*pb++, C); // take from B

}
while (pa != A.end()) { fromA(*pa++, C); } // take rest from A
while (pb != B.end()) { fromB(*pb++, C); } // take rest from B
}

Code Fragment 11.10: Member function merge which implements generic merging
for class Merge.

i

i

“main” — 2011/1/13 — 9:10 — page 537 — #559
i

i

i

i

i

i

11.4. Sets and Union/Find Structures 537

To convert Merge into a useful class, we provide definitions for the three auxil-
iary functions, fromA, fromBoth, and fromB. See Code 11.11.

• In class UnionMerge, merge copies every element from A and B into C, but
does not duplicate any element.

• In class IntersectMerge, merge copies every element that is in both A and B
into C, but “throws away” elements in one set but not in the other.

• In class SubtractMerge, merge copies every element that is in A and not in B
into C.

template <typename E> // set union
class UnionMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ C.push back(a); } // add a

virtual void fromBoth(const E& a, const E& b, List& C)
{ C.push back(a); } // add a only

virtual void fromB(const E& b, List& C)
{ C.push back(b); } // add b

};

template <typename E> // set intersection
class IntersectMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ } // ignore

virtual void fromBoth(const E& a, const E& b, List& C)
{ C.push back(a); } // add a only

virtual void fromB(const E& b, List& C)
{ } // ignore

};

template <typename E> // set subtraction
class SubtractMerge : public Merge<E> {
protected:

typedef typename Merge<E>::List List;
virtual void fromA(const E& a, List& C)
{ C.push back(a); } // add a

virtual void fromBoth(const E& a, const E& b, List& C)
{ } // ignore

virtual void fromB(const E& b, List& C)
{ } // ignore

};
Code Fragment 11.11: Classes extending the Merge class by specializing the auxil-
iary functions to perform set union, intersection, and subtraction, respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 538 — #560
i

i

i

i

i

i

538 Chapter 11. Sorting, Sets, and Selection

11.4.3 Partitions with Union-Find Operations

A partition is a collection of disjoint sets. We define the functions of the partition
ADT using position objects (Section 6.2.1), each of which stores an element x. The
partition ADT supports the following functions.

makeSet(x): Create a singleton set containing the element x and return
the position storing x in this set.

union(A,B): Return the set A∪B, destroying the old A and B.

find(p): Return the set containing the element in position p.

A simple implementation of a partition with a total of n elements is using a
collection of sequences, one for each set, where the sequence for a set A stores set
positions as its elements. Each position object stores a variable, element, which
references its associated element x and allows the execution of the element() func-
tion in O(1) time. In addition, we also store a variable, set, in each position, which
references the sequence storing p, since this sequence is representing the set con-
taining p’s element. (See Figure 11.16.) Thus, we can perform operation find(p)
in O(1) time, by following the set reference for p. Likewise, makeSet also takes
O(1) time. Operation union(A,B) requires that we join two sequences into one and
update the set references of the positions in one of the two. We choose to imple-
ment this operation by removing all the positions from the sequence with smaller
size, and inserting them in the sequence with larger size. Each time we take a
position p from the smaller set s and insert it into the larger set t, we update the
set reference for p to now point to t. Hence, the operation union(A,B) takes time
O(min(|A|, |B|)), which is O(n), because, in the worst case, |A|= |B|= n/2. Nev-
ertheless, as shown below, an amortized analysis shows this implementation to be
much better than appears from this worst-case analysis.

C

5 11 12 10 8

B

9 3 6 2

A

4 1 7

Figure 11.16: Sequence-based implementation of a partition consisting of three sets:
A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

i

i

“main” — 2011/1/13 — 9:10 — page 539 — #561
i

i

i

i

i

i

11.4. Sets and Union/Find Structures 539

Performance of the Sequence Implementation

The sequence implementation above is simple, but it is also efficient, as the follow-
ing theorem shows.

Proposition 11.9: Performing a series of n makeSet, union, and find operations,
using the sequence-based implementation above, starting from an initially empty
partition takes O(n log n) time.

Justification: We use the accounting method and assume that one cyber-dollar
can pay for the time to perform a find operation, a makeSet operation, or the move-
ment of a position object from one sequence to another in a union operation. In the
case of a find or makeSet operation, we charge the operation itself 1 cyber-dollar.
In the case of a union operation, however, we charge 1 cyber-dollar to each position
that we move from one set to another. Note that we charge nothing to the union
operations themselves. Clearly, the total charges to find and makeSet operations
add up to O(n).

Consider, then, the number of charges made to positions on behalf of union op-
erations. The important observation is that each time we move a position from one
set to another, the size of the new set at least doubles. Thus, each position is moved
from one set to another at most log n times; hence, each position can be charged at
most O(logn) times. Since we assume that the partition is initially empty, there are
O(n) different elements referenced in the given series of operations, which implies
that the total time for all the union operations is O(n log n).

The amortized running time of an operation in a series of makeSet, union, and
find operations, is the total time taken for the series divided by the number of oper-
ations. We conclude from the proposition above that, for a partition implemented
using sequences, the amortized running time of each operation is O(logn). Thus,
we can summarize the performance of our simple sequence-based partition imple-
mentation as follows.

Proposition 11.10: Using a sequence-based implementation of a partition, in a
series of n makeSet, union, and find operations starting from an initially empty
partition, the amortized running time of each operation is O(logn).

Note that in this sequence-based implementation of a partition, each find oper-
ation takes worst-case O(1) time. It is the running time of the union operations that
is the computational bottleneck.

In the next section, we describe a tree-based implementation of a partition that
does not guarantee constant-time find operations, but has amortized time much
better than O(logn) per union operation.

i

i

“main” — 2011/1/13 — 9:10 — page 540 — #562
i

i

i

i

i

i

540 Chapter 11. Sorting, Sets, and Selection

A Tree-Based Partition Implementation ⋆

An alternative data structure uses a collection of trees to store the n elements in sets,
where each tree is associated with a different set. (See Figure 11.17.) In particular,
we implement each tree with a linked data structure whose nodes are themselves
the set position objects. We still view each position p as being a node having a
variable, element, referring to its element x, and a variable, set, referring to a set
containing x, as before. But now we also view each position p as being of the
“set” data type. Thus, the set reference of each position p can point to a position,
which could even be p itself. Moreover, we implement this approach so that all the
positions and their respective set references together define a collection of trees.

We associate each tree with a set. For any position p, if p’s set reference points
back to p, then p is the root of its tree, and the name of the set containing p is
“p” (that is, we use position names as set names in this case). Otherwise, the set
reference for p points to p’s parent in its tree. In either case, the set containing p is
the one associated with the root of the tree containing p.

Figure 11.17: Tree-based implementation of a partition consisting of three disjoint
sets: A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

With this partition data structure, operation union(A,B) is called with position
arguments p and q that respectively represent the sets A and B (that is, A = p and
B = q). We perform this operation by making one of the trees a subtree of the
other (Figure 11.18b), which can be done in O(1) time by setting the set reference
of the root of one tree to point to the root of the other tree. Operation find for a
position p is performed by walking up to the root of the tree containing the position
p (Figure 11.18a), which takes O(n) time in the worst case.

At first, this implementation may seem to be no better than the sequence-based
data structure, but we add the following two simple heuristics to make it run faster.

Union-by-Size: Store, with each position node p, the size of the subtree rooted
at p. In a union operation, make the tree of the smaller set become a subtree
of the other tree, and update the size field of the root of the resulting tree.

i

i

“main” — 2011/1/13 — 9:10 — page 541 — #563
i

i

i

i

i

i

11.4. Sets and Union/Find Structures 541

5
3 6

8 10

9

11

12

2

5
3 6

8 10

9

11

12

2

(a) (b)

Figure 11.18: Tree-based implementation of a partition: (a) operation union(A,B);
(b) operation find(p), where p denotes the position object for element 12.

Path Compression: In a find operation, for each node v that the find visits, reset
the parent pointer from v to point to the root. (See Figure 11.19.)

5
3 6

8 10

9

11

12

2

5
3 6

8 10

9

11

12

2

(a) (b)

Figure 11.19: Path-compression heuristic: (a) path traversed by operation find on
element 12; (b) restructured tree.

A surprising property of this data structure, when implemented using the union-
by-size and path-compression heuristics, is that performing a series of n union and
find operations takes O(n log∗ n) time, where log∗ n is the log-star function, which
is the inverse of the tower-of-twos function. Intuitively, log∗ n is the number of
times that one can iteratively take the logarithm (base 2) of a number before getting
a number smaller than 2. Table 11.1 shows a few sample values.

Minimum n 2 22 = 4 222
= 16 2222

= 65,536 22222

= 265,536

log∗ n 1 2 3 4 5

Table 11.1: Some values of log∗ n and critical values for its inverse.

i

i

“main” — 2011/1/13 — 9:10 — page 542 — #564
i

i

i

i

i

i

542 Chapter 11. Sorting, Sets, and Selection

11.5 Selection

There are a number of applications in which we are interested in identifying a sin-
gle element in terms of its rank relative to an ordering of the entire set. Examples
include identifying the minimum and maximum elements, but we may also be in-
terested in, say, identifying the median element, that is, the element such that half
of the other elements are smaller and the remaining half are larger. In general,
queries that ask for an element with a given rank are called order statistics.

Defining the Selection Problem

In this section, we discuss the general order-statistic problem of selecting the kth
smallest element from an unsorted collection of n comparable elements. This is
known as the selection problem. Of course, we can solve this problem by sorting
the collection and then indexing into the sorted sequence at index k− 1. Using
the best comparison-based sorting algorithms, this approach would take O(n logn)
time, which is obviously an overkill for the cases where k = 1 or k = n (or even
k = 2, k = 3, k = n− 1, or k = n− 5), because we can easily solve the selection
problem for these values of k in O(n) time. Thus, a natural question to ask is
whether we can achieve an O(n) running time for all values of k (including the
interesting case of finding the median, where k = ⌊n/2⌋).

11.5.1 Prune-and-Search

This may come as a small surprise, but we can indeed solve the selection problem in
O(n) time for any value of k. Moreover, the technique we use to achieve this result
involves an interesting algorithmic design pattern. This design pattern is known
as prune-and-search or decrease-and-conquer. In applying this design pattern,
we solve a given problem that is defined on a collection of n objects by pruning
away a fraction of the n objects and recursively solving the smaller problem. When
we have finally reduced the problem to one defined on a constant-sized collection
of objects, then we solve the problem using some brute-force method. Returning
back from all the recursive calls completes the construction. In some cases, we
can avoid using recursion, in which case we simply iterate the prune-and-search
reduction step until we can apply a brute-force method and stop. Incidentally, the
binary search method described in Section 9.3.1 is an example of the prune-and-
search design pattern.

i

i

“main” — 2011/1/13 — 9:10 — page 543 — #565
i

i

i

i

i

i

11.5. Selection 543

11.5.2 Randomized Quick-Select

In applying the prune-and-search pattern to the selection problem, we can design
a simple and practical method, called randomized quick-select, for finding the kth
smallest element in an unordered sequence of n elements on which a total order
relation is defined. Randomized quick-select runs in O(n) expected time, taken
over all possible random choices made by the algorithm. This expectation does not
depend whatsoever on any randomness assumptions about the input distribution.
We note though that randomized quick-select runs in O(n2) time in the worst case.
The justification of this is left as an exercise (Exercise R-11.26). We also provide
an exercise (Exercise C-11.32) for modifying randomized quick-select to get a de-
terministic selection algorithm that runs in O(n) worst-case time. The existence
of this deterministic algorithm is mostly of theoretical interest, however, since the
constant factor hidden by the big-Oh notation is relatively large in this case.

Suppose we are given an unsorted sequence S of n comparable elements to-
gether with an integer k ∈ [1,n]. At a high level, the quick-select algorithm for
finding the kth smallest element in S is similar in structure to the randomized quick-
sort algorithm described in Section 11.2.1. We pick an element x from S at random
and use this as a “pivot” to subdivide S into three subsequences L, E , and G, storing
the elements of S less than x, equal to x, and greater than x, respectively. This is
the prune step. Then, based on the value of k, we determine which of these sets to
recur on. Randomized quick-select is described in Code Fragment 11.12.

Algorithm quickSelect(S,k):
Input: Sequence S of n comparable elements, and an integer k ∈ [1,n]
Output: The kth smallest element of S

if n = 1 then
return the (first) element of S.

pick a random (pivot) element x of S and divide S into three sequences:
• L, storing the elements in S less than x
• E , storing the elements in S equal to x
• G, storing the elements in S greater than x.

if k ≤ |L| then
quickSelect(L,k)

else if k ≤ |L|+ |E| then
return x {each element in E is equal to x}

else
quickSelect(G,k−|L|− |E|) {note the new selection parameter}

Code Fragment 11.12: Randomized quick-select algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 544 — #566
i

i

i

i

i

i

544 Chapter 11. Sorting, Sets, and Selection

11.5.3 Analyzing Randomized Quick-Select

Showing that randomized quick-select runs in O(n) time requires a simple prob-
abilistic argument. The argument is based on the linearity of expectation, which
states that if X and Y are random variables and c is a number, then

E(X +Y) = E(X)+ E(Y) and E(cX) = cE(X),

where we use E(Z) to denote the expected value of the expression Z .
Let t(n) be the running time of randomized quick-select on a sequence of size n.

Since this algorithm depends on random events, its running time, t(n), is a random
variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive
invocation of our algorithm is “good” if it partitions S so that the size of L and G
is at most 3n/4. Clearly, a recursive call is good with probability 1/2. Let g(n)
denote the number of consecutive recursive calls we make, including the present
one, before we get a good one. Then we can characterize t(n) using the following
recurrence equation

t(n)≤ bn ·g(n)+ t(3n/4),

where b≥ 1 is a constant. Applying the linearity of expectation for n > 1, we get

E (t(n)) ≤ E (bn ·g(n)+ t(3n/4)) = bn ·E (g(n))+ E (t(3n/4)) .

Since a recursive call is good with probability 1/2, and whether a recursive call is
good or not is independent on its parent call being good, the expected value of g(n)
is the same as the expected number of times we must flip a fair coin before it comes
up “heads.” That is, E(g(n)) = 2. Thus, if we let T (n) be shorthand for E(t(n)),
then we can write the case for n > 1 as

T (n)≤ T (3n/4)+ 2bn.

To convert this relation into a closed form, let us iteratively apply this inequality
assuming n is large. So, for example, after two applications,

T (n)≤ T ((3/4)2n)+ 2b(3/4)n+ 2bn.

At this point, we should see that the general case is

T (n)≤ 2bn ·
⌈log4/3 n⌉

∑
i=0

(3/4)i.

In other words, the expected running time is at most 2bn times a geometric sum
whose base is a positive number less than 1. Thus, by Proposition 4.5, T (n) is O(n).

Proposition 11.11: The expected running time of randomized quick-select on a
sequence S of size n is O(n), assuming two elements of S can be compared in O(1)
time.

i

i

“main” — 2011/1/13 — 9:10 — page 545 — #567
i

i

i

i

i

i

11.6. Exercises 545

11.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-11.1 What is the best algorithm for sorting each of the following: general
comparable objects, long character strings, double-precision floating point
numbers, 32-bit integers, and bytes? Justify your answer.

R-11.2 Suppose S is a list of n bits, that is, n 0’s and 1’s. How long will it take to
sort S with the merge-sort algorithm? What about quick-sort?

R-11.3 Suppose S is a list of n bits, that is, n 0’s and 1’s. How long will it take to
sort S stably with the bucket-sort algorithm?

R-11.4 Give a complete justification of Proposition 11.1.

R-11.5 In the merge-sort tree shown in Figures 11.2 through 11.4, some edges are
drawn as arrows. What is the meaning of a downward arrow? How about
an upward arrow?

R-11.6 Give a complete pseudo-code description of the recursive merge-sort al-
gorithm that takes an array as its input and output.

R-11.7 Show that the running time of the merge-sort algorithm on an n-element
sequence is O(n log n), even when n is not a power of 2.

R-11.8 Suppose we are given two n-element sorted sequences A and B that should
not be viewed as sets (that is, A and B may contain duplicate entries).
Describe an O(n)-time method for computing a sequence representing the
set A∪B (with no duplicates).

R-11.9 Show that (X−A)∪(X−B)= X−(A∩B), for any three sets X , A, and B.

R-11.10 Suppose we modify the deterministic version of the quick-sort algorithm
so that, instead of selecting the last element in an n-element sequence as
the pivot, we choose the element at index ⌊n/2⌋. What is the running time
of this version of quick-sort on a sequence that is already sorted?

R-11.11 Consider a modification of the deterministic version of the quick-sort al-
gorithm where we choose the element at index ⌊n/2⌋ as our pivot. De-
scribe the kind of sequence that would cause this version of quick-sort to
run in Ω(n2) time.

R-11.12 Show that the best-case running time of quick-sort on a sequence of size
n with distinct elements is O(n log n).

R-11.13 Describe a randomized version of in-place quick-sort in pseudo-code.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 546 — #568
i

i

i

i

i

i

546 Chapter 11. Sorting, Sets, and Selection

R-11.14 Show that the probability that any given input element x belongs to more
than 2log n subproblems in size group i, for randomized quick-sort, is at
most 1/n2.

R-11.15 Suppose algorithm inPlaceQuickSort (Code Fragment 11.6) is executed
on a sequence with duplicate elements. Show that the algorithm still cor-
rectly sorts the input sequence, but the result of the divide step may differ
from the high-level description given in Section 11.2, and may result in
inefficiencies. In particular, what happens in the partition step when there
are elements equal to the pivot? Is the sequence E (storing the elements
equal to the pivot) actually computed? Does the algorithm recur on the
subsequences L and G, or on some other subsequences? What is the run-
ning time of the algorithm if all the input elements are equal?

R-11.16 Of the n! possible inputs to a given comparison-based sorting algorithm,
what is the absolute maximum number of inputs that could be sorted with
just n comparisons?

R-11.17 Bella has a comparison-based sorting algorithm that sorts the first k ele-
ments in sequence of size n in O(n) time. Give a big-Oh characterization
of the biggest that k can be?

R-11.18 Is the merge-sort algorithm in Section 11.1 stable? Why or why not?

R-11.19 An algorithm that sorts key-value entries by key is said to be straggling
if, any time two entries ei and e j have equal keys, but ei appears before e j

in the input, then the algorithm places ei after e j in the output. Describe a
change to the merge-sort algorithm in Section 11.1 to make it straggling.

R-11.20 Describe a radix-sort method for lexicographically sorting a sequence S of
triplets (k, l,m), where k, l, and m are integers in the range [0,N−1], for
some N ≥ 2. How could this scheme be extended to sequences of d-tuples
(k1,k2, . . . ,kd), where each ki is an integer in the range [0,N−1]?

R-11.21 Is the bucket-sort algorithm in-place? Why or why not?

R-11.22 Give an example input list that requires merge-sort and heap-sort to take
O(n log n) time to sort, but insertion-sort runs in O(n) time. What if you
reverse this list?

R-11.23 Describe, in pseudo-code, how to perform path compression on a path of
length h in O(h) time in a tree-based partition union/find structure.

R-11.24 Edward claims he has a fast way to do path compression in a partition
structure, starting at a node v. He puts v into a list L, and starts following
parent pointers. Each time he encounters a new node, u, he adds u to L
and updates the parent pointer of each node in L to point to u’s parent.
Show that Edward’s algorithm runs in Ω(h2) time on a path of length h.

R-11.25 Describe an in-place version of the quick-select algorithm in pseudo-code.

i

i

“main” — 2011/1/13 — 9:10 — page 547 — #569
i

i

i

i

i

i

11.6. Exercises 547

R-11.26 Show that the worst-case running time of quick-select on an n-element
sequence is Ω(n2).

Creativity

C-11.1 Describe an efficient algorithm for converting a dictionary, D, implemented
with a linked list, into a map, M, implemented with a linked list, so that
each key in D has an entry in M, and the relative order of entries in M is
the same as their relative order in D.

C-11.2 Linda claims to have an algorithm that takes an input sequence S and
produces an output sequence T that is a sorting of the n elements in S.

a. Give an algorithm, isSorted, for testing in O(n) time if T is sorted.
b. Explain why the algorithm isSorted is not sufficient to prove a par-

ticular output T of Linda’s algorithm is a sorting of S.
c. Describe what additional information Linda’s algorithm could out-

put so that her algorithm’s correctness could be established on any
given S and T in O(n) time.

C-11.3 Given two sets A and B represented as sorted sequences, describe an effi-
cient algorithm for computing A⊕B, which is the set of elements that are
in A or B, but not in both.

C-11.4 Suppose that we represent sets with balanced search trees. Describe and
analyze algorithms for each of the functions in the set ADT, assuming that
one of the two sets is much smaller than the other.

C-11.5 Describe and analyze an efficient function for removing all duplicates
from a collection A of n elements.

C-11.6 Consider sets whose elements are integers in the range [0,N−1]. A pop-
ular scheme for representing a set A of this type is by means of a Boolean
array, B, where we say that x is in A if and only if B[x] = true. Since each
cell of B can be represented with a single bit, B is sometimes referred to
as a bit vector. Describe and analyze efficient algorithms for performing
the functions of the set ADT assuming this representation.

C-11.7 Consider a version of deterministic quick-sort where we pick the median
of the d last elements in the input sequence of n elements as our pivot, for
a fixed, constant odd number d ≥ 3. What is the asymptotic worst-case
running time of quick-sort in this case?

C-11.8 Another way to analyze randomized quick-sort is to use a recurrence
equation. In this case, we let T (n) denote the expected running time
of randomized quick-sort, and we observe that, because of the worst-case
partitions for good and bad splits, we can write

T (n)≤ 1
2

(T (3n/4)+ T (n/4))+
1
2

(T (n−1))+ bn,

i

i

“main” — 2011/1/13 — 9:10 — page 548 — #570
i

i

i

i

i

i

548 Chapter 11. Sorting, Sets, and Selection

where bn is the time needed to partition a list for a given pivot and concate-
nate the result sublists after the recursive calls return. Show, by induction,
that T (n) is O(n log n).

C-11.9 Modify inPlaceQuickSort (Code Fragment 11.6) to handle the general
case efficiently when the input sequence, S, may have duplicate keys.

C-11.10 Describe a nonrecursive, in-place version of the quick-sort algorithm. The
algorithm should still be based on the same divide-and-conquer approach,
but use an explicit stack to process subproblems.

C-11.11 An inverted file is a critical data structure for implementing a search en-
gine or the index of a book. Given a document D, which can be viewed
as an unordered, numbered list of words, an inverted file is an ordered list
of words, L, such that, for each w word in L, we store the indices of the
places in D where w appears. Design an efficient algorithm for construct-
ing L from D.

C-11.12 Given an array A of n entries with keys equal to 0 or 1, describe an in-place
function for ordering A so that all the 0’s are before every 1.

C-11.13 Suppose we are given an n-element sequence S such that each element
in S represents a different vote for president, where each vote is given
as an integer representing a particular candidate. Design an O(n log n)-
time algorithm to see who wins the election S represents, assuming the
candidate with the most votes wins (even if there are O(n) candidates).

C-11.14 Consider the voting problem from Exercise C-11.13, but now suppose that
we know the number k < n of candidates running. Describe an O(n log k)-
time algorithm for determining who wins the election.

C-11.15 Consider the voting problem from Exercise C-11.13, but now suppose a
candidate wins only if he or she gets a majority of the votes cast. Design
and analyze a fast algorithm for determining the winner if there is one.

C-11.16 Show that any comparison-based sorting algorithm can be made to be
stable without affecting its asymptotic running time.

C-11.17 Suppose we are given two sequences A and B of n elements, possibly
containing duplicates, on which a total order relation is defined. Describe
an efficient algorithm for determining if A and B contain the same set of
elements. What is the running time of this method?

C-11.18 Given an array A of n integers in the range [0,n2− 1], describe a simple
function for sorting A in O(n) time.

C-11.19 Let S1,S2, . . . ,Sk be k different sequences whose elements have integer
keys in the range [0,N − 1], for some parameter N ≥ 2. Describe an al-
gorithm running in O(n + N) time for sorting all the sequences (not as a
union), where n denotes the total size of all the sequences.

i

i

“main” — 2011/1/13 — 9:10 — page 549 — #571
i

i

i

i

i

i

11.6. Exercises 549

C-11.20 Given a sequence S of n elements, on which a total order relation is de-
fined, describe an efficient function for determining whether there are two
equal elements in S. What is the running time of your function?

C-11.21 Let S be a sequence of n elements on which a total order relation is de-
fined. Recall that an inversion in S is a pair of elements x and y such
that x appears before y in S but x > y. Describe an algorithm running in
O(n log n) time for determining the number of inversions in S.

C-11.22 Let S be a random permutation of n distinct integers. Argue that the ex-
pected running time of insertion-sort on S is Ω(n2).
(Hint: Note that half of the elements ranked in the top half of a sorted
version of S are expected to be in the first half of S.)

C-11.23 Let A and B be two sequences of n integers each. Given an integer m,
describe an O(n log n)-time algorithm for determining if there is an integer
a in A and an integer b in B such that m = a+ b.

C-11.24 Given a set of n integers, describe and analyze a fast method for finding
the ⌈log n⌉ integers closest to the median.

C-11.25 James has a set A of n nuts and a set B of n bolts, such that each nut in
A has a unique matching bolt in B. Unfortunately, the nuts in A all look
the same, and the bolts in B all look the same as well. The only kind of a
comparison that Bob can make is to take a nut-bolt pair (a,b), such that a
is in A and b is in B, and test it to see if the threads of a are larger, smaller,
or a perfect match with the threads of b. Describe and analyze an efficient
algorithm for Bob to match up all of his nuts and bolts.

C-11.26 Show how to use a deterministic O(n)-time selection algorithm to sort a
sequence of n elements in O(n log n) worst-case time.

C-11.27 Given an unsorted sequence S of n comparable elements, and an integer k,
give an O(n log k) expected-time algorithm for finding the O(k) elements
that have rank ⌈n/k⌉, 2⌈n/k⌉, 3⌈n/k⌉, and so on.

C-11.28 Let S be a sequence of n insert and removeMin operations, where all the
keys involved are integers in the range [0,n− 1]. Describe an algorithm
running in O(n log∗ n) for determining the answer to each removeMin.

C-11.29 Space aliens have given us a program, alienSplit, that can take a sequence
S of n integers and partition S in O(n) time into sequences S1,S2, . . . ,Sk of
size at most ⌈n/k⌉ each, such that the elements in Si are less than or equal
to every element in Si+1, for i = 1,2, . . . ,k−1, for a fixed number, k < n.
Show how to use alienSplit to sort S in O(n log n/ log k) time.

C-11.30 Karen has a new way to do path compression in a tree-based union/find
partition data structure starting at a node v. She puts all the nodes that are
on the path from v to the root in a set S. Then she scans through S and sets
the parent pointer of each node in S to its parent’s parent pointer (recall

i

i

“main” — 2011/1/13 — 9:10 — page 550 — #572
i

i

i

i

i

i

550 Chapter 11. Sorting, Sets, and Selection

that the parent pointer of the root points to itself). If this pass changed the
value of any node’s parent pointer, then she repeats this process, and goes
on repeating this process until she makes a scan through S that does not
change any node’s parent value. Show that Karen’s algorithm is correct
and analyze its running time for a path of length h.

C-11.31 Let S be a sequence of n integers. Describe a method for printing out all
the pairs of inversions in S in O(n+k) time, where k is the number of such
inversions.

C-11.32 This problem deals with modification of the quick-select algorithm to
make it deterministic yet still run in O(n) time on an n-element sequence.
The idea is to modify the way we choose the pivot so that it is chosen
deterministically, not randomly, as follows:

Partition the set S into ⌈n/5⌉ groups of size 5 each (except pos-
sibly for one group). Sort each little set and identify the median
element in this set. From this set of ⌈n/5⌉ “baby” medians, ap-
ply the selection algorithm recursively to find the median of the
baby medians. Use this element as the pivot and proceed as in
the quick-select algorithm.

Show that this deterministic method runs in O(n) time by answering the
following questions (please ignore floor and ceiling functions if that sim-
plifies the mathematics, for the asymptotics are the same either way):

a. How many baby medians are less than or equal to the chosen pivot?
How many are greater than or equal to the pivot?

b. For each baby median less than or equal to the pivot, how many
other elements are less than or equal to the pivot? Is the same true
for those greater than or equal to the pivot?

c. Argue why the method for finding the deterministic pivot and using
it to partition S takes O(n) time.

d. Based on these estimates, write a recurrence equation to bound the
worst-case running time t(n) for this selection algorithm (note that in
the worst case there are two recursive calls—one to find the median
of the baby medians and one to recur on the larger of L and G).

e. Using this recurrence equation, show by induction that t(n) is O(n).

Projects

P-11.1 Design and implement two versions of the bucket-sort algorithm in C++,
one for sorting an array of char values and one for sorting an array of
short values. Experimentally compare the performance of your imple-
mentations with the sorting algorithm of the Standard Template Library.

i

i

“main” — 2011/1/13 — 9:10 — page 551 — #573
i

i

i

i

i

i

Chapter Notes 551

P-11.2 Experimentally compare the performance of in-place quick-sort and a ver-
sion of quick-sort that is not in-place.

P-11.3 Design and implement a version of the bucket-sort algorithm for sorting
a linked list of n entries (for instance, a list of type std::list<int>) with
integer keys taken from the range [0,N − 1], for N ≥ 2. The algorithm
should run in O(n+ N) time.

P-11.4 Implement merge-sort and deterministic quick-sort and perform a series
of benchmarking tests to see which one is faster. Your tests should include
sequences that are “random” as well as “almost” sorted.

P-11.5 Implement deterministic and randomized versions of the quick-sort al-
gorithm and perform a series of benchmarking tests to see which one is
faster. Your tests should include sequences that are very “random” looking
as well as ones that are “almost” sorted.

P-11.6 Implement an in-place version of insertion-sort and an in-place version of
quick-sort. Perform benchmarking tests to determine the range of values
of n where quick-sort is on average better than insertion-sort.

P-11.7 Design and implement an animation for one of the sorting algorithms de-
scribed in this chapter. Your animation should illustrate the key properties
of this algorithm in an intuitive manner.

P-11.8 Implement the randomized quick-sort and quick-select algorithms, and
design a series of experiments to test their relative speeds.

P-11.9 Implement an extended set ADT that includes the functions union(B),
intersect(B), subtract(B), size(), empty(), plus the functions equals(B),
contains(e), insert(e), and remove(e) with obvious meaning.

P-11.10 Implement the tree-based union/find partition data structure with both the
union-by-size and path-compression heuristics.

Chapter Notes

Knuth’s classic text on Sorting and Searching [60] contains an extensive history of the
sorting problem and algorithms for solving it. Huang and Langston [48] show how to
merge two sorted lists in-place in linear time. Our set ADT is derived from that of Aho,
Hopcroft, and Ullman [5]. The standard quick-sort algorithm is due to Hoare [45]. More
information about randomization, including Chernoff bounds, can be found in the ap-
pendix and the book by Motwani and Raghavan [80]. The quick-sort analysis given in
this chapter is a combination of the analysis given in a previous edition of this book and
the analysis of Kleinberg and Tardos [55]. Exercise C-11.8 is due to Littman. Gonnet and
Baeza-Yates [37] analyze and experimentally compare several sorting algorithms. The term
“prune-and-search” comes originally from the computational geometry literature (such as
in the work of Clarkson [21] and Megiddo [71, 72]). The term “decrease-and-conquer” is
from Levitin [65].

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page 553 — #575
i

i

i

i

i

i

Chapter

12 Strings and Dynamic Programming

Contents

12.1 String Operations . 554

12.1.1 The STL String Class 555

12.2 Dynamic Programming 557

12.2.1 Matrix Chain-Product 557

12.2.2 DNA and Text Sequence Alignment 560

12.3 Pattern Matching Algorithms 564

12.3.1 Brute Force . 564

12.3.2 The Boyer-Moore Algorithm 566

12.3.3 The Knuth-Morris-Pratt Algorithm 570

12.4 Text Compression and the Greedy Method 575

12.4.1 The Huffman-Coding Algorithm 576

12.4.2 The Greedy Method 577

12.5 Tries . 578

12.5.1 Standard Tries . 578

12.5.2 Compressed Tries 582

12.5.3 Suffix Tries . 584

12.5.4 Search Engines . 586

12.6 Exercises . 587

i

i

“main” — 2011/1/13 — 9:10 — page 554 — #576
i

i

i

i

i

i

554 Chapter 12. Strings and Dynamic Programming

12.1 String Operations

Document processing is rapidly becoming one of the dominant functions of com-
puters. Computers are used to edit documents, to search documents, to transport
documents over the Internet, and to display documents on printers and computer
screens. For example, the Internet document formats HTML and XML are pri-
marily text formats, with added tags for multimedia content. Making sense of the
many terabytes of information on the Internet requires a considerable amount of
text processing.

In addition to having interesting applications, text processing algorithms also
highlight some important algorithmic design patterns. In particular, the pattern
matching problem gives rise to the brute-force method, which is often inefficient
but has wide applicability. For text compression, we can apply the greedy method,
which often allows us to approximate solutions to hard problems, and for some
problems (such as in text compression) actually gives rise to optimal algorithms.
Finally, in discussing text similarity, we introduce the dynamic programming de-
sign pattern, which can be applied in some special instances to solve a problem in
polynomial time that appears at first to require exponential time to solve.

Text Processing

At the heart of algorithms for processing text are methods for dealing with charac-
ter strings. Character strings can come from a wide variety of sources, including
scientific, linguistic, and Internet applications. Indeed, the following are examples
of such strings:

P = “CGTAAACTGCTTTAATCAAACGC”

S = “http://www.wiley.com”.

The first string, P, comes from DNA applications, and the second string, S, is the
Internet address (URL) for the publisher of this book.

Several of the typical string processing operations involve breaking large strings
into smaller strings. In order to be able to speak about the pieces that result from
such operations, we use the term substring of an m-character string P to refer to a
string of the form P[i]P[i+1]P[i+2] · · ·P[j], for some 0≤ i≤ j≤m−1, that is, the
string formed by the characters in P from index i to index j, inclusive. Technically,
this means that a string is actually a substring of itself (taking i = 0 and j = m−1),
so if we want to rule this out as a possibility, we must restrict the definition to
proper substrings, which require that either i > 0 or j < m−1.

i

i

“main” — 2011/1/13 — 9:10 — page 555 — #577
i

i

i

i

i

i

12.1. String Operations 555

To simplify the notation for referring to substrings, let us use P[i.. j] to denote
the substring of P from index i to index j, inclusive. That is,

P[i.. j] = P[i]P[i+ 1] · · ·P[j].

We use the convention that if i > j, then P[i.. j] is equal to the null string, which
has length 0. In addition, in order to distinguish some special kinds of substrings,
let us refer to any substring of the form P[0..i], for 0≤ i≤ m−1, as a prefix of P,
and any substring of the form P[i..m− 1], for 0 ≤ i ≤ m− 1, as a suffix of P. For
example, if we again take P to be the string of DNA given above, then “CGTAA” is a
prefix of P, “CGC” is a suffix of P, and “TTAATC” is a (proper) substring of P. Note
that the null string is a prefix and a suffix of any other string.

To allow for fairly general notions of a character string, we typically do not
restrict the characters in T and P to explicitly come from a well-known character
set, like the ASCII or Unicode character sets. Instead, we typically use the symbol
Σ to denote the character set, or alphabet, from which characters can come. Since
most document processing algorithms are used in applications where the underly-
ing character set is finite, we usually assume that the size of the alphabet Σ, denoted
with |Σ|, is a fixed constant.

12.1.1 The STL String Class

Recall from Chapter 1 that C++ supports two types of strings. A C-style string is
just an array of type char terminated by a null character ’\0’. By themselves, C-
style strings do not support complex string operations. The C++ Standard Template
Library (STL) provides a complete string class. This class supports a bewildering
number of string operations. We list just a few of them. In the following, let S
denote the STL string object on which the operation is being performed, and let Q
denote another STL string or a C-style string.

size(): Return the number of characters, n, of S.

empty(): Return true if the string is empty and false otherwise.

operator[i]: Return the character at index i of S, without performing
array bounds checking.

at(i): Return the character at index i of S. An out of range
exception is thrown if i is out of bounds.

insert(i,Q): Insert string Q prior to index i in S and return a reference
to the result.

append(Q): Append string Q to the end of S and return a reference to
the result.

erase(i,m): Remove m characters starting at index i and return a ref-
erence to the result.

i

i

“main” — 2011/1/13 — 9:10 — page 556 — #578
i

i

i

i

i

i

556 Chapter 12. Strings and Dynamic Programming

substr(i,m): Return the substring of S of length m starting at index i.

find(Q): If Q is a substring of S, return the index of the beginning
of the first occurrence of Q in S, else return n, the length
of S.

c str(): Return a C-style string containing the contents of S.

By default, a string is initialized to the empty string. A string may be initialized
from another STL string or from a C-style string. It is not possible, however, to
initialize an STL string from a single character. STL strings also support functions
that return both forward and backward iterators. All operations that are defined in
terms of integer indices have counterparts that are based on iterators.

The STL string class also supports assignment of one string to another. It pro-
vides relational operators, such as ==, <, >=, which are performed lexicograph-
ically. Strings can be concatenated using +, and we may append one string to
another using +=. Strings can be input using >> and output using <<. The func-
tion getline(in,S) reads an entire line of input from the input stream in and assigns
it to the string S.

The STL string class is actually a special case of a more general templated
class, called basic string<T>, which supports all the string operations but allows
its elements to be of an arbitrary type, T , not just char. The STL string is just a
short way of saying basic string<char>. A “string of integers” could be defined as
basic string<int>.

Example 12.1: Consider the following series of operations, which are performed
on the string S = “abcdefghijklmnop”:

Operation Output
S.size() 16
S.at(5) ’f’

S[5] ’f’

S + "qrs" "abcdefghijklmnopqrs"

S == "abcdefghijklmnop" true
S.find("ghi") 6
S.substr(4,6) "efghij"

S.erase(4,6) "abcdklmnop"

S.insert(1,"xxx") "axxxbcdklmnop"

S += "xy" "axxxbcdklmnopxy"

S.append("z") "axxxbcdklmnopxyz"

With the exception of the find(Q) function, which we discuss in Section 12.3,
all the above functions are easily implemented simply by representing the string as
an array of characters.

i

i

“main” — 2011/1/13 — 9:10 — page 557 — #579
i

i

i

i

i

i

12.2. Dynamic Programming 557

12.2 Dynamic Programming

In this section, we discuss the dynamic programming algorithm-design technique.
This technique is similar to the divide-and-conquer technique (Section 11.1.1), in
that it can be applied to a wide variety of different problems. There are few al-
gorithmic techniques that can take problems that seem to require exponential time
and produce polynomial-time algorithms to solve them. Dynamic programming
is one such technique. In addition, the algorithms that result from applications of
the dynamic programming technique are usually quite simple—often needing little
more than a few lines of code to describe some nested loops for filling in a table.

12.2.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-
namic programming technique, we begin by giving a classic, concrete example.
Suppose we are given a collection of n two-dimensional arrays (matrices) for which
we wish to compute the product

A = A0 ·A1 ·A2 · · ·An−1,

where Ai is a di × di+1 matrix, for i = 0,1,2, . . . ,n− 1. In the standard matrix
multiplication algorithm (which is the one we use), to multiply a d× e-matrix B
times an e× f -matrix C, we compute the product, A, as

A[i][j] =
e−1

∑
k=0

B[i][k] ·C[k][j].

This definition implies that matrix multiplication is associative, that is, it implies
that B ·(C ·D) = (B ·C) ·D. Thus, we can parenthesize the expression for A any way
we wish and we still end up with the same answer. We do not necessarily perform
the same number of primitive (that is, scalar) multiplications in each parenthesiza-
tion, however, as is illustrated in the following example.

Example 12.2: Let B be a 2×10-matrix, let C be a 10×50-matrix, and let D be
a 50× 20-matrix. Computing B · (C ·D) requires 2 · 10 · 20 + 10 · 50 · 20 = 10,400
multiplications, whereas computing (B ·C) ·D requires 2 ·10 ·50+2 ·50 ·20 = 3000
multiplications.

The matrix chain-product problem is to determine the parenthesization of the
expression defining the product A that minimizes the total number of scalar mul-
tiplications performed. As the example above illustrates, the differences between
different solutions can be dramatic, so finding a good solution can result in signifi-
cant speedups.

i

i

“main” — 2011/1/13 — 9:10 — page 558 — #580
i

i

i

i

i

i

558 Chapter 12. Strings and Dynamic Programming

Defining Subproblems

Of course, one way to solve the matrix chain-product problem is to simply enu-
merate all the possible ways of parenthesizing the expression for A and determine
the number of multiplications performed by each one. Unfortunately, the set of all
different parenthesizations of the expression for A is equal in number to the set of
all different binary trees that have n external nodes. This number is exponential in
n. Thus, this straightforward (“brute force”) algorithm runs in exponential time, for
there are an exponential number of ways to parenthesize an associative arithmetic
expression.

We can improve the performance achieved by the brute-force algorithm sig-
nificantly, however, by making a few observations about the nature of the matrix
chain-product problem. The first observation is that the problem can be split into
subproblems. In this case, we can define a number of different subproblems, each
of which computes the best parenthesization for some subexpression Ai ·Ai+1 · · ·A j.
As a concise notation, we use Ni, j to denote the minimum number of multipli-
cations needed to compute this subexpression. Thus, the original matrix chain-
product problem can be characterized as that of computing the value of N0,n−1.
This observation is important, but we need one more in order to apply the dynamic
programming technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-
lem is that it is possible to characterize an optimal solution to a particular subprob-
lem in terms of optimal solutions to its subproblems. We call this property the
subproblem optimality condition.

In the case of the matrix chain-product problem, we observe that, no mat-
ter how we parenthesize a subexpression, there has to be some final matrix mul-
tiplication that we perform. That is, a full parenthesization of a subexpression
Ai ·Ai+1 · · ·A j has to be of the form (Ai · · ·Ak) · (Ak+1 · · ·A j), for some k ∈ {i, i +
1, . . . , j−1}. Moreover, for whichever k is the correct one, the products (Ai · · ·Ak)
and (Ak+1 · · ·A j) must also be solved optimally. If this were not so, then there would
be a global optimal that had one of these subproblems solved suboptimally. But this
is impossible, since we could then reduce the total number of multiplications by re-
placing the current subproblem solution by an optimal solution for the subproblem.
This observation implies a way of explicitly defining the optimization problem for
Ni, j in terms of other optimal subproblem solutions. Namely, we can compute Ni, j

by considering each place k where we could put the final multiplication and taking
the minimum over all such choices.

i

i

“main” — 2011/1/13 — 9:10 — page 559 — #581
i

i

i

i

i

i

12.2. Dynamic Programming 559

Designing a Dynamic Programming Algorithm

We can therefore characterize the optimal subproblem solution, Ni, j, as

Ni, j = min
i≤k< j

{Ni,k + Nk+1, j + didk+1d j+1},

where Ni,i = 0, since no work is needed for a single matrix. That is, Ni, j is the
minimum, taken over all possible places to perform the final multiplication, of the
number of multiplications needed to compute each subexpression plus the number
of multiplications needed to perform the final matrix multiplication.

Notice that there is a sharing of subproblems going on that prevents us from
dividing the problem into completely independent subproblems (as we would need
to do to apply the divide-and-conquer technique). We can, nevertheless, use the
equation for Ni, j to derive an efficient algorithm by computing Ni, j values in a
bottom-up fashion, and storing intermediate solutions in a table of Ni, j values. We
can begin simply enough by assigning Ni,i = 0 for i = 0,1, . . . ,n− 1. We can then
apply the general equation for Ni, j to compute Ni,i+1 values, since they depend only
on Ni,i and Ni+1,i+1 values that are available. Given the Ni,i+1 values, we can then
compute the Ni,i+2 values, and so on. Therefore, we can build Ni, j values up from
previously computed values until we can finally compute the value of N0,n−1, which
is the number that we are searching for. The details of this dynamic programming
solution are given in Code Fragment 12.1.

Algorithm MatrixChain(d0, . . . ,dn):
Input: Sequence d0, . . . ,dn of integers
Output: For i, j = 0, . . . ,n− 1, the minimum number of multiplications Ni, j

needed to compute the product Ai ·Ai+1 · · ·A j, where Ak is a dk×dk+1 matrix

for i← 0 to n−1 do
Ni,i← 0

for b← 1 to n−1 do
for i← 0 to n−b−1 do

j← i+ b
Ni, j←+∞
for k← i to j−1 do

Ni, j←min{Ni, j, Ni,k + Nk+1, j + didk+1d j+1}.

Code Fragment 12.1: Dynamic programming algorithm for the matrix chain-
product problem.

Thus, we can compute N0,n−1 with an algorithm that consists primarily of three
nested for-loops. The outside loop is executed n times. The loop inside is exe-
cuted at most n times. And the inner-most loop is also executed at most n times.
Therefore, the total running time of this algorithm is O(n3).

i

i

“main” — 2011/1/13 — 9:10 — page 560 — #582
i

i

i

i

i

i

560 Chapter 12. Strings and Dynamic Programming

12.2.2 DNA and Text Sequence Alignment

A common text processing problem, which arises in genetics and software engi-
neering, is to test the similarity between two text strings. In a genetics application,
the two strings could correspond to two strands of DNA, that we want to compare.
Likewise, in a software engineering application, the two strings could come from
two versions of source code for the same program. We might want to compare the
two versions to determine what changes have been made from one version to the
next. Indeed, determining the similarity between two strings is so common that the
Unix and Linux operating systems have a built-in program, diff, for comparing
text files.

Given a string X = x0x1x2 · · ·xn−1, a subsequence of X is any string that is of
the form xi1 xi2 · · ·xik , where i j < i j+1; that is, it is a sequence of characters that are
not necessarily contiguous but are nevertheless taken in order from X . For example,
the string AAAG is a subsequence of the string CGATAATT GAGA.

The DNA and text similarity problem we address here is the longest common
subsequence (LCS) problem. In this problem, we are given two character strings,
X = x0x1x2 · · ·xn−1 and Y = y0y1y2 · · ·ym−1, over some alphabet (such as the alpha-
bet {A,C,G,T} common in computational genetics) and are asked to find a longest
string S that is a subsequence of both X and Y . One way to solve the longest
common subsequence problem is to enumerate all subsequences of X and take the
largest one that is also a subsequence of Y . Since each character of X is either in
or not in a subsequence, there are potentially 2n different subsequences of X , each
of which requires O(m) time to determine whether it is a subsequence of Y . Thus,
this brute-force approach yields an exponential-time algorithm that runs in O(2nm)
time, which is very inefficient. Fortunately, the LCS problem is efficiently solvable
using dynamic programming.

The Components of a Dynamic Programming Solution

As mentioned above, the dynamic programming technique is used primarily for
optimization problems, where we wish to find the “best” way of doing something.
We can apply the dynamic programming technique in such situations if the problem
has certain properties.
Simple Subproblems: There has to be some way of repeatedly breaking the global-

optimization problem into subproblems. Moreover, there should be a simple
way of defining subproblems with just a few indices, like i, j, k, and so on.

Subproblem Optimization: An optimal solution to the global problem must be a
composition of optimal subproblem solutions.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain
subproblems in common.

i

i

“main” — 2011/1/13 — 9:10 — page 561 — #583
i

i

i

i

i

i

12.2. Dynamic Programming 561

Applying Dynamic Programming to the LCS Problem

Recall that in the LCS problem, we are given two character strings, X and Y , of
length n and m, respectively, and are asked to find a longest string S that is a sub-
sequence of both X and Y . Since X and Y are character strings, we have a natural
set of indices with which to define subproblems—indices into the strings X and Y .
Let us define a subproblem, therefore, as that of computing the value L[i, j], which
we will use to denote the length of a longest string that is a subsequence of both
X [0..i] = x0x1x2 . . .xi and Y [0.. j] = y0y1y2 . . .y j. This definition allows us to rewrite
L[i, j] in terms of optimal subproblem solutions. This definition depends on which
of two cases we are in. (See Figure 12.1.)

Figure 12.1: The two cases in the longest common subsequence algorithm: (a)
xi = y j; (b) xi 6= y j. Note that the algorithm stores only the L[i, j] values, not the
matches.

• xi = y j. In this case, we have a match between the last character of X [0..i]
and the last character of Y [0.. j]. We claim that this character belongs to a
longest common subsequence of X [0..i] and Y [0.. j]. To justify this claim, let
us suppose it is not true. There has to be some longest common subsequence
xi1 xi2 . . .xik = y j1 y j2 . . .y jk . If xik = xi or y jk = y j, then we get the same se-
quence by setting ik = i and jk = j. Alternately, if x jk 6= xi, then we can get
an even longer common subsequence by adding xi to the end. Thus, a longest
common subsequence of X [0..i] and Y [0.. j] ends with xi. Therefore, we set

L[i, j] = L[i−1, j−1]+ 1 if xi = y j.

• xi 6= y j. In this case, we cannot have a common subsequence that includes
both xi and y j. That is, we can have a common subsequence end with xi or
one that ends with y j (or possibly neither), but certainly not both. Therefore,
we set

L[i, j] = max{L[i−1, j] , L[i, j−1]} if xi 6= y j.

In order to make both of these equations make sense in the boundary cases when
i = 0 or j = 0, we assign L[i,−1] = 0 for i =−1,0,1, . . . ,n−1 and L[−1, j] = 0 for
j =−1,0,1, . . . ,m−1.

i

i

“main” — 2011/1/13 — 9:10 — page 562 — #584
i

i

i

i

i

i

562 Chapter 12. Strings and Dynamic Programming

The LCS Algorithm

The definition of L[i, j] satisfies subproblem optimization, since we cannot have a
longest common subsequence without also having longest common subsequences
for the subproblems. Also, it uses subproblem overlap, because a subproblem solu-
tion L[i, j] can be used in several other problems (namely, the problems L[i+ 1, j],
L[i, j + 1], and L[i + 1, j + 1]). Turning this definition of L[i, j] into an algorithm
is actually quite straightforward. We initialize an (n + 1)× (m + 1) array, L, for
the boundary cases when i = 0 or j = 0. Namely, we initialize L[i,−1] = 0 for
i = −1,0,1, . . . ,n− 1 and L[−1, j] = 0 for j = −1,0,1, . . . ,m− 1. Then, we iter-
atively build up values in L until we have L[n− 1,m− 1], the length of a longest
common subsequence of X and Y . We give a pseudo-code description of this algo-
rithm in Code Fragment 12.2.

Algorithm LCS(X ,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0, . . . ,n− 1, j = 0, . . . ,m− 1, the length L[i, j] of a longest

string that is a subsequence of both the string X [0..i] = x0x1x2 · · ·xi and the
string Y [0.. j] = y0y1y2 · · ·y j

for i←−1 to n−1 do
L[i,−1]← 0

for j← 0 to m−1 do
L[−1, j]← 0

for i← 0 to n−1 do
for j← 0 to m−1 do

if xi = y j then
L[i, j]← L[i−1, j−1]+ 1

else
L[i, j]←max{L[i−1, j] , L[i, j−1]}

return array L

Code Fragment 12.2: Dynamic programming algorithm for the LCS problem.

The running time of the algorithm of Code Fragment 12.2 is easy to analyze,
because it is dominated by two nested for loops, with the outer one iterating n times
and the inner one iterating m times. Since the if-statement and assignment inside
the loop each requires O(1) primitive operations, this algorithm runs in O(nm)
time. Thus, the dynamic programming technique can be applied to the longest
common subsequence problem to improve significantly over the exponential-time
brute-force solution to the LCS problem.

i

i

“main” — 2011/1/13 — 9:10 — page 563 — #585
i

i

i

i

i

i

12.2. Dynamic Programming 563

Algorithm LCS (Code Fragment 12.2) computes the length of the longest com-
mon subsequence (stored in L[n− 1,m− 1]), but not the subsequence itself. As
shown in the following proposition, a simple postprocessing step can extract the
longest common subsequence from the array L returned by the algorithm.

Proposition 12.3: Given a string X of n characters and a string Y of m characters,
we can find the longest common subsequence of X and Y in O(nm) time.

Justification: Algorithm LCS computes L[n−1,m−1], the length of a longest
common subsequence, in O(nm) time. Given the table of L[i, j] values, construct-
ing a longest common subsequence is straightforward. One method is to start from
L[n,m] and work back through the table, reconstructing a longest common sub-
sequence from back to front. At any position L[i, j], we can determine whether
xi = y j. If this is true, then we can take xi as the next character of the subse-
quence (noting that xi is before the previous character we found, if any), moving
next to L[i− 1, j− 1]. If xi 6= y j, then we can move to the larger of L[i, j− 1] and
L[i−1, j]. (See Figure 12.2.) We stop when we reach a boundary cell (with i =−1
or j = −1). This method constructs a longest common subsequence in O(n + m)
additional time.

Figure 12.2: The algorithm for constructing a longest common subsequence from
the array L.

i

i

“main” — 2011/1/13 — 9:10 — page 564 — #586
i

i

i

i

i

i

564 Chapter 12. Strings and Dynamic Programming

12.3 Pattern Matching Algorithms

In the classic pattern matching problem on strings, we are given a text string T of
length n and a pattern string P of length m, and want to find whether P is a substring
of T . The notion of a “match” is that there is a substring of T starting at some
index i that matches P, character by character, so that T [i] = P[0], T [i+ 1] = P[1],
. . ., T [i + m− 1] = P[m− 1]. That is, P = T [i..i + m− 1]. Thus, the output from
a pattern matching algorithm could either be some indication that the pattern P
does not exist in T or an integer indicating the starting index in T of a substring
matching P. This is exactly the computation performed by the find function of the
STL string interface. Alternatively, one may want to find all the indices where a
substring of T matching P begins.

In this section, we present three pattern matching algorithms (with increasing
levels of difficulty).

12.3.1 Brute Force

The brute-force algorithmic design pattern is a powerful technique for algorithm
design when we have something we wish to search for or when we wish to opti-
mize some function. In applying this technique in a general situation we typically
enumerate all possible configurations of the inputs involved and pick the best of all
these enumerated configurations.

In applying this technique to design the brute-force pattern matching algo-
rithm, we derive what is probably the first algorithm that we might think of for
solving the pattern matching problem—we simply test all the possible placements
of P relative to T . This algorithm, shown in Code Fragment 12.3, is quite simple.

Algorithm BruteForceMatch(T,P):
Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of T matching P, or an indication

that P is not a substring of T

for i← 0 to n−m {for each candidate index in T} do
j← 0
while (j < m and T [i+ j] = P[j]) do

j← j + 1
if j = m then

return i
return “There is no substring of T matching P.”

Code Fragment 12.3: Brute-force pattern matching.

i

i

“main” — 2011/1/13 — 9:10 — page 565 — #587
i

i

i

i

i

i

12.3. Pattern Matching Algorithms 565

Performance

The brute-force pattern matching algorithm could not be simpler. It consists of two
nested loops, with the outer loop indexing through all possible starting indices of
the pattern in the text, and the inner loop indexing through each character of the
pattern, comparing it to its potentially corresponding character in the text. Thus,
the correctness of the brute-force pattern matching algorithm follows immediately
from this exhaustive search approach.

The running time of brute-force pattern matching in the worst case is not good,
however, because, for each candidate index in T , we can perform up to m character
comparisons to discover that P does not match T at the current index. Referring to
Code Fragment 12.3, we see that the outer for loop is executed at most n−m + 1
times, and the inner loop is executed at most m times. Thus, the running time of the
brute-force method is O((n−m + 1)m), which is simplified as O(nm). Note that
when m = n/2, this algorithm has quadratic running time O(n2).

Example 12.4: Suppose we are given the text string

T = "abacaabaccabacabaabb"

and the pattern string

P = "abacab".

In Figure 12.3, we illustrate the execution of the brute-force pattern matching
algorithm on T and P.

Figure 12.3: Example run of the brute-force pattern matching algorithm. The algo-
rithm performs 27 character comparisons, indicated above with numerical labels.

i

i

“main” — 2011/1/13 — 9:10 — page 566 — #588
i

i

i

i

i

i

566 Chapter 12. Strings and Dynamic Programming

12.3.2 The Boyer-Moore Algorithm

At first, we might feel that it is always necessary to examine every character in T
in order to locate a pattern P as a substring. But this is not always the case. The
Boyer-Moore (BM) pattern matching algorithm, which we study in this section, can
sometimes avoid comparisons between P and a sizable fraction of the characters
in T . The only caveat is that, whereas the brute-force algorithm can work even
with a potentially unbounded alphabet, the BM algorithm assumes the alphabet is
of fixed, finite size. It works the fastest when the alphabet is moderately sized
and the pattern is relatively long. Thus, the BM algorithm is ideal for searching
words in documents. In this section, we describe a simplified version of the original
algorithm by Boyer and Moore.

The main idea of the BM algorithm is to improve the running time of the brute-
force algorithm by adding two potentially time-saving heuristics. Roughly stated,
these heuristics are as follows:
Looking-Glass Heuristic: When testing a possible placement of P against T , begin

the comparisons from the end of P and move backward to the front of P.

Character-Jump Heuristic: During the testing of a possible placement of P against
T , a mismatch of text character T [i] = c with the corresponding pattern char-
acter P[j] is handled as follows. If c is not contained anywhere in P, then shift
P completely past T [i] (for it cannot match any character in P). Otherwise,
shift P until an occurrence of character c in P gets aligned with T [i].

We formalize these heuristics shortly, but at an intuitive level, they work as an
integrated team. The looking-glass heuristic sets up the other heuristic to allow us
to avoid comparisons between P and whole groups of characters in T . In this case at
least, we can get to the destination faster by going backwards, for if we encounter a
mismatch during the consideration of P at a certain location in T , then we are likely
to avoid lots of needless comparisons by significantly shifting P relative to T using
the character-jump heuristic. The character-jump heuristic pays off big if it can be
applied early in the testing of a potential placement of P against T .

Let us therefore get down to the business of defining how the character-jump
heuristics can be integrated into a string pattern matching algorithm. To implement
this heuristic, we define a function last(c) that takes a character c from the alphabet
and characterizes how far we may shift the pattern P if a character equal to c is
found in the text that does not match the pattern. In particular, we define last(c) as:
• If c is in P, last(c) is the index of the last (right-most) occurrence of c in P.

Otherwise, we conventionally define last(c) =−1.
If characters can be used as indices in arrays, then the last function can be easily
implemented as a lookup table. We leave the method for computing this table in
O(m+ |Σ|) time, given P, as a simple exercise (Exercise R-12.8). This last function
gives us all the information we need to perform the character-jump heuristic.

i

i

“main” — 2011/1/13 — 9:10 — page 567 — #589
i

i

i

i

i

i

12.3. Pattern Matching Algorithms 567

In Code Fragment 12.4, we show the BM pattern matching algorithm.

Algorithm BMMatch(T,P):
Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of T matching P, or an indication

that P is not a substring of T

compute function last
i← m−1
j← m−1
repeat

if P[j] = T [i] then
if j = 0 then

return i {a match!}
else

i← i−1
j← j−1

else
i← i+ m−min(j,1+ last(T [i])) {jump step}
j← m−1

until i > n−1
return “There is no substring of T matching P.”

Code Fragment 12.4: The Boyer-Moore pattern matching algorithm.

The jump step is illustrated in Figure 12.4.

(a)

(b)

Figure 12.4: The jump step in the algorithm of Code Fragment 12.4, where we let
l = last(T [i]). We distinguish two cases: (a) 1 + l ≤ j, where we shift the pattern
by j− l units; (b) j < 1+ l, where we shift the pattern by one unit.

i

i

“main” — 2011/1/13 — 9:10 — page 568 — #590
i

i

i

i

i

i

568 Chapter 12. Strings and Dynamic Programming

In Figure 12.5, we illustrate the execution of the Boyer-Moore pattern matching
algorithm on an input string similar to Example 12.4.

The last(c) function:
c a b c d

last(c) 4 5 3 −1

Figure 12.5: The BM pattern matching algorithm. The algorithm performs 13 char-
acter comparisons, which are indicated with numerical labels.

The correctness of the BM pattern matching algorithm follows from the fact
that each time the method makes a shift, it is guaranteed not to “skip” over any
possible matches. This is because last(c) indicates the last occurrence of c in P.

The worst-case running time of the BM algorithm is O(nm + |Σ|). Namely, the
computation of the last function takes O(m+ |Σ|) time and the actual search for the
pattern takes O(nm) time in the worst case, the same as the brute-force algorithm.
An example of a text-pattern pair that achieves the worst case is

T =

n︷ ︸︸ ︷
aaaaaa · · · a

P = b
m−1︷ ︸︸ ︷

aa · · ·a .

The worst-case performance, however, is unlikely to be achieved for English text
because, in this case, the BM algorithm is often able to skip large portions of text.
(See Figure 12.6.) Experimental evidence on English text shows that the average
number of comparisons done per character is 0.24 for a five-character pattern string.

Figure 12.6: An example of a Boyer-Moore execution on English text.

i

i

“main” — 2011/1/13 — 9:10 — page 569 — #591
i

i

i

i

i

i

12.3. Pattern Matching Algorithms 569

A C++ implementation of the BM pattern matching algorithm, based on an STL
vector, is shown in Code Fragment 12.5.

/** Simplified version of the Boyer-Moore algorithm. Returns the index of
* the leftmost substring of the text matching the pattern, or -1 if none.
*/

int BMmatch(const string& text, const string& pattern) {
std::vector<int> last = buildLastFunction(pattern);
int n = text.size();
int m = pattern.size();
int i = m − 1;
if (i > n − 1) // pattern longer than text?

return −1; // . . .then no match
int j = m − 1;
do {

if (pattern[j] == text[i])
if (j == 0) return i; // found a match
else { // looking-glass heuristic

i−−; j−−; // proceed right-to-left
}

else { // character-jump heuristic
i = i + m − std::min(j, 1 + last[text[i]]);
j = m − 1;
}
} while (i <= n − 1);
return −1; // no match
}

// construct function last
std::vector<int> buildLastFunction(const string& pattern) {

const int N ASCII = 128; // number of ASCII characters
int i;
std::vector<int> last(N ASCII); // assume ASCII character set
for (i = 0; i < N ASCII; i++) // initialize array

last[i] = −1;
for (i = 0; i < pattern.size(); i++) {

last[pattern[i]] = i; // (implicit cast to ASCII code)
}
return last;
}

Code Fragment 12.5: C++ implementation of the Boyer-Moore (BM) pattern
matching algorithm. The algorithm is expressed by two static functions: Method
BMmatch performs the matching and calls the auxiliary function buildLastFunc-
tion to compute the last function, expressed by an array indexed by the ASCII code
of the character. Method BMmatch indicates the absence of a match by returning
the conventional value −1.

i

i

“main” — 2011/1/13 — 9:10 — page 570 — #592
i

i

i

i

i

i

570 Chapter 12. Strings and Dynamic Programming

We have actually presented a simplified version of the Boyer-Moore (BM) al-
gorithm. The original BM algorithm achieves running time O(n+m+ |Σ|) by using
an alternative shift heuristic to the partially matched text string, whenever it shifts
the pattern more than the character-jump heuristic. This alternative shift heuristic
is based on applying the main idea from the Knuth-Morris-Pratt pattern matching
algorithm, which we discuss next.

12.3.3 The Knuth-Morris-Pratt Algorithm

In studying the worst-case performance of the brute-force and BM pattern matching
algorithms on specific instances of the problem, such as that given in Example 12.4,
we should notice a major inefficiency. Specifically, we may perform many compar-
isons while testing a potential placement of the pattern against the text, yet if we
discover a pattern character that does not match in the text, then we throw away all
the information gained by these comparisons and start over again from scratch with
the next incremental placement of the pattern. The Knuth-Morris-Pratt (or “KMP”)
algorithm discussed in this section, avoids this waste of information and, in so do-
ing, it achieves a running time of O(n + m), which is optimal in the worst case.
That is, in the worst case any pattern matching algorithm will have to examine all
the characters of the text and all the characters of the pattern at least once.

The Failure Function

The main idea of the KMP algorithm is to preprocess the pattern string P so as to
compute a failure function, f , that indicates the proper shift of P so that, to the
largest extent possible, we can reuse previously performed comparisons. Specif-
ically, the failure function f (j) is defined as the length of the longest prefix of P
that is a suffix of P[1.. j] (note that we did not put P[0.. j] here). We also use the
convention that f (0) = 0. Later, we discuss how to compute the failure function
efficiently. The importance of this failure function is that it “encodes” repeated
substrings inside the pattern itself.

Example 12.5: Consider the pattern string P = "abacab" from Example 12.4.
The Knuth-Morris-Pratt (KMP) failure function, f (j), for the string P is as shown
in the following table:

j 0 1 2 3 4 5
P[j] a b a c a b
f (j) 0 0 1 0 1 2

i

i

“main” — 2011/1/13 — 9:10 — page 571 — #593
i

i

i

i

i

i

12.3. Pattern Matching Algorithms 571

The KMP pattern matching algorithm, shown in Code Fragment 12.6, incre-
mentally processes the text string T comparing it to the pattern string P. Each time
there is a match, we increment the current indices. On the other hand, if there is a
mismatch and we have previously made progress in P, then we consult the failure
function to determine the new index in P where we need to continue checking P
against T . Otherwise (there was a mismatch and we are at the beginning of P), we
simply increment the index for T (and keep the index variable for P at its begin-
ning). We repeat this process until we find a match of P in T or the index for T
reaches n, the length of T (indicating that we did not find the pattern P in T).

Algorithm KMPMatch(T,P):
Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of T matching P, or an indication

that P is not a substring of T

f ← KMPFailureFunction(P) {construct the failure function f for P}
i← 0
j← 0
while i < n do

if P[j] = T [i] then
if j = m−1 then

return i−m + 1 {a match!}
i← i+ 1
j← j + 1

else if j > 0 {no match, but we have advanced in P} then
j← f (j−1) { j indexes just after prefix of P that must match}

else
i← i+ 1

return “There is no substring of T matching P.”

Code Fragment 12.6: The KMP pattern matching algorithm.

The main part of the KMP algorithm is the while loop, which performs a com-
parison between a character in T and a character in P each iteration. Depending
upon the outcome of this comparison, the algorithm either moves on to the next
characters in T and P, consults the failure function for a new candidate character in
P, or starts over with the next index in T . The correctness of this algorithm follows
from the definition of the failure function. Any comparisons that are skipped are ac-
tually unnecessary, for the failure function guarantees that all the ignored compar-
isons are redundant—they would involve comparing the same matching characters
over again.

i

i

“main” — 2011/1/13 — 9:10 — page 572 — #594
i

i

i

i

i

i

572 Chapter 12. Strings and Dynamic Programming

Figure 12.7: The KMP pattern matching algorithm. The failure function f for this
pattern is given in Example 12.5. The algorithm performs 19 character compar-
isons, which are indicated with numerical labels.

In Figure 12.7, we illustrate the execution of the KMP pattern matching algo-
rithm on the same input strings as in Example 12.4. Note the use of the failure
function to avoid redoing one of the comparisons between a character of the pat-
tern and a character of the text. Also note that the algorithm performs fewer overall
comparisons than the brute-force algorithm run on the same strings (Figure 12.3).

Performance

Excluding the computation of the failure function, the running time of the KMP
algorithm is clearly proportional to the number of iterations of the while loop. For
the sake of analysis, let us define k = i− j. Intuitively, k is the total amount by which
the pattern P has been shifted with respect to the text T . Note that throughout the
execution of the algorithm, we have k ≤ n. One of the following three cases occurs
at each iteration of the loop.
• If T [i] = P[j], then i increases by 1, and k does not change, since j also

increases by 1.
• If T [i] 6= P[j] and j > 0, then i does not change and k increases by at least 1,

since, in this case, k changes from i− j to i− f (j−1), which is an addition
of j− f (j−1), which is positive because f (j−1) < j.

• If T [i] 6= P[j] and j = 0, then i increases by 1 and k increases by 1, since j
does not change.

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly
both); hence, the total number of iterations of the while loop in the KMP pattern
matching algorithm is at most 2n. Of course, achieving this bound assumes that we
have already computed the failure function for P.

i

i

“main” — 2011/1/13 — 9:10 — page 573 — #595
i

i

i

i

i

i

12.3. Pattern Matching Algorithms 573

Constructing the KMP Failure Function

To construct the failure function, we use the method shown in Code Fragment 12.7,
which is a “bootstrapping” process quite similar to the KMPMatch algorithm. We
compare the pattern to itself as in the KMP algorithm. Each time we have two
characters that match, we set f (i) = j+1. Note that since we have i > j throughout
the execution of the algorithm, f (j−1) is always defined when we need to use it.

Algorithm KMPFailureFunction(P):
Input: String P (pattern) with m characters
Output: The failure function f for P, which maps j to the length of the longest

prefix of P that is a suffix of P[1.. j]

i← 1
j← 0
f (0)← 0
while i < m do

if P[j] = P[i] then
{we have matched j + 1 characters}
f (i)← j + 1
i← i+ 1
j← j + 1

else if j > 0 then
{ j indexes just after a prefix of P that must match}
j← f (j−1)

else
{we have no match here}
f (i)← 0
i← i+ 1

Code Fragment 12.7: Computation of the failure function used in the KMP pattern
matching algorithm. Note how the algorithm uses the previous values of the failure
function to efficiently compute new values.

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous
to that of algorithm KMPMatch. Thus, we have:

Proposition 12.6: The Knuth-Morris-Pratt algorithm performs pattern matching
on a text string of length n and a pattern string of length m in O(n+ m) time.

A C++ implementation of the KMP pattern matching algorithm, based on an
STL vector, is shown in Code Fragment 12.8.

i

i

“main” — 2011/1/13 — 9:10 — page 574 — #596
i

i

i

i

i

i

574 Chapter 12. Strings and Dynamic Programming

// KMP algorithm
int KMPmatch(const string& text, const string& pattern) {

int n = text.size();
int m = pattern.size();
std::vector<int> fail = computeFailFunction(pattern);
int i = 0; // text index
int j = 0; // pattern index
while (i < n) {

if (pattern[j] == text[i]) {
if (j == m − 1)

return i − m + 1; // found a match
i++; j++;
}
else if (j > 0) j = fail[j − 1];
else i++;
}
return −1; // no match
}

std::vector<int> computeFailFunction(const string& pattern) {
std::vector<int> fail(pattern.size());
fail[0] = 0;
int m = pattern.size();
int j = 0;
int i = 1;
while (i < m) {

if (pattern[j] == pattern[i]) { // j + 1 characters match
fail[i] = j + 1;
i++; j++;
}
else if (j > 0) // j follows a matching prefix

j = fail[j − 1];
else { // no match

fail[i] = 0;
i++;
}
}
return fail;
}

Code Fragment 12.8: C++ implementation of the KMP pattern matching algorithm.
The algorithm is expressed by two static functions. Function KMPmatch performs
the matching and calls the auxiliary function computeFailFunction to compute the
failure function, expressed by an array. Method KMPmatch indicates the absence
of a match by returning the conventional value −1.

i

i

“main” — 2011/1/13 — 9:10 — page 575 — #597
i

i

i

i

i

i

12.4. Text Compression and the Greedy Method 575

12.4 Text Compression and the Greedy Method

In this section, we consider an important text processing task, text compression.
In this problem, we are given a string X defined over some alphabet, such as the
ASCII or Unicode character sets, and we want to efficiently encode X into a small
binary string Y (using only the characters 0 and 1). Text compression is useful in
any situation where we are communicating over a low-bandwidth channel, such as
a modem line or infrared connection, and we wish to minimize the time needed to
transmit our text. Likewise, text compression is also useful for storing collections
of large documents more efficiently, in order to allow for a fixed-capacity storage
device to contain as many documents as possible.

The method for text compression explored in this section is the Huffman code.
Standard encoding schemes, such as the ASCII and Unicode systems, use fixed-
length binary strings to encode characters (with 7 bits in the ASCII system and
16 in the Unicode system). A Huffman code, on the other hand, uses a variable-
length encoding optimized for the string X . The optimization is based on the use
of character frequencies, where we have, for each character c, a count f (c) of the
number of times c appears in the string X . The Huffman code saves space over a
fixed-length encoding by using short code-word strings to encode high-frequency
characters and long code-word strings to encode low-frequency characters.

To encode the string X , we convert each character in X from its fixed-length
code word to its variable-length code word, and we concatenate all these code
words in order to produce the encoding Y for X . In order to avoid ambiguities,
we insist that no code word in our encoding is a prefix of another code word in our
encoding. Such a code is called a prefix code, and it simplifies the decoding of Y
in order to get back X . (See Figure 12.8.) Even with this restriction, the savings
produced by a variable-length prefix code can be significant, particularly if there is
a wide variance in character frequencies (as is the case for natural language text in
almost every spoken language).

Huffman’s algorithm for producing an optimal variable-length prefix code for
X is based on the construction of a binary tree T that represents the code. Each
node in T , except the root, represents a bit in a code word, with each left child
representing a “0” and each right child representing a “1.” Each external node v is
associated with a specific character, and the code word for that character is defined
by the sequence of bits associated with the nodes in the path from the root of T to v.
(See Figure 12.8.) Each external node v has a frequency, f (v), which is simply the
frequency in X of the character associated with v. In addition, we give each internal
node v in T a frequency, f (v), that is the sum of the frequencies of all the external
nodes in the subtree rooted at v.

i

i

“main” — 2011/1/13 — 9:10 — page 576 — #598
i

i

i

i

i

i

576 Chapter 12. Strings and Dynamic Programming

(a)

(b)

Figure 12.8: An example Huffman code for the input string
X = "a fast runner need never be afraid of the dark": (a) fre-
quency of each character of X ; (b) Huffman tree T for string X . The code for a
character c is obtained by tracing the path from the root of T to the external node
where c is stored, and associating a left child with 0 and a right child with 1. For
example, the code for “a” is 010, and the code for “f” is 1100.

12.4.1 The Huffman-Coding Algorithm

The Huffman-coding algorithm begins with each of the d distinct characters of the
string X to encode being the root node of a single-node binary tree. The algorithm
proceeds in a series of rounds. In each round, the algorithm takes the two binary
trees with the smallest frequencies and merges them into a single binary tree. It
repeats this process until only one tree is left. (See Code Fragment 12.9.)

Each iteration of the while loop in Huffman’s algorithm can be implemented
in O(logd) time using a priority queue represented with a heap. In addition, each
iteration takes two nodes out of Q and adds one in, a process that is repeated d−1
times before exactly one node is left in Q. Thus, this algorithm runs in O(n +
d log d) time. Although a full justification of this algorithm’s correctness is beyond
our scope, we note that its intuition comes from a simple idea—any optimal code
can be converted into an optimal code in which the code words for the two lowest-
frequency characters, a and b, differ only in their last bit. Repeating the argument
for a string with a and b replaced by a character c, gives the following.

Proposition 12.7: Huffman’s algorithm constructs an optimal prefix code for a
string of length n with d distinct characters in O(n+ d logd) time.

i

i

“main” — 2011/1/13 — 9:10 — page 577 — #599
i

i

i

i

i

i

12.4. Text Compression and the Greedy Method 577

Algorithm Huffman(X):
Input: String X of length n with d distinct characters
Output: Coding tree for X

Compute the frequency f (c) of each character c of X .
Initialize a priority queue Q.
for each character c in X do

Create a single-node binary tree T storing c.
Insert T into Q with key f (c).

while Q.size() > 1 do
f1← Q.min()
T1← Q.removeMin()
f2← Q.min()
T2← Q.removeMin()
Create a new binary tree T with left subtree T1 and right subtree T2.
Insert T into Q with key f1 + f2.

return tree Q.removeMin()

Code Fragment 12.9: Huffman-coding algorithm.

12.4.2 The Greedy Method

Huffman’s algorithm for building an optimal encoding is an example application
of an algorithmic design pattern called the greedy method. This design pattern is
applied to optimization problems, where we are trying to construct some structure
while minimizing or maximizing some property of that structure.

The general formula for the greedy method pattern is almost as simple as that
for the brute-force method. In order to solve a given optimization problem using
the greedy method, we proceed by a sequence of choices. The sequence starts
from some well-understood starting condition, and computes the cost for that ini-
tial condition. The pattern then asks that we iteratively make additional choices
by identifying the decision that achieves the best cost improvement from all of
the choices that are currently possible. This approach does not always lead to an
optimal solution.

But there are several problems that it does work for, and such problems are said
to possess the greedy-choice property. This is the property that a global optimal
condition can be reached by a series of locally optimal choices (that is, choices
that are each the current best from among the possibilities available at the time),
starting from a well-defined starting condition. The problem of computing an opti-
mal variable-length prefix code is just one example of a problem that possesses the
greedy-choice property.

i

i

“main” — 2011/1/13 — 9:10 — page 578 — #600
i

i

i

i

i

i

578 Chapter 12. Strings and Dynamic Programming

12.5 Tries

The pattern matching algorithms presented in the previous section speed up the
search in a text by preprocessing the pattern (to compute the failure function in
the KMP algorithm or the last function in the BM algorithm). In this section, we
take a complementary approach, namely, we present string searching algorithms
that preprocess the text. This approach is suitable for applications where a series of
queries is performed on a fixed text, so that the initial cost of preprocessing the text
is compensated by a speedup in each subsequent query (for example, a Web site
that offers pattern matching in Shakespeare’s Hamlet or a search engine that offers
Web pages on the Hamlet topic).

A trie (pronounced “try”) is a tree-based data structure for storing strings in
order to support fast pattern matching. The main application for tries is in infor-
mation retrieval. Indeed, the name “trie” comes from the word “retrieval.” In an
information retrieval application, such as a search for a certain DNA sequence in a
genomic database, we are given a collection S of strings, all defined using the same
alphabet. The primary query operations that tries support are pattern matching and
prefix matching. The latter operation involves being given a string X , and looking
for all the strings in S that contain X as a prefix.

12.5.1 Standard Tries

Let S be a set of s strings from alphabet Σ such that no string in S is a prefix
of another string. A standard trie for S is an ordered tree T with the following
properties (see Figure 12.9):

• Each node of T , except the root, is labeled with a character of Σ.
• The ordering of the children of an internal node of T is determined by a

canonical ordering of the alphabet Σ.
• T has s external nodes, each associated with a string of S, such that the con-

catenation of the labels of the nodes on the path from the root to an external
node v of T yields the string of S associated with v.

Thus, a trie T represents the strings of S with paths from the root to the external
nodes of T . Note the importance of assuming that no string in S is a prefix of
another string. This ensures that each string of S is uniquely associated with an
external node of T . We can always satisfy this assumption by adding a special
character that is not in the original alphabet Σ at the end of each string.

An internal node in a standard trie T can have anywhere between 1 and d chil-
dren, where d is the size of the alphabet. There is an edge going from the root r to
one of its children for each character that is first in some string in the collection S.
In addition, a path from the root of T to an internal node v at depth i corresponds to

i

i

“main” — 2011/1/13 — 9:10 — page 579 — #601
i

i

i

i

i

i

12.5. Tries 579

Figure 12.9: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}.

an i-character prefix X [0..i−1] of a string X of S. In fact, for each character c that
can follow the prefix X [0..i−1] in a string of the set S, there is a child of v labeled
with character c. In this way, a trie concisely stores the common prefixes that exist
among a set of strings.

If there are only two characters in the alphabet, then the trie is essentially a
binary tree, with some internal nodes possibly having only one child (that is, it may
be an improper binary tree). In general, if there are d characters in the alphabet,
then the trie will be a multi-way tree where each internal node has between 1 and
d children. In addition, there are likely to be several internal nodes in a standard
trie that have fewer than d children. For example, the trie shown in Figure 12.9
has several internal nodes with only one child. We can implement a trie with a tree
storing characters at its nodes.

The following proposition provides some important structural properties of a
standard trie.

Proposition 12.8: A standard trie storing a collection S of s strings of total length
n from an alphabet of size d has the following properties:

• Every internal node of T has at most d children

• T has s external nodes

• The height of T is equal to the length of the longest string in S

• The number of nodes of T is O(n)

i

i

“main” — 2011/1/13 — 9:10 — page 580 — #602
i

i

i

i

i

i

580 Chapter 12. Strings and Dynamic Programming

The worst case for the number of nodes of a trie occurs when no two strings
share a common nonempty prefix; that is, except for the root, all internal nodes
have one child.

A trie T for a set S of strings can be used to implement a dictionary whose keys
are the strings of S. Namely, we perform a search in T for a string X by tracing
down from the root the path indicated by the characters in X . If this path can be
traced and terminates at an external node, then we know X is in the dictionary. For
example, in the trie in Figure 12.9, tracing the path for “bull” ends up at an external
node. If the path cannot be traced or the path can be traced but terminates at an
internal node, then X is not in the dictionary. In the example in Figure 12.9, the path
for “bet” cannot be traced and the path for “be” ends at an internal node. Neither
such word is in the dictionary. Note that in this implementation of a dictionary,
single characters are compared instead of the entire string (key). It is easy to see
that the running time of the search for a string of size m is O(dm), where d is the
size of the alphabet. Indeed, we visit at most m + 1 nodes of T and we spend O(d)
time at each node. For some alphabets, we may be able to improve the time spent
at a node to be O(1) or O(logd) by using a dictionary of characters implemented
in a hash table or search table. However, since d is a constant in most applications,
we can stick with the simple approach that takes O(d) time per node visited.

From the discussion above, it follows that we can use a trie to perform a spe-
cial type of pattern matching, called word matching, where we want to determine
whether a given pattern matches one of the words of the text exactly. (See Fig-
ure 12.10.) Word matching differs from standard pattern matching since the pattern
cannot match an arbitrary substring of the text, but only one of its words. Using a
trie, word matching for a pattern of length m takes O(dm) time, where d is the size
of the alphabet, independent of the size of the text. If the alphabet has constant size
(as is the case for text in natural languages and DNA strings), a query takes O(m)
time, proportional to the size of the pattern. A simple extension of this scheme
supports prefix matching queries. However, arbitrary occurrences of the pattern in
the text (for example, the pattern is a proper suffix of a word or spans two words)
cannot be efficiently performed.

To construct a standard trie for a set S of strings, we can use an incremental
algorithm that inserts the strings one at a time. Recall the assumption that no string
of S is a prefix of another string. To insert a string X into the current trie T , we
first try to trace the path associated with X in T . Since X is not already in T and no
string in S is a prefix of another string, we stop tracing the path at an internal node v
of T before reaching the end of X . We then create a new chain of node descendents
of v to store the remaining characters of X . The time to insert X is O(dm), where
m is the length of X and d is the size of the alphabet. Thus, constructing the entire
trie for set S takes O(dn) time, where n is the total length of the strings of S.

i

i

“main” — 2011/1/13 — 9:10 — page 581 — #603
i

i

i

i

i

i

12.5. Tries 581

(a)

(b)

Figure 12.10: Word matching and prefix matching with a standard trie: (a) text to
be searched; (b) standard trie for the words in the text (articles and prepositions,
which are also known as stop words, excluded), with external nodes augmented
with indications of the word positions.

There is a potential space inefficiency in the standard trie that has prompted the
development of the compressed trie, which is also known (for historical reasons)
as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie
that have only one child, and the existence of such nodes is a waste. We discuss the
compressed trie next.

i

i

“main” — 2011/1/13 — 9:10 — page 582 — #604
i

i

i

i

i

i

582 Chapter 12. Strings and Dynamic Programming

12.5.2 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node
in the trie has at least two children. It enforces this rule by compressing chains of
single-child nodes into individual edges. (See Figure 12.11.) Let T be a standard
trie. We say that an internal node v of T is redundant if v has one child and is not
the root. For example, the trie of Figure 12.9 has eight redundant nodes. Let us
also say that a chain of k ≥ 2 edges

(v0,v1)(v1,v2) · · · (vk−1,vk),

is redundant if:

• vi is redundant for i = 1, . . . ,k−1
• v0 and vk are not redundant

We can transform T into a compressed trie by replacing each redundant chain
(v0,v1) · · · (vk−1,vk) of k ≥ 2 edges into a single edge (v0,vk), relabeling vk with
the concatenation of the labels of nodes v1, . . . ,vk.

Figure 12.11: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,
stop}. Compare this with the standard trie shown in Figure 12.9.

Thus, nodes in a compressed trie are labeled with strings, which are substrings
of strings in the collection, rather than with individual characters. The advantage of
a compressed trie over a standard trie is that the number of nodes of the compressed
trie is proportional to the number of strings and not to their total length, as shown
in the following proposition (compare with Proposition 12.8).

Proposition 12.9: A compressed trie storing a collection S of s strings from an
alphabet of size d has the following properties:

• Every internal node of T has at least two children and most d children
• T has s external nodes
• The number of nodes of T is O(s)

i

i

“main” — 2011/1/13 — 9:10 — page 583 — #605
i

i

i

i

i

i

12.5. Tries 583

The attentive reader may wonder whether the compression of paths provides
any significant advantage, since it is offset by a corresponding expansion of the
node labels. Indeed, a compressed trie is truly advantageous only when it is used as
an auxiliary index structure over a collection of strings already stored in a primary
structure, and is not required to actually store all the characters of the strings in the
collection.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s− 1]. Instead of storing the label X of a node explicitly, we represent
it implicitly by a triplet of integers (i, j,k), such that X = S[i][j..k]; that is, X is the
substring of S[i] consisting of the characters from the jth to the kth included. (See
the example in Figure 12.12. Also compare with the standard trie of Figure 12.10.)

(a)

(b)

Figure 12.12: (a) Collection S of strings stored in an array. (b) Compact represen-
tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the
trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n
is the total length of the strings in S and s is the number of strings in S. We must
still store the different strings in S, of course, but we nevertheless reduce the space
for the trie.

i

i

“main” — 2011/1/13 — 9:10 — page 584 — #606
i

i

i

i

i

i

584 Chapter 12. Strings and Dynamic Programming

12.5.3 Suffix Tries

One of the primary applications for tries is for the case when the strings in the
collection S are all the suffixes of a string X . Such a trie is called the suffix trie (also
known as a suffix tree or position tree) of string X . For example, Figure 12.13(a)
shows the suffix trie for the eight suffixes of string “minimize.” For a suffix trie, the
compact representation presented in the previous section can be further simplified.
Namely, the label of each vertex is a pair (i, j) indicating the string X [i.. j]. (See
Figure 12.13(b).) To satisfy the rule that no suffix of X is a prefix of another suffix,
we can add a special character, denoted with $, that is not in the original alphabet Σ
at the end of X (and thus to every suffix). That is, if string X has length n, we build
a trie for the set of n strings X [i..n−1]$, for i = 0, . . . ,n−1.

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several space
compression techniques, including those used for the compressed trie.

The advantage of the compact representation of tries now becomes apparent for
suffix tries. Since the total length of the suffixes of a string X of length n is

1+ 2+ · · ·+ n =
n(n+ 1)

2
,

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suf-
fix trie represents these strings implicitly in O(n) space, as formally stated in the
following proposition.

Proposition 12.10: The compact representation of a suffix trie T for a string X
of length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algo-
rithm like the one given in Section 12.5.1. This construction takes O(dn2) time
because the total length of the suffixes is quadratic in n. However, the (compact)
suffix trie for a string of length n can be constructed in O(n) time with a specialized
algorithm, different from the one for general tries. This linear-time construction
algorithm is fairly complex, however, and is not reported here. Still, we can take
advantage of the existence of this fast construction algorithm when we want to use
a suffix trie to solve other problems.

i

i

“main” — 2011/1/13 — 9:10 — page 585 — #607
i

i

i

i

i

i

12.5. Tries 585

(a)

(b)

Figure 12.13: (a) Suffix trie T for the string X = ‘‘minimize’’. (b) Compact
representation of T , where pair (i, j) denotes X [i.. j].

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern matching
queries on text X . Namely, we can determine whether a pattern P is a substring
of X by trying to trace a path associated with P in T . P is a substring of X if and
only if such a path can be traced. The search down the trie T assumes that nodes in
T store some additional information, with respect to the compact representation of
the suffix trie:

If node v has label (i, j) and Y is the string of length y associated with
the path from the root to v (included), then X [j− y+ 1.. j] = Y .

This property ensures that we can easily compute the start index of the pattern in
the text when a match occurs.

i

i

“main” — 2011/1/13 — 9:10 — page 586 — #608
i

i

i

i

i

i

586 Chapter 12. Strings and Dynamic Programming

12.5.4 Search Engines

The World Wide Web contains a huge collection of text documents (Web pages).
Information about these pages are gathered by a program called a Web crawler,
which then stores this information in a special dictionary database. A Web search
engine allows users to retrieve relevant information from this database, thereby
identifying relevant pages on the Web containing given keywords. In this section,
we present a simplified model of a search engine.

Inverted Files

The core information stored by a search engine is a dictionary, called an inverted
index or inverted file, storing key-value pairs (w,L), where w is a word and L is
a collection of pages containing word w. The keys (words) in this dictionary are
called index terms and should be a set of vocabulary entries and proper nouns as
large as possible. The elements in this dictionary are called occurrence lists and
should cover as many Web pages as possible.

We can efficiently implement an inverted index with a data structure consisting
of:

1. An array storing the occurrence lists of the terms (in no particular order)
2. A compressed trie for the set of index terms, where each external node stores

the index of the occurrence list of the associated term.
The reason for storing the occurrence lists outside the trie is to keep the size of the
trie data structure sufficiently small to fit in internal memory. Instead, because of
their large total size, the occurrence lists have to be stored on disk.

With our data structure, a query for a single keyword is similar to a word match-
ing query (Section 12.5.1). Namely, we find the keyword in the trie and we return
the associated occurrence list.

When multiple keywords are given and the desired output are the pages con-
taining all the given keywords, we retrieve the occurrence list of each keyword
using the trie and return their intersection. To facilitate the intersection computa-
tion, each occurrence list should be implemented with a sequence sorted by address
or with a dictionary (see, for example, the generic merge computation discussed in
Section 11.4).

In addition to the basic task of returning a list of pages containing given key-
words, search engines provide an important additional service by ranking the pages
returned by relevance. Devising fast and accurate ranking algorithms for search
engines is a major challenge for computer researchers and electronic commerce
companies.

i

i

“main” — 2011/1/13 — 9:10 — page 587 — #609
i

i

i

i

i

i

12.6. Exercises 587

12.6 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-12.1 What is the best way to multiply a chain of matrices with dimensions that
are 10×5, 5×2, 2×20, 20×12, 12×4, and 4×60? Show your work.

R-12.2 Design an efficient algorithm for the matrix chain multiplication problem
that outputs a fully parenthesized expression for how to multiply the ma-
trices in the chain using the minimum number of operations.

R-12.3 List the prefixes of the string P ="aaabbaaa" that are also suffixes of P.

R-12.4 Draw a figure illustrating the comparisons done by brute-force pattern
matching for the text "aaabaadaabaaa" and pattern "aabaaa".

R-12.5 Repeat the previous problem for the BM pattern matching algorithm, not
counting the comparisons made to compute the last(c) function.

R-12.6 Repeat the previous problem for the KMP pattern matching algorithm, not
counting the comparisons made to compute the failure function.

R-12.7 Compute a table representing the last function used in the BM pattern
matching algorithm for the pattern string

"the quick brown fox jumped over a lazy cat"

assuming the following alphabet (which starts with the space character):

Σ = { ,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}.

R-12.8 Assuming that the characters in alphabet Σ can be enumerated and can be
used to index arrays, give an O(m+ |Σ|)-time method for constructing the
last function from an m-length pattern string P.

R-12.9 Compute a table representing the KMP failure function for the pattern
string "cgtacgttcgtac".

R-12.10 Draw a standard trie for the following set of strings:

{abab,baba,ccccc,bbaaaa,caa,bbaacc,cbcc,cbca}.

R-12.11 Draw a compressed trie for the set of strings given in Exercise R-12.10.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 588 — #610
i

i

i

i

i

i

588 Chapter 12. Strings and Dynamic Programming

R-12.12 Draw the compact representation of the suffix trie for the string

"minimize minime".

R-12.13 What is the longest prefix of the string "cgtacgttcgtacg" that is also a
suffix of this string?

R-12.14 Draw the frequency array and Huffman tree for the following string:

"dogs do not spot hot pots or cats".

R-12.15 Show the longest common subsequence array L for the two strings

X = "skullandbones"

Y = "lullabybabies".

What is a longest common subsequence between these strings?

Creativity

C-12.1 A native Australian named Anatjari wishes to cross a desert carrying only
a single water bottle. He has a map that marks all the watering holes along
the way. Assuming he can walk k miles on one bottle of water, design an
efficient algorithm for determining where Anatjari should refill his bottle
in order to make as few stops as possible. Argue why your algorithm is
correct.

C-12.2 Describe an efficient greedy algorithm for making change for a specified
value using a minimum number of coins, assuming there are four denom-
inations of coins, called quarters, dimes, nickels, and pennies, with values
25, 10, 5, and 1, respectively. Argue why your algorithm is correct.

C-12.3 Give an example set of denominations of coins so that a greedy change-
making algorithm will not use the minimum number of coins.

C-12.4 In the art gallery guarding problem we are given a line L that repre-
sents a long hallway in an art gallery. We are also given a set X =
{x0,x1, . . . ,xn−1} of real numbers that specify the positions of paintings
in this hallway. Suppose that a single guard can protect all the paintings
within distance at most 1 of his or her position (on both sides). Design
an algorithm for finding a placement of guards that uses the minimum
number of guards to guard all the paintings with positions in X .

C-12.5 Let P be a convex polygon, a triangulation of P is an addition of diag-
onals connecting the vertices of P so that each interior face is a triangle.
The weight of a triangulation is the sum of the lengths of the diagonals.

i

i

“main” — 2011/1/13 — 9:10 — page 589 — #611
i

i

i

i

i

i

12.6. Exercises 589

Assuming that we can compute lengths and add and compare them in con-
stant time, give an efficient algorithm for computing a minimum-weight
triangulation of P.

C-12.6 Give an example of a text T of length n and a pattern P of length m that
force the brute-force pattern matching algorithm to have a running time
that is Ω(nm).

C-12.7 Give a justification of why the KMPFailureFunction function (Code Frag-
ment 12.7) runs in O(m) time on a pattern of length m.

C-12.8 Show how to modify the KMP string pattern matching algorithm so as to
find every occurrence of a pattern string P that appears as a substring in T ,
while still running in O(n+m) time. (Be sure to catch even those matches
that overlap.)

C-12.9 Let T be a text of length n, and let P be a pattern of length m. Describe an
O(n+m)-time method for finding the longest prefix of P that is a substring
of T .

C-12.10 Say that a pattern P of length m is a circular substring of a text T of
length n if there is an index 0≤ i < m, such that P = T [n−m+ i..n−1]+
T [0..i− 1], that is, if P is a (normal) substring of T or P is equal to the
concatenation of a suffix of T and a prefix of T . Give an O(n + m)-time
algorithm for determining whether P is a circular substring of T .

C-12.11 The KMP pattern matching algorithm can be modified to run faster on
binary strings by redefining the failure function as

f (j) = the largest k < j such that P[0..k−2]p̂k is a suffix of P[1.. j],

where p̂k denotes the complement of the kth bit of P. Describe how to
modify the KMP algorithm to be able to take advantage of this new fail-
ure function and also give a function for computing this failure function.
Show that this function makes at most n comparisons between the text
and the pattern (as opposed to the 2n comparisons needed by the standard
KMP algorithm given in Section 12.3.3).

C-12.12 Modify the simplified BM algorithm presented in this chapter using ideas
from the KMP algorithm so that it runs in O(n+ m) time.

C-12.13 Given a string X of length n and a string Y of length m, describe an O(n+
m)-time algorithm for finding the longest prefix of X that is a suffix of Y .

C-12.14 Give an efficient algorithm for deleting a string from a standard trie and
analyze its running time.

C-12.15 Give an efficient algorithm for deleting a string from a compressed trie
and analyze its running time.

i

i

“main” — 2011/1/13 — 9:10 — page 590 — #612
i

i

i

i

i

i

590 Chapter 12. Strings and Dynamic Programming

C-12.16 Describe an algorithm for constructing the compact representation of a
suffix trie, given its noncompact representation, and analyze its running
time.

C-12.17 Let T be a text string of length n. Describe an O(n)-time method for
finding the longest prefix of T that is a substring of the reversal of T .

C-12.18 Describe an efficient algorithm to find the longest palindrome that is a
suffix of a string T of length n. Recall that a palindrome is a string that is
equal to its reversal. What is the running time of your method?

C-12.19 Given a sequence S = (x0,x1,x2, . . . ,xn−1) of numbers, describe an O(n2)-
time algorithm for finding a longest subsequence T = (xi0 ,xi1 ,xi2 , . . . ,xik−1)
of numbers, such that i j < i j+1 and xi j > xi j+1 . That is, T is a longest de-
creasing subsequence of S.

C-12.20 Define the edit distance between two strings X and Y of length n and m,
respectively, to be the number of edits that it takes to change X into Y . An
edit consists of a character insertion, a character deletion, or a character
replacement. For example, the strings "algorithm" and "rhythm" have
edit distance 6. Design an O(nm)-time algorithm for computing the edit
distance between X and Y .

C-12.21 Design a greedy algorithm for making change after someone buys some
candy costing x cents and the customer gives the clerk $1. Your algorithm
should try to minimize the number of coins returned.

a. Show that your greedy algorithm returns the minimum number of
coins if the coins have denominations $0.25, $0.10, $0.05, and $0.01.

b. Give a set of denominations for which your algorithm may not re-
turn the minimum number of coins. Include an example where your
algorithm fails.

C-12.22 Give an efficient algorithm for determining if a pattern P is a subsequence
(not substring) of a text T . What is the running time of your algorithm?

C-12.23 Let x and y be strings of length n and m respectively. Define B(i, j) to
be the length of the longest common substring of the suffix of length i
in x and the suffix of length j in y. Design an O(nm)-time algorithm for
computing all the values of B(i, j) for i = 1, . . . ,n and j = 1, . . . ,m.

C-12.24 Raji has just won a contest that allows her to take n pieces of candy out
of a candy store for free. Raji is old enough to realize that some candy is
expensive, while other candy is relatively cheap, costing much less. The
jars of candy are numbered 0, 1, . . ., m−1, so that jar j has n j pieces in
it, with a price of c j per piece. Design an O(n + m)-time algorithm that
allows Raji to maximize the value of the pieces of candy she takes for
her winnings. Show that your algorithm produces the maximum value for
Raji.

i

i

“main” — 2011/1/13 — 9:10 — page 591 — #613
i

i

i

i

i

i

12.6. Exercises 591

C-12.25 Let three integer arrays, A, B, and C, be given, each of size n. Given an
arbitrary integer x, design an O(n2 logn)-time algorithm to determine if
there exist numbers, a in A, b in B, and c in C, such that x = a+ b+ c.

C-12.26 Give an O(n2)-time algorithm for the previous problem.

Projects

P-12.1 Implement the LCS algorithm and use it to compute the best sequence
alignment between some DNA strings that you can get online from Gen-
Bank.

P-12.2 Perform an experimental analysis, using documents found on the Inter-
net, of the efficiency (number of character comparisons performed) of the
brute-force and KMP pattern matching algorithms for varying-length pat-
terns.

P-12.3 Perform an experimental analysis, using documents found on the Inter-
net, of the efficiency (number of character comparisons performed) of the
brute-force and BM pattern matching algorithms for varying-length pat-
terns.

P-12.4 Perform an experimental comparison of the relative speeds of the brute-
force, KMP, and BM pattern matching algorithms. Document the time
taken for coding up each of these algorithms as well as their relative run-
ning times on documents found on the Internet that are then searched using
varying-length patterns.

P-12.5 Implement a compression and decompression scheme that is based on
Huffman coding.

P-12.6 Create a class that implements a standard trie for a set of ASCII strings.
The class should have a constructor that takes as an argument a list of
strings, and the class should have a method that tests whether a given
string is stored in the trie.

P-12.7 Create a class that implements a compressed trie for a set of ASCII strings.
The class should have a constructor that takes as an argument a list of
strings, and the class should have a function that tests whether a given
string is stored in the trie.

P-12.8 Create a class that implements a prefix trie for an ASCII string. The class
should have a constructor that takes as an argument a string and a function
for pattern matching on the string.

P-12.9 Implement the simplified search engine described in Section 12.5.4 for
the pages of a small Web site. Use all the words in the pages of the site
as index terms, excluding stop words such as articles, prepositions, and
pronouns.

i

i

“main” — 2011/1/13 — 9:10 — page 592 — #614
i

i

i

i

i

i

592 Chapter 12. Strings and Dynamic Programming

P-12.10 Implement a search engine for the pages of a small Web site by adding
a page-ranking feature to the simplified search engine described in Sec-
tion 12.5.4. Your page-ranking feature should return the most relevant
pages first. Use all the words in the pages of the site as index terms, ex-
cluding stop words, such as articles, prepositions, and pronouns.

P-12.11 Write a program that takes two character strings (which could be, for ex-
ample, representations of DNA strands) and computes their edit distance,
showing the corresponding pieces. (See Exercise C-12.20.)

Chapter Notes

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [61],
and Boyer and Moore describe their algorithm in a journal article published the same
year [14]. In their article, however, Knuth et al. [61] also prove that the BM algorithm
runs in linear time. More recently, Cole [22] shows that the BM algorithm makes at most
3n character comparisons in the worst case, and this bound is tight. All of the algorithms
discussed above are also discussed in the book chapter by Aho [3], although in a more the-
oretical framework, including the methods for regular-expression pattern matching. The
reader interested in further study of string pattern matching algorithms is referred to the
book by Stephen [90] and the book chapters by Aho [3] and Crochemore and Lecroq [26].

The trie was invented by Morrison [79] and is discussed extensively in the classic
Sorting and Searching book by Knuth [60]. The name “Patricia” is short for “Practical
Algorithm to Retrieve Information Coded in Alphanumeric” [79]. McCreight [69] shows
how to construct suffix tries in linear time. An introduction to the field of information
retrieval, which includes a discussion of search engines for the Web, is provided in the
book by Baeza-Yates and Ribeiro-Neto [7].

i

i

“main” — 2011/1/13 — 9:10 — page 593 — #615
i

i

i

i

i

i

Chapter

13 Graph Algorithms

Contents

13.1 Graphs . 594

13.1.1 The Graph ADT . 599

13.2 Data Structures for Graphs 600

13.2.1 The Edge List Structure 600

13.2.2 The Adjacency List Structure 603

13.2.3 The Adjacency Matrix Structure 605

13.3 Graph Traversals . 607

13.3.1 Depth-First Search 607

13.3.2 Implementing Depth-First Search 611

13.3.3 A Generic DFS Implementation in C++ 613

13.3.4 Polymorphic Objects and Decorator Values ⋆ 621

13.3.5 Breadth-First Search 623

13.4 Directed Graphs . 626

13.4.1 Traversing a Digraph 628

13.4.2 Transitive Closure 630

13.4.3 Directed Acyclic Graphs 633

13.5 Shortest Paths . 637

13.5.1 Weighted Graphs 637

13.5.2 Dijkstra’s Algorithm 639

13.6 Minimum Spanning Trees 645

13.6.1 Kruskal’s Algorithm 647

13.6.2 The Prim-Jarńık Algorithm 651

13.7 Exercises . 654

i

i

“main” — 2011/1/13 — 9:10 — page 594 — #616
i

i

i

i

i

i

594 Chapter 13. Graph Algorithms

13.1 Graphs

A graph is a way of representing relationships that exist between pairs of objects.
That is, a graph is a set of objects, called vertices, together with a collection of
pairwise connections between them. This notion of a “graph” should not be con-
fused with bar charts and function plots, as these kinds of “graphs” are unrelated to
the topic of this chapter. Graphs have applications in a host of different domains,
including mapping, transportation, electrical engineering, and computer networks.

Viewed abstractly, a graph G is simply a set V of vertices and a collection E
of pairs of vertices from V , called edges. Thus, a graph is a way of representing
connections or relationships between pairs of objects from some set V . Some books
use different terminology for graphs and refer to what we call vertices as nodes and
what we call edges as arcs. We use the terms “vertices” and “edges.”

Edges in a graph are either directed or undirected. An edge (u,v) is said to
be directed from u to v if the pair (u,v) is ordered, with u preceding v. An edge
(u,v) is said to be undirected if the pair (u,v) is not ordered. Undirected edges are
sometimes denoted with set notation, as {u,v}, but for simplicity we use the pair
notation (u,v), noting that in the undirected case (u,v) is the same as (v,u). Graphs
are typically visualized by drawing the vertices as ovals or rectangles and the edges
as segments or curves connecting pairs of ovals and rectangles. The following are
some examples of directed and undirected graphs.

Example 13.1: We can visualize collaborations among the researchers of a cer-
tain discipline by constructing a graph whose vertices are associated with the re-
searchers themselves, and whose edges connect pairs of vertices associated with
researchers who have coauthored a paper or book. (See Figure 13.1.) Such edges
are undirected because coauthorship is a symmetric relation; that is, if A has coau-
thored something with B, then B necessarily has coauthored something with A.

Figure 13.1: Graph of coauthorship among some authors.

i

i

“main” — 2011/1/13 — 9:10 — page 595 — #617
i

i

i

i

i

i

13.1. Graphs 595

Example 13.2: An object-oriented program can be associated with a graph whose
vertices represent the classes defined in the program and whose edges indicate in-
heritance between classes. There is an edge from a vertex v to a vertex u if the
class for v extends the class for u. Such edges are directed because the inheritance
relation only goes in one direction (that is, it is asymmetric).

If all the edges in a graph are undirected, then we say the graph is an undirected
graph. Likewise, a directed graph, also called a digraph, is a graph whose edges
are all directed. A graph that has both directed and undirected edges is often called
a mixed graph. Note that an undirected or mixed graph can be converted into a
directed graph by replacing every undirected edge (u,v) by the pair of directed
edges (u,v) and (v,u). It is often useful, however, to keep undirected and mixed
graphs represented as they are, for such graphs have several applications, such as
that of the following example.

Example 13.3: A city map can be modeled by a graph whose vertices are inter-
sections or dead ends, and whose edges are stretches of streets without intersec-
tions. This graph has both undirected edges, which correspond to stretches of two-
way streets, and directed edges, which correspond to stretches of one-way streets.
Thus, in this way, a graph modeling a city map is a mixed graph.

Example 13.4: Physical examples of graphs are present in the electrical wiring
and plumbing networks of a building. Such networks can be modeled as graphs,
where each connector, fixture, or outlet is viewed as a vertex, and each uninter-
rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com-
ponents of much larger graphs, namely the local power and water distribution net-
works. Depending on the specific aspects of these graphs that we are interested in,
we may consider their edges as undirected or directed, because, in principle, water
can flow in a pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are called the end vertices (or endpoints)
of the edge. If an edge is directed, its first endpoint is its origin and the other is the
destination of the edge. Two vertices u and v are said to be adjacent if there is an
edge whose end vertices are u and v. An edge is said to be incident on a vertex if
the vertex is one of the edge’s endpoints. The outgoing edges of a vertex are the
directed edges whose origin is that vertex. The incoming edges of a vertex are the
directed edges whose destination is that vertex. The degree of a vertex v, denoted
deg(v), is the number of incident edges of v. The in-degree and out-degree of a
vertex v are the number of the incoming and outgoing edges of v, and are denoted
indeg(v) and outdeg(v), respectively.

i

i

“main” — 2011/1/13 — 9:10 — page 596 — #618
i

i

i

i

i

i

596 Chapter 13. Graph Algorithms

Example 13.5: We can study air transportation by constructing a graph G, called
 a flight network , whose vertices are associated with airports, and whose edges
are associated with flights. (See Figure 13.2.) In graph G, the edges are directed
because a given flight has a specific travel direction (from the origin airport to the
destination airport). The endpoints of an edge e in G correspond respectively to the
origin and destination for the flight corresponding to e. Two airports are adjacent
in G if there is a flight that flies between them, and an edge e is incident upon a
vertex v in G if the flight for e flies to or from the airport for v. The outgoing edges
of a vertex v correspond to the outbound flights from v’s airport, and the incoming
edges correspond to the inbound flights to v’s airport. Finally, the in-degree of a
vertex v of G corresponds to the number of inbound flights to v’s airport, and the
out-degree of a vertex v in G corresponds to the number of outbound flights.

The definition of a graph refers to the group of edges as a collection, not a set,
thus allowing for two undirected edges to have the same end vertices, and for two
directed edges to have the same origin and the same destination. Such edges are
called parallel edges or multiple edges. Parallel edges can be in a flight network
(Example 13.5), in which case multiple edges between the same pair of vertices
could indicate different flights operating on the same route at different times of the
day. Another special type of edge is one that connects a vertex to itself. Namely, we
say that an edge (undirected or directed) is a self-loop if its two endpoints coincide.
A self-loop may occur in a graph associated with a city map (Example 13.3), where
it would correspond to a “circle” (a curving street that returns to its starting point).

With few exceptions, graphs do not have parallel edges or self-loops. Such
graphs are said to be simple. Thus, we can usually say that the edges of a simple
graph are a set of vertex pairs (and not just a collection). Throughout this chapter,
we assume that a graph is simple unless otherwise specified.

Figure 13.2: Example of a directed graph representing a flight network. The end-
points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.
The in-degree of DFW is 3, and the out-degree of DFW is 2.

i

i

“main” — 2011/1/13 — 9:10 — page 597 — #619
i

i

i

i

i

i

13.1. Graphs 597

In the propositions that follow, we explore a few important properties of graphs.

Proposition 13.6: If G is a graph with m edges, then

∑
v in G

deg(v) = 2m.

Justification: An edge (u,v) is counted twice in the summation above; once by
its endpoint u and once by its endpoint v. Thus, the total contribution of the edges
to the degrees of the vertices is twice the number of edges.

Proposition 13.7: If G is a directed graph with m edges, then

∑
v in G

indeg(v) = ∑
v in G

outdeg(v) = m.

Justification: In a directed graph, an edge (u,v) contributes one unit to the
out-degree of its origin u and one unit to the in-degree of its destination v. Thus,
the total contribution of the edges to the out-degrees of the vertices is equal to the
number of edges, and similarly for the out-degrees.

We next show that a simple graph with n vertices has O(n2) edges.

Proposition 13.8: Let G be a simple graph with n vertices and m edges. If G is
undirected, then m≤ n(n−1)/2, and if G is directed, then m≤ n(n−1).

Justification: Suppose that G is undirected. Since no two edges can have the
same endpoints and there are no self-loops, the maximum degree of a vertex in G
is n−1 in this case. Thus, by Proposition 13.6, 2m ≤ n(n−1). Now suppose that
G is directed. Since no two edges can have the same origin and destination, and
there are no self-loops, the maximum in-degree of a vertex in G is n−1 in this case.
Thus, by Proposition 13.7, m≤ n(n−1).

A path is a sequence of alternating vertices and edges that starts at a vertex and
ends at a vertex such that each edge is incident to its predecessor and successor
vertex. A cycle is a path with at least one edge that has the same start and end
vertices. We say that a path is simple if each vertex in the path is distinct, and
we say that a cycle is simple if each vertex in the cycle is distinct, except for the
first and last one. A directed path is a path such that all edges are directed and are
traversed along their direction. A directed cycle is similarly defined. For example,
in Figure 13.2, (BOS, NW 35, JFK, AA 1387, DFW) is in a directed simple path,
and (LAX, UA 120, ORD, UA 877, DFW, AA 49, LAX) is a directed simple cycle.
If a path P or cycle C is a simple graph, we may omit the edges in P or C, as these
are well defined, in which case P is a list of adjacent vertices and C is a cycle of
adjacent vertices.

i

i

“main” — 2011/1/13 — 9:10 — page 598 — #620
i

i

i

i

i

i

598 Chapter 13. Graph Algorithms

Example 13.9: Given a graph G representing a city map (see Example 13.3), we
can model a couple driving to dinner at a recommended restaurant as traversing a
path though G. If they know the way, and don’t accidentally go through the same
intersection twice, then they traverse a simple path in G. Likewise, we can model
the entire trip the couple takes, from their home to the restaurant and back, as a
cycle. If they go home from the restaurant in a completely different way than how
they went, not even going through the same intersection twice, then their entire
round trip is a simple cycle. Finally, if they travel along one-way streets for their
entire trip, we can model their night out as a directed cycle.

A subgraph of a graph G is a graph H whose vertices and edges are subsets
of the vertices and edges of G, respectively. For example, in the flight network of
Figure 13.2, vertices BOS, JFK, and MIA, and edges AA 903 and DL 247 form
a subgraph. A spanning subgraph of G is a subgraph of G that contains all the
vertices of the graph G. A graph is connected if, for any two vertices, there is a
path between them. If a graph G is not connected, its maximal connected subgraphs
are called the connected components of G. A forest is a graph without cycles. A
tree is a connected forest, that is, a connected graph without cycles. Note that this
definition of a tree is somewhat different from the one given in Chapter 7. Namely,
in the context of graphs, a tree has no root. Whenever there is ambiguity, the trees
of Chapter 7 should be referred to as rooted trees, while the trees of this chapter
should be referred to as free trees. The connected components of a forest are (free)
trees. A spanning tree of a graph is a spanning subgraph that is a (free) tree.

Example 13.10: Perhaps the most talked about graph today is the Internet, which
can be viewed as a graph whose vertices are computers and whose (undirected)
edges are communication connections between pairs of computers on the Inter-
net. The computers and the connections between them in a single domain, like
wiley.com, form a subgraph of the Internet. If this subgraph is connected, then two
users on computers in this domain can send e-mail to one another without having
their information packets ever leave their domain. Suppose the edges of this sub-
graph form a spanning tree. This implies that, if even a single connection goes
down (for example, because someone pulls a communication cable out of the back
of a computer in this domain), then this subgraph will no longer be connected.

There are a number of simple properties of trees, forests, and connected graphs.

Proposition 13.11: Let G be an undirected graph with n vertices and m edges.

• If G is connected, then m≥ n−1

• If G is a tree, then m = n−1

• If G is a forest, then m≤ n−1

i

i

“main” — 2011/1/13 — 9:10 — page 599 — #621
i

i

i

i

i

i

13.1. Graphs 599

13.1.1 The Graph ADT

In this section, we introduce a simplified graph abstract data type (ADT), which
is suitable for undirected graphs, that is, graphs whose edges are all undirected.
Additional functions for dealing with directed edges are discussed in Section 13.4.

As an abstract data type, a graph is a collection of elements that are stored at
the graph’s positions—its vertices and edges. Hence, we can store elements in a
graph at either its edges or its vertices (or both). The graph ADT defines two types,
Vertex and Edge. It also provides two list types for storing lists of vertices and
edges, called VertexList and EdgeList, respectively.

Each Vertex object u supports the following operations, which provide access
to the vertex’s element and information regarding incident edges and adjacent ver-
tices.

operator*(): Return the element associated with u.

incidentEdges(): Return an edge list of the edges incident on u.

isAdjacentTo(v): Test whether vertices u and v are adjacent.

Each Edge object e supports the following operations, which provide access
to the edge’s end vertices and information regarding the edge’s incidence relation-
ships.

operator*(): Return the element associated with e.

endVertices(): Return a vertex list containing e’s end vertices.

opposite(v): Return the end vertex of edge e distinct from vertex v; an
error occurs if e is not incident on v.

isAdjacentTo(f): Test whether edges e and f are adjacent.

isIncidentOn(v): Test whether e is incident on v.

Finally, the full graph ADT consists of the following operations, which provide
access to the lists of vertices and edges, and provide functions for modifying the
graph.

vertices(): Return a vertex list of all the vertices of the graph.

edges(): Return an edge list of all the edges of the graph.

insertVertex(x): Insert and return a new vertex storing element x.

insertEdge(v,w,x): Insert and return a new undirected edge with end vertices
v and w and storing element x.

eraseVertex(v): Remove vertex v and all its incident edges.

eraseEdge(e): Remove edge e.

i

i

“main” — 2011/1/13 — 9:10 — page 600 — #622
i

i

i

i

i

i

600 Chapter 13. Graph Algorithms

The VertexList and EdgeList classes support the standard list operations, as
described in Chapter 6. In particular, we assume that each provides an iterator
(Section 6.2.1), which we call VertexItor and EdgeItor, respectively. They also
provide functions begin and end, which return iterators to the beginning and end of
their respective lists.

13.2 Data Structures for Graphs

In this section, we discuss three popular ways of representing graphs, which are
usually referred to as the edge list structure, the adjacency list structure, and the
adjacency matrix. In all three representations, we use a collection to store the ver-
tices of the graph. Regarding the edges, there is a fundamental difference between
the first two structures and the latter. The edge list structure and the adjacency list
structure only store the edges actually present in the graph, while the adjacency
matrix stores a placeholder for every pair of vertices (whether there is an edge be-
tween them or not). As we will explain in this section, this difference implies that,
for a graph G with n vertices and m edges, an edge list or adjacency list representa-
tion uses O(n + m) space, whereas an adjacency matrix representation uses O(n2)
space.

13.2.1 The Edge List Structure

The edge list structure is possibly the simplest, though not the most efficient, rep-
resentation of a graph G. In this representation, a vertex v of G storing an element
x is explicitly represented by a vertex object. All such vertex objects are stored in
a collection V , such as a vector or node list. If V is a vector, for example, then we
naturally think of the vertices as being numbered.

Vertex Objects

The vertex object for a vertex v storing element x has member variables for:
• A copy of x
• The position (or entry) of the vertex-object in collection V

The distinguishing feature of the edge list structure is not how it represents vertices,
but the way in which it represents edges. In this structure, an edge e of G storing an
element x is explicitly represented by an edge object. The edge objects are stored
in a collection E , which would typically be a vector or node list.

Edge Objects

The edge object for an edge e storing element x has member variables for:

i

i

“main” — 2011/1/13 — 9:10 — page 601 — #623
i

i

i

i

i

i

13.2. Data Structures for Graphs 601

• A copy of x

• The vertex positions associated with the endpoint vertices of e

• The position (or entry) of the edge-object in collection E

Visualizing the Edge List Structure

We illustrate an example of the edge list structure for a graph G in Figure 13.3.

(a)

(b)

Figure 13.3: (a) A graph G. (b) Schematic representation of the edge list structure
for G. We visualize the elements stored in the vertex and edge objects with the
element names, instead of with actual references to the element objects.

The reason this structure is called the edge list structure is that the simplest and
most common implementation of the edge collection E is by using a list. Even so,
in order to be able to conveniently search for specific objects associated with edges,
we may wish to implement E with a dictionary (whose entries store the element as
the key and the edge as the value) in spite of our calling this the “edge list.” We
may also want to implement the collection V by using a dictionary for the same
reason. Still, in keeping with tradition, we call this structure the edge list structure.

The main feature of the edge list structure is that it provides direct access from
edges to the vertices they are incident upon. This allows us to define simple algo-
rithms for functions e.endVertices() and e.opposite(v).

i

i

“main” — 2011/1/13 — 9:10 — page 602 — #624
i

i

i

i

i

i

602 Chapter 13. Graph Algorithms

Performance of the Edge List Structure

One method that is inefficient for the edge list structure is that of accessing the
edges that are incident upon a vertex. Determining this set of vertices requires an
exhaustive inspection of all the edge objects in the collection E . That is, in order
to determine which edges are incident to a vertex v, we must examine all the edges
in the edge list and check, for each one, if it happens to be incident to v. Thus,
function v.incidentEdges() runs in time proportional to the number of edges in the
graph, not in time proportional to the degree of vertex v. In fact, even to check if
two vertices v and w are adjacent by the v.isAdjacentTo(w) function, requires that
we search the entire edge collection looking for an edge with end vertices v and w.
Moreover, since removing a vertex involves removing all of its incident edges,
function eraseVertex also requires a complete search of the edge collection E .

Table 13.1 summarizes the performance of the edge list structure implemen-
tation of a graph under the assumption that collections V and E are realized with
doubly linked lists (Section 3.3).

Operation Time
vertices O(n)

edges O(m)

endVertices, opposite O(1)

incidentEdges, isAdjacentTo O(m)

isIncidentOn O(1)

insertVertex, insertEdge, eraseEdge, O(1)

eraseVertex O(m)

Table 13.1: Running times of the functions of a graph implemented with the edge
list structure. The space used is O(n+m), where n is the number of vertices and m
is the number of edges.

Details for selected functions of the graph ADT are as follows:

• Methods vertices() and edges() are implemented by using the iterators for V
and E , respectively, to enumerate the elements of the lists.

• Methods incidentEdges and isAdjacentTo all take O(m) time, since to deter-
mine which edges are incident upon a vertex v we must inspect all edges.

• Since the collections V and E are lists implemented with a doubly linked list,
we can insert vertices, and insert and remove edges, in O(1) time.

• The update function eraseVertex(v) takes O(m) time, since it requires that
we inspect all the edges to find and remove those incident upon v.

Thus, the edge list representation is simple but has significant limitations.

i

i

“main” — 2011/1/13 — 9:10 — page 603 — #625
i

i

i

i

i

i

13.2. Data Structures for Graphs 603

13.2.2 The Adjacency List Structure

The adjacency list structure for a graph G adds extra information to the edge list
structure that supports direct access to the incident edges (and thus to the adjacent
vertices) of each vertex. This approach allows us to use the adjacency list structure
to implement several functions of the graph ADT much faster than what is possible
with the edge list structure, even though both of these two representations use an
amount of space proportional to the number of vertices and edges in the graph.
The adjacency list structure includes all the structural components of the edge list
structure plus the following:
• A vertex object v holds a reference to a collection I(v), called the incidence

collection of v, whose elements store references to the edges incident on v.
• The edge object for an edge e with end vertices v and w holds references to

the positions (or entries) associated with edge e in the incidence collections
I(v) and I(w).

Traditionally, the incidence collection I(v) for a vertex v is a list, which is why
we call this way of representing a graph the adjacency list structure. The adjacency
list structure provides direct access both from the edges to the vertices and from the
vertices to their incident edges. We illustrate the adjacency list structure of a graph
in Figure 13.4.

(a)

(b)

Figure 13.4: (a) A graph G. (b) Schematic representation of the adjacency list struc-
ture of G. As in Figure 13.3, we visualize the elements of collections with names.

i

i

“main” — 2011/1/13 — 9:10 — page 604 — #626
i

i

i

i

i

i

604 Chapter 13. Graph Algorithms

Performance of the Adjacency List Structure

All of the functions of the graph ADT that can be implemented with the edge list
structure in O(1) time can also be implemented in O(1) time with the adjacency
list structure, using essentially the same algorithms. In addition, being able to pro-
vide access between vertices and edges in both directions allows us to speed up the
performance of a number of graph functions by using an adjacency list structure
instead of an edge list structure. Table 13.2 summarizes the performance of the ad-
jacency list structure implementation of a graph, assuming that collections V and E
and the incidence collections of the vertices are all implemented with doubly linked
lists. For a vertex v, the space used by the incidence collection of v is proportional
to the degree of v, that is, it is O(deg(v)). Thus, by Proposition 13.6, the space used
by the adjacency list structure is O(n+ m).

Operation Time
vertices O(n)

edges O(m)

endVertices, opposite O(1)

v.incidentEdges() O(deg(v))
v.isAdjacentTo(w) O(min(deg(v),deg(w))

isIncidentOn O(1)

insertVertex, insertEdge, eraseEdge, O(1)

eraseVertex(v) O(deg(v))

Table 13.2: Running times of the functions of a graph implemented with the adja-
cency list structure. The space used is O(n+ m), where n is the number of vertices
and m is the number of edges.

In contrast to the edge-list way of doing things, the adjacency list structure
provides improved running times for the following functions:

• Methods vertices() and edges() are implemented by using the iterators for V
and E , respectively, to enumerate the elements of the lists.

• Method v.incidentEdges() takes time proportional to the number of incident
vertices of v, that is, O(deg(v)) time.

• Method v.isAdjacentTo(w) can be performed by inspecting either the inci-
dence collection of v or that of w. By choosing the smaller of the two, we get
O(min(deg(v),deg(w))) running time.

• Method eraseVertex(v) takes O(deg(v)) time.

i

i

“main” — 2011/1/13 — 9:10 — page 605 — #627
i

i

i

i

i

i

13.2. Data Structures for Graphs 605

13.2.3 The Adjacency Matrix Structure

Like the adjacency list structure, the adjacency matrix structure of a graph also ex-
tends the edge list structure with an additional component. In this case, we augment
the edge list with a matrix (a two-dimensional array) A that allows us to determine
adjacencies between pairs of vertices in constant time. In the adjacency matrix rep-
resentation, we think of the vertices as being the integers in the set {0,1, . . . ,n−1}
and the edges as being pairs of such integers. This allows us to store references to
edges in the cells of a two-dimensional n× n array A. Specifically, the adjacency
matrix representation extends the edge list structure as follows (see Figure 13.5):
• A vertex object v stores a distinct integer i in the range 0,1, . . . ,n−1, called

the index of v.
• We keep a two-dimensional n× n array A such that the cell A[i, j] holds a

reference to the edge (v,w), if it exists, where v is the vertex with index i and
w is the vertex with index j. If there is no such edge, then A[i, j] = null.

(a)

(b)

Figure 13.5: (a) A graph G without parallel edges. (b) Schematic representation of
the simplified adjacency matrix structure for G.

i

i

“main” — 2011/1/13 — 9:10 — page 606 — #628
i

i

i

i

i

i

606 Chapter 13. Graph Algorithms

Performance of the Adjacency Matrix Structure

For graphs with parallel edges, the adjacency matrix representation must be ex-
tended so that, instead of having A[i, j] storing a pointer to an associated edge (v,w),
it must store a pointer to an incidence collection I(v,w), which stores all the edges
from v to w. Since most of the graphs we consider are simple, we do not consider
this complication here.

The adjacency matrix A allows us to perform v.isAdjacentTo(w) in O(1) time.
This is done by accessing vertices v and w to determine their respective indices i
and j, and then testing whether A[i, j] is null. The efficiency of isAdjacentTo is
counteracted by an increase in space usage, however, which is now O(n2), and in
the running time of other functions. For example, function v.incidentEdges() now
requires that we examine an entire row or column of array A and thus runs in O(n)
time. Moreover, any vertex insertions or deletions now require creating a whole
new array A, of larger or smaller size, respectively, which takes O(n2) time.

Table 13.3 summarizes the performance of the adjacency matrix structure im-
plementation of a graph. From this table, we observe that the adjacency list struc-
ture is superior to the adjacency matrix in space, and is superior in time for all
functions except for the isAdjacentTo function.

Operation Time
vertices O(n)

edges O(n2)

endVertices, opposite O(1)

isAdjacentTo, isIncidentOn O(1)

incidentEdges O(n)

insertEdge, eraseEdge, O(1)

insertVertex, eraseVertex O(n2)

Table 13.3: Running times for a graph implemented with an adjacency matrix.

Historically, Boolean adjacency matrices were the first representations used
for graphs (so that A[i, j] = true if and only if (i, j) is an edge). We should not
find this fact surprising, however, for the adjacency matrix has a natural appeal
as a mathematical structure (for example, an undirected graph has a symmetric
adjacency matrix). The adjacency list structure came later, with its natural appeal
in computing due to its faster methods for most algorithms (many algorithms do
not use function isAdjacentTo) and its space efficiency.

Most of the graph algorithms we examine run efficiently when acting upon a
graph stored using the adjacency list representation. In some cases, however, a
trade-off occurs, where graphs with few edges are most efficiently processed with
an adjacency list structure, and graphs with many edges are most efficiently pro-
cessed with an adjacency matrix structure.

i

i

“main” — 2011/1/13 — 9:10 — page 607 — #629
i

i

i

i

i

i

13.3. Graph Traversals 607

13.3 Graph Traversals

Greek mythology tells of an elaborate labyrinth that was built to house the mon-
strous Minotaur, which was part bull and part man. This labyrinth was so complex
that neither beast nor human could escape it. No human, that is, until the Greek
hero, Theseus, with the help of the king’s daughter, Ariadne, decided to implement
a graph-traversal algorithm. Theseus fastened a ball of thread to the door of the
labyrinth and unwound it as he traversed the twisting passages in search of the mon-
ster. Theseus obviously knew about good algorithm design, because, after finding
and defeating the beast, Theseus easily followed the string back out of the labyrinth
to the loving arms of Ariadne. Formally, a traversal is a systematic procedure for
exploring a graph by examining all of its vertices and edges.

13.3.1 Depth-First Search

The first traversal algorithm we consider in this section is depth-first search (DFS)
in an undirected graph. Depth-first search is useful for testing a number of prop-
erties of graphs, including whether there is a path from one vertex to another and
whether or not a graph is connected.

Depth-first search in an undirected graph G is analogous to wandering in a
labyrinth with a string and a can of paint without getting lost. We begin at a specific
starting vertex s in G, which we initialize by fixing one end of our string to s and
painting s as “visited.” The vertex s is now our “current” vertex—call our current
vertex u. We then traverse G by considering an (arbitrary) edge (u,v) incident
to the current vertex u. If the edge (u,v) leads us to an already visited (that is,
painted) vertex v, we immediately return to vertex u. If, on the other hand, (u,v)
leads to an unvisited vertex v, then we unroll our string, and go to v. We then paint
v as “visited,” and make it the current vertex, repeating the computation above.
Eventually, we get to a “dead end,” that is, a current vertex u such that all the edges
incident on u lead to vertices already visited. Thus, taking any edge incident on
u causes us to return to u. To get out of this impasse, we roll our string back up,
backtracking along the edge that brought us to u, going back to a previously visited
vertex v. We then make v our current vertex and repeat the computation above for
any edges incident upon v that we have not looked at before. If all of v’s incident
edges lead to visited vertices, then we again roll up our string and backtrack to the
vertex we came from to get to v, and repeat the procedure at that vertex. Thus, we
continue to backtrack along the path that we have traced so far until we find a vertex
that has yet unexplored edges, take one such edge, and continue the traversal. The
process terminates when our backtracking leads us back to the start vertex s, and
there are no more unexplored edges incident on s.

i

i

“main” — 2011/1/13 — 9:10 — page 608 — #630
i

i

i

i

i

i

608 Chapter 13. Graph Algorithms

This simple process traverses all the edges of G. (See Figure 13.6.)

(a) (b)

(c) (d)

(e) (f)

Figure 13.6: Example of depth-first search traversal on a graph starting at vertex A.
Discovery edges are shown with solid lines and back edges are shown with dashed
lines: (a) input graph; (b) path of discovery edges traced from A until back edge
(B,A) is hit; (c) reaching F, which is a dead end; (d) after backtracking to C, resum-
ing with edge (C,G), and hitting another dead end, J; (e) after backtracking to G;
(f) after backtracking to N.

i

i

“main” — 2011/1/13 — 9:10 — page 609 — #631
i

i

i

i

i

i

13.3. Graph Traversals 609

Discovery Edges and Back Edges

We can visualize a DFS traversal by orienting the edges along the direction in which
they are explored during the traversal, distinguishing the edges used to discover
new vertices, called discovery edges, or tree edges, from those that lead to already
visited vertices, called back edges. (See Figure 13.6(f).) In the analogy above,
discovery edges are the edges where we unroll our string when we traverse them,
and back edges are the edges where we immediately return without unrolling any
string. As we will see, the discovery edges form a spanning tree of the connected
component of the starting vertex s. We call the edges not in this tree “back edges”
because, assuming that the tree is rooted at the start vertex, each such edge leads
back from a vertex in this tree to one of its ancestors in the tree.

The pseudo-code for a DFS traversal starting at a vertex v follows our analogy
with string and paint. We use recursion to implement the string analogy, and we
assume that we have a mechanism (the paint analogy) to determine if a vertex or
edge has been explored or not, and to label the edges as discovery edges or back
edges. This mechanism will require additional space and may affect the running
time of the algorithm. A pseudo-code description of the recursive DFS algorithm
is given in Code Fragment 13.1.

Algorithm DFS(G,v):
Input: A graph G and a vertex v of G
Output: A labeling of the edges in the connected component of v as discovery

edges and back edges

label v as visited
for all edges e in v.incidentEdges() do

if edge e is unvisited then
w← e.opposite(v)
if vertex w is unexplored then

label e as a discovery edge
recursively call DFS(G,w)

else
label e as a back edge

Code Fragment 13.1: The DFS algorithm.

There are a number of observations that we can make about the depth-first
search algorithm, many of which derive from the way the DFS algorithm partitions
the edges of the undirected graph G into two groups, the discovery edges and the
back edges. For example, since back edges always connect a vertex v to a pre-
viously visited vertex u, each back edge implies a cycle in G, consisting of the
discovery edges from u to v plus the back edge (u,v).

i

i

“main” — 2011/1/13 — 9:10 — page 610 — #632
i

i

i

i

i

i

610 Chapter 13. Graph Algorithms

Proposition 13.12: Let G be an undirected graph on which a DFS traversal start-
ing at a vertex s has been performed. Then the traversal visits all vertices in the
connected component of s, and the discovery edges form a spanning tree of the
connected component of s.

Justification: Suppose there is at least one vertex v in s’s connected component
not visited, and let w be the first unvisited vertex on some path from s to v (we may
have v = w). Since w is the first unvisited vertex on this path, it has a neighbor u
that was visited. But when we visited u, we must have considered the edge (u,w);
hence, it cannot be correct that w is unvisited. Therefore, there are no unvisited
vertices in s’s connected component.

Since we only mark edges when we go to unvisited vertices, we will never form
a cycle with discovery edges, that is, discovery edges form a tree. Moreover, this
is a spanning tree because, as we have just seen, the depth-first search visits each
vertex in the connected component of s.

In terms of its running time, depth-first search is an efficient method for travers-
ing a graph. Note that DFS is called exactly once on each vertex, and that every
edge is examined exactly twice, once from each of its end vertices. Thus, if ns

vertices and ms edges are in the connected component of vertex s, a DFS starting at
s runs in O(ns + ms) time, provided the following conditions are satisfied:

• The graph is represented by a data structure such that creating and iterat-
ing through the list generated by v.incidentEdges() takes O(degree(v)) time,
and e.opposite(v) takes O(1) time. The adjacency list structure is one such
structure, but the adjacency matrix structure is not.

• We have a way to “mark” a vertex or edge as explored, and to test if a vertex
or edge has been explored in O(1) time. We discuss ways of implementing
DFS to achieve this goal in the next section.

Given the assumptions above, we can solve a number of interesting problems.

Proposition 13.13: Let G be a graph with n vertices and m edges represented
with an adjacency list. A DFS traversal of G can be performed in O(n + m) time,
and can be used to solve the following problems in O(n+ m) time:

• Testing whether G is connected

• Computing a spanning tree of G, if G is connected

• Computing the connected components of G

• Computing a path between two given vertices of G, if it exists

• Computing a cycle in G, or reporting that G has no cycles

The justification of Proposition 13.13 is based on algorithms that use slightly
modified versions of the DFS algorithm as subroutines.

i

i

“main” — 2011/1/13 — 9:10 — page 611 — #633
i

i

i

i

i

i

13.3. Graph Traversals 611

13.3.2 Implementing Depth-First Search

As we have mentioned above, the data structure we use to represent a graph impacts
the performance of the DFS algorithm. For example, an adjacency list can be used
to yield a running time of O(n + m) for traversing a graph with n vertices and m
edges. Using an adjacency matrix, on the other hand, would result in a running time
of O(n2), since each of the n calls to the incidentEdges function would take O(n)
time. If the graph is dense, that is, it has close to O(n2) edges, then the difference
between these two choices is minor, as they both would run in O(n2) time. But if
the graph is sparse, that is, it has close to O(n) edges, then the adjacency matrix
approach would be much slower than the adjacency list approach.

Another important implementation detail deals with the way vertices and edges
are represented. In particular, we need to have a way of marking vertices and edges
as visited or not. There are two simple solutions, but each has drawbacks.

• We can build our vertex and edge objects to contain a visited field, which can
be used by the DFS algorithm for marking. This approach is quite simple,
and supports constant-time marking and unmarking, but it assumes that we
are designing our graph with DFS in mind, which will not always be valid.
Furthermore, this approach needlessly restricts DFS to graphs with vertices
having a visited field. Thus, if we want a generic DFS algorithm that can take
any graph as input, this approach has limitations.

• We can use an auxiliary hash table to store all the explored vertices and edges
during the DFS algorithm. This scheme is general, in that it does not re-
quire any special fields in the positions of the graph. But this approach does
not achieve worst-case constant time for marking and unmarking of vertices
edges. Instead, such a hash table only supports the mark (insert) and test
(find) operations in constant expected time (see Section 9.2).

Fortunately, there is a middle ground between these two extremes.

The Decorator Pattern

Marking the explored vertices in a DFS traversal is an example of the decorator
software engineering design pattern. This pattern is used to add decorations (also
called attributes) to existing objects. Each decoration is identified by a key iden-
tifying this decoration and by a value associated with the key. The use of decora-
tions is motivated by the need of some algorithms and data structures to add extra
variables, or temporary scratch data, to objects that do not normally have such vari-
ables. Hence, a decoration is a key-value pair that can be dynamically attached to
an object. In our DFS example, we would like to have “decorable” vertices and
edges with a visited decoration and a Boolean value.

i

i

“main” — 2011/1/13 — 9:10 — page 612 — #634
i

i

i

i

i

i

612 Chapter 13. Graph Algorithms

Making Graph Vertices Decorable

We can realize the decorator pattern for any position by allowing it to be decorated.
This allows us to add labels to vertices and edges, without requiring that we know
in advance the kinds of labels that we will need. We say that an object is decorable
if it supports the following functions:

set(a,x): Set the value of attribute a to x.

get(a): Return the value of attribute a.
We assume that Vertex and Edge objects of our graph ADT are decorable,

where attribute keys are strings and attribute values are pointers to a generic ob-
ject class, called Object.

As an example of how this works, suppose that we want to mark vertices as
being either visited or not visited by a search procedure. To implement this, we
could create two new instances of the Object class, and store pointers to these
objects in two variables, say yes and no. The values of these objects are unimportant
to us—all we require is the ability to distinguish between them. Let v be an object
of type Decorator. To indicate that v is visited we invoke v.set("visited",yes)
and to indicate that it was not visited we invoke v.set("visited",no). In order to
test the value of this decorator, we invoke v.get("visited") and test to see whether
the result is yes or no. This is shown in the following code fragment.

Object* yes = new Object; // decorator values
Object* no = new Object;
Decorator v; // a decorable object
// . . .
v.set("visited", yes); // set “visited” attribute
// . . .
if (v.get("visited") == yes) cout << "v was visited";
else cout << "v was not visited";

In Code Fragment 13.2, we present a C++ implementation of class Decorator.
It works by creating an STL map (Section 9.1.3), whose keys are strings and whose
values are of type Object*.

class Decorator {
private: // member data

std::map<string,Object*> map; // the map
public:

Object* get(const string& a) // get value of attribute
{ return map[a]; }

void set(const string& a, Object* d) // set value
{ map[a] = d; }

};
Code Fragment 13.2: A C++ implementation of class Decorator.

i

i

“main” — 2011/1/13 — 9:10 — page 613 — #635
i

i

i

i

i

i

13.3. Graph Traversals 613

DFS Traversal using Decorable Positions

Using decorable positions, the complete DFS traversal algorithm can be described
in more detail, as shown in Code Fragment 13.3. We create an attribute named
“status” in which to record the status information about vertices and edges. This
attribute may take on one of four possible values: unvisited, visited, discovery, and
back. Initially, all attribute values are assumed to have been set to unvisited. On
termination, edges will be labeled as discovery or back, depending on whether they
are discovery edges or back edges.

Algorithm DFS(G,v):
Input: A graph G with decorable vertices and edges, a vertex v of G, such that

all vertices and edges have been decorated with the status value of unvisited
Output: A decoration of the vertices of the connected component of v with the

value visited and of the edges in the connected component of v with values
discovery and back, according to a depth-first search traversal of G

v.set("status",visited)
for all edges e in v.incidentEdges() do

if e.get("status") = unvisited then
w← e.opposite(v)
if w.get("status") = unvisited then

e.set("status",discovered)
DFS(G,w)

else
e.set("status",back)

Code Fragment 13.3: DFS on a graph with decorable edges and vertices.

13.3.3 A Generic DFS Implementation in C++

In this section, we present a C++ implementation of a generic depth-first search
traversal by means of a class, called DFS. This class defines a recursive member
function, dfsTraversal(v), which performs a DFS traversal of the graph starting at
vertex v. The behavior of the traversal function can be specialized for a particular
application by redefining a number of functions, which are invoked in response to
various events that arise in the traversal.

We assume that the vertices and edges are decorable positions and use decora-
tions to determine whether vertices and edges have been visited. The generic DFS
class contains the following virtual functions, which may be overridden by concrete
subclasses to affect a desired behavior:
• startVisit(v): called at the start of the visit of v

i

i

“main” — 2011/1/13 — 9:10 — page 614 — #636
i

i

i

i

i

i

614 Chapter 13. Graph Algorithms

• traverseDiscovery(e,v): called when a discovery edge e out of v is traversed
• traverseBack(e,v): called when a back edge e out of v is traversed
• isDone(): called to determine whether to end the traversal early
• finishVisit(v): called when we are finished exploring from v

The class DFS is presented in Code Fragment 13.4. The class is templated
with the graph type G. It begins with a number of convenience type definitions to
allow us to access elements of the underlying graph type more succinctly. We have
omitted some of the type definitions, such as VertexList, EdgeList, VertexItor, and
EdgeItor. This is followed by the member data of the class, which consists of a
reference to the graph, the vertex at which the depth-first traversal begins, and two
decorator objects yes and no, which will be used in decorating vertices and edges.
Their actual values are irrelevant, as long as we can distinguish one from the other.

template <typename G>
class DFS { // generic DFS
protected: // local types

typedef typename G::Vertex Vertex; // vertex position
typedef typename G::Edge Edge; // edge position
// . . .insert other typename shortcuts here

protected: // member data
const G& graph; // the graph
Vertex start; // start vertex
Object *yes, *no; // decorator values

protected: // member functions
DFS(const G& g); // constructor
void initialize(); // initialize a new DFS
void dfsTraversal(const Vertex& v); // recursive DFS utility

// overridden functions
virtual void startVisit(const Vertex& v) {} // arrived at v

// discovery edge e
virtual void traverseDiscovery(const Edge& e, const Vertex& from) {}

// back edge e
virtual void traverseBack(const Edge& e, const Vertex& from) {}
virtual void finishVisit(const Vertex& v) {} // finished with v
virtual bool isDone() const { return false; } // finished?
// . . .insert marking utilities here
};

Code Fragment 13.4: A generic implementation of depth-first search.

The class’s member functions are all protected. They are invoked only by public
members of the derived subclasses. These member functions include a constructor,
an initialization function, and the generic DFS traversal function. There are a num-
ber of virtual functions corresponding to each of the above operations, which are
overridden by subclasses of class DFS.

i

i

“main” — 2011/1/13 — 9:10 — page 615 — #637
i

i

i

i

i

i

13.3. Graph Traversals 615

We specify whether vertices and edges have been visited during the traversal
through calls to the marking utility functions visit, unvisit, and isVisited, which are
shown in Code Fragment 13.5.

protected: // marking utilities
void visit(const Vertex& v) { v.set("visited", yes); }
void visit(const Edge& e) { e.set("visited", yes); }
void unvisit(const Vertex& v) { v.set("visited", no); }
void unvisit(const Edge& e) { e.set("visited", no); }
bool isVisited(const Vertex& v) { return v.get("visited") == yes; }
bool isVisited(const Edge& e) { return e.get("visited") == yes; }

Code Fragment 13.5: Vertex and edge marking utilities, which are part of DFS.

In Code Fragment 13.6, we present the class constructor and a function that
performs initializations before the DFS traversal is performed. (We present the
external member functions using the condensed notation, which we introduced in
Section 9.2.7.) The constructor initializes the graph reference and allocates the
generic objects yes and no, which are used by the marking utilities. (Eventually,
these are deallocated by the class destructor, which we have omitted.) The initial-
ization function marks all vertices and edges as “unvisited.”

/* DFS〈G〉 :: */ // constructor
DFS(const G& g)

: graph(g), yes(new Object), no(new Object) {}

/* DFS〈G〉 :: */ // initialize a new DFS
void initialize() {

VertexList verts = graph.vertices();
for (VertexItor pv = verts.begin(); pv != verts.end(); ++pv)

unvisit(*pv); // mark vertices unvisited
EdgeList edges = graph.edges();
for (EdgeItor pe = edges.begin(); pe != edges.end(); ++pe)

unvisit(*pe); // mark edges unvisited
}

Code Fragment 13.6: The class constructor for DFS and the initialization function.

The recursive DFS traversal function is presented in Code Fragment 13.7. The
function follows the same structure as presented in Code Fragment 13.3. Note,
however, the introduction of calls to the virtual functions startVisit, isDone, tra-
verseDiscovery, traverseBack, and finishVisit. These have not yet been specified,
but their definitions determine the concrete behavior of the traversal process.

i

i

“main” — 2011/1/13 — 9:10 — page 616 — #638
i

i

i

i

i

i

616 Chapter 13. Graph Algorithms

/* DFS〈G〉 :: */ // recursive traversal
void dfsTraversal(const Vertex& v) {

startVisit(v); visit(v); // visit v and mark visited
EdgeList incident = v.incidentEdges();
EdgeItor pe = incident.begin();
while (!isDone() && pe != incident.end()) { // visit v’s incident edges

Edge e = *pe++;
if (!isVisited(e)) { // discovery edge?

visit(e); // mark it visited
Vertex w = e.opposite(v); // get opposing vertex
if (!isVisited(w)) { // unexplored?

traverseDiscovery(e, v); // let’s discover it
if (!isDone()) dfsTraversal(w); // continue traversal
}
else traverseBack(e, v); // process back edge
}
}
if (!isDone()) finishVisit(v); // finished with v
}

Code Fragment 13.7: The function dfsTraversal, which implements a generic DFS
traversal.

Using the Template Method Pattern for DFS

In the remainder of this section, we illustrate a number of concrete applications of
our generic DFS traversal. In order to do anything interesting, we must extend DFS
and redefine some of its auxiliary functions. This is an example of the template
method pattern (see Section 7.3.7), in which a generic computation mechanism is
specialized by providing concrete implementations of certain generic steps.

Our first example is the class Components, which counts the number of con-
nected components of a graph. The class is presented in Code Fragment 13.8.
Observe that this class is derived from DFS, and so inherits its members. The
Components class contains a single data member, which is a counter nComponents
of the number of connected components it has encountered.

template <typename G>
class Components : public DFS<G> { // count components
private:

int nComponents; // num of components
public:

Components(const G& g): DFS<G>(g) {} // constructor
int operator()(); // count components
};

Code Fragment 13.8: The class Components, which extends the DFS class in order
to count the number of components of a graph by overloading the “()” operator.

i

i

“main” — 2011/1/13 — 9:10 — page 617 — #639
i

i

i

i

i

i

13.3. Graph Traversals 617

The class provides a simple constructor, which simply invokes the constructor
for the base class by passing it the graph. In order to define the component counting
function, we have overloaded the “()” operator. This overloaded function returns
the number of components. This means that, given a graph G, we can declare a
Components objects and invoke it as follows:

Components components(G); // declare a Components object
int nc = components(); // compute the number of components

The function that computes the number of connected components is shown in
Code Fragment 13.9. After initializing (by invoking the DFS member function ini-
tialize and setting the component counter to zero), it iterates through the vertices of
the graph. Whenever it finds an unvisited vertex, it invokes the DFS traversal on this
vertex and increments the component counter. The DFS traversal returns only af-
ter every vertex of this connected component has been visited (Proposition 13.12).
Therefore, any unvisited vertex must lie in a different component. By repeating this
on every unvisited vertex, eventually every connected component will be found and
counted.

/* Components〈G〉 :: */ // count components
int operator()() {

initialize(); // initialize DFS
nComponents = 0; // init vertex count
VertexList verts = graph.vertices();
for (VertexItor pv = verts.begin(); pv != verts.end(); ++pv) {

if (!isVisited(*pv)) { // not yet visited?
dfsTraversal(*pv); // visit
nComponents++; // one more component
}
}
return nComponents;
}

Code Fragment 13.9: The overloaded () operator for class Components, which
computes the number of connected components of a graph.

Our next example is class FindPath, which finds a path between a given source
vertex and target vertex. The class is presented in Code Fragment 13.10. The class’s
member data consists of the vertex list forming the path (path), the target vertex
(target), and a boolean variable indicating whether the search is complete (done).
Like before, the principal path finding function has been defined by overloading
the “()” operator. This function is given the source vertex s and target vertex t, and
returns the path as a list of vertices from s to t. If there is no such path, an empty
list is returned. Also like before, to use this class, we first create a new FindPath
object, say findPath, and then we invoke findPath(s, t), for the desired source vertex
s and target vertex t.

i

i

“main” — 2011/1/13 — 9:10 — page 618 — #640
i

i

i

i

i

i

618 Chapter 13. Graph Algorithms

template <typename G>
class FindPath : public DFS<G> { // find a path by DFS
private: // local data

VertexList path; // the path
Vertex target; // the target vertex
bool done; // is target found?

protected: // overridden functions
void startVisit(const Vertex& v); // visit vertex
void finishVisit(const Vertex& v); // finished with vertex
bool isDone() const; // done yet?

public:
FindPath(const G& g) : DFS<G>(g) {} // constructor

// find path from s to t
VertexList operator()(const Vertex& s, const Vertex& t);
};

Code Fragment 13.10: The class FindPath, which extends the DFS class in order to
compute a path from source vertex s to target vertex t.

The path function is presented in Code Fragment 13.11. After initializing
search and the member data, it invokes the recursive DFS traversal. On termination,
the vertex list containing the path is returned.

/* FindPath〈G〉 :: */ // find path from s to t
VertexList operator()(const Vertex& s, const Vertex& t) {

initialize(); // initialize DFS
path.clear(); // clear the path
target = t; // save the target
done = false;
dfsTraversal(s); // traverse starting at s
return path; // return the path
}

Code Fragment 13.11: The overloaded () operator for class FindPath, which returns
a path from s to t.

The approach is to perform a depth-first search traversal beginning at the source
vertex. We maintain the path of discovery edges from the source to the current
vertex. When we encounter an unexplored vertex, we add it to the end of the path.
This is processed by overriding the function startVisit. When we finish processing
a vertex, we remove it from the path. This is done by overriding function finishVisit.
Thus, at any point, the vertex list consists of vertices along the path of the DFS tree
from the source to the current vertex. The traversal is terminated when the target
vertex is encountered. This is done by setting the boolean flag done. We override
the function isDone to check for this event. These overridden functions are shown
in Code Fragment 13.12.

i

i

“main” — 2011/1/13 — 9:10 — page 619 — #641
i

i

i

i

i

i

13.3. Graph Traversals 619

/* FindPath〈G〉 :: */ // visit vertex
void startVisit(const Vertex& v) {

path.push back(v); // insert into path
if (v == target) done = true; // reached target vertex
}

/* FindPath〈G〉 :: */ // finished with vertex
void finishVisit(const Vertex& v)
{ if (!done) path.pop back(); } // remove last vertex

/* FindPath〈G〉 :: */ // done yet?
bool isDone() const
{ return done; }

Code Fragment 13.12: The overridden functions used by class FindPath.

Our final example is class FindCycle, which finds a cycle in the connected
component of a given start vertex s. (The cycle need not contain s.) The class is
given in Code Fragment 13.13. Its member data consists of the edge list containing
the cycle (cycle), the first vertex of the cycle (cycleStart), and a boolean variable
that indicates whether the search is complete (done). The cycle function is given by
overloading the “()” operator and passing in the start vertex s. It returns the cycle
as a list of edges. If there is no such cycle, an empty list is returned.

template <typename G>
class FindCycle : public DFS<G> {
private: // local data

EdgeList cycle; // cycle storage
Vertex cycleStart; // start of cycle
bool done; // cycle detected?

protected: // overridden functions
void traverseDiscovery(const Edge& e, const Vertex& from);
void traverseBack(const Edge& e, const Vertex& from);
void finishVisit(const Vertex& v); // finished with vertex
bool isDone() const; // done yet?

public:
FindCycle(const G& g) : DFS<G>(g) {} // constructor
EdgeList operator()(const Vertex& s); // find a cycle
};

Code Fragment 13.13: The class FindCycle, which extends the DFS class in order
to compute a cycle in the connected component of a given start vertex s.

The cycle finding function is presented in Code Fragment 13.14. After initial-
izing search and the member data, it invokes the recursive DFS traversal. As we
show below, upon termination, the edge list consists of an initial prefix of edges
from s to the vertex cycleStart, followed by the edges of the cycle. We traverse the
edges of the cycle and remove each until reaching the first edge that is incident to
cycleStart.

i

i

“main” — 2011/1/13 — 9:10 — page 620 — #642
i

i

i

i

i

i

620 Chapter 13. Graph Algorithms

/* FindCycle〈G〉 :: */ // find a cycle
EdgeList operator()(const Vertex& s) {

initialize(); // initialize DFS
cycle = EdgeList(); done = false; // initialize members
dfsTraversal(s); // do the search
if (!cycle.empty() && s != cycleStart) { // found a cycle?

EdgeItor pe = cycle.begin();
while (pe != cycle.end()) { // search for prefix

if ((pe++)−>isIncidentOn(cycleStart)) break; // last edge of prefix?
}
cycle.erase(cycle.begin(), pe); // remove prefix
}
return cycle; // return the cycle
}

Code Fragment 13.14: The function of class FindCycle, which computes the cycle.

Our approach is based on performing a DFS traversal and storing the discovery
edges in the edge list. As shown in Code Fragment 13.15, in traverseDiscovery,
we push the current edge onto the edge list. In the function traverseBack, when we
encounter a back edge we complete a cycle and set the boolean flag done to true
to indicate that the cycle has been detected. We also set the variable cycleStart to
the vertex on the opposite side of the back edge. When backing out of a vertex,
as shown in the function finishVisit, we pop the most recent edge off the edge list,
unless the cycle has been found.

/* FindCycle〈G〉 :: */ // discovery edge e
void traverseDiscovery(const Edge& e, const Vertex& from)
{ if (!done) cycle.push back(e); } // add edge to list

/* FindCycle〈G〉 :: */ // back edge e
void traverseBack(const Edge& e, const Vertex& from) {

if (!done) { // no cycle yet?
done = true; // cycle now detected
cycle.push back(e); // insert final edge
cycleStart = e.opposite(from); // save starting vertex
}
}

/* FindCycle〈G〉 :: */ // finished with vertex
void finishVisit(const Vertex& v) {

if (!cycle.empty() && !done) // not building a cycle?
cycle.pop back(); // remove this edge

}
/* FindCycle〈G〉 :: */ // done yet?

bool isDone() const
{ return done; }

Code Fragment 13.15: The overridden functions used by class FindCycle.

i

i

“main” — 2011/1/13 — 9:10 — page 621 — #643
i

i

i

i

i

i

13.3. Graph Traversals 621

13.3.4 Polymorphic Objects and Decorator Values ⋆

Programming decorations that support multiple value types poses an interesting
problem in C++. To illustrate the problem, let us suppose that we wish to implement
an algorithm that associates a string with a persons name and an integer containing
the persons current age with each vertex of a social network. Given a vertex v, we
would like to associate it with two decorators, one for name and one for age.

v.set("name", "Bob");
v.set("age", 23);

C++’s strong type checking does not allow this, however, since we must specify the
type of the attribute value, either string or int, but not both.

To solve this problem, we create a polymorphic value type (Section 2.2.2). We
define a generic class, called Object, and we derive subclasses from this. Each
subclass is specialized to store a single value of a particular type, for example,
bool, char, int, or string. To make this more concrete, let us consider a simple
example for just two types, int and string. It is straightforward to generalize this to
other types, even user-defined types.

Our generic Object class is shown in Code Fragment 13.16. It has no data
members, but it supports two member functions, intValue and stringValue. The
first returns the value from an integer subclass and the second returns the value
from a string subclass. An attempt to extract a string value from an integer object
or an integer value from a string argument results in an exception being thrown.

class Object { // generic object
public:

int intValue() const throw(BadCast);
string stringValue() const throw(BadCast);
};

Code Fragment 13.16: A generic class, called Object, for storing a polymorphic
object of type int or string.

Next, we derive two concrete subclasses from Object. The first, called Integer,
stores a single integer, and the second, called String, stores a single STL string.
These are shown in Code Fragment 13.17. In addition to a simple constructor, they
each provide a member function getValue, which returns the stored value.

Finally, we define the member functions intValue and stringValue of class Ob-
ject. We show only intValue in Code Fragment 13.18 (stringValue is analogous).
This function assumes that the underlying object is a pointer to an Integer. It at-
tempts to dynamically cast itself to an Integer pointer. If successful, it returns the
resulting integer value. If not, an exception is thrown.

i

i

“main” — 2011/1/13 — 9:10 — page 622 — #644
i

i

i

i

i

i

622 Chapter 13. Graph Algorithms

class Integer : public Object {
private:

int value;
public:

Integer(int v = 0) : value(v) { }
int getValue() const

{ return value; }
};

class String : public Object {
private:

string value;
public:

String(string v = "") : value(v) { }
string getValue() const

{ return value; }
};

Code Fragment 13.17: Concrete subclasses, Integer and String, for storing a single
integer and a single string, respectively.

int Object::intValue() const throw(BadCast) { // cast to Integer
const Integer* p = dynamic cast<const Integer*>(this);
if (p == NULL) throw BadCast("Illegal attempt to cast to Integer");
return p−>getValue();
}

Code Fragment 13.18: The member function intValue of class Object, which re-
turns the underlying integer value.

To show how to apply this useful polymorphic object, let us return to our earlier
example. Recall that v is a vertex to which we want to assign two attributes, a name
and an age. We create new entities, the first of type String and the second of type
Integer. We initialize each with the desired value. Because these are subclasses of
Object, we may store these entities as decorators as shown in Code Fragment 13.19.

Decorator v; // a decorable object
v.set("name", new String("Bob")); // store name as “Bob”
v.set("age", new Integer(23)); // store age as 23
// . . .
string n = v.get("name")−>stringValue(); // n = “Bob”
int a = v.get("age")−>intValue(); // a = 23

Code Fragment 13.19: Example use of Object with a polymorphic dictionary.

When we extract the values of these decorators, we make use of the fact that we
know that the name is a string, and the age is an integer. Thus, we may apply the
appropriate function, stringValue or intValue, to extract the desired attribute value.
This example shows the usefulness of polymorphic behavior of objects in C++.

i

i

“main” — 2011/1/13 — 9:10 — page 623 — #645
i

i

i

i

i

i

13.3. Graph Traversals 623

13.3.5 Breadth-First Search

In this section, we consider a different traversal algorithm, called breadth-first
search (BFS). Like DFS, BFS traverses a connected component of a graph, and
in so doing it defines a useful spanning tree. BFS is less “adventurous” than DFS,
however. Instead of wandering the graph, BFS proceeds in rounds and subdivides
the vertices into levels. BFS can also be thought of as a traversal using a string and
paint, with BFS unrolling the string in a more conservative manner.

BFS starts at vertex s, which is at level 0 and defines the “anchor” for our string.
In the first round, we let out the string the length of one edge and we visit all the
vertices we can reach without unrolling the string any farther. In this case, we visit,
and paint as “visited,” the vertices adjacent to the start vertex s—these vertices are
placed into level 1. In the second round, we unroll the string the length of two
edges and we visit all the new vertices we can reach without unrolling our string
any farther. These new vertices, which are adjacent to level 1 vertices and not
previously assigned to a level, are placed into level 2, and so on. The BFS traversal
terminates when every vertex has been visited.

Pseudo-code for a BFS starting at a vertex s is shown in Code Fragment 13.20.
We use auxiliary space to label edges, mark visited vertices, and store collections
associated with levels. That is, the collections L0, L1, L2, and so on, store the
vertices that are in level 0, level 1, level 2, and so on. These collections could, for
example, be implemented as queues. They also allow BFS to be nonrecursive.

Algorithm BFS(s):

initialize collection L0 to contain vertex s
i← 0
while Li is not empty do

create collection Li+1 to initially be empty
for all vertices v in Li do

for all edges e in v.incidentEdges() do
if edge e is unexplored then

w← e.opposite(v)
if vertex w is unexplored then

label e as a discovery edge
insert w into Li+1

else
label e as a cross edge

i← i+ 1
Code Fragment 13.20: The BFS algorithm.

We illustrate a BFS traversal in Figure 13.7.

i

i

“main” — 2011/1/13 — 9:10 — page 624 — #646
i

i

i

i

i

i

624 Chapter 13. Graph Algorithms

(a) (b)

(c) (d)

(e) (f)

Figure 13.7: Example of breadth-first search traversal, where the edges incident
on a vertex are explored by the alphabetical order of the adjacent vertices. The
discovery edges are shown with solid lines and the cross edges are shown with
dashed lines: (a) graph before the traversal; (b) discovery of level 1; (c) discovery
of level 2; (d) discovery of level 3; (e) discovery of level 4; (f) discovery of level 5.

i

i

“main” — 2011/1/13 — 9:10 — page 625 — #647
i

i

i

i

i

i

13.3. Graph Traversals 625

One of the nice properties of the BFS approach is that, in performing the BFS
traversal, we can label each vertex by the length of a shortest path (in terms of the
number of edges) from the start vertex s. In particular, if vertex v is placed into
level i by a BFS starting at vertex s, then the length of a shortest path from s to v
is i.

As with DFS, we can visualize the BFS traversal by orienting the edges along
the direction in which they are explored during the traversal, and by distinguishing
the edges used to discover new vertices, called discovery edges, from those that
lead to already visited vertices, called cross edges. (See Figure 13.7(f).) As with
the DFS, the discovery edges form a spanning tree, which in this case we call the
BFS tree. We do not call the nontree edges “back edges” in this case, however,
because none of them connects a vertex to one of its ancestors. Every nontree edge
connects a vertex v to another vertex that is neither v’s ancestor nor its descendent.

The BFS traversal algorithm has a number of interesting properties, some of
which we explore in the proposition that follows.

Proposition 13.14: Let G be an undirected graph on which a BFS traversal start-
ing at vertex s has been performed. Then

• The traversal visits all vertices in the connected component of s

• The discovery-edges form a spanning tree T , which we call the BFS tree, of
the connected component of s

• For each vertex v at level i, the path of the BFS tree T between s and v has i
edges, and any other path of G between s and v has at least i edges

• If (u,v) is an edge that is not in the BFS tree, then the level numbers of u and
v differ by at most 1

We leave the justification of this proposition as an exercise (Exercise C-13.13).
The analysis of the running time of BFS is similar to the one of DFS, which implies
the following.

Proposition 13.15: Let G be a graph with n vertices and m edges represented
with the adjacency list structure. A BFS traversal of G takes O(n+ m) time. Also,
there exist O(n+ m)-time algorithms based on BFS for the following problems:

• Testing whether G is connected

• Computing a spanning tree of G, if G is connected

• Computing the connected components of G

• Given a start vertex s of G, computing, for every vertex v of G, a path with
the minimum number of edges between s and v, or reporting that no such
path exists

• Computing a cycle in G, or reporting that G has no cycles

i

i

“main” — 2011/1/13 — 9:10 — page 626 — #648
i

i

i

i

i

i

626 Chapter 13. Graph Algorithms

13.4 Directed Graphs

In this section, we consider issues that are specific to directed graphs. Recall that a
directed graph (digraph), is a graph whose edges are all directed.

Methods Dealing with Directed Edges

In order to allow some or all the edges in a graph to be directed, we add the follow-
ing functions to the graph ADT.

e.isDirected(): Test whether edge e is directed.

e.origin(): Return the origin vertex of edge e.

e.dest(): Return the destination vertex of edge e.

insertDirectedEdge(v,w,x): Insert and return a new directed edge with origin v and
destination w and storing element x.

Also, if an edge e is directed, the function e.endVertices() should return a vertex list
whose first element is the origin of e, and whose second element is the destination
of e. The running time for the functions e.isDirected(), e.origin(), and e.dest()
should be O(1), and the running time of the function insertDirectedEdge(v,w,x)
should match that of undirected edge insertion.

Reachability

One of the most fundamental issues with directed graphs is the notion of reacha-
bility, which deals with determining which vertices can be reached by a path in a
directed graph. A traversal in a directed graph always goes along directed paths,
that is, paths where all the edges are traversed according to their respective direc-
tions. Given vertices u and v of a digraph G, we say that u reaches v (and v is
reachable from u) if G has a directed path from u to v. We also say that a vertex v
reaches an edge (w,z) if v reaches the origin vertex w of the edge.

A digraph G is strongly connected if for any two vertices u and v of G, u reaches
v and v reaches u. A directed cycle of G is a cycle where all the edges are traversed
according to their respective directions. (Note that G may have a cycle consisting
of two edges with opposite direction between the same pair of vertices.) A digraph
G is acyclic if it has no directed cycles. (See Figure 13.8 for some examples.)

The transitive closure of a digraph G is the digraph G∗ such that the vertices of
G∗ are the same as the vertices of G, and G∗ has an edge (u,v), whenever G has a
directed path from u to v. That is, we define G∗ by starting with the digraph G and
adding in an extra edge (u,v) for each u and v such that v is reachable from u (and
there isn’t already an edge (u,v) in G).

i

i

“main” — 2011/1/13 — 9:10 — page 627 — #649
i

i

i

i

i

i

13.4. Directed Graphs 627

(a) (b)

(c) (d)

Figure 13.8: Examples of reachability in a digraph: (a) a directed path from BOS
to LAX is drawn in blue; (b) a directed cycle (ORD, MIA, DFW, LAX, ORD) is
shown in blue; its vertices induce a strongly connected subgraph; (c) the subgraph
of the vertices and edges reachable from ORD is shown in blue; (d) removing the
dashed blue edges gives an acyclic digraph.

Interesting problems that deal with reachability in a digraph G include the fol-
lowing:

• Given vertices u and v, determine whether u reaches v

• Find all the vertices of G that are reachable from a given vertex s

• Determine whether G is strongly connected

• Determine whether G is acyclic

• Compute the transitive closure G∗ of G

In the remainder of this section, we explore some efficient algorithms for solv-
ing these problems.

i

i

“main” — 2011/1/13 — 9:10 — page 628 — #650
i

i

i

i

i

i

628 Chapter 13. Graph Algorithms

13.4.1 Traversing a Digraph

As with undirected graphs, we can explore a digraph in a systematic way with meth-
ods akin to the depth-first search (DFS) and breadth-first search (BFS) algorithms
defined previously for undirected graphs (Sections 13.3.1 and 13.3.5). Such explo-
rations can be used, for example, to answer reachability questions. The directed
depth-first search and breadth-first search methods we develop in this section for
performing such explorations are very similar to their undirected counterparts. In
fact, the only real difference is that the directed depth-first search and breadth-first
search methods only traverse edges according to their respective directions.

The directed version of DFS starting at a vertex v can be described by the re-
cursive algorithm in Code Fragment 13.21. (See Figure 13.9.)

Algorithm DirectedDFS(v):

Mark vertex v as visited.
for each outgoing edge (v,w) of v do

if vertex w has not been visited then
Recursively call DirectedDFS(w).

Code Fragment 13.21: The DirectedDFS algorithm.

(a) (b)

Figure 13.9: DFS in a digraph starting at vertex BOS: (a) intermediate step, where,
for the first time, an already visited vertex (DFW) is reached; (b) the completed
DFS. The tree edges are shown with solid blue lines, the back edges are shown with
dashed blue lines, and the forward and cross edges are shown with dashed black
lines. The order in which the vertices are visited is indicated by a label next to each
vertex. The edge (ORD, DFW) is a back edge, but (DFW, ORD) is a forward edge.
Edge (BOS, SFO) is a forward edge, and (SFO, LAX) is a cross edge.

i

i

“main” — 2011/1/13 — 9:10 — page 629 — #651
i

i

i

i

i

i

13.4. Directed Graphs 629

A DFS on a digraph G partitions the edges of G reachable from the starting
vertex into tree edges or discovery edges, which lead us to discover a new vertex,
and nontree edges, which take us to a previously visited vertex. The tree edges
form a tree rooted at the starting vertex, called the depth-first search tree. There
are three kinds of nontree edges:

• Back edges, which connect a vertex to an ancestor in the DFS tree

• Forward edges, which connect a vertex to a descendent in the DFS tree

• Cross edges, which connect a vertex to a vertex that is neither its ancestor
nor its descendent

Refer back to Figure 13.9(b) to see an example of each type of nontree edge.

Proposition 13.16: Let G be a digraph. Depth-first search on G starting at a
vertex s visits all the vertices of G that are reachable from s. Also, the DFS tree
contains directed paths from s to every vertex reachable from s.

Justification: Let Vs be the subset of vertices of G visited by DFS starting at
vertex s. We want to show that Vs contains s and every vertex reachable from s
belongs to Vs. Suppose now, for the sake of a contradiction, that there is a vertex w
reachable from s that is not in Vs. Consider a directed path from s to w, and let (u,v)
be the first edge on such a path taking us out of Vs, that is, u is in Vs but v is not
in Vs. When DFS reaches u, it explores all the outgoing edges of u, and thus must
also reach vertex v via edge (u,v). Hence, v should be in Vs, and we have obtained
a contradiction. Therefore, Vs must contain every vertex reachable from s.

Analyzing the running time of the directed DFS method is analogous to that
for its undirected counterpart. In particular, a recursive call is made for each vertex
exactly once, and each edge is traversed exactly once (from its origin). Hence, if
ns vertices and ms edges are reachable from vertex s, a directed DFS starting at s
runs in O(ns + ms) time, provided the digraph is represented with a data structure
that supports constant-time vertex and edge methods. The adjacency list structure
satisfies this requirement, for example.

By Proposition 13.16, we can use DFS to find all the vertices reachable from a
given vertex, and hence to find the transitive closure of G. That is, we can perform
a DFS, starting from each vertex v of G, to see which vertices w are reachable from
v, adding an edge (v,w) to the transitive closure for each such w. Likewise, by
repeatedly traversing digraph G with a DFS, starting in turn at each vertex, we can
easily test whether G is strongly connected. That is, G is strongly connected if each
DFS visits all the vertices of G.

Thus, we may immediately derive the proposition that follows.

i

i

“main” — 2011/1/13 — 9:10 — page 630 — #652
i

i

i

i

i

i

630 Chapter 13. Graph Algorithms

Proposition 13.17: Let G be a digraph with n vertices and m edges. The follow-
ing problems can be solved by an algorithm that traverses G n times using DFS,
runs in O(n(n+ m)) time, and uses O(n) auxiliary space:

• Computing, for each vertex v of G, the subgraph reachable from v
• Testing whether G is strongly connected
• Computing the transitive closure G∗ of G

Testing for Strong Connectivity

Actually, we can determine if a directed graph G is strongly connected much faster
than this, just by using two depth-first searches. We begin by performing a DFS
of our directed graph G starting at an arbitrary vertex s. If there is any vertex of
G that is not visited by this DFS and is not reachable from s, then the graph is not
strongly connected. So, if this first DFS visits each vertex of G, then we reverse
all the edges of G (using the reverseDirection function) and perform another DFS
starting at s in this “reverse” graph. If every vertex of G is visited by this second
DFS, then the graph is strongly connected because each of the vertices visited in
this DFS can reach s. Since this algorithm makes just two DFS traversals of G, it
runs in O(n+ m) time.

Directed Breadth-First Search

As with DFS, we can extend breadth-first search (BFS) to work for directed graphs.
The algorithm still visits vertices level by level and partitions the set of edges into
tree edges (or discovery edges). Together these form a directed breadth-first search
tree rooted at the start vertex and nontree edges. Unlike the directed DFS method,
however, the directed BFS method only leaves two kinds of nontree edges: back
edges, which connect a vertex to one of its ancestors, and cross edges, which con-
nect a vertex to another vertex that is neither its ancestor nor its descendent. There
are no forward edges, which is a fact we explore in an exercise (Exercise C-13.9).

13.4.2 Transitive Closure

In this section, we explore an alternative technique for computing the transitive
closure of a digraph. Let G be a digraph with n vertices and m edges. We compute
the transitive closure of G in a series of rounds. We initialize G0 = G. We also
arbitrarily number the vertices of G as v1,v2, . . . , vn. We then begin the computation
of the rounds, beginning with round 1. In a generic round k, we construct digraph
Gk starting with Gk = Gk−1 and add to Gk the directed edge (vi,v j) if digraph Gk−1

contains both the edges (vi,vk) and (vk,v j). In this way, we enforce a simple rule
embodied in the proposition that follows.

i

i

“main” — 2011/1/13 — 9:10 — page 631 — #653
i

i

i

i

i

i

13.4. Directed Graphs 631

Proposition 13.18: For i = 1, . . . , n, digraph Gk has an edge (vi,v j) if and only if
digraph G has a directed path from vi to v j, whose intermediate vertices (if any) are
in the set {v1, . . . ,vk}. In particular, Gn is equal to G∗, the transitive closure of G.

Proposition 13.18 suggests a simple algorithm for computing the transitive clo-
sure of G that is based on the series of rounds we described above. This algorithm
is known as the Floyd-Warshall algorithm, and its pseudo-code is given in Code
Fragment 13.22. From this pseudo-code, we can easily analyze the running time of
the Floyd-Warshall algorithm assuming that the data structure representing G sup-
ports functions isAdjacentTo and insertDirectedEdge in O(1) time. The main loop
is executed n times and the inner loop considers each of O(n2) pairs of vertices,
performing a constant-time computation for each one. Thus, the total running time
of the Floyd-Warshall algorithm is O(n3).

Algorithm FloydWarshall(G):
Input: A digraph G with n vertices
Output: The transitive closure G∗ of G

let v1,v2, . . . , vn be an arbitrary numbering of the vertices of G
G0← G
for k← 1 to n do

Gk← Gk−1

for all i, j in {1, . . . , n} with i 6= j and i, j 6= k do
if both edges (vi,vk) and (vk,v j) are in Gk−1 then

add edge (vi,v j) to Gk (if it is not already present)
return Gn

Code Fragment 13.22: Pseudo-code for the Floyd-Warshall algorithm. This algo-
rithm computes the transitive closure G∗ of G by incrementally computing a series
of digraphs G0,G1, . . . , Gn, where k = 1, . . . , n.

This description is actually an example of an algorithmic design pattern known
as dynamic programming, which is discussed in more detail in Section 12.2. From
the description and analysis above, we may immediately derive the following propo-
sition.

Proposition 13.19: Let G be a digraph with n vertices, and let G be represented
by a data structure that supports lookup and update of adjacency information in
O(1) time. Then the Floyd-Warshall algorithm computes the transitive closure G∗

of G in O(n3) time.

We illustrate an example run of the Floyd-Warshall algorithm in Figure 13.10.

i

i

“main” — 2011/1/13 — 9:10 — page 632 — #654
i

i

i

i

i

i

632 Chapter 13. Graph Algorithms

(a) (b)

(c) (d)

(e) (f)

Figure 13.10: Sequence of digraphs computed by the Floyd-Warshall algorithm: (a)
initial digraph G = G0 and numbering of the vertices; (b) digraph G1; (c) G2; (d)
G3; (e) G4; (f) G5. (Note that G5 = G6 = G7.) If digraph Gk−1 has the edges (vi,vk)
and (vk,v j), but not the edge (vi,v j). In the drawing of digraph Gk, we show edges
(vi,vk) and (vk,v j) with dashed blue lines, and edge (vi,v j) with a thick blue line.

i

i

“main” — 2011/1/13 — 9:10 — page 633 — #655
i

i

i

i

i

i

13.4. Directed Graphs 633

Performance of the Floyd-Warshall Algorithm

The running time of the Floyd-Warshall algorithm might appear to be slower than
performing a DFS of a directed graph from each of its vertices, but this depends
upon the representation of the graph. If a graph is represented using an adjacency
matrix, then running the DFS method once on a directed graph G takes O(n2) time
(we explore the reason for this in Exercise R-13.9). Thus, running DFS n times
takes O(n3) time, which is no better than a single execution of the Floyd-Warshall
algorithm, but the Floyd-Warshall algorithm would be much simpler to implement.
Nevertheless, if the graph is represented using an adjacency list structure, then
running the DFS algorithm n times would take O(n(n + m)) time to compute the
transitive closure. Even so, if the graph is dense, that is, if it has Ω(n2) edges,
then this approach still runs in O(n3) time and is more complicated than a single
instance of the Floyd-Warshall algorithm. The only case where repeatedly calling
the DFS method is better is when the graph is not dense and is represented using
an adjacency list structure.

13.4.3 Directed Acyclic Graphs

Directed graphs without directed cycles are encountered in many applications.
Such a digraph is often referred to as a directed acyclic graph, or DAG, for short.
Applications of such graphs include the following:

• Inheritance between classes of a C++ program

• Prerequisites between courses of a degree program

• Scheduling constraints between the tasks of a project

Example 13.20: In order to manage a large project, it is convenient to break it up
into a collection of smaller tasks. The tasks, however, are rarely independent, be-
cause scheduling constraints exist between them. (For example, in a house building
project, the task of ordering nails obviously precedes the task of nailing shingles
to the roof deck.) Clearly, scheduling constraints cannot have circularities, because
they would make the project impossible. (For example, in order to get a job you
need to have work experience, but in order to get work experience you need to have
a job.) The scheduling constraints impose restrictions on the order in which the
tasks can be executed. Namely, if a constraint says that task a must be completed
before task b is started, then a must precede b in the order of execution of the tasks.
Thus, if we model a feasible set of tasks as vertices of a directed graph, and we
place a directed edge from v to w whenever the task for v must be executed before
the task for w, then we define a directed acyclic graph.

i

i

“main” — 2011/1/13 — 9:10 — page 634 — #656
i

i

i

i

i

i

634 Chapter 13. Graph Algorithms

The example above motivates the following definition. Let G be a digraph with
n vertices. A topological ordering of G is an ordering v1, . . . ,vn of the vertices of
G such that for every edge (vi,v j) of G, i < j. That is, a topological ordering is an
ordering such that any directed path in G traverses vertices in increasing order. (See
Figure 13.11.) Note that a digraph may have more than one topological ordering.

(a) (b)

Figure 13.11: Two topological orderings of the same acyclic digraph.

Proposition 13.21: G has a topological ordering if and only if it is acyclic.

Justification: The necessity (the “only if” part of the statement) is easy to
demonstrate. Suppose G is topologically ordered. Assume, for the sake of a con-
tradiction, that G has a cycle consisting of edges (vi0 ,vi1),(vi1 ,vi2), . . . ,(vik−1 ,vi0).
Because of the topological ordering, we must have i0 < i1 < · · ·< ik−1 < i0, which
is clearly impossible. Thus, G must be acyclic.

We now argue the sufficiency of the condition (the “if” part). Suppose G is
acyclic. We give an algorithmic description of how to build a topological ordering
for G. Since G is acyclic, G must have a vertex with no incoming edges (that
is, with in-degree 0). Let v1 be such a vertex. Indeed, if v1 did not exist, then in
tracing a directed path from an arbitrary start vertex we would eventually encounter
a previously visited vertex, thus contradicting the acyclicity of G. If we remove
v1 from G, together with its outgoing edges, the resulting digraph is still acyclic.
Hence, the resulting digraph also has a vertex with no incoming edges, and we let
v2 be such a vertex. By repeating this process until the digraph becomes empty,
we obtain an ordering v1, . . . ,vn of the vertices of G. Because of the construction
above, if (vi,v j) is an edge of G, then vi must be deleted before v j can be deleted,
and thus i < j. Thus, v1, . . . ,vn is a topological ordering.

Proposition 13.21’s justification suggests an algorithm (Code Fragment 13.23),
called topological sorting, for computing a topological ordering of a digraph.

i

i

“main” — 2011/1/13 — 9:10 — page 635 — #657
i

i

i

i

i

i

13.4. Directed Graphs 635

Algorithm TopologicalSort(G):
Input: A digraph G with n vertices
Output: A topological ordering v1, . . . ,vn of G

S← an initially empty stack.
for all u in G.vertices() do

Let incounter(u) be the in-degree of u.
if incounter(u) = 0 then

S.push(u)
i← 1
while !S.empty() do

u← S.pop()
Let u be vertex number i in the topological ordering.
i← i+ 1
for all outgoing edges (u,w) of u do

incounter(w)← incounter(w)−1
if incounter(w) = 0 then

S.push(w)

Code Fragment 13.23: Pseudo-code for the topological sorting algorithm. (We show
an example application of this algorithm in Figure 13.12.)

Proposition 13.22: Let G be a digraph with n vertices and m edges. The topolog-
ical sorting algorithm runs in O(n+m) time using O(n) auxiliary space, and either
computes a topological ordering of G or fails to number some vertices, which indi-
cates that G has a directed cycle.

Justification: The initial computation of in-degrees and setup of the incounter
variables can be done with a simple traversal of the graph, which takes O(n + m)
time. We use the decorator pattern to associate counter attributes with the vertices.
Say that a vertex u is visited by the topological sorting algorithm when u is removed
from the stack S. A vertex u can be visited only when incounter(u) = 0, which im-
plies that all its predecessors (vertices with outgoing edges into u) were previously
visited. As a consequence, any vertex that is on a directed cycle will never be vis-
ited, and any other vertex will be visited exactly once. The algorithm traverses all
the outgoing edges of each visited vertex once, so its running time is proportional
to the number of outgoing edges of the visited vertices. Therefore, the algorithm
runs in O(n+m) time. Regarding the space usage, observe that the stack S and the
incounter variables attached to the vertices use O(n) space.

As a side effect, the topological sorting algorithm of Code Fragment 13.23 also
tests whether the input digraph G is acyclic. Indeed, if the algorithm terminates
without ordering all the vertices, then the subgraph of the vertices that have not
been ordered must contain a directed cycle.

i

i

“main” — 2011/1/13 — 9:10 — page 636 — #658
i

i

i

i

i

i

636 Chapter 13. Graph Algorithms

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13.12: Example of a run of algorithm TopologicalSort (Code Frag-
ment 13.23): (a) initial configuration; (b–i) after each while-loop iteration. The
vertex labels show the vertex number and the current incounter value. The edges
traversed are shown with dashed blue arrows. Thick lines denote the vertex and
edges examined in the current iteration.

i

i

“main” — 2011/1/13 — 9:10 — page 637 — #659
i

i

i

i

i

i

13.5. Shortest Paths 637

13.5 Shortest Paths

As we saw in Section 13.3.5, the breadth-first search strategy can be used to find a
shortest path from some starting vertex to every other vertex in a connected graph.
This approach makes sense in cases where each edge is as good as any other, but
there are many situations where this approach is not appropriate. For example, we
might be using a graph to represent a computer network (such as the Internet), and
we might be interested in finding the fastest way to route a data packet between two
computers. In this case, it is probably not appropriate for all the edges to be equal to
each other, since some connections in a computer network are typically much faster
than others (for example, some edges might represent slow phone-line connections
while others might represent high-speed, fiber-optic connections). Likewise, we
might want to use a graph to represent the roads between cities, and we might be
interested in finding the fastest way to travel cross country. In this case, it is again
probably not appropriate for all the edges to be equal to each other, because some
inter-city distances will likely be much larger than others. Thus, it is natural to
consider graphs whose edges are not weighted equally.

13.5.1 Weighted Graphs

A weighted graph is a graph that has a numeric (for example, integer) label w(e)
associated with each edge e, called the weight of edge e. We show an example of a
weighted graph in Figure 13.13.

Figure 13.13: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK
to LAX of total weight 2,777 (going through ORD and DFW). This is the minimum
weight path in the graph from JFK to LAX.

i

i

“main” — 2011/1/13 — 9:10 — page 638 — #660
i

i

i

i

i

i

638 Chapter 13. Graph Algorithms

Defining Shortest Paths in a Weighted Graph

Let G be a weighted graph. The length (or weight) of a path is the sum of the
weights of the edges of P. That is, if P = ((v0,v1),(v1,v2), . . . ,(vk−1,vk)), then the
length of P, denoted w(P), is defined as

w(P) =
k−1

∑
i=0

w((vi,vi+1)).

The distance from a vertex v to a vertex u in G, denoted d(v,u), is the length of a
minimum length path (also called shortest path) from v to u, if such a path exists.

People often use the convention that d(v,u) = +∞ if there is no path at all from
v to u in G. Even if there is a path from v to u in G, the distance from v to u may
not be defined, however, if there is a cycle in G whose total weight is negative.
For example, suppose vertices in G represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the “cost” of the
edge (JFK, ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cycle in G and distances
would no longer be defined. That is, anyone could now build a path (with cycles)
in G from any city A to another city B that first goes to JFK and then cycles as
many times as he or she likes from JFK to ORD and back, before going on to B.
The existence of such paths would allow us to build arbitrarily low negative-cost
paths (and, in this case, make a fortune in the process). But distances cannot be
arbitrarily low negative numbers. Thus, any time we use edge weights to represent
distances, we must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest
path from some vertex v to each other vertex in G, viewing the weights on the edges
as distances. In this section, we explore efficient ways of finding all such shortest
paths, if they exist. The first algorithm we discuss is for the simple, yet common,
case when all the edge weights in G are nonnegative (that is, w(e)≥ 0 for each edge
e of G); hence, we know in advance that there are no negative-weight cycles in G.
Recall that the special case of computing a shortest path when all weights are equal
to one was solved with the BFS traversal algorithm presented in Section 13.3.5.

There is an interesting approach for solving this single-source problem based
on the greedy method design pattern (Section 12.4.2). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.

i

i

“main” — 2011/1/13 — 9:10 — page 639 — #661
i

i

i

i

i

i

13.5. Shortest Paths 639

13.5.2 Dijkstra’s Algorithm

The main idea behind applying the greedy method pattern to the single-source,
shortest-path problem is to perform a “weighted” breadth-first search starting at v.
In particular, we can use the greedy method to develop an algorithm that iteratively
grows a “cloud” of vertices out of v, with the vertices entering the cloud in order
of their distances from v. Thus, in each iteration, the next vertex chosen is the
vertex outside the cloud that is closest to v. The algorithm terminates when no
more vertices are outside the cloud, at which point we have a shortest path from v
to every other vertex of G. This approach is a simple, but nevertheless powerful,
example of the greedy method design pattern.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source, shortest-path problem, results in
an algorithm known as Dijkstra’s algorithm. When applied to other graph prob-
lems, however, the greedy method may not necessarily find the best solution (such
as in the so-called traveling salesman problem, in which we wish to find the short-
est path that visits all the vertices in a graph exactly once). Nevertheless, there are
a number of situations in which the greedy method allows us to compute the best
solution. In this chapter, we discuss two such situations: computing shortest paths
and constructing a minimum spanning tree.

In order to simplify the description of Dijkstra’s algorithm, we assume, in the
following, that the input graph G is undirected (that is, all its edges are undirected)
and simple (that is, it has no self-loops and no parallel edges). Hence, we denote
the edges of G as unordered vertex pairs (u,z).

In Dijkstra’s algorithm for finding shortest paths, the cost function we are trying
to optimize in our application of the greedy method is also the function that we are
trying to compute—the shortest path distance. This may at first seem like circular
reasoning until we realize that we can actually implement this approach by using a
“bootstrapping” trick, consisting of using an approximation to the distance function
we are trying to compute, which in the end is equal to the true distance.

Edge Relaxation

Let us define a label D[u] for each vertex u in V , which we use to approximate the
distance in G from v to u. The meaning of these labels is that D[u] always stores
the length of the best path we have found so far from v to u. Initially, D[v] = 0
and D[u] = +∞ for each u 6= v, and we define the set C (which is our “cloud” of
vertices) to initially be the empty set ∅. At each iteration of the algorithm, we select
a vertex u not in C with smallest D[u] label, and we pull u into C. In the very first

i

i

“main” — 2011/1/13 — 9:10 — page 640 — #662
i

i

i

i

i

i

640 Chapter 13. Graph Algorithms

iteration we will, of course, pull v into C. Once a new vertex u is pulled into C, we
then update the label D[z] of each vertex z that is adjacent to u and is outside of C,
to reflect the fact that there may be a new and better way to get to z via u.

This update operation is known as a relaxation procedure, because it takes an
old estimate and checks if it can be improved to get closer to its true value. (A
metaphor for why we call this a relaxation comes from a spring that is stretched
out and then “relaxed” back to its true resting shape.) In the case of Dijkstra’s al-
gorithm, the relaxation is performed for an edge (u,z) such that we have computed
a new value of D[u] and wish to see if there is a better value for D[z] using the edge
(u,z). The specific edge relaxation operation is as follows:

Edge Relaxation:

if D[u]+ w((u,z)) < D[z] then
D[z]← D[u]+ w((u,z))

We give the pseudo-code for Dijkstra’s algorithm in Code Fragment 13.24.
Note that we use a priority queue Q to store the vertices outside of the cloud C.

Algorithm ShortestPath(G,v):
Input: A simple undirected weighted graph G with nonnegative edge weights

and a distinguished vertex v of G
Output: A label D[u], for each vertex u of G, such that D[u] is the length of a

shortest path from v to u in G

Initialize D[v]← 0 and D[u]←+∞ for each vertex u 6= v.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u← Q.removeMin()
for each vertex z adjacent to u such that z is in Q do
{perform the relaxation procedure on edge (u,z)}
if D[u]+ w((u,z)) < D[z] then

D[z]← D[u]+ w((u,z))
Change to D[z] the key of vertex z in Q.

return the label D[u] of each vertex u

Code Fragment 13.24: Dijkstra’s algorithm for the single-source, shortest-path
problem.

We illustrate several iterations of Dijkstra’s algorithm in Figures 13.14 and
13.15.

i

i

“main” — 2011/1/13 — 9:10 — page 641 — #663
i

i

i

i

i

i

13.5. Shortest Paths 641

(a) (b)

(c) (d)

(e) (f)

Figure 13.14: An execution of Dijkstra’s algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertex v stores the label D[v]. The symbol • is
used instead of +∞. The edges of the shortest-path tree are drawn as thick blue
arrows and, for each vertex u outside the “cloud,” we show the current best edge
for pulling in u with a solid blue line. (Continues in Figure 13.15.)

i

i

“main” — 2011/1/13 — 9:10 — page 642 — #664
i

i

i

i

i

i

642 Chapter 13. Graph Algorithms

(g) (h)

(i) (j)

Figure 13.15: An example execution of Dijkstra’s algorithm. (Continued from Fig-
ure 13.14.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-
rithm is that, at the moment a vertex u is pulled into C, its label D[u] stores the
correct length of a shortest path from v to u. Thus, when the algorithm terminates,
it will have computed the shortest-path distance from v to every vertex of G. That
is, it will have solved the single-source, shortest-path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds
the shortest path from the start vertex v to each other vertex u in the graph. Why
is it that the distance from v to u is equal to the value of the label D[u] at the time
vertex u is pulled into the cloud C (which is also the time u is removed from the
priority queue Q)? The answer to this question depends on there being no negative-
weight edges in the graph, since that allows the greedy method to work correctly,
as we show in the proposition that follows.

i

i

“main” — 2011/1/13 — 9:10 — page 643 — #665
i

i

i

i

i

i

13.5. Shortest Paths 643

Proposition 13.23: In Dijkstra’s algorithm, whenever a vertex u is pulled into
the cloud, the label D[u] is equal to d(v,u), the length of a shortest path from v to u.

Justification: Suppose that D[t] > d(v, t) for some vertex t in V , and let u be
the first vertex the algorithm pulled into the cloud C (that is, removed from Q)
such that D[u] > d(v,u). There is a shortest path P from v to u (for otherwise
d(v,u) = +∞= D[u]). Let us therefore consider the moment when u is pulled into
C, and let z be the first vertex of P (when going from v to u) that is not in C at this
moment. Let y be the predecessor of z in path P (note that we could have y = v).
(See Figure 13.16.) We know, by our choice of z, that y is already in C at this point.
Moreover, D[y] = d(v,y), since u is the first incorrect vertex. When y was pulled
into C, we tested (and possibly updated) D[z] so that we had at that point

D[z]≤ D[y]+ w((y,z)) = d(v,y)+ w((y,z)).

But since z is the next vertex on the shortest path from v to u, this implies that

D[z] = d(v,z).

But we are now at the moment when we pick u, not z, to join C; hence

D[u]≤ D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
since z is on the shortest path from v to u

d(v,z)+ d(z,u) = d(v,u).

Moreover, d(z,u) ≥ 0 because there are no negative-weight edges. Therefore

D[u]≤ D[z] = d(v,z) ≤ d(v,z)+ d(z,u) = d(v,u).

But this contradicts the definition of u; hence, there can be no such vertex u.

Figure 13.16: A schematic for the justification of Proposition 13.23.

i

i

“main” — 2011/1/13 — 9:10 — page 644 — #666
i

i

i

i

i

i

644 Chapter 13. Graph Algorithms

The Running Time of Dijkstra’s Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote
the number of vertices and edges of the input graph G with n and m, respectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra’s algorithm in
Code Fragment 13.24, analyzing its running time requires that we give more details
on its implementation. Specifically, we should indicate the data structures used and
how they are implemented.

Let us first assume that we are representing the graph G using an adjacency
list structure. This data structure allows us to step through the vertices adjacent to
u during the relaxation step in time proportional to their number. It still does not
settle all the details for the algorithm, however, as we must say more about how to
implement the other principle data structure in the algorithm—the priority queue Q.

An efficient implementation of the priority queue Q uses a heap (Section 8.3).
This allows us to extract the vertex u with smallest D label (call to the removeMin
function) in O(logn) time. As noted in the pseudo-code, each time we update a
D[z] label we need to update the key of z in the priority queue. Thus, we actually
need a heap implementation of an adaptable priority queue (Section 8.4). If Q is
an adaptable priority queue implemented as a heap, then this key update can, for
example, be done using the replace(e,k), where e is the entry storing the key for
the vertex z. If e is location aware, then we can easily implement such key updates
in O(log n) time, since a location-aware entry for vertex z would allow Q to have
immediate access to the entry e storing z in the heap (see Section 8.4.2). Assuming
this implementation of Q, Dijkstra’s algorithm runs in O((n+ m) logn) time.

Referring back to Code Fragment 13.24, the details of the running-time analysis
are as follows:
• Inserting all the vertices in Q with their initial key value can be done in

O(n log n) time by repeated insertions, or in O(n) time using bottom-up heap
construction (see Section 8.3.6).

• At each iteration of the while loop, we spend O(logn) time to remove vertex
u from Q, and O(degree(v) log n) time to perform the relaxation procedure
on the edges incident on u.

• The overall running time of the while loop is

∑
v in G

(1+degree(v)) log n,

which is O((n+ m) logn) by Proposition 13.6.
Note that if we wish to express the running time as a function of n only, then it is
O(n2 logn) in the worst case.

i

i

“main” — 2011/1/13 — 9:10 — page 645 — #667
i

i

i

i

i

i

13.6. Minimum Spanning Trees 645

13.6 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the
least amount of cable. We can model this problem using a weighted graph G whose
vertices represent the computers, and whose edges represent all the possible pairs
(u,v) of computers, where the weight w((v,u)) of edge (v,u) is equal to the amount
of cable needed to connect computer v to computer u. Rather than computing a
shortest-path tree from some particular vertex v, we are interested instead in finding
a (free) tree T that contains all the vertices of G and has the minimum total weight
over all such trees. Methods for finding such a tree are the focus of this section.

Problem Definition

Given a weighted undirected graph G, we are interested in finding a tree T that
contains all the vertices in G and minimizes the sum

w(T) = ∑
(v,u) in T

w((v,u)).

A tree, such as this, that contains every vertex of a connected graph G is said to
be a spanning tree, and the problem of computing a spanning tree T with smallest
total weight is known as the minimum spanning tree (or MST) problem.

The development of efficient algorithms for the minimum spanning tree prob-
lem predates the modern notion of computer science itself. In this section, we
discuss two classic algorithms for solving the MST problem. These algorithms
are both applications of the greedy method, which, as was discussed briefly in the
previous section, is based on choosing objects to join a growing collection by itera-
tively picking an object that minimizes some cost function. The first algorithm we
discuss is Kruskal’s algorithm, which “grows” the MST in clusters by considering
edges in order of their weights. The second algorithm we discuss is the Prim-Jarńık
algorithm, which grows the MST from a single root vertex, much in the same way
as Dijkstra’s shortest-path algorithm.

As in Section 13.5.2, in order to simplify the description of the algorithms, we
assume, in the following, that the input graph G is undirected (that is, all its edges
are undirected) and simple (that is, it has no self-loops and no parallel edges).
Hence, we denote the edges of G as unordered vertex pairs (u,z).

Before we discuss the details of these algorithms, however, let us give a crucial
fact about minimum spanning trees that forms the basis of the algorithms.

i

i

“main” — 2011/1/13 — 9:10 — page 646 — #668
i

i

i

i

i

i

646 Chapter 13. Graph Algorithms

A Crucial Fact About Minimum Spanning Trees

The two MST algorithms we discuss are based on the greedy method, which in this
case depends crucially on the following fact. (See Figure 13.17.)

Figure 13.17: The crucial fact about minimum spanning trees.

Proposition 13.24: Let G be a weighted connected graph, and let V1 and V2 be a
partition of the vertices of G into two disjoint nonempty sets. Furthermore, let e be
an edge in G with minimum weight from among those with one endpoint in V1 and
the other in V2. There is a minimum spanning tree T that has e as one of its edges.

Justification: Let T be a minimum spanning tree of G. If T does not contain
edge e, the addition of e to T must create a cycle. Therefore, there is some edge
f of this cycle that has one endpoint in V1 and the other in V2. Moreover, by the
choice of e, w(e)≤ w(f). If we remove f from T ∪{e}, we obtain a spanning tree
whose total weight is no more than before. Since T is a minimum spanning tree,
this new tree must also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is
unique. We leave the justification of this less crucial fact as an exercise (Exercise C-
13.17). In addition, note that Proposition 13.24 remains valid even if the graph G
contains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.

i

i

“main” — 2011/1/13 — 9:10 — page 647 — #669
i

i

i

i

i

i

13.6. Minimum Spanning Trees 647

13.6.1 Kruskal’s Algorithm

The reason Proposition 13.24 is so important is that it can be used as the basis for
building a minimum spanning tree. In Kruskal’s algorithm, it is used to build the
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all
by itself. The algorithm then considers each edge in turn, ordered by increasing
weight. If an edge e connects two different clusters, then e is added to the set
of edges of the minimum spanning tree, and the two clusters connected by e are
merged into a single cluster. If, on the other hand, e connects two vertices that
are already in the same cluster, then e is discarded. Once the algorithm has added
enough edges to form a spanning tree, it terminates and outputs this tree as the
minimum spanning tree.

We give pseudo-code for Kruskal’s MST algorithm in Code Fragment 13.25
and we show the working of this algorithm in Figures 13.18, 13.19, and 13.20.

Algorithm Kruskal(G):
Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G

for each vertex v in G do
Define an elementary cluster C(v)←{v}.

Initialize a priority queue Q to contain all edges in G, using the weights as keys.
T ←∅ {T will ultimately contain the edges of the MST}
while T has fewer than n−1 edges do

(u,v)← Q.removeMin()
Let C(v) be the cluster containing v, and let C(u) be the cluster containing u.
if C(v) 6= C(u) then

Add edge (v,u) to T .
Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).

return tree T
Code Fragment 13.25: Kruskal’s algorithm for the MST problem.

As mentioned before, the correctness of Kruskal’s algorithm follows from the
crucial fact about minimum spanning trees, Proposition 13.24. Each time Kruskal’s
algorithm adds an edge (v,u) to the minimum spanning tree T , we can define a
partitioning of the set of vertices V (as in the proposition) by letting V1 be the
cluster containing v and letting V2 contain the rest of the vertices in V . This clearly
defines a disjoint partitioning of the vertices of V and, more importantly, since we
are extracting edges from Q in order by their weights, e must be a minimum-weight
edge with one vertex in V1 and the other in V2. Thus, Kruskal’s algorithm always
adds a valid minimum spanning tree edge.

i

i

“main” — 2011/1/13 — 9:10 — page 648 — #670
i

i

i

i

i

i

648 Chapter 13. Graph Algorithms

(a) (b)

(c) (d)

(e) (f)
Figure 13.18: Example of an execution of Kruskal’s MST algorithm on a graph with
integer weights. We show the clusters as shaded regions and we highlight the edge
being considered in each iteration. (Continues in Figure 13.19.)

i

i

“main” — 2011/1/13 — 9:10 — page 649 — #671
i

i

i

i

i

i

13.6. Minimum Spanning Trees 649

(g) (h)

(i) (j)

(k) (l)

Figure 13.19: Example of an execution of Kruskal’s MST algorithm. Rejected
edges are shown dashed. (Continues in Figure 13.20.)

i

i

“main” — 2011/1/13 — 9:10 — page 650 — #672
i

i

i

i

i

i

650 Chapter 13. Graph Algorithms

(m) (n)

Figure 13.20: Example of an execution of Kruskal’s MST algorithm. The edge
considered in (n) merges the last two clusters, which concludes this execution of
Kruskal’s algorithm. (Continued from Figure 13.19.)

The Running Time of Kruskal’s Algorithm

We denote the number of vertices and edges of the input graph G with n and m,
respectively. Because of the high level of the description we gave for Kruskal’s
algorithm in Code Fragment 13.25, analyzing its running time requires that we
give more details on its implementation. Specifically, we should indicate the data
structures used and how they are implemented.

We can implement the priority queue Q using a heap. Thus, we can initialize Q
in O(m logm) time by repeated insertions, or in O(m) time using bottom-up heap
construction (see Section 8.3.6). In addition, at each iteration of the while loop, we
can remove a minimum-weight edge in O(log m) time, which actually is O(log n),
since G is simple. Thus, the total time spent performing priority queue operations
is no more than O(m logn).

We can represent each cluster C using one of the union-find partition data struc-
tures discussed in Section 11.4.3. Recall that the sequence-based union-find struc-
ture allows us to perform a series of N union and find operations in O(N logN) time,
and the tree-based version can implement such a series of operations in O(N log∗ N)
time. Thus, since we perform n− 1 calls to function union and at most m calls to
find, the total time spent on merging clusters and determining the clusters that ver-
tices belong to is no more than O(m logn) using the sequence-based approach or
O(m log∗ n) using the tree-based approach.

Therefore, using arguments similar to those used for Dijkstra’s algorithm, we
conclude that the running time of Kruskal’s algorithm is O((n + m) log n), which
can be simplified as O(m logn), since G is simple and connected.

i

i

“main” — 2011/1/13 — 9:10 — page 651 — #673
i

i

i

i

i

i

13.6. Minimum Spanning Trees 651

13.6.2 The Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single
cluster starting from some “root” vertex v. The main idea is similar to that of
Dijkstra’s algorithm. We begin with some vertex v, defining the initial “cloud” of
vertices C. Then, in each iteration, we choose a minimum-weight edge e = (v,u),
connecting a vertex v in the cloud C to a vertex u outside of C. The vertex u is then
brought into the cloud C and the process is repeated until a spanning tree is formed.
Again, the crucial fact about minimum spanning trees comes to play, because by
always choosing the smallest-weight edge joining a vertex inside C to one outside
C, we are assured of always adding a valid edge to the MST.

To efficiently implement this approach, we can take another cue from Dijkstra’s
algorithm. We maintain a label D[u] for each vertex u outside the cloud C, so
that D[u] stores the weight of the best current edge for joining u to the cloud C.
These labels allow us to reduce the number of edges that we must consider in
deciding which vertex is next to join the cloud. We give the pseudo-code in Code
Fragment 13.26.

Algorithm PrimJarnik(G):
Input: A weighted connected graph G with n vertices and m edges
Output: A minimum spanning tree T for G

Pick any vertex v of G
D[v]← 0
for each vertex u 6= v do

D[u]←+∞
Initialize T ←∅.
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
where (u,null) is the element and D[u]) is the key.
while Q is not empty do

(u,e)← Q.removeMin()
Add vertex u and edge e to T .
for each vertex z adjacent to u such that z is in Q do
{perform the relaxation procedure on edge (u,z)}
if w((u,z)) < D[z] then

D[z]← w((u,z))
Change to (z,(u,z)) the element of vertex z in Q.
Change to D[z] the key of vertex z in Q.

return the tree T

Code Fragment 13.26: The Prim-Jarńık algorithm for the MST problem.

i

i

“main” — 2011/1/13 — 9:10 — page 652 — #674
i

i

i

i

i

i

652 Chapter 13. Graph Algorithms

Analyzing the Prim-Jarńık Algorithm

Let n and m denote the number of vertices and edges of the input graph G, respec-
tively. The implementation issues for the Prim-Jarńık algorithm are similar to those
for Dijkstra’s algorithm. If we implement the adaptable priority queue Q as a heap
that supports location-aware entries (Section 8.4.2), then we can extract the vertex
u in each iteration in O(logn) time. In addition, we can update each D[z] value in
O(logn) time, as well, which is a computation considered at most once for each
edge (u,z). The other steps in each iteration can be implemented in constant time.
Thus, the total running time is O((n+ m) logn), which is O(m logn).

Illustrating the Prim-Jarńık Algorithm

We illustrate the Prim-Jarńık algorithm in Figures 13.21 through 13.22.

(a) (b)

(c) (d)

Figure 13.21: The Prim-Jarńık MST algorithm. (Continues in Figure 13.22.)

i

i

“main” — 2011/1/13 — 9:10 — page 653 — #675
i

i

i

i

i

i

13.6. Minimum Spanning Trees 653

(e) (f)

(g) (h)

(i) (j)

Figure 13.22: The Prim-Jarńık MST algorithm. (Continued from Figure 13.21.)

i

i

“main” — 2011/1/13 — 9:10 — page 654 — #676
i

i

i

i

i

i

654 Chapter 13. Graph Algorithms

13.7 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-13.1 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3
connected components. Why would it be impossible to draw G with 3
connected components if G had 66 edges?

R-13.2 Draw an adjacency list and adjacency matrix representation of the undi-
rected graph shown in Figure 13.1.

R-13.3 Draw a simple connected directed graph with 8 vertices and 16 edges such
that the in-degree and out-degree of each vertex is 2. Show that there is
a single (nonsimple) cycle that includes all the edges of your graph, that
is, you can trace all the edges in their respective directions without ever
lifting your pencil. (Such a cycle is called an Euler tour.)

R-13.4 Repeat the previous problem and then remove one edge from the graph.
Show that now there is a single (nonsimple) path that includes all the edges
of your graph. (Such a path is called an Euler path.)

R-13.5 Bob loves foreign languages and wants to plan his course schedule for the
following years. He is interested in the following nine language courses:
LA15, LA16, LA22, LA31, LA32, LA126, LA127, LA141, and LA169.
The course prerequisites are:

• LA15: (none)
• LA16: LA15
• LA22: (none)
• LA31: LA15
• LA32: LA16, LA31
• LA126: LA22, LA32
• LA127: LA16
• LA141: LA22, LA16
• LA169: LA32

Find the sequence of courses that allows Bob to satisfy all the prerequi-
sites.

R-13.6 Suppose we represent a graph G having n vertices and m edges with the
edge list structure. Why, in this case, does the insertVertex function run
in O(1) time while the eraseVertex function runs in O(m) time?

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 655 — #677
i

i

i

i

i

i

13.7. Exercises 655

R-13.7 Let G be a graph whose vertices are the integers 1 through 8, and let the
adjacent vertices of each vertex be given by the table below:

Vertex Adjacent Vertices
1 (2, 3, 4)
2 (1, 3, 4)
3 (1, 2, 4)
4 (1, 2, 3, 6)
5 (6, 7, 8)
6 (4, 5, 7)
7 (5, 6, 8)
8 (5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are
returned in the same order as they are listed in the table above.

a. Draw G.
b. Give the sequence of vertices of G visited using a DFS traversal

starting at vertex 1.
c. Give the sequence of vertices visited using a BFS traversal starting

at vertex 1.

R-13.8 Would you use the adjacency list structure or the adjacency matrix struc-
ture in each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is important
to use as little space as possible.

b. The graph has 10,000 vertices and 20,000,000 edges, and it is im-
portant to use as little space as possible.

c. You need to answer the query isAdjacentTo as fast as possible, no
matter how much space you use.

R-13.9 Explain why the DFS traversal runs in O(n2) time on an n-vertex simple
graph that is represented with the adjacency matrix structure.

R-13.10 Draw the transitive closure of the directed graph shown in Figure 13.2.

R-13.11 Compute a topological ordering for the directed graph drawn with solid
edges in Figure 13.8(d).

R-13.12 Can we use a queue instead of a stack as an auxiliary data structure in the
topological sorting algorithm shown in Code Fragment 13.23? Why or
why not?

R-13.13 Draw a simple, connected, weighted graph with 8 vertices and 16 edges,
each with unique edge weights. Identify one vertex as a “start” vertex and
illustrate a running of Dijkstra’s algorithm on this graph.

R-13.14 Show how to modify the pseudo-code for Dijkstra’s algorithm for the case
when the graph may contain parallel edges and self-loops.

i

i

“main” — 2011/1/13 — 9:10 — page 656 — #678
i

i

i

i

i

i

656 Chapter 13. Graph Algorithms

R-13.15 Show how to modify the pseudo-code for Dijkstra’s algorithm for the case
when the graph is directed and we want to compute shortest directed paths
from the source vertex to all the other vertices.

R-13.16 Show how to modify Dijkstra’s algorithm to not only output the distance
from v to each vertex in G, but also to output a tree T rooted at v such that
the path in T from v to a vertex u is a shortest path in G from v to u.

R-13.17 There are eight small islands in a lake, and the state wants to build seven
bridges to connect them so that each island can be reached from any other
one via one or more bridges. The cost of constructing a bridge is propor-
tional to its length. The distances between pairs of islands are given in the
following table.

1 2 3 4 5 6 7 8

1 - 240 210 340 280 200 345 120
2 - - 265 175 215 180 185 155
3 - - - 260 115 350 435 195
4 - - - - 160 330 295 230
5 - - - - - 360 400 170
6 - - - - - - 175 205
7 - - - - - - - 305
8 - - - - - - - -

Find which bridges to build to minimize the total construction cost.

R-13.18 Draw a simple, connected, undirected, weighted graph with 8 vertices
and 16 edges, each with unique edge weights. Illustrate the execution of
Kruskal’s algorithm on this graph. (Note that there is only one minimum
spanning tree for this graph.)

R-13.19 Repeat the previous problem for the Prim-Jarńık algorithm.

R-13.20 Consider the unsorted sequence implementation of the priority queue Q
used in Dijkstra’s algorithm. In this case, why is this the best-case running
time of Dijkstra’s algorithm O(n2) on an n-vertex graph?

R-13.21 Describe the meaning of the graphical conventions used in Figure 13.6
illustrating a DFS traversal. What do the colors blue and black refer to?
What do the arrows signify? How about thick lines and dashed lines?

R-13.22 Repeat Exercise R-13.21 for Figure 13.7 illustrating a BFS traversal.

R-13.23 Repeat Exercise R-13.21 for Figure 13.9 illustrating a directed DFS traver-
sal.

R-13.24 Repeat Exercise R-13.21 for Figure 13.10 illustrating the Floyd-Warshall
algorithm.

R-13.25 Repeat Exercise R-13.21 for Figure 13.12 illustrating the topological sort-
ing algorithm.

R-13.26 Repeat Exercise R-13.21 for Figures 13.14 and 13.15 illustrating Dijkstra’s
algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 657 — #679
i

i

i

i

i

i

13.7. Exercises 657

R-13.27 Repeat Exercise R-13.21 for Figures 13.18 and 13.20 illustrating Kruskal’s
algorithm.

R-13.28 Repeat Exercise R-13.21 for Figures 13.21 and 13.22 illustrating the Prim-
Jarńık algorithm.

R-13.29 How many edges are in the transitive closure of a graph that consists of a
simple directed path of n vertices?

R-13.30 Given a complete binary tree T with n nodes, consider a directed graph
G having the nodes of T as its vertices. For each parent-child pair in T ,
create a directed edge in G from the parent to the child. Show that the
transitive closure of G has O(n logn) edges.

R-13.31 A simple undirected graph is complete if it contains an edge between every
pair of distinct vertices. What does a depth-first search tree of a complete
graph look like?

R-13.32 Recalling the definition of a complete graph from Exercise R-13.31, what
does a breadth-first search tree of a complete graph look like?

R-13.33 Say that a maze is constructed correctly if there is one path from the start
to the finish, the entire maze is reachable from the start, and there are no
loops around any portions of the maze. Given a maze drawn in an n× n
grid, how can we determine if it is constructed correctly? What is the
running time of this algorithm?

Creativity

C-13.1 Say that an n-vertex directed acyclic graph G is compact if there is some
way of numbering the vertices of G with the integers from 0 to n−1 such
that G contains the edge (i, j) if and only if i < j, for all i, j in [0,n− 1].
Give an O(n2)-time algorithm for detecting if G is compact.

C-13.2 Describe, in pseudo-code, an O(n + m)-time algorithm for computing all
the connected components of an undirected graph G with n vertices and m
edges.

C-13.3 Let T be the spanning tree rooted at the start vertex produced by the depth-
first search of a connected, undirected graph G. Argue why every edge of
G not in T goes from a vertex in T to one of its ancestors, that is, it is a
back edge.

C-13.4 Suppose we wish to represent an n-vertex graph G using the edge list
structure, assuming that we identify the vertices with the integers in the set
{0,1, . . . ,n− 1}. Describe how to implement the collection E to support
O(logn)-time performance for the areAdjacent function. How are you
implementing the function in this case?

i

i

“main” — 2011/1/13 — 9:10 — page 658 — #680
i

i

i

i

i

i

658 Chapter 13. Graph Algorithms

C-13.5 Tamarindo University and many other schools worldwide are doing a joint
project on multimedia. A computer network is built to connect these
schools using communication links that form a free tree. The schools
decide to install a file server at one of the schools to share data among all
the schools. Since the transmission time on a link is dominated by the link
setup and synchronization, the cost of a data transfer is proportional to the
number of links used. Hence, it is desirable to choose a “central” location
for the file server. Given a free tree T and a node v of T , the eccentricity
of v is the length of a longest path from v to any other node of T . A node
of T with minimum eccentricity is called a center of T .

a. Design an efficient algorithm that, given an n-node free tree T , com-
putes a center of T .

b. Is the center unique? If not, how many distinct centers can a free
tree have?

C-13.6 Show that, if T is a BFS tree produced for a connected graph G, then, for
each vertex v at level i, the path of T between s and v has i edges, and any
other path of G between s and v has at least i edges.

C-13.7 The time delay of a long-distance call can be determined by multiplying
a small fixed constant by the number of communication links on the tele-
phone network between the caller and callee. Suppose the telephone net-
work of a company named RT&T is a free tree. The engineers of RT&T
want to compute the maximum possible time delay that may be experi-
enced in a long-distance call. Given a free tree T , the diameter of T is
the length of a longest path between two nodes of T . Give an efficient
algorithm for computing the diameter of T .

C-13.8 A company named RT&T has a network of n switching stations connected
by m high-speed communication links. Each customer’s phone is directly
connected to one station in his or her area. The engineers of RT&T have
developed a prototype video-phone system that allows two customers to
see each other during a phone call. In order to have acceptable image
quality, however, the number of links used to transmit video signals be-
tween the two parties cannot exceed four. Suppose that RT&T’s network
is represented by a graph. Design an efficient algorithm that computes, for
each station, the set of stations reachable using no more than four links.

C-13.9 Explain why there are no forward nontree edges with respect to a BFS tree
constructed for a directed graph.

C-13.10 An Euler tour of a directed graph G with n vertices and m edges is a
cycle that traverses each edge of G exactly once according to its direction.
Such a tour always exists if G is connected and the in-degree equals the
out-degree of each vertex in G. Describe an O(n+ m)-time algorithm for
finding an Euler tour of such a digraph G.

i

i

“main” — 2011/1/13 — 9:10 — page 659 — #681
i

i

i

i

i

i

13.7. Exercises 659

C-13.11 An independent set of an undirected graph G = (V,E) is a subset I of V
such that no two vertices in I are adjacent. That is, if u and v are in I, then
(u,v) is not in E . A maximal independent set M is an independent set
such that, if we were to add any additional vertex to M, then it would not
be independent any more. Every graph has a maximal independent set.
(Can you see this? This question is not part of the exercise, but it is worth
thinking about.) Give an efficient algorithm that computes a maximal
independent set for a graph G. What is this algorithm’s running time?

C-13.12 Let G be an undirected graph G with n vertices and m edges. Describe
an O(n+m)-time algorithm for traversing each edge of G exactly once in
each direction.

C-13.13 Justify Proposition 13.14.
C-13.14 Give an example of an n-vertex simple graph G that causes Dijkstra’s

algorithm to run in Ω(n2 logn) time when its implemented with a heap.
C-13.15 Give an example of a weighted directed graph G with negative-weight

edges but no negative-weight cycle, such that Dijkstra’s algorithm incor-
rectly computes the shortest-path distances from some start vertex v.

C-13.16 Consider the following greedy strategy for finding a shortest path from
vertex start to vertex goal in a given connected graph.

1. Initialize path to start.
2. Initialize VisitedVertices to {start}.
3. If start=goal, return path and exit. Otherwise, continue.
4. Find the edge (start,v) of minimum weight such that v is adjacent to

start and v is not in VisitedVertices.
5. Add v to path.
6. Add v to VisitedVertices.
7. Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal?
Either explain intuitively why it works, or give a counter example.

C-13.17 Show that if all the weights in a connected weighted graph G are distinct,
then there is exactly one minimum spanning tree for G.

C-13.18 Design an efficient algorithm for finding a longest directed path from a
vertex s to a vertex t of an acyclic weighted digraph G. Specify the graph
representation used and any auxiliary data structures used. Also, analyze
the time complexity of your algorithm.

C-13.19 Consider a diagram of a telephone network, which is a graph G whose
vertices represent switching centers and whose edges represent communi-
cation lines joining pairs of centers. Edges are marked by their bandwidth,
and the bandwidth of a path is the bandwidth of its lowest bandwidth edge.
Give an algorithm that, given a diagram and two switching centers a and
b, outputs the maximum bandwidth of a path between a and b.

i

i

“main” — 2011/1/13 — 9:10 — page 660 — #682
i

i

i

i

i

i

660 Chapter 13. Graph Algorithms

C-13.20 Computer networks should avoid single points of failure, that is, network
nodes that can disconnect the network if they fail. We say a connected
graph G is biconnected if it contains no vertex whose removal would di-
vide G into two or more connected components. Give an O(n + m)-time
algorithm for adding at most n edges to a connected graph G, with n≥ 3
vertices and m≥ n−1 edges, to guarantee that G is biconnected.

C-13.21 NASA wants to link n stations spread over the country using communica-
tion channels. Each pair of stations has a different bandwidth available,
which is known a priori. NASA wants to select n−1 channels (the mini-
mum possible) in such a way that all the stations are linked by the channels
and the total bandwidth (defined as the sum of the individual bandwidths
of the channels) is maximum. Give an efficient algorithm for this prob-
lem and determine its worst-case time complexity. Consider the weighted
graph G = (V,E), where V is the set of stations and E is the set of chan-
nels between the stations. Define the weight w(e) of an edge e in E as the
bandwidth of the corresponding channel.

C-13.22 Suppose you are given a timetable, which consists of:
• A set A of n airports, and for each airport a in A, a minimum con-

necting time c(a).
• A set F of m flights, and the following, for each flight f in F :

◦ Origin airport a1(f) in A
◦ Destination airport a2(f) in A
◦ Departure time t1(f)
◦ Arrival time t2(f)

Describe an efficient algorithm for the flight scheduling problem. In this
problem, we are given airports a and b, and a time t, and we wish to com-
pute a sequence of flights that allows one to arrive at the earliest possible
time in b when departing from a at or after time t. Minimum connecting
times at intermediate airports should be observed. What is the running
time of your algorithm as a function of n and m?

C-13.23 Inside the Castle of Asymptopia there is a maze, and along each corridor
of the maze there is a bag of gold coins. The amount of gold in each
bag varies. A noble knight, named Sir Paul, will be given the opportunity
to walk through the maze, picking up bags of gold. He may enter the
maze only through a door marked “ENTER” and exit through another
door marked “EXIT.” While in the maze, he may not retrace his steps.
Each corridor of the maze has an arrow painted on the wall. Sir Paul may
only go down the corridor in the direction of the arrow. There is no way
to traverse a “loop” in the maze. Given a map of the maze, including the
amount of gold in and the direction of each corridor, describe an algorithm
to help Sir Paul pick up the most gold.

i

i

“main” — 2011/1/13 — 9:10 — page 661 — #683
i

i

i

i

i

i

13.7. Exercises 661

C-13.24 Let G be a weighted digraph with n vertices. Design a variation of Floyd-
Warshall’s algorithm for computing the lengths of the shortest paths from
each vertex to every other vertex in O(n3) time.

C-13.25 Suppose we are given a directed graph G with n vertices, and let M be the
n×n adjacency matrix corresponding to G.

a. Let the product of M with itself (M2) be defined, for 1≤ i, j ≤ n, as
follows

M2(i, j) = M(i,1)⊙M(1, j)⊕·· ·⊕M(i,n)⊙M(n, j),

where “⊕” is the Boolean or operator and “⊙” is Boolean and.
Given this definition, what does M2(i, j) = 1 imply about the ver-
tices i and j? What if M2(i, j) = 0?

b. Suppose M4 is the product of M2 with itself. What do the entries of
M4 signify? How about the entries of M5 = (M4)(M)? In general,
what information is contained in the matrix Mp?

c. Now suppose that G is weighted and assume the following:
(a) [1.] For 1≤ i≤ n, M(i, i) = 0.
(b) [2.] For 1≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) is in E .
(c) [3.] For for 1≤ i, j ≤ n, M(i, j) =∞ if (i, j) is not in E .

Also, let M2 be defined, for 1≤ i, j ≤ n, as follows

M2(i, j) = min{M(i,1)+ M(1, j), . . . ,M(i,n)+ M(n, j)}.
If M2(i, j) = k, what may we conclude about the relationship be-
tween vertices i and j?

C-13.26 A graph G is bipartite if its vertices can be partitioned into two sets X and
Y such that every edge in G has one end vertex in X and the other in Y .
Design and analyze an efficient algorithm for determining if an undirected
graph G is bipartite (without knowing the sets X and Y in advance).

C-13.27 An old MST method, called Barůvka’s algorithm, works as follows on a
graph G having n vertices and m edges with distinct weights.

Let T be a subgraph of G initially containing just the vertices in V .
while T has fewer than n−1 edges do

for each connected component Ci of T do
Find the lowest-weight edge (v,u) in E with v in Ci and u not in
Ci.
Add (v,u) to T (unless it is already in T).

return T

Argue why this algorithm is correct and why it runs in O(m logn) time.
C-13.28 Let G be a graph with n vertices and m edges such that all the edge weights

in G are integers in the range [1,n]. Give an algorithm for finding a mini-
mum spanning tree for G in O(m log∗ n) time.

i

i

“main” — 2011/1/13 — 9:10 — page 662 — #684
i

i

i

i

i

i

662 Chapter 13. Graph Algorithms

Projects

P-13.1 Write a class implementing a simplified graph ADT that has only func-
tions relevant to undirected graphs and does not include update functions
using the adjacency matrix structure. Your class should include a con-
structor that takes two collections (for example, sequences)—a collection
V of vertex elements and a collection E of pairs of vertex elements—and
produces the graph G that these two collections represent.

P-13.2 Implement the simplified graph ADT described in Project P-13.1 using
the adjacency list structure.

P-13.3 Implement the simplified graph ADT described in Project P-13.1 using
the edge list structure.

P-13.4 Extend the class of Project P-13.2 to support all the functions of the graph
ADT (including functions for directed edges).

P-13.5 Implement a generic BFS traversal using the template method pattern.

P-13.6 Implement the topological sorting algorithm.

P-13.7 Implement the Floyd-Warshall transitive closure algorithm.

P-13.8 Design an experimental comparison of repeated DFS traversals versus
the Floyd-Warshall algorithm for computing the transitive closure of a
digraph.

P-13.9 Implement Dijkstra’s algorithm assuming that the edge weights are inte-
gers.

P-13.10 Implement Kruskal’s algorithm assuming that the edge weights are inte-
gers.

P-13.11 Implement the Prim-Jarńık algorithm assuming that the edge weights are
integers.

P-13.12 Perform an experimental comparison of two of the minimum spanning
tree algorithms discussed in this chapter (Kruskal and Prim-Jarńık). De-
velop an extensive set of experiments to test the running times of these
algorithms using randomly generated graphs.

P-13.13 One way to construct a maze starts with an n×n grid such that each grid
cell is bounded by four unit-length walls. We then remove two boundary
unit-length walls, to represent the start and finish. For each remaining
unit-length wall not on the boundary, we assign a random value and cre-
ate a graph G, called the dual, such that each grid cell is a vertex in G
and there is an edge joining the vertices for two cells if and only if the
cells share a common wall. The weight of each edge is the weight of the
corresponding wall. We construct the maze by finding a minimum span-
ning tree T for G and removing all the walls corresponding to edges in
T . Write a program that uses this algorithm to generate mazes and then

i

i

“main” — 2011/1/13 — 9:10 — page 663 — #685
i

i

i

i

i

i

Chapter Notes 663

solves them. Minimally, your program should draw the maze and, ideally,
it should visualize the solution as well.

P-13.14 Write a program that builds the routing tables for the nodes in a computer
network, based on shortest-path routing, where path distance is measured
by hop count, that is, the number of edges in a path. The input for this
problem is the connectivity information for all the nodes in the network,
as in the following example:

241.12.31.14: 241.12.31.15 241.12.31.18 241.12.31.19

which indicates three network nodes that are connected to 241.12.31.14,
that is, three nodes that are one hop away. The routing table for the node at
address A is a set of pairs (B,C), which indicates that, to route a message
from A to B, the next node to send to (on the shortest path from A to B)
is C. Your program should output the routing table for each node in the
network, given an input list of node connectivity lists, each of which is
input in the syntax as shown above, one per line.

Chapter Notes

The depth-first search method is a part of the “folklore” of computer science, but Hopcroft
and Tarjan [46, 94] are the ones who showed how useful this algorithm is for solving
several different graph problems. Knuth [59] discusses the topological sorting problem.
The simple linear-time algorithm that we describe for determining if a directed graph is
strongly connected is due to Kosaraju. The Floyd-Warshall algorithm appears in a paper
by Floyd [32] and is based upon a theorem of Warshall [102]. To learn about different
algorithms for drawing graphs, please see the book chapter by Tamassia and Liotta [92]
and the book by Di Battista, Eades, Tamassia and Tollis [28]. The first known minimum
spanning tree algorithm is due to Barůvka [8], and was published in 1926. The Prim-Jarńık
algorithm was first published in Czech by Jarńık [50] in 1930 and in English in 1957 by
Prim [85]. Kruskal published his minimum spanning tree algorithm in 1956 [62]. The
reader interested in further study of the history of the minimum spanning tree problem is
referred to the paper by Graham and Hell [41]. The current asymptotically fastest minimum
spanning tree algorithm is a randomized algorithm of Karger, Klein, and Tarjan [52] that
runs in O(m) expected time.

Dijkstra [29] published his single-source, shortest-path algorithm in 1959. The reader
interested in further study of graph algorithms is referred to the books by Ahuja, Magnanti,
and Orlin [6], Cormen, Leiserson, and Rivest [24], Even [31], Gibbons [36], Mehlhorn [74],
and Tarjan [95], and the book chapter by van Leeuwen [98]. Incidentally, the running time
for the Prim-Jarńık algorithm, and also that of Dijkstra’s algorithm, can actually be im-
proved to be O(n logn + m) by implementing the queue Q with either of two more sophis-
ticated data structures, the “Fibonacci Heap” [34] or the “Relaxed Heap” [30].

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page 665 — #687
i

i

i

i

i

i

Chapter

14 Memory Management and B-Trees

Contents

14.1 Memory Management 666

14.1.1 Memory Allocation in C++ 669

14.1.2 Garbage Collection 671

14.2 External Memory and Caching 673

14.2.1 The Memory Hierarchy 673

14.2.2 Caching Strategies 674

14.3 External Searching and B-Trees 679

14.3.1 (a,b) Trees . 680

14.3.2 B-Trees . 682

14.4 External-Memory Sorting 683

14.4.1 Multi-Way Merging 684

14.5 Exercises . 685

i

i

“main” — 2011/1/13 — 9:10 — page 666 — #688
i

i

i

i

i

i

666 Chapter 14. Memory Management and B-Trees

14.1 Memory Management

In order to implement any data structure on an actual computer, we need to use
computer memory. Computer memory is simply a sequence of memory words,
each of which usually consists of 4, 8, or 16 bytes (depending on the computer).
These memory words are numbered from 0 to N − 1, where N is the number of
memory words available to the computer. The number associated with each mem-
ory word is known as its address. Thus, the memory in a computer can be viewed
as basically one giant array of memory words. Using this memory to construct data
structures (and run programs) requires that we manage the computer’s memory
to provide the space needed for data—including variables, nodes, pointers, arrays,
and character strings—and the programs the computer runs. We discuss the basics
of memory management in this section.

The C++ Run-Time Stack

A C++ program is compiled into a binary executable file, which is then executed
within the context of the C++ run-time environment. The run-time environment
provides important functions for executing your program, such as managing mem-
ory and performing input and output.

Stacks have an important application to the run-time environment of C++ pro-
grams. A running program has a private stack, called the function call stack or
just call stack for short, which is used to keep track of local variables and other
important information on functions as they are invoked during execution. (See Fig-
ure 14.1.)

More specifically, during the execution of a program, the run-time environment
maintains a stack whose elements are descriptors of the currently active (that is,
nonterminated) invocations of functions. These descriptors are called frames. A
frame for some invocation of function “fool” stores the current values of the local
variables and parameters of function fool, as well as information on function “cool”
that called fool and on what needs to be returned to function “cool.”

Keeping Track of the Program Counter

Your computer’s run-time system maintains a special variable, called the program
counter, which keeps track of which machine instruction is currently being exe-
cuted. When the function cool() invokes another function fool(), the current value
of the program counter is recorded in the frame of the current invocation of cool()
(so the system knows where to return to when function fool() is done). At the top of
the stack is the frame of the running function, that is, the function that is currently

i

i

“main” — 2011/1/13 — 9:10 — page 667 — #689
i

i

i

i

i

i

14.1. Memory Management 667

C++ Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

C++ Stack

Figure 14.1: An example of the C++ call stack: function fool has just been called
by function cool, which itself was previously called by function main. Note the
values of the program counter, parameters, and local variables stored in the stack
frames. When the invocation of function fool terminates, the invocation of function
cool resumes its execution at instruction 217, which is obtained by incrementing
the value of the program counter stored in the stack frame.

executing. The remaining elements of the stack are frames of the suspended func-
tions, that is, functions that have invoked another function and are currently waiting
for it to return control to them upon its termination. The order of the elements in
the stack corresponds to the chain of invocations of the currently active functions.
When a new function is invoked, a frame for this function is pushed onto the stack.
When it terminates, its frame is popped from the stack and the system resumes the
processing of the previously suspended function.

Understanding Call-by-Value Parameter Passing

The system uses the call stack to perform parameter passing to functions. Unless
reference parameters are involved, C++ uses the call-by-value parameter passing
protocol. This means that the current value of a variable (or expression) is what is
passed as an argument to a called function.

i

i

“main” — 2011/1/13 — 9:10 — page 668 — #690
i

i

i

i

i

i

668 Chapter 14. Memory Management and B-Trees

If the variable x being passed is not specified as a reference parameter, its value
is copied to a local variable in the called function’s frame. This applies to primitive
types (such as int and float), pointers (such as “int*”), and even to classes (such as
“std::vector<int>”). Note that if the called function changes the value of this local
variable, it will not change the value of the variable in the calling function.

On the other hand, if the variable x is passed as a reference parameter, such
as “int&,” the address of x is passed instead, and this address is assigned to some
local variable y in the called function. Thus, y and x refer to the same object. If
the called function changes the internal state of the object that y refers to, it will
simultaneously be changing the internal state of the object that x refers to (since
they refer to the same object).

C++ arrays behave somewhat differently, however. Recall from Section 1.1.3,
that a C++ array is represented internally as a pointer to its first element. Thus,
passing an array parameter passes a copy of this pointer, not a copy of the array
contents. Since the variable x in the calling function and the associated local vari-
able y in the called function share the same copy of this pointer, x[i] and y[i] refer
to the same object in memory.

Implementing Recursion

One of the benefits of using a stack to implement function invocation is that it
allows programs to use recursion. That is, it allows a function to call itself, as dis-
cussed in Section 3.5. Interestingly, early programming languages, such as Cobol
and Fortran, did not originally use run-time stacks to implement function and pro-
cedure calls. But because of the elegance and efficiency that recursion allows,
all modern programming languages, including the modern versions of classic lan-
guages like Cobol and Fortran, utilize a run-time stack for function and procedure
calls.

In the execution of a recursive function, each box of the recursion trace corre-
sponds to a frame of the call stack. Also, the content of the call stack corresponds
to the chain of boxes from the initial function invocation to the current one.

To better illustrate how a run-time stack allows for recursive functions, let us
consider a C++ implementation of the classic recursive definition of the factorial
tion

n! = n(n−1)(n−2) · · ·1

as shown in Code Fragment 14.1.
The first time we call function factorial, its stack frame includes a local variable

storing the value n. Function factorial recursively calls itself to compute (n− 1)!,
which pushes a new frame on the call stack. In turn, this recursive invocation
calls itself to compute (n− 2)!, etc. The chain of recursive invocations, and thus
the run-time stack, only grows up to size n, because calling factorial(1) returns

i

i

“main” — 2011/1/13 — 9:10 — page 669 — #691
i

i

i

i

i

i

14.1. Memory Management 669

int recursiveFactorial(int n) { // recursive factorial function
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n−1); // recursive case
}

Code Fragment 14.1: A recursive implementation of the factorial function.

1 immediately without invoking itself recursively. The run-time stack allows for
function factorial to exist simultaneously in several active frames (as many as n at
some point). Each frame stores the value of its parameter n as well as the value to
be returned. Eventually, when the first recursive call terminates, it returns (n−1)!,
which is then multiplied by n to compute n! for the original call of the factorial
function.

14.1.1 Memory Allocation in C++

We have already discussed (in Section 14.1) how the C++ run-time system allocates
a function’s local variables in that function’s frame on the run-time stack. The
stack is not the only kind of memory available for program data in C++, however.
Memory can also be allocated dynamically by using the new operator, which is
built into C++. For example, in Chapter 1, we learned that we can allocate an array
of 100 integers as follows:

int* items = new int[100];

Memory allocated in this manner can be deallocated with “delete [] items.”

The Memory Heap

Instead of using the run-time stack for this object’s memory, C++ uses memory
from another area of storage—the memory heap (which should not be confused
with the “heap” data structure discussed in Chapter 8). We illustrate this memory
area, together with the other memory areas, in Figure 14.2. The storage available in
the memory heap is divided into blocks, which are contiguous array-like “chunks”
of memory that may be of variable or fixed sizes.

To simplify the discussion, let us assume that blocks in the memory heap are
of a fixed size, say, 1,024 bytes, and that one block is big enough for any object
we might want to create. (Efficiently handling the more general case is actually an
interesting research problem.)

The memory heap must be able to allocate memory blocks quickly for new
objects. Different run-time systems use different approaches. We therefore exercise
this freedom and choose to use a queue to manage the unused blocks in the memory
heap. When a function uses the new operator to request a block of memory for

i

i

“main” — 2011/1/13 — 9:10 — page 670 — #692
i

i

i

i

i

i

670 Chapter 14. Memory Management and B-Trees

Figure 14.2: A schematic view of the layout of memory in a C++ program.

some new object, the run-time system can perform a dequeue operation on the
queue of unused blocks to provide a free block of memory in the memory heap.
Likewise, when the user deallocates a block of memory using delete, then the run-
time system can perform an enqueue operation to return this block to the queue of
available blocks.

Memory Allocation Algorithms

It is important that the run-time systems of modern programming languages, such
as C++ and Java, are able to quickly allocate memory for new objects. Different
systems adopt difference approaches. One popular method is to keep contiguous
“holes” of available free memory in a doubly linked list, called the free list. The
links joining these holes are stored inside the holes themselves, since their memory
is not being used. As memory is allocated and deallocated, the collection of holes
in the free lists changes, with the unused memory being separated into disjoint
holes divided by blocks of used memory. This separation of unused memory into
separate holes is known as fragmentation. Of course, we would like to minimize
fragmentation as much as possible.

There are two kinds of fragmentation that can occur. Internal fragmentation
occurs when a portion of an allocated memory block is not actually used. For
example, a program may request an array of size 1,000 but only use the first 100
cells of this array. There isn’t much that a run-time environment can do to reduce
internal fragmentation. External fragmentation, on the other hand, occurs when
there is a significant amount of unused memory between several contiguous blocks
of allocated memory. Since the run-time environment has control over where to
allocate memory when it is requested (for example, when the new keyword is used
in C++), the run-time environment should allocate memory in a way that tries to
reduce external fragmentation as much as reasonably possible.

Several heuristics have been suggested for allocating memory from the heap
in order to minimize external fragmentation. The best-fit algorithm searches the
entire free list to find the hole whose size is closest to the amount of memory being
requested. The first-fit algorithm searches from the beginning of the free list for
the first hole that is large enough. The next-fit algorithm is similar, in that it also
searches the free list for the first hole that is large enough, but it begins its search

i

i

“main” — 2011/1/13 — 9:10 — page 671 — #693
i

i

i

i

i

i

14.1. Memory Management 671

from where it left off previously, viewing the free list as a circularly linked list
(Section 3.4.1). The worst-fit algorithm searches the free list to find the largest hole
of available memory, which might be done faster than a search of the entire free list
if this list were maintained as a priority queue (Chapter 8). In each algorithm, the
requested amount of memory is subtracted from the chosen memory hole and the
leftover part of that hole is returned to the free list.

Although it might sound good at first, the best-fit algorithm tends to produce
the worst external fragmentation, since the leftover parts of the chosen holes tend
to be small. The first-fit algorithm is fast, but it tends to produce a lot of external
fragmentation at the front of the free list, which slows down future searches. The
next-fit algorithm spreads fragmentation more evenly throughout the memory heap,
thus keeping search times low. This spreading also makes it more difficult to allo-
cate large blocks, however. The worst-fit algorithm attempts to avoid this problem
by keeping contiguous sections of free memory as large as possible.

14.1.2 Garbage Collection

In C++, the memory space for objects must be explicitly allocated and deallocated
by the programmer through the use of the operators new and delete, respectively.
Other programming languages, such as Java, place the burden of memory man-
agement entirely on the run-time environment. In this section, we discuss how
the run-time systems of languages like Java manage the memory used by objects
allocated by the new operation.

As mentioned above, memory for objects is allocated from the memory heap
and the space for the member variables of a running program are placed in its call
stacks, one for each running program. Since member variables in a call stack can
refer to objects in the memory heap, all the variables and objects in the call stacks
of running threads are called root objects. All those objects that can be reached
by following object references that start from a root object are called live objects.
The live objects are the active objects currently being used by the running program;
these objects should not be deallocated. For example, a running program may store,
in a variable, a reference to a sequence S that is implemented using a doubly linked
list. The reference variable to S is a root object, while the object for S is a live
object, as are all the node objects that are referenced from this object and all the
elements that are referenced from these node objects.

From time to time, the run-time environment may notice that available space
in the memory heap is becoming scarce. At such times, the system can elect to
reclaim the space that is being used for objects that are no longer live, and return the
reclaimed memory to the free list. This reclamation process is known as garbage
collection. There are several different algorithms for garbage collection, but one of
the most used is the mark-sweep algorithm.

i

i

“main” — 2011/1/13 — 9:10 — page 672 — #694
i

i

i

i

i

i

672 Chapter 14. Memory Management and B-Trees

In the mark-sweep garbage collection algorithm, we associate a “mark” bit with
each object that identifies if that object is live or not. When we determine, at some
point, that garbage collection is needed, we suspend all other running threads and
clear the mark bits of all the objects currently allocated in the memory heap. We
then trace through the call stack of the currently running program and we mark
all the (root) objects in this stack as “live.” We must then determine all the other
live objects—the ones that are reachable from the root objects. To do this effi-
ciently, we can use the directed-graph version of the depth-first search traversal
(Section 13.3.1). In this case, each object in the memory heap is viewed as a vertex
in a directed graph, and the reference from one object to another is viewed as a di-
rected edge. By performing a directed DFS from each root object, we can correctly
identify and mark each live object. This process is known as the “mark” phase.
Once this process has completed, we then scan through the memory heap and re-
claim any space that is being used for an object that has not been marked. At this
time, we can also optionally coalesce all the allocated space in the memory heap
into a single block, thereby eliminating external fragmentation for the time being.
This scanning and reclamation process is known as the “sweep” phase, and when
it completes, we resume running the suspended threads. Thus, the mark-sweep
garbage collection algorithm will reclaim unused space in time proportional to the
number of live objects and their references plus the size of the memory heap.

Performing DFS In-place

The mark-sweep algorithm correctly reclaims unused space in the memory heap,
but there is an important issue we must face during the mark phase. Since we are
reclaiming memory space at a time when available memory is scarce, we must take
care not to use extra space during the garbage collection itself. The trouble is that
the DFS algorithm, in the recursive way we described it in Section 13.3.1, can use
space proportional to the number of vertices in the graph. In the case of garbage
collection, the vertices in our graph are the objects in the memory heap; hence, we
probably don’t have this much memory to use. We want a way to perform DFS
in-place, using only a constant amount of additional storage.

The main idea for performing DFS in-place is to simulate the recursion stack
using the edges of the graph (which, in the case of garbage collection, corresponds
to object references). When we traverse an edge from a visited vertex v to a new
vertex w, we change the edge (v,w) stored in v’s adjacency list to point back to v’s
parent in the DFS tree. When we return back to v (simulating the return from the
“recursive” call at w), we can now switch the edge we modified to point back to w.
Of course, we need to have some way of identifying which edge we need to change
back. One possibility is to number the references going out of v as 1, 2, and so on,
and store, in addition to the mark bit (which we are using for the “visited” tag in
our DFS), a count identifier that tells us which edges we have modified.

i

i

“main” — 2011/1/13 — 9:10 — page 673 — #695
i

i

i

i

i

i

14.2. External Memory and Caching 673

14.2 External Memory and Caching

There are several computer applications that must deal with a large amount of data.
Examples include the analysis of scientific data sets, the processing of financial
transactions, and the organization and maintenance of databases (such as telephone
directories). In fact, the amount of data that must be dealt with is often too large to
fit entirely in the internal memory of a computer.

14.2.1 The Memory Hierarchy

In order to accommodate large data sets, computers have a hierarchy of different
kinds of memories that vary in terms of their size and distance from the CPU.
Closest to the CPU are the internal registers that the CPU itself uses. Access to such
locations is very fast, but there are relatively few such locations. At the second level
in the hierarchy is the cache memory. This memory is considerably larger than the
register set of a CPU, but accessing it takes longer (and there may even be multiple
caches with progressively slower access times). At the third level in the hierarchy is
the internal memory, which is also known as main memory or core memory. The
internal memory is considerably larger than the cache memory, but also requires
more time to access. Finally, at the highest level in the hierarchy is the external
memory, which usually consists of disks, CD drives, DVD drives, and/or tapes.
This memory is very large, but it is also very slow. Thus, the memory hierarchy for
computers can be viewed as consisting of four levels, each of which is larger and
slower than the previous level. (See Figure 14.3.)

In most applications, however, only two levels really matter—the one that can
hold all data items and the level just below that one. Bringing data items in and out
of the higher memory that can hold all items will typically be the computational
bottleneck in this case.

Figure 14.3: The memory hierarchy.

i

i

“main” — 2011/1/13 — 9:10 — page 674 — #696
i

i

i

i

i

i

674 Chapter 14. Memory Management and B-Trees

Caches and Disks

Specifically, the two levels that matter most depend on the size of the problem
we are trying to solve. For a problem that can fit entirely in main memory, the
two most important levels are the cache memory and the internal memory. Access
times for internal memory can be as much as 10 to 100 times longer than those
for cache memory. It is desirable, therefore, to be able to perform most memory
accesses in cache memory. For a problem that does not fit entirely in main memory,
on the other hand, the two most important levels are the internal memory and the
external memory. Here the differences are even more dramatic. For access times for
disks, the usual general-purpose, external-memory devices, are typically as much
as 100,000 to 1,000,000 times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore
who wants to send a request-for-money message to his parents in Chicago. If the
student sends his parents an e-mail message, it can arrive at their home computer
in about five seconds. Think of this mode of communication as corresponding to
an internal-memory access by a CPU. A mode of communication corresponding to
an external-memory access that is 500,000 times slower would be for the student
to walk to Chicago and deliver his message in person, which would take about a
month if he can average 20 miles per day. Thus, we should make as few accesses
to external memory as possible.

14.2.2 Caching Strategies

Most algorithms are not designed with the memory hierarchy in mind, in spite of
the great variance between access times for the different levels. Indeed, all of the
algorithm analyses described in this book so far have assumed that all memory
accesses are equal. This assumption might seem, at first, to be a great oversight—
and one we are only addressing now in the final chapter—but there are good reasons
why it is actually a reasonable assumption to make.

One justification for this assumption is that it is often necessary to assume that
all memory accesses take the same amount of time, since specific device-dependent
information about memory sizes is often hard to come by. In fact, information
about memory size may be impossible to get. For example, a C++ program that is
designed to run on many different computer platforms cannot be defined in terms of
a specific computer architecture configuration. We can certainly use architecture-
specific information, if we have it (and we show how to exploit such information
later in this chapter). But once we have optimized our software for a certain archi-
tecture configuration, our software is no longer device-independent. Fortunately,
such optimizations are not always necessary, primarily because of the second justi-
fication for the equal-time, memory-access assumption.

i

i

“main” — 2011/1/13 — 9:10 — page 675 — #697
i

i

i

i

i

i

14.2. External Memory and Caching 675

Caching and Blocking

Another justification for the memory-access equality assumption is that operating
system designers have developed general mechanisms that allow for most memory
accesses to be fast. These mechanisms are based on two important locality-of-
reference properties that most software possesses.

• Temporal locality: If a program accesses a certain memory location, then
it is likely to access this location again in the near future. For example, it is
quite common to use the value of a counter variable in several different ex-
pressions, including one to increment the counter’s value. In fact, a common
adage among computer architects is that “a program spends 90 percent of its
time in 10 percent of its code.”

• Spatial locality: If a program accesses a certain memory location, then it is
likely to access other locations that are near this one. For example, a program
using an array is likely to access the locations of this array in a sequential or
near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-
periments to justify the claim that most software possesses both of these kinds of
locality-of-reference. For example, a for-loop used to scan through an array ex-
hibits both kinds of locality.

Temporal and spatial localities have, in turn, given rise to two fundamental
design choices for two-level computer memory systems (which are present in the
interface between cache memory and internal memory, and also in the interface
between internal memory and external memory).

The first design choice is called virtual memory. This concept consists of pro-
viding an address space as large as the capacity of the secondary-level memory,
and of transferring data located in the secondary level, into the primary level, when
they are addressed. Virtual memory does not limit the programmer to the constraint
of the internal memory size. The concept of bringing data into primary memory is
called caching, and it is motivated by temporal locality. Because, by bringing data
into primary memory, we are hoping that it will be accessed again soon, and we
will be able to respond quickly to all the requests for this data that come in the near
future.

The second design choice is motivated by spatial locality. Specifically, if data
stored at a secondary-level memory location l is accessed, then we bring into
primary-level memory, a large block of contiguous locations that include the lo-
cation l. (See Figure 14.4.) This concept is known as blocking, and it is motivated
by the expectation that other secondary-level memory locations close to l will soon
be accessed. In the interface between cache memory and internal memory, such
blocks are often called cache lines, and in the interface between internal memory
and external memory, such blocks are often called pages.

i

i

“main” — 2011/1/13 — 9:10 — page 676 — #698
i

i

i

i

i

i

676 Chapter 14. Memory Management and B-Trees

Figure 14.4: Blocks in external memory.

When implemented with caching and blocking, virtual memory often allows
us to perceive secondary-level memory as being faster than it really is. There is
still a problem, however. Primary-level memory is much smaller than secondary-
level memory. Moreover, because memory systems use blocking, any program
of substance will likely reach a point where it requests data from secondary-level
memory, but the primary memory is already full of blocks. In order to fulfill the
request and maintain our use of caching and blocking, we must remove some block
from primary memory to make room for a new block from secondary memory in
this case. Deciding how to do this eviction brings up a number of interesting data
structure and algorithm design issues.

Caching Algorithms

There are several Web applications that must deal with revisiting information pre-
sented in Web pages. These revisits have been shown to exhibit localities of refer-
ence, both in time and in space. To exploit these localities of reference, it is often
advantageous to store copies of Web pages in a cache memory, so these pages can
be quickly retrieved when requested again. In particular, suppose we have a cache
memory that has m “slots” that can contain Web pages. We assume that a Web page
can be placed in any slot of the cache. This is known as a fully associative cache.

As a browser executes, it requests different Web pages. Each time the browser
requests such a Web page l, the browser determines (using a quick test) if l is
unchanged and currently contained in the cache. If l is contained in the cache, then
the browser satisfies the request using the cached copy. If l is not in the cache,
however, the page for l is requested over the Internet and transferred into the cache.
If one of the m slots in the cache is available, then the browser assigns l to one of
the empty slots. But if all the m cells of the cache are occupied, then the computer
must determine which previously viewed Web page to evict before bringing in l
to take its place. There are, of course, many different policies that can be used to
determine the page to evict.

i

i

“main” — 2011/1/13 — 9:10 — page 677 — #699
i

i

i

i

i

i

14.2. External Memory and Caching 677

Page Replacement Algorithms

Some of the better-known page replacement policies include the following (see
Figure 14.5):

• First-in, first-out (FIFO) : Evict the page that has been in the cache the
longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur-
thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache.

Figure 14.5: The Random, FIFO, and LRU page replacement policies.

The Random strategy is one of the easiest policies to implement, because it only
requires a random or pseudo-random number generator. The overhead involved in
implementing this policy is an O(1) additional amount of work per page replace-
ment. Moreover, there is no additional overhead for each page request, other than to
determine whether a page request is in the cache or not. Still, this policy makes no
attempt to take advantage of any temporal or spatial localities that a user’s browsing
exhibits.

i

i

“main” — 2011/1/13 — 9:10 — page 678 — #700
i

i

i

i

i

i

678 Chapter 14. Memory Management and B-Trees

The FIFO strategy is quite simple to implement, because it only requires a
queue Q to store references to the pages in the cache. Pages are enqueued in Q
when they are referenced by a browser, and then are brought into the cache. When
a page needs to be evicted, the computer simply performs a dequeue operation on
Q to determine which page to evict. Thus, this policy also requires O(1) additional
work per page replacement. Also, the FIFO policy incurs no additional overhead
for page requests. Moreover, it tries to take some advantage of temporal locality.

The LRU strategy goes a step further than the FIFO strategy, since the LRU
strategy explicitly takes advantage of temporal locality as much as possible, by al-
ways evicting the page that was least recently used. From a policy point of view,
this is an excellent approach, but it is costly from an implementation point of view.
That is, its way of optimizing temporal and spatial locality is fairly costly. Im-
plementing the LRU strategy requires the use of a priority queue Q that supports
searching for existing pages, for example, using special pointers or “locators.” If
Q is implemented with a sorted sequence based on a linked list, then the overhead
for each page request and page replacement is O(1). When we insert a page in Q
or update its key, the page is assigned the highest key in Q and is placed at the end
of the list, which can also be done in O(1) time. Even though the LRU strategy has
constant-time overhead, using the implementation above, the constant factors in-
volved, in terms of the additional time overhead and the extra space for the priority
queue Q, make this policy less attractive from a practical point of view.

Since these different page replacement policies have different trade-offs be-
tween implementation difficulty and the degree to which they seem to take advan-
tage of localities, it is natural for us to ask for some kind of comparative analysis
of these methods to see which one, if any, is the best.

From a worst-case point of view, the FIFO and LRU strategies have fairly
unattractive competitive behavior. For example, suppose we have a cache con-
taining m pages, and consider the FIFO and LRU methods for performing page
replacement for a program that has a loop that repeatedly requests m + 1 pages in
a cyclic order. Both the FIFO and LRU policies perform badly on such a sequence
of page requests, because they perform a page replacement on every page request.
Thus, from a worst-case point of view, these policies are almost the worst we can
imagine—they require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses on
each protocol’s behavior for one bad sequence of page requests. An ideal analy-
sis would be to compare these methods over all possible page-request sequences.
Of course, this is impossible to do exhaustively, but there have been a great num-
ber of experimental simulations done on page-request sequences derived from real
programs. Based on these experimental comparisons, the LRU strategy has been
shown to be usually superior to the FIFO strategy, which is usually better than the
Random strategy.

i

i

“main” — 2011/1/13 — 9:10 — page 679 — #701
i

i

i

i

i

i

14.3. External Searching and B-Trees 679

14.3 External Searching and B-Trees

Consider the problem of implementing the map ADT for a large collection of items
that do not fit in main memory. Since one of the main uses of a large map is in a
database, we refer to the secondary-memory blocks as disk blocks. Likewise, we
refer to the transfer of a block between secondary memory and primary memory
as a disk transfer. Recalling the great time difference that exists between main
memory accesses and disk accesses, the main goal of maintaining a map in external
memory is to minimize the number of disk transfers needed to perform a query or
update. In fact, the difference in speed between disk and internal memory is so great
that we should be willing to perform a considerable number of internal-memory
accesses if they allow us to avoid a few disk transfers. Let us, therefore, analyze
the performance of map implementations by counting the number of disk transfers
each would require to perform the standard map search and update operations. We
refer to this count as the I/O complexity of the algorithms involved.

Some Inefficient External-Memory Dictionaries

Let us first consider the simple map implementations that use a list to store n en-
tries. If the list is implemented as an unsorted, doubly linked list, then insert and
remove operations can be performed with O(1) transfers each, but removals and
searches require n transfers in the worst case, since each link hop we perform could
access a different block. This search time can be improved to O(n/B) transfers
(see Exercise C-14.2), where B denotes the number of nodes of the list that can fit
into a block, but this is still poor performance. We could alternately implement the
sequence using a sorted array. In this case, a search performs O(log2 n) transfers,
via binary search, which is a nice improvement. But this solution requires Θ(n/B)
transfers to implement an insert or remove operation in the worst case, because we
may have to access all blocks to move elements up or down. Thus, list-based map
implementations are not efficient in external memory.

Since these simple implementations are I/O inefficient, we should consider the
logarithmic-time, internal-memory strategies that use balanced binary trees (for
example, AVL trees or red-black trees) or other search structures with logarithmic
average-case query and update times (for example, skip lists or splay trees). These
methods store the map items at the nodes of a binary tree or of a graph. Typically,
each node accessed for a query or update in one of these structures will be in a
different block. Thus, these methods all require O(log2 n) transfers in the worst
case to perform a query or update operation. This performance is good, but we
can do better. In particular, we can perform map queries and updates using only
O(logB n) = O(logn/ log B) transfers.

i

i

“main” — 2011/1/13 — 9:10 — page 680 — #702
i

i

i

i

i

i

680 Chapter 14. Memory Management and B-Trees

14.3.1 (a,b) Trees

To reduce the importance of the performance difference between internal-memory
accesses and external-memory accesses for searching, we can represent our map
using a multi-way search tree (Section 10.4.1). This approach gives rise to a gen-
eralization of the (2,4) tree data structure known as the (a,b) tree.

An (a,b) tree is a multi-way search tree such that each node has between a and
b children and stores between a−1 and b−1 entries. The algorithms for searching,
inserting, and removing entries in an (a,b) tree are straightforward generalizations
of the corresponding algorithms for (2,4) trees. The advantage of generalizing
(2,4) trees to (a,b) trees is that a generalized class of trees provides a flexible
search structure, where the size of the nodes and the running time of the various
map operations depends on the parameters a and b. By setting the parameters a
and b appropriately with respect to the size of disk blocks, we can derive a data
structure that achieves good external-memory performance.

Definition of an (a,b) Tree

An (a,b) tree, where a and b are integers, such that 2 ≤ a ≤ (b+ 1)/2, is a multi-
way search tree T with the following additional restrictions:

Size Property: Each internal node has at least a children, unless it is the root, and
has at most b children.

Depth Property: All the external nodes have the same depth.

Proposition 14.1: The height of an (a,b) tree storing n entries is Ω(logn/ log b)
and O(logn/ log a).

Justification: Let T be an (a,b) tree storing n entries, and let h be the height of
T . We justify the proposition by establishing the following bounds on h

1
logb

log(n+ 1)≤ h≤ 1
loga

log
n+ 1

2
+ 1.

By the size and depth properties, the number n′′ of external nodes of T is at least
2ah−1 and at most bh. By Proposition 10.7, n′′ = n+ 1. Thus

2ah−1 ≤ n+ 1≤ bh.

Taking the logarithm in base 2 of each term, we get

(h−1) log a+ 1≤ log(n+ 1)≤ h log b.

i

i

“main” — 2011/1/13 — 9:10 — page 681 — #703
i

i

i

i

i

i

14.3. External Searching and B-Trees 681

Search and Update Operations

We recall that in a multi-way search tree T , each node v of T holds a secondary
structure M(v), which is itself a map (Section 10.4.1). If T is an (a,b) tree, then
M(v) stores at most b entries. Let f (b) denote the time for performing a search
in a map, M(v). The search algorithm in an (a,b) tree is exactly like the one for
multi-way search trees given in Section 10.4.1. Hence, searching in an (a,b) tree
T with n entries takes O((f (b)/ log a) log n) time. Note that if b is a constant (and
thus a is also), then the search time is O(logn).

The main application of (a,b) trees is for maps stored in external memory.
Namely, to minimize disk accesses, we select the parameters a and b so that each
tree node occupies a single disk block (so that f (b) = 1 if we wish to simply count
block transfers). Providing the right a and b values in this context gives rise to a
data structure known as the B-tree, which we describe shortly. Before we describe
this structure, however, let us discuss how insertions and removals are handled in
(a,b) trees.

The insertion algorithm for an (a,b) tree is similar to that for a (2,4) tree.
An overflow occurs when an entry is inserted into a b-node v, which becomes an
illegal (b + 1)-node. (Recall that a node in a multi-way tree is a d-node if it has d
children.) To remedy an overflow, we split node v by moving the median entry of v
into the parent of v and replacing v with a ⌈(b + 1)/2⌉-node v′ and a ⌊(b + 1)/2⌋-
node v′′. We can now see the reason for requiring a ≤ (b + 1)/2 in the definition
of an (a,b) tree. Note that, as a consequence of the split, we need to build the
secondary structures M(v′) and M(v′′).

Removing an entry from an (a,b) tree is similar to what was done for (2,4)
trees. An underflow occurs when a key is removed from an a-node v, distinct from
the root, which causes v to become an illegal (a−1)-node. To remedy an underflow,
we perform a transfer with a sibling of v that is not an a-node or we perform a fusion
of v with a sibling that is an a-node. The new node w resulting from the fusion is a
(2a−1)-node, which is another reason for requiring a≤ (b+ 1)/2.

Table 14.1 shows the performance of a map realized with an (a,b) tree.

Operation Time

find O
(

f (b)
log a log n

)

insert O
(

g(b)
log a log n

)

erase O
(

g(b)
log a log n

)

Table 14.1: Time bounds for an n-entry map realized by an (a,b) tree T . We assume
the secondary structure of the nodes of T support search in f (b) time, and split and
fusion operations in g(b) time, for some functions f (b) and g(b), which can be
made to be O(1) when we are only counting disk transfers.

i

i

“main” — 2011/1/13 — 9:10 — page 682 — #704
i

i

i

i

i

i

682 Chapter 14. Memory Management and B-Trees

14.3.2 B-Trees

A version of the (a,b) tree data structure, which is the best known method for
maintaining a map in external memory, is called the “B-tree.” (See Figure 14.6.) A
B-tree of order d is an (a,b) tree with a = ⌈d/2⌉ and b = d. Since we discussed
the standard map query and update methods for (a,b) trees above, we restrict our
discussion here to the I/O complexity of B-trees.

Figure 14.6: A B-tree of order 6.

An important property of B-trees is that we can choose d so that the d children
references and the d− 1 keys stored at a node can all fit into a single disk block,
implying that d is proportional to B. This choice allows us to assume that a and
b are also proportional to B in the analysis of the search and update operations on
(a,b) trees. Thus, f (b) and g(b) are both O(1), because each time we access a
node to perform a search or an update operation, we need only perform a single
disk transfer.

As we have already observed above, each search or update requires that we
examine at most O(1) nodes for each level of the tree. Therefore, any map search
or update operation on a B-tree requires only O(log⌈d/2⌉ n), that is, O(logn/ log B)
disk transfers. For example, an insert operation proceeds down the B-tree to locate
the node in which to insert the new entry. If the node overflows (to have d + 1
children) because of this addition, then this node is split into two nodes that have
⌊(d + 1)/2⌋ and ⌈(d + 1)/2⌉ children, respectively. This process is then repeated
at the next level up, and continues for at most O(logB n) levels.

Likewise, if a remove operation results in a node underflow (to have ⌈d/2⌉−1
children), then we move references from a sibling node with at least ⌈d/2⌉+ 1
children or we need to perform a fusion operation of this node with its sibling (and
repeat this computation at the parent). As with the insert operation, this continues
up the B-tree for at most O(logB n) levels. The requirement that each internal node
has at least ⌈d/2⌉ children implies that each disk block used to support a B-tree is
at least half full. Thus, we have the following.

Proposition 14.2: A B-tree with n entries has I/O complexity O(logB n) for search
or update operation, and uses O(n/B) blocks, where B is the size of a block.

i

i

“main” — 2011/1/13 — 9:10 — page 683 — #705
i

i

i

i

i

i

14.4. External-Memory Sorting 683

14.4 External-Memory Sorting

In addition to data structures, such as maps, that need to be implemented in external
memory, there are many algorithms that must also operate on input sets that are too
large to fit entirely into internal memory. In this case, the objective is to solve the
algorithmic problem using as few block transfers as possible. The most classic
domain for such external-memory algorithms is the sorting problem.

Multi-Way Merge-Sort

An efficient way to sort a set S of n objects in external memory amounts to a sim-
ple external-memory variation on the familiar merge-sort algorithm. The main idea
behind this variation is to merge many recursively sorted lists at a time, thereby
reducing the number of levels of recursion. Specifically, a high-level description
of this multi-way merge-sort method is to divide S into d subsets S1, S2, . . ., Sd of
roughly equal size, recursively sort each subset Si, and then simultaneously merge
all d sorted lists into a sorted representation of S. If we can perform the merge pro-
cess using only O(n/B) disk transfers, then, for large enough values of n, the total
number of transfers performed by this algorithm satisfies the following recurrence

t(n) = d · t(n/d)+ cn/B,

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can
perform a single block transfer at this point, getting all of the objects into internal
memory, and then sort the set with an efficient internal-memory algorithm. Thus,
the stopping criterion for t(n) is

t(n) = 1 if n/B ≤ 1.

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is

O((n/B) log(n/B)/ log d).

Thus, if we can choose d to be Θ(M/B), then the worst-case number of block
transfers performed by this multi-way merge-sort algorithm is quite low. We choose

d = (1/2)M/B.

The only aspect of this algorithm left to specify is how to perform the d-way merge
using only O(n/B) block transfers.

i

i

“main” — 2011/1/13 — 9:10 — page 684 — #706
i

i

i

i

i

i

684 Chapter 14. Memory Management and B-Trees

14.4.1 Multi-Way Merging

We perform the d-way merge by running a “tournament.” We let T be a complete
binary tree with d external nodes, and we keep T entirely in internal memory. We
associate each external node i of T with a different sorted list Si. We initialize T by
reading into each external node i, the first object in Si. This has the effect of reading
into internal memory the first block of each sorted list Si. For each internal-node
parent v of two external nodes, we then compare the objects stored at v’s children
and we associate the smaller of the two with v. We repeat this comparison test at
the next level up in T , and the next, and so on. When we reach the root r of T , we
associate the smallest object from among all the lists with r. This completes the
initialization for the d-way merge. (See Figure 14.7.)

Figure 14.7: A d-way merge. We show a five-way merge with B = 4.

In a general step of the d-way merge, we move the object o associated with the
root r of T into an array we are building for the merged list S ′. We then trace down
T , following the path to the external node i that o came from. We then read into i
the next object in the list Si. If o was not the last element in its block, then this next
object is already in internal memory. Otherwise, we read in the next block of Si to
access this new object (if Si is now empty, associate the node i with a pseudo-object
with key +∞). We then repeat the minimum computations for each of the internal
nodes from i to the root of T . This again gives us the complete tree T . We then
repeat this process of moving the object from the root of T to the merged list S ′,
and rebuilding T , until T is empty of objects. Each step in the merge takes O(log d)
time; hence, the internal time for the d-way merge is O(n logd). The number of
transfers performed in a merge is O(n/B), since we scan each list Si in order once,
and we write out the merged list S ′ once. Thus, we have:

Proposition 14.3: Given an array-based sequence S of n elements stored in ex-
ternal memory, we can sort S using O((n/B) log(n/B)/ log(M/B)) transfers and
O(n log n) internal CPU time, where M is the size of the internal memory and B is
the size of a block.

i

i

“main” — 2011/1/13 — 9:10 — page 685 — #707
i

i

i

i

i

i

14.5. Exercises 685

14.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/college/goodrich.

Reinforcement

R-14.1 Julia just bought a new computer that uses 64-bit integers to address mem-
ory cells. Argue why Julia will never in her life be able to upgrade the
main memory of her computer so that it is the maximum size possible,
assuming that you have to have distinct atoms to represent different bits.

R-14.2 Describe, in detail, add and remove algorithms for an (a,b) tree.

R-14.3 Suppose T is a multi-way tree in which each internal node has at least five
and at most eight children. For what values of a and b is T a valid (a,b)
tree?

R-14.4 For what values of d is the tree T of the previous exercise an order-d
B-tree?

R-14.5 Show each level of recursion in performing a four-way, external-memory
merge-sort of the sequence given in the previous exercise.

R-14.6 Consider an initially empty memory cache consisting of four pages. How
many page misses does the LRU algorithm incur on the following page
request sequence: (2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)?

R-14.7 Consider an initially empty memory cache consisting of four pages. How
many page misses does the FIFO algorithm incur on the following page
request sequence: (2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)?

R-14.8 Consider an initially empty memory cache consisting of four pages. How
many page misses can the random algorithm incur on the following page
request sequence: (2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)? Show all of the ran-
dom choices your algorithm made in this case.

R-14.9 Draw the result of inserting, into an initially empty order-7 B-tree, the
keys (4, 40, 23, 50, 11, 34, 62, 78, 66, 22, 90, 59, 25, 72, 64, 77, 39, 12).

R-14.10 Show each level of recursion in performing a four-way merge-sort of the
sequence given in the previous exercise.

Creativity

C-14.1 Describe an efficient external-memory algorithm for removing all the du-
plicate entries in a vector of size n.

www.wiley.com/college/goodrich

i

i

“main” — 2011/1/13 — 9:10 — page 686 — #708
i

i

i

i

i

i

686 Chapter 14. Memory Management and B-Trees

C-14.2 Show how to implement a map in external memory using an unordered se-
quence so that insertions require only O(1) transfers and searches require
O(n/B) transfers in the worst case, where n is the number of elements and
B is the number of list nodes that can fit into a disk block.

C-14.3 Change the rules that define red-black trees so that each red-black tree T
has a corresponding (4,8) tree and vice versa.

C-14.4 Describe a modified version of the B-tree insertion algorithm so that each
time we create an overflow because of a split of a node v, we redistribute
keys among all of v’s siblings, so that each sibling holds roughly the same
number of keys (possibly cascading the split up to the parent of v). What
is the minimum fraction of each block that will always be filled using this
scheme?

C-14.5 Another possible external-memory map implementation is to use a skip
list, but to collect consecutive groups of O(B) nodes, in individual blocks,
on any level in the skip list. In particular, we define an order-d B-skip
list to be such a representation of a skip-list structure, where each block
contains at least ⌈d/2⌉ list nodes and at most d list nodes. Let us also
choose d in this case to be the maximum number of list nodes from a level
of a skip list that can fit into one block. Describe how we should modify
the skip-list insertion and removal algorithms for a B-skip list so that the
expected height of the structure is O(logn/ log B).

C-14.6 Describe an external-memory data structure to implement the queue ADT
so that the total number of disk transfers needed to process a sequence of
n enqueue and dequeue operations is O(n/B).

C-14.7 Solve the previous problem for the deque ADT.

C-14.8 Describe how to use a B-tree to implement the partition (union-find) ADT
(from Section 11.4.3) so that the union and find operations each use at
most O(logn/ log B) disk transfers.

C-14.9 Suppose we are given a sequence S of n elements with integer keys such
that some elements in S are colored “blue” and some elements in S are
colored “red.” In addition, say that a red element e pairs with a blue
element f if they have the same key value. Describe an efficient external-
memory algorithm for finding all the red-blue pairs in S. How many disk
transfers does your algorithm perform?

C-14.10 Consider the page caching problem where the memory cache can hold m
pages, and we are given a sequence P of n requests taken from a pool
of m + 1 possible pages. Describe the optimal strategy for the offline
algorithm and show that it causes at most m + n/m page misses in total,
starting from an empty cache.

i

i

“main” — 2011/1/13 — 9:10 — page 687 — #709
i

i

i

i

i

i

Chapter Notes 687

C-14.11 Consider the page caching strategy based on the least frequently used
(LFU) rule, where the page in the cache that has been accessed the least
often is the one that is evicted when a new page is requested. If there are
ties, LFU evicts the least frequently used page that has been in the cache
the longest. Show that there is a sequence P of n requests that causes LFU
to miss Ω(n) times for a cache of m pages, whereas the optimal algorithm
will miss only O(m) times.

C-14.12 Suppose that instead of having the node-search function f (d) = 1 in an
order-d B-tree T , we have f (d) = logd. What does the asymptotic run-
ning time of performing a search in T now become?

C-14.13 Describe an efficient external-memory algorithm that determines whether
an array of n integers contains a value occurring more than n/2 times.

Projects

P-14.1 Write a C++ class that simulates the best-fit, worst-fit, first-fit, and next-
fit algorithms for memory management. Determine experimentally which
method is the best under various sequences of memory requests.

P-14.2 Write a C++ class that implements all the functions of the ordered map
ADT by means of an (a,b) tree, where a and b are integer constants passed
as parameters to a constructor.

P-14.3 Implement the B-tree data structure, assuming a block size of 1,024 and
integer keys. Test the number of “disk transfers” needed to process a
sequence of map operations.

P-14.4 Implement an external-memory sorting algorithm and compare it experi-
mentally to any internal-memory sorting algorithm.

Chapter Notes

The mark-sweep garbage collection method we describe is one of many different algo-
rithms for performing garbage collection. We encourage the reader interested in further
study of garbage collection to examine the book by Jones [51].

Knuth [57] has very nice discussions about external-memory sorting and searching,
and Ullman [97] discusses external memory structures for database systems. The reader
interested in the study of the architecture of hierarchical memory systems is referred to the
book chapter by Burger et al. [18] or the book by Hennessy and Patterson [44]. The hand-
book by Gonnet and Baeza-Yates [37] compares the performance of a number of different
sorting algorithms, many of which are external-memory algorithms.

B-trees were invented by Bayer and McCreight [10] and Comer [23] provides a very
nice overview of this data structure. The books by Mehlhorn [73] and Samet [87] also have
nice discussions about B-trees and their variants. Aggarwal and Vitter [2] study the I/O

i

i

“main” — 2011/1/13 — 9:10 — page 688 — #710
i

i

i

i

i

i

688 Chapter 14. Memory Management and B-Trees

complexity of sorting and related problems, establishing upper and lower bounds, includ-
ing the lower bound for sorting given in this chapter. Goodrich et al. [40] study the I/O
complexity of several computational geometry problems. The reader interested in further
study of I/O-efficient algorithms is encouraged to examine the survey paper of Vitter [99].

i

i

“main” — 2011/1/13 — 9:10 — page 689 — #711
i

i

i

i

i

i

Appendix

A Useful Mathematical Facts

In this appendix, we give several useful mathematical facts. We begin with some
combinatorial definitions and facts.

Logarithms and Exponents

The logarithm function is defined as

logb a = c if a = bc.

The following identities hold for logarithms and exponents:

1. logb ac = logb a+ logb c
2. logb a/c = logb a− logb c
3. logb ac = c logb a
4. logb a = (logc a)/ logc b
5. blogc a = alogc b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c

In addition, we have the following.
Proposition A.1: If a > 0, b > 0, and c > a+ b, then

log a+ logb≤ 2log c−2.

Justification: It is enough to show that ab < c2/4. We can write

ab =
a2 + 2ab+ b2− a2 + 2ab−b2

4

=
(a+ b)2− (a−b)2

4
≤ (a+ b)2

4
<

c2

4
.

The natural logarithm function lnx = loge x, where e = 2.71828 . . ., is the value
of the following progression:

e = 1+
1
1!

+
1
2!

+
1
3!

+ · · · .

i

i

“main” — 2011/1/13 — 9:10 — page 690 — #712
i

i

i

i

i

i

690 Appendix A. Useful Mathematical Facts

In addition,

ex = 1+
x
1!

+
x2

2!
+

x3

3!
+ · · ·

ln(1+ x) = x− x2

2!
+

x3

3!
− x4

4!
+ · · · .

There are a number of useful inequalities relating to these functions (which
derive from these definitions).
Proposition A.2: If x >−1

x
1+ x

≤ ln(1+ x)≤ x.

Proposition A.3: For 0≤ x < 1

1+ x≤ ex ≤ 1
1− x

.

Proposition A.4: For any two positive real numbers x and n
(

1+
x
n

)n
≤ ex ≤

(
1+

x
n

)n+x/2
.

Integer Functions and Relations

The “floor” and “ceiling” functions are defined respectively as follows:
1. ⌊x⌋ = the largest integer less than or equal to x
2. ⌈x⌉ = the smallest integer greater than or equal to x.
The modulo operator is defined for integers a≥ 0 and b > 0 as

a mod b = a−
⌊a

b

⌋
b.

The factorial function is defined as

n! = 1 ·2 ·3 · · · · · (n−1)n.

The binomial coefficient is
(

n
k

)
=

n!
k!(n− k)!

,

which is equal to the number of different combinations one can define by choosing
k different items from a collection of n items (where the order does not matter).
The name “binomial coefficient” derives from the binomial expansion

(a+ b)n =
n

∑
k=0

(
n
k

)
akbn−k.

We also have the following relationships.

i

i

“main” — 2011/1/13 — 9:10 — page 691 — #713
i

i

i

i

i

i

Appendix A. Useful Mathematical Facts 691

Proposition A.5: If 0≤ k ≤ n, then

(n
k

)k
≤
(

n
k

)
≤ nk

k!
.

Proposition A.6: Stirlings Approximation

n! =
√

2πn
(n

e

)n
(

1+
1

12n
+ ε(n)

)
,

where ε(n) is O(1/n2).

The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1,
and Fn = Fn−1 + Fn−2 for n≥ 2.

Proposition A.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn),
where g = (1+

√
5)/2 is the so-called golden ratio.

Summations

There are a number of useful facts about summations.

Proposition A.8: Factoring summations

n

∑
i=1

a f (i) = a
n

∑
i=1

f (i),

provided a does not depend upon i.

Proposition A.9: Reversing the order

n

∑
i=1

m

∑
j=1

f (i, j) =
m

∑
j=1

n

∑
i=1

f (i, j).

One special form of summation is a telescoping sum

n

∑
i=1

(f (i)− f (i−1)) = f (n)− f (0),

which arises often in the amortized analysis of a data structure or algorithm.
The following are some other facts about summations that arise often in the

analysis of data structures and algorithms.

Proposition A.10: ∑n
i=1 i = n(n+ 1)/2.

Proposition A.11: ∑n
i=1 i2 = n(n+ 1)(2n+ 1)/6.

i

i

“main” — 2011/1/13 — 9:10 — page 692 — #714
i

i

i

i

i

i

692 Appendix A. Useful Mathematical Facts

Proposition A.12: If k ≥ 1 is an integer constant, then

n

∑
i=1

ik is Θ(nk+1).

Another common summation is the geometric sum, ∑n
i=0 ai, for any fixed real

number 0 < a 6= 1.
Proposition A.13:

n

∑
i=0

ai =
an+1−1

a−1
,

for any real number 0 < a 6= 1.
Proposition A.14:

∞

∑
i=0

ai =
1

1−a

for any real number 0 < a < 1.

There is also a combination of the two common forms, called the linear expo-
nential summation, which has the following expansions

Proposition A.15: For 0 < a 6= 1, and n≥ 2

n

∑
i=1

iai =
a− (n+ 1)a(n+1) + na(n+2)

(1−a)2 .

The nth Harmonic number Hn is defined as

Hn =
n

∑
i=1

1
i
.

Proposition A.16: If Hn is the nth harmonic number, then Hn is lnn+ Θ(1).

Basic Probability

We review some basic facts from probability theory. The most basic such fact is
that any statement about a probability is defined upon a sample space S, which is
defined as the set of all possible outcomes from some experiment. We leave the
terms “outcomes” and “experiment” undefined in any formal sense.

Example A.17: Consider an experiment that consists of the outcome from flip-
ping a coin 5 times. This sample space has 25 different outcomes, one for each
different ordering of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.

i

i

“main” — 2011/1/13 — 9:10 — page 693 — #715
i

i

i

i

i

i

Appendix A. Useful Mathematical Facts 693

Example A.18: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being a sequence
of i tails followed by a single flip that comes up heads, for i = 1,2,3,

A probability space is a sample space S together with a probability function
Pr that maps subsets of S to real numbers in the interval [0,1]. It mathematically
captures the notion of the probability of certain “events” occurring. Formally, each
subset A of S is called an event, and the probability function Pr is assumed to
possess the following basic properties with respect to events defined from S:

1. Pr(∅) = 0
2. Pr(S) = 1
3. 0≤ Pr(A)≤ 1, for any A⊆ S
4. If A,B⊆ S and A∩B = ∅, then Pr(A∪B) = Pr(A)+ Pr(B)

Two events A and B are independent if

Pr(A∩B) = Pr(A) ·Pr(B).

A collection of events {A1,A2, . . . ,An} is mutually independent if

Pr(Ai1 ∩Ai2 ∩ ·· ·∩Aik) = Pr(Ai1)Pr(Ai2) · · ·Pr(Aik).

for any subset {Ai1 ,Ai2 , . . . ,Aik}.
The conditional probability that an event A occurs, given an event B is denoted

as Pr(A|B), and is defined as the ratio

Pr(A∩B)

Pr(B)
,

assuming that Pr(B) > 0.
An elegant way of dealing with events is in terms of random variables. Intu-

itively, random variables are variables whose values depend upon the outcome of
some experiment. Formally, a random variable is a function X that maps outcomes
from some sample space S to real numbers. An indicator random variable is a
random variable that maps outcomes to the set {0,1}. Often in data structure and
algorithm analysis we use a random variable X to characterize the running time of
a randomized algorithm. In this case the sample space S is defined by all possible
outcomes of the random sources used in the algorithm.

In such cases we are most interested in the typical, average, or “expected” value
of such a random variable. The expected value of a random variable X is defined
as

E(X) = ∑
x

xPr(X = x),

where the summation is defined over the range of X (which in this case is assumed
to be discrete).

i

i

“main” — 2011/1/13 — 9:10 — page 694 — #716
i

i

i

i

i

i

694 Appendix A. Useful Mathematical Facts

Proposition A.19 (The Linearity of Expectation): Let X and Y be two ran-
dom variables and let c be a number. Then

E(X +Y) = E(X)+ E(Y) and E(cX) = cE(X).

Example A.20: Let X be a random variable that assigns the outcome of the roll
of two fair dice to the sum of the number of dots showing. Then E(X) = 7.

Justification: To justify this claim let X1 and X2 be random variables corre-
sponding to the number of dots on each die. Thus, X1 = X2 (that is, they are two
instances of the same function) and E(X) = E(X1 + X2) = E(X1)+ E(X2). Each
outcome of the roll of a fair die occurs with probability 1/6. Thus,

E(Xi) =
1
6

+
2
6

+
3
6

+
4
6

+
5
6

+
6
6

=
7
2
,

for i = 1,2. Therefore, E(X) = 7.

Two random variables X and Y are independent if

Pr(X = x|Y = y) = Pr(X = x),

for all real numbers x and y.

Proposition A.21: If two random variables X and Y are independent, then

E(XY) = E(X)E(Y).

Example A.22: Let X be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E(X) = 49/4.

Justification: Let X1 and X2 be random variables denoting the number of dots
on each die. The variables X1 and X2 are clearly independent; hence,

E(X) = E(X1X2) = E(X1)E(X2) = (7/2)2 = 49/4.

The following bound and corollaries that follow from it are known as Chernoff
bounds.

Proposition A.23: Let X be the sum of a finite number of independent 0/1 ran-
dom variables and let µ > 0 be the expected value of X . Then, for δ > 0

Pr(X > (1+ δ)µ) <

[
eδ

(1+ δ)(1+δ)

]µ

.

i

i

“main” — 2011/1/13 — 9:10 — page 695 — #717
i

i

i

i

i

i

Appendix A. Useful Mathematical Facts 695

Useful Mathematical Techniques

To compare the growth rates of different functions, it is sometimes helpful to apply
the following rule.

Proposition A.24 (L’Hôpital’s Rule): If we have limn→∞ f (n) = +∞ and we
have limn→∞ g(n) = +∞, then limn→∞ f (n)/g(n) = limn→∞ f ′(n)/g′(n), where
f ′(n) and g′(n) denote the derivatives of f (n) and g(n), respectively.

In deriving an upper or lower bound for a summation, it is often useful to split
a summation as follows

n

∑
i=1

f (i) =
j

∑
i=1

f (i) +
n

∑
i= j+1

f (i).

Another useful technique is to bound a sum by an integral. If f is a non-
decreasing function, then, assuming the following terms are defined

Z b

a−1
f (x)dx ≤

b

∑
i=a

f (i)≤
Z b+1

a
f (x)dx.

There is a general form of recurrence relation that arises in the analysis of
divide-and-conquer algorithms

T (n) = aT (n/b)+ f (n),

for constants a≥ 1 and b > 1.

Proposition A.25: Let T (n) be defined as above. Then:
1. If f (n) is O(nlogb a−ε), for some constant ε > 0, then T (n) is Θ(nlogb a)
2. If f (n) is Θ(nlogb a logk n), for a fixed nonnegative integer k ≥ 0, then T (n) is

Θ(nlogb a logk+1 n)
3. If f (n) is Ω(nlogb a+ε), for some constant ε > 0, and if a f (n/b)≤ c f (n), then

T (n) is Θ(f (n))

This proposition is known as the master method for characterizing divide-and-
conquer recurrence relations asymptotically.

This page intentionally left blank

i

i

“main” — 2011/1/13 — 9:10 — page 697 — #719
i

i

i

i

i

i

Bibliography

[1] G. M. Adel’son-Vel’skii and Y. M. Landis, “An algorithm for the organization of
information,” Doklady Akademii Nauk SSSR, vol. 146, pp. 263–266, 1962. English
translation in Soviet Math. Dokl., 3, 1259–1262.

[2] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting and related
problems,” Commun. ACM, vol. 31, pp. 1116–1127, 1988.

[3] A. V. Aho, “Algorithms for finding patterns in strings,” in Handbook of Theoreti-
cal Computer Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity,
pp. 255–300, Amsterdam: Elsevier, 1990.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Reading, MA: Addison-Wesley, 1974.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. Read-
ing, MA: Addison-Wesley, 1983.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.

[7] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Reading,
Mass.: Addison-Wesley, 1999.

[8] O. Baruvka, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke
Spolecnosti, vol. 3, pp. 37–58, 1926. (in Czech).

[9] R. Bayer, “Symmetric binary B-trees: Data structure and maintenance,” Acta Infor-
matica, vol. 1, no. 4, pp. 290–306, 1972.

[10] R. Bayer and McCreight, “Organization of large ordered indexes,” Acta Inform.,
vol. 1, pp. 173–189, 1972.

[11] J. L. Bentley, “Programming pearls: Writing correct programs,” Communications of
the ACM, vol. 26, pp. 1040–1045, 1983.

[12] J. L. Bentley, “Programming pearls: Thanks, heaps,” Communications of the ACM,
vol. 28, pp. 245–250, 1985.

[13] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City,
CA: Benjamin/Cummings, 1994.

[14] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications
of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[15] G. Brassard, “Crusade for a better notation,” SIGACT News, vol. 17, no. 1, pp. 60–
64, 1985.

[16] T. Budd, An Introduction to Object-Oriented Programming. Reading, Mass.:
Addison-Wesley, 1991.

[17] T. Budd, C++ for Java Programmers. Reading, Mass.: Addison-Wesley, 1999.

i

i

“main” — 2011/1/13 — 9:10 — page 698 — #720
i

i

i

i

i

i

698 Bibliography

[18] D. Burger, J. R. Goodman, and G. S. Sohi, “Memory systems,” in The Computer
Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 18, pp. 447–461,
CRC Press, 1997.

[19] L. Cardelli and P. Wegner, “On understanding types, data abstraction and polymor-
phism,” ACM Computing Surveys, vol. 17, no. 4, pp. 471–522, 1985.

[20] S. Carlsson, “Average case results on heapsort,” BIT, vol. 27, pp. 2–17, 1987.

[21] K. L. Clarkson, “Linear programming in O(n3d2
) time,” Inform. Process. Lett.,

vol. 22, pp. 21–24, 1986.
[22] R. Cole, “Tight bounds on the complexity of the Boyer-Moore pattern matching

algorithm,” SIAM Journal on Computing, vol. 23, no. 5, pp. 1075–1091, 1994.
[23] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surv., vol. 11, pp. 121–137, 1979.
[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-

bridge, MA: MIT Press, 1990.
[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms. Cambridge, MA: MIT Press, 2nd ed., 2001.
[26] M. Crochemore and T. Lecroq, “Pattern matching and text compression algorithms,”

in The Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 8,
pp. 162–202, CRC Press, 1997.

[27] S. A. Demurjian, Sr., “Software design,” in The Computer Science and Engineering
Handbook (A. B. Tucker, Jr., ed.), ch. 108, pp. 2323–2351, CRC Press, 1997.

[28] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing. Upper Saddle
River, NJ: Prentice Hall, 1999.

[29] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[30] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan, “Relaxed heaps: An
alternative to Fibonacci heaps with applications to parallel computation.,” Commun.
ACM, vol. 31, pp. 1343–1354, 1988.

[31] S. Even, Graph Algorithms. Potomac, Maryland: Computer Science Press, 1979.
[32] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM, vol. 5,

no. 6, p. 345, 1962.
[33] R. W. Floyd, “Algorithm 245: Treesort 3,” Communications of the ACM, vol. 7,

no. 12, p. 701, 1964.
[34] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved net-

work optimization algorithms,” J. ACM, vol. 34, pp. 596–615, 1987.
[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995.
[36] A. M. Gibbons, Algorithmic Graph Theory. Cambridge, UK: Cambridge University

Press, 1985.
[37] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures in

Pascal and C. Reading, Mass.: Addison-Wesley, 1991.
[38] G. H. Gonnet and J. I. Munro, “Heaps on heaps,” SIAM Journal on Computing,

vol. 15, no. 4, pp. 964–971, 1986.
[39] M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia, “Accessing the internal

organization of data structures in the JDSL library,” in Proc. Workshop on Algo-
rithm Engineering and Experimentation (M. T. Goodrich and C. C. McGeoch, eds.),
vol. 1619 of Lecture Notes Comput. Sci., pp. 124–139, Springer-Verlag, 1999.

i

i

“main” — 2011/1/13 — 9:10 — page 699 — #721
i

i

i

i

i

i

Bibliography 699

[40] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory
computational geometry,” in Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci.,
pp. 714–723, 1993.

[41] R. L. Graham and P. Hell, “On the history of the minimum spanning tree problem,”
Annals of the History of Computing, vol. 7, no. 1, pp. 43–57, 1985.

[42] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees,” in
Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., Lecture Notes Comput. Sci.,
pp. 8–21, Springer-Verlag, 1978.

[43] Y. Gurevich, “What does O(n) mean?,” SIGACT News, vol. 17, no. 4, pp. 61–63,
1986.

[44] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.
San Francisco: Morgan Kaufmann, 2nd ed., 1996.

[45] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, pp. 10–15, 1962.
[46] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for graph manipulation,” Com-

munications of the ACM, vol. 16, no. 6, pp. 372–378, 1973.
[47] C. S. Horstmann, Computing Concepts with C++ Essentials. Ney York: John Wiley

and Sons, 2nd ed., 1998.
[48] B. Huang and M. Langston, “Practical in-place merging,” Communications of the

ACM, vol. 31, no. 3, pp. 348–352, 1988.
[49] J. JáJá, An Introduction to Parallel Algorithms. Reading, Mass.: Addison-Wesley,

1992.
[50] V. Jarnik, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke

Spolecnosti, vol. 6, pp. 57–63, 1930. (in Czech).
[51] R. E. Jones, Garbage Collection: Algorithms for Automatic Dynamic Memory Man-

agement. John Wiley and Sons, 1996.
[52] D. R. Karger, P. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find

minimum spanning trees,” Journal of the ACM, vol. 42, pp. 321–328, 1995.
[53] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory ma-

chines,” in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.),
pp. 869–941, Amsterdam: Elsevier/The MIT Press, 1990.

[54] P. Kirschenhofer and H. Prodinger, “The path length of random skip lists,” Acta
Informatica, vol. 31, pp. 775–792, 1994.

[55] J. Kleinberg and E. Tardos, Algorithm Design. Reading, MA: Addison-Wesley,
2006.

[56] D. E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 2nd ed., 1973.

[57] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 1973.

[58] D. E. Knuth, “Big omicron and big omega and big theta,” in SIGACT News, vol. 8,
pp. 18–24, 1976.

[59] D. E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 3rd ed., 1997.

[60] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 2nd ed., 1998.

[61] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching in strings,”
SIAM Journal on Computing, vol. 6, no. 1, pp. 323–350, 1977.

i

i

“main” — 2011/1/13 — 9:10 — page 700 — #722
i

i

i

i

i

i

700 Bibliography

[62] J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48–50, 1956.

[63] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,” IEEE
Computer, vol. 26, no. 7, pp. 18–41, 1993.

[64] R. Levisse, “Some lessons drawn from the history of the binary search algorithm,”
The Computer Journal, vol. 26, pp. 154–163, 1983.

[65] A. Levitin, “Do we teach the right algorithm design techniques?,” in 30th ACM
SIGCSE Symp. on Computer Science Education, pp. 179–183, 1999.

[66] S. Lippmann, Essential C++. Reading, Mass.: Addison-Wesley, 2000.
[67] S. Lippmann and J. Lajoie, C++ Primer. Reading, Mass.: Addison-Wesley, 3rd ed.,

1998.
[68] B. Liskov and J. Guttag, Abstraction and Specification in Program Development.

Cambridge, Mass./New York: The MIT Press/McGraw-Hill, 1986.
[69] E. M. McCreight, “A space-economical suffix tree construction algorithm,” Journal

of Algorithms, vol. 23, no. 2, pp. 262–272, 1976.
[70] C. J. H. McDiarmid and B. A. Reed, “Building heaps fast,” Journal of Algorithms,

vol. 10, no. 3, pp. 352–365, 1989.
[71] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related prob-

lems,” SIAM J. Comput., vol. 12, pp. 759–776, 1983.
[72] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” J.

ACM, vol. 31, pp. 114–127, 1984.
[73] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, vol. 1

of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany:
Springer-Verlag, 1984.

[74] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, vol. 2 of EATCS Monographs on Theoretical Computer Science. Hei-
delberg, Germany: Springer-Verlag, 1984.

[75] K. Mehlhorn and A. Tsakalidis, “Data structures,” in Handbook of Theoretical Com-
puter Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 301–
341, Amsterdam: Elsevier, 1990.

[76] S. Meyers, More Effective C++. Reading, Mass.: Addison-Wesley, 1996.
[77] S. Meyers, Effective C++. Reading, Mass.: Addison-Wesley, 2nd ed., 1998.
[78] M. H. Morgan, Vitruvius: The Ten Books on Architecture. New York: Dover Publi-

cations, Inc., 1960.
[79] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information coded in

alphanumeric,” Journal of the ACM, vol. 15, no. 4, pp. 514–534, 1968.
[80] R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY: Cambridge

University Press, 1995.
[81] D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming

with the Standard Template Library. Reading, Mass.: Addison-Wesley, 1996.
[82] T. Papadakis, J. I. Munro, and P. V. Poblete, “Average search and update costs in

skip lists,” BIT, vol. 32, pp. 316–332, 1992.
[83] P. V. Poblete, J. I. Munro, and T. Papadakis, “The binomial transform and its appli-

cation to the analysis of skip lists,” in Proceedings of the European Symposium on
Algorithms (ESA), pp. 554–569, 1995.

[84] I. Pohl, C++ For C Programmers. Reading, Mass.: Addison-Wesley, 3rd ed., 1999.

i

i

“main” — 2011/1/13 — 9:10 — page 701 — #723
i

i

i

i

i

i

Bibliography 701

[85] R. C. Prim, “Shortest connection networks and some generalizations,” Bell Syst.
Tech. J., vol. 36, pp. 1389–1401, 1957.

[86] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Commun. ACM,
vol. 33, no. 6, pp. 668–676, 1990.

[87] H. Samet, The Design and Analysis of Spatial Data Structures. Reading, MA:
Addison-Wesley, 1990.

[88] R. Schaffer and R. Sedgewick, “The analysis of heapsort,” Journal of Algorithms,
vol. 15, no. 1, pp. 76–100, 1993.

[89] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM, vol. 32,
no. 3, pp. 652–686, 1985.

[90] G. A. Stephen, String Searching Algorithms. World Scientific Press, 1994.
[91] B. Stroustrup, The C++ Programming Language. Reading, Mass.: Addison-Wesley,

3rd ed., 1997.
[92] R. Tamassia and G. Liotta, “Graph drawing,” in Handbook of Discrete and Compu-

tational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press, second ed.,
2004.

[93] R. Tarjan and U. Vishkin, “An efficient parallel biconnectivity algorithm,” SIAM J.
Comput., vol. 14, pp. 862–874, 1985.

[94] R. E. Tarjan, “Depth first search and linear graph algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146–160, 1972.

[95] R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Re-
gional Conference Series in Applied Mathematics. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1983.

[96] A. B. Tucker, Jr., The Computer Science and Engineering Handbook. CRC Press,
1997.

[97] J. D. Ullman, Principles of Database Systems. Potomac, MD: Computer Science
Press, 1983.

[98] J. van Leeuwen, “Graph algorithms,” in Handbook of Theoretical Computer Science
(J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 525–632, Amster-
dam: Elsevier, 1990.

[99] J. S. Vitter, “Efficient memory access in large-scale computation,” in Proc. 8th Sym-
pos. Theoret. Aspects Comput. Sci., Lecture Notes Comput. Sci., Springer-Verlag,
1991.

[100] J. S. Vitter and W. C. Chen, Design and Analysis of Coalesced Hashing. New York:
Oxford University Press, 1987.

[101] J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data structures,”
in Algorithms and Complexity (J. van Leeuwen, ed.), vol. A of Handbook of Theo-
retical Computer Science, pp. 431–524, Amsterdam: Elsevier, 1990.

[102] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM, vol. 9, no. 1,
pp. 11–12, 1962.

[103] J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM, vol. 7,
no. 6, pp. 347–348, 1964.

[104] D. Wood, Data Structures, Algorithms, and Performance. Reading, Mass.: Addison-
Wesley, 1993.

i

i

“main” — 2011/1/13 — 9:10 — page 702 — #724
i

i

i

i

i

i

Index

above, 403, 405–407, 419
abstract, 88
abstract class, 88
abstract data type, viii, 68

deque, 217
dictionary, 411–412
graph, 594–600
list, 240–242
map, 368–372
ordered map, 394
partition, 538–541
priority queue, 322–329
queue, 208–211
sequence, 255
set, 533–541
stack, 195–198
string, 554–556
tree, 272–273
vector, 228–229

abstraction, 68
(a,b) tree, 680–682

depth property, 680
size property, 680

access control, 34
access specifier, 34
accessor functions, 35
actual arguments, 28
acyclic, 626
adaptability, 66, 67
adaptable priority queue, 357
adapter, 221
adapter pattern, 220–222
add, 340–345, 348, 364
address-of, 7
addRoot, 291, 292
Adel’son-Vel’skii, 497
adjacency list, 600, 603
adjacency matrix, 600, 605
adjacent, 595

ADT, see abstract data type
after, 403, 405, 406
Aggarwal, 687
Aho, 226, 266, 320, 497, 551, 592
Ahuja, 663
algorithm, 162
algorithm analysis, 162–180

average case, 165–166
worst case, 166

alphabet, 555
amortization, 234–235, 538–541
ancestor, 270, 625
antisymmetric, 323
API, see application programming inter-

face
application programming interface, 87, 196
arc, 594
Archimedes, 162, 192
arguments

actual, 28
formal, 28

Ariadne, 607
array, 8–9, 104–116

matrix, 112
two-dimensional, 111–116

array list, see vector
assignment operator, 42
associative containers, 368
associative stores, 368
asymmetric, 595
asymptotic analysis, 170–180
asymptotic notation, 166–170

big-Oh, 167–169, 172–180
big-Omega, 170
big-Theta, 170

at, 228–230, 396
atIndex, 255–258, 260
attribute, 611
AVL tree, 438–449

702

i

i

“main” — 2011/1/13 — 9:10 — page 703 — #725
i

i

i

i

i

i

Index 703

balance factor, 446
height-balance property, 438

back, 217, 220, 519
back edge, 609, 629, 630, 657
Baeza-Yates, 497, 551, 592, 687
bag, 420
balance factor, 446
balanced search tree, 464
Barůvka, 661, 663
base class, 71
Bayer, 687
before, 403, 405–407, 419
begin, 240, 241, 245, 258, 332, 370, 374,

390, 391, 412, 424, 435, 600
below, 403–405
Bentley, 366, 421
best-fit algorithm, 670
BFS, see breadth-first search
biconnected graph, 660
big-Oh notation, 167–169, 172–180
big-Omega notation, 170
big-Theta notation, 170
binary recursion, 144
binary search, 300, 395–398
binary search tree, 424–437

insertion, 428–429
removal, 429
rotation, 442
trinode restructuring, 442

binary tree, 284–294, 309, 501
complete, 338, 340–343
full, 284
improper, 284
left child, 284
level, 287
linked structure, 289–294
proper, 284
right child, 284
vector representation, 295–296

binomial expansion, 690
bipartite graph, 661
bit vector, 547
block, 14
blocking, 675
Booch, 102
bootstrapping, 463

Boyer, 592
Brassard, 192
breadth-first search, 623–625, 630
breadth-first traversal, 283
breakpoint, 59
brute force, 564
brute-force, 564
brute-force pattern matching, 564
B-tree, 682
bubble-sort, 259–261, 266
bucket array, 375
bucket-sort, 528–529
bucketSort, 528
Budd, 64, 102
Burger, 687
by reference, 29
by value, 28

C++, 2–64, 71–97
array, 8–9
arrays, 104–116
break, 24
call stack, 666–668
casting, 20–22, 86–87
class, 32–44
comments, 3
const, 14
constant reference, 29, 197, 211, 329
control flow, 23–26
default, 24
default arguments, 37, 200
dependent type names, 334
dynamic binding, 76
exceptions, 93–97
expressions, 16–22
extern, 47
functions, 26–32
fundamental types, 4–7
global scope, 14–15
header file, 48
input, 19
local scope, 14–15
main function, 3
memory allocation, 11–13, 40–42
multiple inheritance, 84
name binding, 334
output, 19

i

i

“main” — 2011/1/13 — 9:10 — page 704 — #726
i

i

i

i

i

i

704 Index

overloading, 30–32
pointer, 7–8
reference, 13
static binding, 76
string, 10
struct, 10–11
templates, 90–92
typename, 334
virtual destructor, 77

C-style cast, 21
C-style strings, 10
C-style structure, 11
cache, 673
cache line, 675
caching algorithms, 676–678
call-by-value, 667
Cardelli, 102, 226
Carlsson, 366
cast, 20
casting, 20–22

dynamic, 87
explicit, 21
implicit, 22
static, 22

catch blocks, 94
ceiling function, 161
ceilingEntry, 394, 396, 399, 401, 410
character-jump heuristic, 566
Chernoff bound, 551, 694
child, 269
child class, 71
children, 269
children, 272, 274, 277, 279, 286
Chinese Remainder Theorem, 63
circularly linked list, 129, 265
Clarkson, 551
class, 2, 32–44, 66, 68

abstract, 88–90
constructor, 37–39, 75
destructor, 39, 75
friend, 43
inheritance, 71–87
interface, 87
member, 33
member functions, 35–40
private, 34, 74
protected, 74

public, 34, 74
template, 91

class inheritance diagram, 72
class scope operator, 73
clock, 163
clustering, 385
coding, 53
Cole, 592
collision resolution, 376, 382–386
collision-resolution, 382
Comer, 687
comparator, 325
compiler, 2
complete binary tree, 338, 340–343
complete graph, 657
composition pattern, 369
compression function, 376, 381
conditional probability, 693
connected components, 598, 610, 625
constant function, 154
constructor, 33, 37
container, 236, 239–240, 247–255
contradiction, 181
contrapositive, 181
copy constructor, 37, 42
core memory, 673
Cormen, 497, 663
CRC cards, 55
Crochemore, 592
cross edge, 625, 629, 630
cubic function, 158
cursor, 129, 242
cycle, 597

directed, 597

DAG, see directed acyclic graph
data member, 33
data packets, 265
data structure, 162

secondary, 464
debugger, 59
debugging, 53
decision tree, 284, 426, 526
decorator pattern, 611–622
decrease-and-conquer, see prune-and-search
default arguments, 37, 200
default constructor, 37

i

i

“main” — 2011/1/13 — 9:10 — page 705 — #727
i

i

i

i

i

i

Index 705

degree, 158, 595
degree, 610, 644
DeMorgan’s Law, 181
Demurjian, 102, 226
depth, 275–277
depth-first search, 607–621, 629
deque, 217–220

abstract data type, 217
linked-list implementation, 218–220

dereferencing, 7
descendent, 270, 625
design patterns, viii, 55, 70

adapter, 220–222
amortization, 234–235
brute force, 564
comparator, 324–327
composition, 369
decorator, 611–622
divide-and-conquer, 500–504, 513–

514
dynamic programming, 557–563
greedy method, 577
iterator, 239–242
position, 239–240
prune-and-search, 542–544
template function, 303–308
template method, 535, 616

dest, 626
destination, 595
destructor, 37, 39, 42
DFS, see depth-first search
Di Battista, 320, 663
diameter, 316
dictionary, 411–412

abstract data type, 411–412
digraph, 626
Dijkstra, 663
Dijkstra’s algorithm, 639–644
directed acyclic graph, 633–635
directed cycle, 626
discovery edge, 609, 625, 629, 630
distance, 638
divide-and-conquer, 500–504, 513–514
division method, 381
d-node, 461
do-while loop, 24
double black, 480

double red, 475
double-ended queue, see deque
double-hashing, 385
doubly linked list, 123–128, 133–134
down-heap bubbling, 346, 355
dynamic binding, 76
dynamic cast, 87
dynamic programming, 146, 557–563, 631

Eades, 320, 663
edge, 271, 594

destination, 595
end vertices, 595
incident, 595
multiple, 596
origin, 595
outgoing, 595
parallel, 596
self-loop, 596

edge list, 600
edge list structure, 601
edges, 599, 602, 604, 606
edit distance, 590, 592
element, 239, 257, 506, 519
element uniqueness problem, 179
empty, 195, 197–199, 202, 205, 209, 210,

213, 215, 217, 220, 221, 228,
230, 240, 245, 258, 272, 274,
286, 294, 295, 297, 327–329,
332, 333, 344, 348, 349, 355,
359, 370, 371, 398, 410–412,
424, 431, 445, 472, 487, 519,
551, 635

encapsulation, 68
end, 240, 241, 245, 247, 258, 370, 371,

374, 382, 389, 390, 392, 394,
396, 401, 411, 412, 414, 424,
434, 435, 533, 600

end vertices, 595
endpoints, 595
endVertices, 599, 601, 602, 604, 606, 626
entry, 368
erase, 228–231, 241, 246, 258, 370–372,

374, 381–384, 395, 398, 401,
407, 408, 410, 412, 415, 416,
418, 424, 428, 429, 431, 444,
445, 472, 487, 494, 495, 681

i

i

“main” — 2011/1/13 — 9:10 — page 706 — #728
i

i

i

i

i

i

706 Index

eraseAll, 494
eraseBack, 217, 220, 231, 241, 248, 519
eraseEdge, 599, 602, 604, 606
eraseFront, 217, 220, 221, 231, 241, 248,

506, 519
eraseVertex, 599, 602, 604, 606, 654
Euclid’s Algorithm, 63
Euler path, 654
Euler tour, 654, 658
Euler tour traversal, 301, 320
Even, 663
event, 693
evolvability, 67
exceptions, 93–97

catching, 94
generic, 97
specification, 96
throwing, 94

EXIT SUCCESS, 4
expandExternal, 291–295, 297, 317
expected value, 693
explicit cast, 22
exponent function, see exponential func-

tion
exponential function, 159
exponentiation, 176
expression, 16
expressions, 16–22
extension, 79
external memory, 673–684, 688
external-memory algorithm, 673–684
external-memory sorting, 683–684

factorial, 134–135, 690
failure function, 570
Fibonacci progression, 82, 691
field, 10
FIFO, 208
find, 370, 371, 374, 381–384, 392, 395–

398, 404, 408, 410–412, 424–
427, 431, 436, 440, 445, 472,
487, 681

findAll, 411–415, 418, 419, 424, 427, 432,
437, 494

first, 494
first-fit algorithm, 670
first-in first-out, 208

firstEntry, 394, 410
floor function, 161
floorEntry, 394, 396, 399, 401, 410
Floyd, 366
Floyd-Warshall algorithm, 631, 663
for loop, 25
forest, 598
formal arguments, 28
forward edge, 629
fragmentation, 670
frame, 666
free list, 670
free store, 11
friend, 43
front, 217, 220, 221, 506, 509
full binary tree, 284
function, 26
function object, 324
function overloading, 30
function template, 90
functional-style cast, 21
functions, 26–32

arguments, 28–30
array arguments, 30
declaration, 27
default arguments, 37, 200
definition, 27
pass by reference, 28
pass by value, 28
prototype, 27
signature, 27
template, 90
virtual, 76

fusion, 470, 681, 682

game tree, 319
Gamma, 102
garbage collection, 671–672

mark-sweep, 671
Gauss, 157
generic merge algorithm, 535
geometric sum, 692
get, 384, 612, 613
Gibbons, 663
global, 14
golden ratio, 691
Gonnet, 366, 497, 551, 687

i

i

“main” — 2011/1/13 — 9:10 — page 707 — #729
i

i

i

i

i

i

Index 707

Goodrich, 688
Graham, 663
graph, 594–663

abstract data type, 594–600
acyclic, 626
breadth-first search, 623–625, 628–

630
connected, 598, 625
data structures, 600–606

adjacency list, 603–604
adjacency matrix, 605–606
edge list, 600–602

dense, 611, 633
depth-first search, 607–621, 628–630
digraph, 626
directed, 594, 595, 626–635

acyclic, 633–635
strongly connected, 626

functions, 599–600
mixed, 595
reachability, 626–627, 630–633
shortest paths, 630–633
simple, 596
sparse, 611
traversal, 607–625
undirected, 594, 595
weighted, 637–663

graph-traversal, 607
greedy method, 577, 638, 639
greedy-choice, 577
Guibas, 497
Guttag, 102, 226

Harmonic number, 178, 191, 692
hash code, 376
hash function, 376, 385
hash table, 375–394

capacity, 375
chaining, 382
clustering, 385
collision, 376
collision resolution, 382–386
double hashing, 385
linear probing, 384
open addressing, 385
quadratic probing, 385
rehashing, 386

header, 123
header file, 48
header files, 3
heap, 337–356

bottom-up construction, 353–356
heap memory, 11
heap-order property, 337
heap-sort, 351–356
height, 275–277, 431
height-balance property, 438, 440, 442,

444
Hell, 663
Hennessy, 687
hierarchical, 268
hierarchy, 69
higherEntry, 394, 396, 399, 401, 410
Hoare, 551
Hopcroft, 226, 266, 320, 497, 551, 663
Horner’s method, 191
Horstmann, 64
HTML tags, 205
Huang, 551
Huffman coding, 575–576

I/O complexity, 679
if statement, 23
implicit cast, 22
improper binary tree, 284
in-degree, 595
in-place, 523, 672
incidence collection, 603
incident, 595
incidentEdges, 599, 602, 604, 606, 609–

611, 613, 623
incoming edges, 595
independent, 693, 694
index, 8, 228, 368, 395
indexOf, 255–258
induction, 182–183
infix, 314
informal interface, 88
inheritance, 71–87
initializer list, 39
inorder traversal, 425, 429, 441, 442
insert, 228–231, 241, 245–247, 258, 323,

327–332, 334, 336, 344, 346,
348, 350, 351, 353, 357–360,

i

i

“main” — 2011/1/13 — 9:10 — page 708 — #730
i

i

i

i

i

i

708 Index

381, 395, 398, 408, 410–414,
418, 424, 428, 431, 436, 440,
444, 445, 472, 487, 495, 681

insertAfterAbove, 405, 406
insertAtExternal, 428, 440, 441
insertBack, 217, 220, 221, 231, 241, 245–

248, 258, 374, 505, 506, 509,
519

insertDirectedEdge, 626, 631
insertEdge, 599, 602, 604, 606
insertFront, 217, 220, 221, 231, 240, 241,

245, 246, 248, 257, 258
insertion-sort, 109, 336
insertVertex, 599, 602, 604, 606, 654
integral types, 5
integrated development environment, 56
interface, 87, 88, 196
internal memory, 673
Internet, 265
inversion, 336, 549
inversions, 531
inverted file, 548
isAdjacentTo, 599, 602, 604, 606, 631,

655
isDirected, 626
isExternal, 272, 274, 276, 277, 286, 294,

295, 297, 303, 426
isIncidentOn, 599, 602, 604, 606
isInternal, 272, 428
isRoot, 272, 274, 275, 286, 294, 295,

297
Iterator, 411, 413
iterator, 239–242, 600

bidirectional, 250, 372
const, 251
random access, 250, 343

JáJá, 320
Jarńık, 663
JDSL, 266
Jones, 687

Karger, 663
Karp, 320
key, 322, 368, 461
key, 374, 396, 401, 404, 405, 426, 528
Klein, 663

Kleinberg, 551
Knuth, 152, 192, 266, 320, 366, 497, 551,

592, 663, 687
Kosaraju, 663
Kruskal, 663
Kruskal’s algorithm, 647–650

L’Hôpital’s Rule, 695
Lajoie, 64, 266
Landis, 497
Langston, 551
last-in first-out, 194
lastEntry, 394, 410
LCS, see longest common subsequence
leaves, 270
Lecroq, 592
left, 286, 294, 295, 297–299, 302–304,

426, 428
left child, 284
left subtree, 284
Leiserson, 497, 663
level, 287, 623
level numbering, 295
level order traversal, 317
Levisse, 421
lexicographic ordering, 324
lexicographical, 529
life-critical applications, 66
LIFO, 194
linear exponential, 692
linear function, 156
linear probing, 384
linearity of expectation, 544, 694
linked list, 117–134, 202–203, 213–216

circularly linked, 129–132, 213–216
cursor, 129
doubly linked, 123–128, 133–134,

218–220, 242–247, 255–258
header, 123
sentinel, 123
singly linked, 117–122
trailer, 123

linked structure, 274, 289
linker, 3, 47
linking out, 124
Liotta, 320, 663
Lippmann, 64, 266

i

i

“main” — 2011/1/13 — 9:10 — page 709 — #731
i

i

i

i

i

i

Index 709

Liskov, 102, 226
list, 228, 238–255

abstract data type, 240–242
implementation, 242–247

literal, 5
Littman, 551
live objects, 671
load factor, 383
local, 14
locality-of-reference, 675
locator-aware entry, 360
log-star, 541
logarithm function, 154, 689

natural, 689
longest common subsequence, 560–563
looking-glass heuristic, 566
loop invariant, 184
lowerEntry, 394, 396, 399, 410
lowest common ancestor, 316
lvalue, 16

Magnanti, 663
main memory, 673
map, 368

(2,4) tree, 461–472
abstract data type, 368–372
AVL tree, 438–449
binary search tree, 424–437
hash table, 375–394
ordered, 431
red-black tree, 473–490
skip list, 402–410
update operations, 405, 407, 428, 429,

440, 444
map, 372
mark-sweep algorithm, 671
master method, 695
matrix, 112
matrix chain-product, 557–559
MatrixChain, 559
maximal independent set, 659
McCreight, 592, 687
McDiarmid, 366
median, 542
median-of-three, 525
Megiddo, 551
Mehlhorn, 497, 663, 687

member, 10, 33, 66
member function, 66
member selection operator, 11
member variable, 33
memberfunction, 33
memory allocation, 670
memory heap, 669
memory hierarchy, 673
memory leak, 13
memory management, 666–672, 676–678
merge, 505, 506
merge-sort, 500–513

multi-way, 683–684
tree, 501

mergeable heap, 495
method, 33, 66
Meyers, 64
min, 323, 327–332, 334–336, 344, 348,

349, 359, 577
minimax, 319
minimum spanning tree, 645–652

Kruskal’s algorithm, 647–650
Prim-Jarnik algorithm, 651–652

Minotaur, 607
modularity, 68
modulo, 212, 690
Moore, 592
Morris, 592
Morrison, 592
Motwani, 421, 551
MST, see minimum spanning tree
multi-way search tree, 461
multi-way tree, 461–464
multiple inheritance, 84
multiple recursion, 147
Munro, 366
Musser, 64, 266
mutually independent, 693

n-log-n function, 156
namespace, 15
natural join, 265
natural logarithm, 689
nested class, 44
next-fit algorithm, 670
node, 238, 269, 272, 594

ancestor, 270

i

i

“main” — 2011/1/13 — 9:10 — page 710 — #732
i

i

i

i

i

i

710 Index

balanced, 440
child, 269
descendent, 270
external, 270
internal, 270
parent, 269
redundant, 582
root, 269
sibling, 270
size, 456
unbalanced, 440

NonexistentElement, 372
nontree edge, 629, 630
null pointer, 8
null string, 555
numeric progression, 79

object, 66
object-oriented design, 66–102
open-addressing, 384, 385
operator overloading, 19, 31
operators, 16–22

arithmetic, 16
assignment, 18
bitwise, 18
delete, 12
increment, 17
indexing, 16
new, 11–13
precedence, 19–20
relational, 17
scope, 36, 73

opposite, 599, 601, 602, 604, 606, 609,
610, 613, 623

order statistic, 542
orderd map, 394–401

abstract data type, 394
ordered map

search table, 395–398
origin, 595
origin, 626
Orlin, 663
out-degree, 595
outgoing edge, 595
overflow, 467
overflows, 682
Overloading, 30

override, 78

palindrome, 151, 590
parent, 269
parent, 272, 274, 275, 286, 294, 295, 297
parent class, 71
parenthetic string representation, 279
partition, 538–541
path, 271, 597

directed, 597
length, 638
simple, 597

path compression, 541
path length, 317
pattern matching, 564–573

Boyer-Moore algorithm, 566–570
brute force, 564–565
Knuth-Morris-Pratt algorithm, 570–

573
Patterson, 687
Pohl, 64
pointer, 7–8
pointer arithmetic, 252
polymorphic, 78
polymorphism, 78
polynomial, 158, 190
portability, 67
position, 239–240, 272, 403
positional games, 111
positions, 272, 274, 276, 286, 291, 294,

295, 297
post-increment, 17
postfix notation, 224, 314
postorder traversal, 281
power function, 176
Pratt, 592
pre-increment, 17
precedence, 19
prefix, 555
prefix code, 575
prefix sum, 175
preorder, 278
preprocessor, 48
Prim, 663
Prim-Jarnik algorithm, 651–652
primitive operations, 164–166
priority queue, 322–366, 549

i

i

“main” — 2011/1/13 — 9:10 — page 711 — #733
i

i

i

i

i

i

Index 711

adaptable, 357–360
ADT, 327
heap implementation, 344–348
list implementation, 331–335

priority search tree, 365
priority queue, 330
private, 34
private inheritance, 86
probability, 692–694
probability space, 693
procedure, 27
program counter, 666
protected inheritance, 86
protocol, 54
prune-and-search, 542–544
pseudo-code, 54–55
pseudo-random number generators, 402
public, 34
public interface, 33, 34
Pugh, 421
pure virtual, 88
put, 370, 371, 373, 374, 382, 383, 385,

392, 401, 424

quadratic function, 156
quadratic probing, 385
queue, 208–216

abstract data type, 208–211
array implementation, 211–213
linked-list implementation, 213–216

QueueEmpty, 210, 329
quick-sort, 513–525

tree, 514
quickSelect, 543
quine, 100

radix-sort, 529–530
Raghavan, 421, 551
Ramachandran, 320
random variable, 693
randomization, 402, 403
randomized quick-select, 543
randomized quick-sort, 521
rank, 228
reachability, 626
recurrence equation, 511, 544, 547
recursion, 134–148, 668–669

binary, 144–146
higher-order, 144–148
linear, 140–143
multiple, 147–148
tail, 143
traces, 141–142

recursion trace, 135
red-black tree, 473–490

depth property, 473
external property, 473
internal property, 473
recoloring, 477
root property, 473

Reed, 366
reference, 13
reflexive, 323
rehashing, 386
reinterpret cast, 380
relaxation, 640
remove, 340–343, 346, 348, 357–360, 364,

365
removeMin, 323, 327–330, 332, 334–336,

346, 348, 350, 351, 357, 359,
577, 640, 644, 647, 651

removeAboveExternal, 291–295, 297, 429,
444, 495

replace, 357–360, 644
restructure, 442
restructure, 442, 444, 446, 476, 480, 484
reusability, 66, 67
reverseDirection, 630
Ribeiro-Neto, 592
right, 286, 294, 295, 297–299, 302–304,

426
right child, 284
right subtree, 284
Rivest, 497, 663
robustness, 66
root, 269
root, 272, 274, 278, 286, 291, 294, 295,

297, 304, 310–312, 426, 428,
429

root objects, 671
rotation, 442

double, 442
single, 442

running time, 162–180

i

i

“main” — 2011/1/13 — 9:10 — page 712 — #734
i

i

i

i

i

i

712 Index

Saini, 64, 266
Samet, 687
sample space, 692
scan forward, 404
Schaffer, 366
scheduling, 366
scope, 14
search engine, 534, 586
search table, 395–398
search trees, 424
Sedgewick, 366, 497
seed, 402
selection, 542–544
selection-sort, 335
self-loop, 596
sentinel, 123
separate chaining, 382
sequence, 228, 255–261

abstract data type, 255
implementation, 255–258

set, 533–541
set, 228–230, 612, 613
shallow copy, 41
shortest path, 638–644

Dijkstra’s algorithm, 639–644
sibling, 270
sibling, 295
sieve algorithm, 418
signature, 31
singly linked list, 117–122
size, 195, 197–199, 202, 209, 210, 213,

215, 217, 220, 221, 228, 230,
240, 245, 258, 272, 274, 286,
294, 295, 297, 327–329, 332,
333, 344, 348, 349, 359, 370,
371, 398, 410–412, 424, 431,
445, 472, 487, 505, 519, 551,
577

skip list, 402–410
analysis, 408–410
insertion, 405
levels, 403
removal, 407–408
searching, 404–405
towers, 403
update operations, 405–408

SkipSearch, 404, 405

Sleator, 497
slicing floorplan, 318
slicing tree, 318
sorting, 109, 329–330, 500–530

bubble-sort, 259–261
bucket-sort, 528–529
external-memory, 683–684
heap-sort, 351–356
in-place, 352, 523
insertion-sort, 109, 336
lower bound, 526–527
merge-sort, 500–513
priority-queue, 329–330
quick-sort, 513–525
radix-sort, 529–530
selection-sort, 335
stable, 529

Source files, 47
space usage, 162
spanning subgraph, 598
spanning tree, 598, 609, 610, 623, 625,

645
sparse array, 265
specialization, 78
splay tree, 450–460
split, 467, 682
stable, 529
stack, 194–208

abstract data type, 195–198
array implementation, 198–201
linked-list implementation, 202–203

StackEmpty, 197
standard containers, 45
standard error, 4
standard input, 4
standard library, 4
standard output stream, 4
Standard Template Library, see STL
statements

break, 26
continue, 26
do-while, 24
for, 25
if, 23
include, 48
namespace, 15
switch, 23

i

i

“main” — 2011/1/13 — 9:10 — page 713 — #735
i

i

i

i

i

i

Index 713

typedef, 14
using, 4, 16
while, 24

static binding, 76
std namespace

cerr, 4
cin, 4
cout, 4
endl, 4

Stein, 497
Stephen, 592
Stirling’s Approximation, 691
STL, 45–47, 266

container, 236, 247–255
deque, 218
iterator, 248–255
list, 247–255, 509
map, 372–373, 488
multimap, 488
priority queue, 330
queue, 209–210
set, 533
stack, 196
string, 10, 46–47, 555–556
vector, 45–46, 113–114, 236–237,

249–255
stop words, 580, 591
straggling, 546
string

abstract data type, 554–556
null, 555
prefix, 555
suffix, 555

strong typing, 86
strongly connected, 626
Stroustrup, 64, 266
structure, 10
stub, 58
subclass, 71
subgraph, 598
subproblem optimality, 558
subproblem optimization, 560
subproblem overlap, 560
subsequence, 560
substring, 554
subtree, 270
suffix, 555

summation, 159, 691
geometric, 160

summation puzzles, 147
superclass, 71
switch statement, 23
symmetric, 594

Tamassia, 320, 663
Tardos, 551
Tarjan, 320, 497, 663
telescoping sum, 691
template, 45
template function pattern, 303–308
template method, 534
template method pattern, 535, 616
templates, 90–92
testing, 53
text compression, 575–576
Theseus, 607
this, 41
three-way set disjointness, 178
Tic-Tac-Toe, 114
tic-tac-toe, 319
token, 204
Tollis, 320, 663
topological ordering, 634–635
total order, 323
tower-of-twos, 541
Towers of Hanoi, 151
trailer, 123
transfer, 470
transitive, 323
transitive closure, 626, 629
traveling salesman problem, 639
tree, 269–277, 598

abstract data type, 272–273
binary, see binary tree
binary tree representation, 309
child node, 269
decision, 284
depth, 275–277
edge, 271
external node, 270
height, 275–277
internal node, 270
level, 287
linked structure, 274–275

i

i

“main” — 2011/1/13 — 9:10 — page 714 — #736
i

i

i

i

i

i

714 Index

multi-way, 461–464
node, 269
ordered, 271
parent node, 269
path, 271
root node, 269

tree edge, 629, 630
tree reflection, 314
tree traversal, 278–283, 297–308

Euler tour, 301–308
generic, 303–308
inorder, 299–301
level order, 317
postorder, 281–283, 297–299
preorder, 278–280, 297

trees, 268
TreeSearch, 426, 427, 429, 494
triangulation, 588
trie, 578–586

compressed, 582
standard, 578

trinode restructuring, 441, 476
try block, 94
try-catch block, 95
Tsakalidis, 497
(2,4) tree, 461–472

depth property, 465
size property, 465

typename, 334

Ullman, 226, 266, 320, 497, 551, 687
underflow, 470, 682
union-by-size, 540
union-find, 538–541
up-heap bubbling, 346
update functions, 35

value, 401
van Leeuwen, 663
vector, 228–237, 395

abstract data type, 228–229
implementation, 229–237

vertex, 594
degree, 595
in-degree, 595
out-degree, 595

vertices, 599, 602, 604, 606, 635

virtual functions, 76
virtual memory, 675
Vishkin, 320
Vitter, 687, 688

Wegner, 102, 226
while loop, 24
Williams, 366
Wood, 266
worst-fit algorithm, 671
wrapper, 221

zig, 451, 458
zig-zag, 451, 458
zig-zig, 450, 458

	Cover
	Title Page
	Copyright
	Preface
	Contents
	1 A C++ Primer
	1.1 Basic C++ Programming Elements
	1.1.1 A Simple C++ Program
	1.1.2 Fundamental Types
	1.1.3 Pointers, Arrays, and Structures
	1.1.4 Named Constants, Scope, and Namespaces

	1.2 Expressions
	1.2.1 Changing Types through Casting

	1.3 Control Flow
	1.4 Functions
	1.4.1 Argument Passing
	1.4.2 Overloading and Inlining

	1.5 Classes
	1.5.1 Class Structure
	1.5.2 Constructors and Destructors
	1.5.3 Classes and Memory Allocation
	1.5.4 Class Friends and Class Members
	1.5.5 The Standard Template Library

	1.6 C++ Program and File Organization
	1.6.1 An Example Program

	1.7 Writing a C++ Program
	1.7.1 Design
	1.7.2 Pseudo-Code
	1.7.3 Coding
	1.7.4 Testing and Debugging

	1.8 Exercises

	2 Object-Oriented Design
	2.1 Goals, Principles, and Patterns
	2.1.1 Object-Oriented Design Goals
	2.1.2 Object-Oriented Design Principles
	2.1.3 Design Patterns

	2.2 Inheritance and Polymorphism
	2.2.1 Inheritance in C++
	2.2.2 Polymorphism
	2.2.3 Examples of Inheritance in C++
	2.2.4 Multiple Inheritance and Class Casting
	2.2.5 Interfaces and Abstract Classes

	2.3 Templates
	2.3.1 Function Templates
	2.3.2 Class Templates

	2.4 Exceptions
	2.4.1 Exception Objects
	2.4.2 Throwing and Catching Exceptions
	2.4.3 Exception Specification

	2.5 Exercises

	3 Arrays, Linked Lists, and Recursion
	3.1 Using Arrays
	3.1.1 Storing Game Entries in an Array
	3.1.2 Sorting an Array
	3.1.3 Two-Dimensional Arrays and Positional Games

	3.2 Singly Linked Lists
	3.2.1 Implementing a Singly Linked List
	3.2.2 Insertion to the Front of a Singly Linked List
	3.2.3 Removal from the Front of a Singly Linked List
	3.2.4 Implementing a Generic Singly Linked List

	3.3 Doubly Linked Lists
	3.3.1 Insertion into a Doubly Linked List
	3.3.2 Removal from a Doubly Linked List
	3.3.3 A C++ Implementation

	3.4 Circularly Linked Lists and List Reversal
	3.4.1 Circularly Linked Lists
	3.4.2 Reversing a Linked List

	3.5 Recursion
	3.5.1 Linear Recursion
	3.5.2 Binary Recursion
	3.5.3 Multiple Recursion

	3.6 Exercises

	4 Analysis Tools
	4.1 The Seven Functions Used in This Book
	4.1.1 The Constant Function
	4.1.2 The Logarithm Function
	4.1.3 The Linear Function
	4.1.4 The N-Log-N Function
	4.1.5 The Quadratic Function
	4.1.6 The Cubic Function and Other Polynomials
	4.1.7 The Exponential Function
	4.1.8 Comparing Growth Rates

	4.2 Analysis of Algorithms
	4.2.1 Experimental Studies
	4.2.2 Primitive Operations
	4.2.3 Asymptotic Notation
	4.2.4 Asymptotic Analysis
	4.2.5 Using the Big-Oh Notation
	4.2.6 A Recursive Algorithm for Computing Powers
	4.2.7 Some More Examples of Algorithm Analysis

	4.3 Simple Justification Techniques
	4.3.1 By Example
	4.3.2 The “Contra” Attack
	4.3.3 Induction and Loop Invariants

	4.4 Exercises

	5 Stacks, Queues, and Deques
	5.1 Stacks
	5.1.1 The Stack Abstract Data Type
	5.1.2 The STL Stack
	5.1.3 A C++ Stack Interface
	5.1.4 A Simple Array-Based Stack Implementation
	5.1.5 Implementing a Stack with a Generic Linked List
	5.1.6 Reversing a Vector Using a Stack
	5.1.7 Matching Parentheses and HTML Tags

	5.2 Queues
	5.2.1 The Queue Abstract Data Type
	5.2.2 The STL Queue
	5.2.3 A C++ Queue Interface
	5.2.4 A Simple Array-Based Implementation
	5.2.5 Implementing a Queue with a Circularly Linked List

	5.3 Double-Ended Queues
	5.3.1 The Deque Abstract Data Type
	5.3.2 The STL Deque
	5.3.3 Implementing a Deque with a Doubly Linked List
	5.3.4 Adapters and the Adapter Design Pattern

	5.4 Exercises

	6 List and Iterator ADTs
	6.1 Vectors
	6.1.1 The Vector Abstract Data Type
	6.1.2 A Simple Array-Based Implementation
	6.1.3 An Extendable Array Implementation
	6.1.4 STL Vectors

	6.2 Lists
	6.2.1 Node-Based Operations and Iterators
	6.2.2 The List Abstract Data Type
	6.2.3 Doubly Linked List Implementation
	6.2.4 STL Lists
	6.2.5 STL Containers and Iterators

	6.3 Sequences
	6.3.1 The Sequence Abstract Data Type
	6.3.2 Implementing a Sequence with a Doubly Linked List
	6.3.3 Implementing a Sequence with an Array

	6.4 Case Study: Bubble-Sort on a Sequence
	6.4.1 The Bubble-Sort Algorithm
	6.4.2 A Sequence-Based Analysis of Bubble-Sort

	6.5 Exercises

	7 Trees
	7.1 General Trees
	7.1.1 Tree Definitions and Properties
	7.1.2 Tree Functions
	7.1.3 A C++ Tree Interface
	7.1.4 A Linked Structure for General Trees

	7.2 Tree Traversal Algorithms
	7.2.1 Depth and Height
	7.2.2 Preorder Traversal
	7.2.3 Postorder Traversal

	7.3 Binary Trees
	7.3.1 The Binary Tree ADT
	7.3.2 A C++ Binary Tree Interface
	7.3.3 Properties of Binary Trees
	7.3.4 A Linked Structure for Binary Trees
	7.3.5 A Vector-Based Structure for Binary Trees
	7.3.6 Traversals of a Binary Tree
	7.3.7 The Template Function Pattern
	7.3.8 Representing General Trees with Binary Trees

	7.4 Exercises

	8 Heaps and Priority Queues
	8.1 The Priority Queue Abstract Data Type
	8.1.1 Keys, Priorities, and Total Order Relations
	8.1.2 Comparators
	8.1.3 The Priority Queue ADT
	8.1.4 A C++ Priority Queue Interface
	8.1.5 Sorting with a Priority Queue
	8.1.6 The STL priority_queue Class

	8.2 Implementing a Priority Queue with a List
	8.2.1 A C++ Priority Queue Implementation using a List
	8.2.2 Selection-Sort and Insertion-Sort

	8.3 Heaps
	8.3.1 The Heap Data Structure
	8.3.2 Complete Binary Trees and Their Representation
	8.3.3 Implementing a Priority Queue with a Heap
	8.3.4 C++ Implementation
	8.3.5 Heap-Sort
	8.3.6 Bottom-Up Heap Construction

	8.4 Adaptable Priority Queues
	8.4.1 A List-Based Implementation
	8.4.2 Location-Aware Entries

	8.5 Exercises

	9 Hash Tables, Maps, and Skip Lists
	9.1 Maps
	9.1.1 The Map ADT
	9.1.2 A C++ Map Interface
	9.1.3 The STL map Class
	9.1.4 A Simple List-Based Map Implementation

	9.2 Hash Tables
	9.2.1 Bucket Arrays
	9.2.2 Hash Functions
	9.2.3 Hash Codes
	9.2.4 Compression Functions
	9.2.5 Collision-Handling Schemes
	9.2.6 Load Factors and Rehashing
	9.2.7 A C++ Hash Table Implementation

	9.3 Ordered Maps
	9.3.1 Ordered Search Tables and Binary Search
	9.3.2 Two Applications of Ordered Maps

	9.4 Skip Lists
	9.4.1 Search and Update Operations in a Skip List
	9.4.2 A Probabilistic Analysis of Skip Lists

	9.5 Dictionaries
	9.5.1 The Dictionary ADT
	9.5.2 A C++ Dictionary Implementation
	9.5.3 Implementations with Location-Aware Entries

	9.6 Exercises

	10 Search Trees
	10.1 Binary Search Trees
	10.1.1 Searching
	10.1.2 Update Operations
	10.1.3 C++ Implementation of a Binary Search Tree
	Implementation of a Binary Search Tree

	10.2 AVL Trees
	10.2.1 Update Operations
	10.2.2 C++ Implementation of an AVL Tree

	10.3 Splay Trees
	10.3.1 Splaying
	10.3.2 When to Splay
	10.3.3 Amortized Analysis of Splaying

	10.4 (2,4) Trees
	10.4.1 Multi-Way Search Trees
	10.4.2 Update Operations for (2,4) Tree

	10.5 Red-Black Trees
	10.5.1 Update Operations
	10.5.2 C++ Implementation of a Red-Black Tree

	10.6 Exercises

	11 Sorting, Sets, and Selection
	11.1 Merge-Sort
	11.1.1 Divide-and-Conquer
	11.1.2 Merging Arrays and Lists
	11.1.3 The Running Time of Merge-Sort
	11.1.4 C++ Implementations of Merge-Sort
	11.1.5 Merge-Sort and Recurrence Equations

	11.2 Quick-Sort
	11.2.1 Randomized Quick-Sort
	11.2.2 C++Implementations and Optimizations

	11.3 Studying Sorting through an Algorithmic Lens
	11.3.1 A Lower Bound for Sorting
	11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort
	11.3.3 Comparing Sorting Algorithms

	11.4 Sets and Union/Find Structures
	11.4.1 The Set ADT
	11.4.2 Mergable Sets and the Template Method Pattern
	11.4.3 Partitions with Union-Find Operations

	11.5 Selection
	11.5.1 Prune-and-Search
	11.5.2 Randomized Quick-Select
	11.5.3 Analyzing Randomized Quick-Select

	11.6 Exercises

	12 Strings and Dynamic Programming
	12.1 String Operations
	12.1.1 The STL String Class

	12.2 Dynamic Programming
	12.2.1 Matrix Chain-Product
	12.2.2 DNA and Text Sequence Alignment

	12.3 Pattern Matching Algorithms
	12.3.1 Brute Force
	12.3.2 The Boyer-Moore Algorithm
	12.3.3 The Knuth-Morris-Pratt Algorithm

	12.4 Text Compression and the Greedy Method
	12.4.1 The Huffman-Coding Algorithm
	12.4.2 The Greedy Method

	12.5 Tries
	12.5.1 Standard Tries
	12.5.2 Compressed Tries
	12.5.3 Suffix Tries
	12.5.4 Search Engines

	12.6 Exercises

	13 Graph Algorithms
	13.1 Graphs
	13.1.1 The Graph ADT

	13.2 Data Structures for Graphs
	13.2.1 The Edge List Structure
	13.2.2 The Adjacency List Structure
	13.2.3 The Adjacency Matrix Structure

	13.3 Graph Traversals
	13.3.1 Depth-First Search
	13.3.2 Implementing Depth-First Search
	13.3.3 A Generic DFS Implementation in C++
	13.3.4 Polymorphic Objects and Decorator Values
	13.3.5 Breadth-First Search

	13.4 Directed Graphs
	13.4.1 Traversing a Digraph
	13.4.2 Transitive Closure
	13.4.3 Directed Acyclic Graphs

	13.5 Shortest Paths
	13.5.1 Weighted Graphs
	13.5.2 Dijkstra’s Algorithm

	13.6 Minimum Spanning Trees
	13.6.1 Kruskal’s Algorithm
	13.6.2 The Prim-Jarnik Algorithm

	13.7 Exercises

	14 Memory Management and B-Trees
	14.1 Memory Management
	14.1.1 Memory Allocation in C++
	14.1.2 Garbage Collection

	14.2 External Memory and Caching
	14.2.1 The Memory Hierarchy
	14.2.2 Caching Strategies

	14.3 External Searching and B-Trees
	14.3.1 (a,b) Trees
	14.3.2 B-Trees

	14.4 External-Memory Sorting
	14.4.1 Multi-Way Merging

	14.5 Exercises

	A Useful Mathematical Facts
	Bibliography
	Index

