The Chemists' Shorthand: Atomic Symbols

Mass number $\rightarrow 39$ Atomic number $\rightarrow 19$ K \leftarrow Element Symbol

Natural lithium is: ____ 7.42% ⁶Li (6.015 amu) 92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium:

$\frac{7.42 \times 6.015 + 92.58 \times 7.016}{100} = 6.941 \text{ amu}$

Spectrum

Chemical Stoichiometry

Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions.

المول The Mole

•المول : مصطلح لاتيني يعني (كوم من) أو (كمية من) ، يحتوي على كمية من المادة تساوي 6 سكستليون ذرة أو جزيء . 10²³ (عدد أفوجادرو)

•المول : هو عدد الذرات الحقيقية الموجودة في الكتلة الذرية الجرامية للعنصر (10^{23×6.022} ذرة

 أو هو عدد الجزيئات الحقيقية الموجودة في الكتلة الجزيئية الجرامية للمركب. (10²³×0.022جزيع)

•مثال : الكتلة الذرية الجرامية للأكسجين = 16 جم .

•16 جرام لا يمكن أن تكون كتلة ذرة واحدة من الأكسجين . (لأنها كتلة محسوسة ، بينما ذرة الأكسجين لا ترى بالعين المجردة)

•تذكّر بأن

•16 جرام من الأكسجين = مول واحد من ذرات الأكسجين عدد الذرات في الـ 16 جرام من الأكسجين = 2²³ 10²³ ذرة (6 سكستليون ذرة)

المول الواحد = عدد أفوجادرو من الذرات

The Mole تعريف المول

كمية المادة التي تحتوي على عدد من الذرات يساوي عدد ذرات الكربون 12 الموجود في كتلة من الكربون -12 تساوي 0.012 المول إذاً هو عدد أو ثابت أفوجادرو و يساوي 6.022 × 10²³

Avogadro's number equals 6.022 × 10²³ units

Atomic Masses الكتلة الذرية

Elements occur in nature as mixtures of isotopes

Carbon = 98.89% ¹²C 1.11% ¹³C <0.01% ¹⁴C

Carbon atomic mass = 12.01 amu

Molar Mass الكتلة المولية

A substance's molar mass (molecular weight) is the mass in grams of one mole of the compound.

 $C=12 \qquad O=16$ $CO_2 = 44.01 \text{ grams per mole}$

الكتلة المولية لأي مادة تساوي عدداً من الجرامات لكل مول يساوي الوزن الذري
للمادة إن كانت المادة على هيئة ذرات أو الوزن الجزيئي لها إن كانت على
للمادة إن كانت المادة على هيئة جزيئات
Molar mass is the mass of 1 mole of atoms in grams
1 mole ¹²C atoms =
$$6.022 \times 10^{23}$$
 atoms = 12.00 g
1 ¹²C atom = 12.00 amu
1 mole ¹²C atoms = 12.00 g ¹²C
1 mole ¹²C atoms = 12.00 g ¹²C
1 mole ¹²C atoms = 12.00 g ¹²C

Ľ

$1 \text{ amu} = 1.66 \text{ x } 10^{-24} \text{ g}$ or $1 \text{ g} = 6.022 \text{ x } 10^{23} \text{ amu}$

Do You Understand Molecular Mass? How many H atoms are in 72.5 g of C_3H_8O ? $1 \mod C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$ $1 \mod C_3H_8O$ molecules = 8 mol H atoms $1 \mod H = 6.022 \times 10^{23} \text{ atoms H}$

72.5 g $C_3H_8O \times \frac{1 \text{ mol} C_3H_8O}{60 \text{ g} C_3H_8O} \times \frac{8 \text{ mol} \text{ H} \text{ atoms}}{1 \text{ mol} C_3H_8O} \times \frac{6.022 \times 10^{23} \text{ H} \text{ atoms}}{1 \text{ mol} \text{ H} \text{ atoms}} =$

5.82 x 10²⁴ atoms H

Measuring Atomic Mass

Figure 3.1: (left) A scientist injecting a sample into a mass spectrometer. (right) Schematic diagram of a mass spectrometer.

The Chemists' Shorthand: Formulas الصيغ الكيميائية • الصيغ الوضعية (Empirical Formula) • هي أبسط صورة عددية ممكنة Symbols = types of atoms • **Subscripts** = relative numbers of atoms • الصيغة الجزيئية (Molecular Formula) تبين العدد الفعلى لذرات العناصر المكونة للجزىء CO_{2}

الصيغة التركيبية (Structural Formula): توضح طريقة ارتباط الذرات الفعلية المكونة للجزئ بعضها ببعض.

0=C=0

Figure 2.16: The structural formula for methane.

Figure 2.17: Space-filling model of methane. This type of model shows both the relative sizes of the atoms in the molecule and their spatial relationships.

Figure 2.18: Ball-and-stick model of methane.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Determining Elemental Composition (Formula) Figure 3.5: A schematic diagram of the combustion device used to analyze substances for carbon and hydrogen.

The masses obtained (mostly CO_2 and H_2O and sometimes N_2)) will be used to determine:

- 1. % composition in compound
- 2. Empirical formula
- Chemical or molecular formula if the Molar mass of the compound is known or given.

Example of Combustion

Combust 11.5 g ethanol Collect 22.0 g CO_2 and 13.5 g H_2O

Convert g to mole:

$$1 \mod C \longrightarrow 12 g C$$

$$n_{mol} C \longrightarrow 6 g$$

$$n_{c} = \frac{6 g \times 1 \mod C}{12 g C} = 0.5 \mod C$$

Repeat the same for H from H_2O

$$1 \mod H_2 O \longrightarrow 18g H_2 O \longrightarrow 2 \mod H \longrightarrow 2g H$$
$$13.5g H_2 O \longrightarrow n_{mol} H \longrightarrow mH$$

n

$$2x13.5$$

$$= 1.5 \text{ mol H}$$

$$18 \text{ mol H}$$

$$= 1.5 \text{ mol H}$$

$$= 1.5 \text{ mol H}$$

$$= 1.5 \text{ mol H}$$

Empirical formula C_{0.5}H_{1.5}O_{0.25}

Divide by smallest subscript (0.25)

Empirical formula C₂H₆O

Percent composition of an element in a compound =

n x molar mass of element molar mass of compound x 100%

n is the number of moles of the element in 1 mole of the compound

 C_2H_6C

 $%C = \frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$ $\% H = \frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$ $%O = \frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$

52.14% + 13.13% + 34.73% = 100.0%

Note

If results are : 0.99 : 2.01 : 1.00Then you have to convert to whole numbers: 1 : 2 : 1 CH_2N

If results are : 1.49 : 3.01 : 0.99Then you have to multiply by 2: 3 : 6 : 2 $C_{3}H_{6}N_{2}$

Hence, empirical formula is the simplest formula of a compound

Then	
Empirical Formula	

Using the previously calculated % in compound:					
	% in gram				
a. Number of mole of C =					
	Atomic mass of C				
	% in gram				
b. Number of mole of H =					
	Atomic mass of H				
	а	b		C	
Then divide by the smallest number:	: -		•		
	smallest	smallest		smallest	

Formulas

molecular formula = $(\text{empirical formula})_n$ [n = integer]

molecular formula = C_6H_6 = $(CH)_6$

empirical formula = CH

Then

Molecular Mass

n

Empirical Mass

Figure 3.6: Examples of substances whose empirical and molecular formulas differ. Notice

that molecular formula = (empirical formula)n, where n is a integer.

المتفاعل المحدد والمتفاعل الفائض والمحصول الفعلي والمحصول النظري والمحصول المئوي إذا أدى مزج (4g) من H_2 مع (40g)من N_2 إلى الحصول على (15.45g) من NH_3 ، فما المتفاعل المحدد؟ وما المتفاعل الفائض؟ واحسب المحصول النظري، والمحصول المئوي.

الحل:

المعطيات: يوجد من $H_2 H_2$ مولان، ومن $N_2 N_2 N_2$ مول، وما تم الحصول عليه NH $_3$ المعطيات يوجد من NH_3

المتفاعل المحدد والمتفاعل الفائض:

نكتب المعادلة، ونضع تحت كل مادة عدد المولات كما تحدده المعادلة، ذلك عدد المولات كما هو من معطيات السؤال، ثم نقسم الأخير على الأول، والمادة التي تعطي ناتج قسمة أقل تكون هي المتفاعل المحدد، والتي تعطي ناتج قسمة أكبر تكون هي المتفاعل الفائض.

$3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

عدد المولات حسب المعادلة	3	1.00
	2	1.43
عدد المولات حسب المعطى	0.67	1.43
ناتج القسمة		

 ${
m H2}$ ومنة يتضح أن ${
m N2}$ هو المتفاعل الفائض والذي لا يبقى جزء منة وأن ${
m H2}$

المحصول النظري: نكتب المعادلة، ونضع تحت المتفاعل المحدد عدد مولاته حسب المعادلة وحسب المعطى، ونضع تحت الناتج عدد مولاته حسب المعادلة:

 $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$ 3 عدد المولات حسب المعادلة 2 المحصول النظرى 2عدد المولات حسب المعطى $(2 \times 2)/3 = 2/(2 \times 2)$ المحصول النظري 1.33 mol = 1.33 المحصول النظري المحصول المئوى: نحسب المحصول المئوى حسب المعادلة: المحصول المئوي = (المحصول الحقيقي / المحصول النظري) × 100 100×(0.51 / 1.33) = المحصول المئوى = المحصول المئوي <u>68.42</u> % 33

Limiting Reactant Calculations

What weight of molten iron is produced by 1 kg each of the reactants?

 $Fe_{2}O_{3}(s) + 2 Al(s) \rightarrow Al_{2}O_{3}(s) + 2 Fe(\ell)$ $\frac{1 \text{ mol}}{6.26 \text{ mol}} \qquad \frac{2 \text{ mol}}{18.52}$ Ratio: 0.160 > 0.108Limiting Excess $Fe_{2}O_{3}(s) + 2 Fe(\ell)$ The 6.26 mol Fe₂O₃ will Disappear first

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted. Its amount is Calculated using the balanced equation.

Actual Yield is the amount of product actually obtained from a reaction. It is usually given.

Percent Yield

Percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

<u>Actual yield</u> = quantity of product actually obtained

<u>Theoretical yield</u> = quantity of product predicted by stoichiometry

Percent Yield Example

Sample Exercise

Titanium tetrachloride, $TiCl_4$, can be made by combining titanium-containing ore (which is often impure TiO_2) with carbon and chlorine -

$$TiO_{2(s)} + 2 Cl_{2(g)} + C_{(s)} \longrightarrow TiCl_{4(l)} + CO_{2(g)}$$

If one begins with 125 g each of Cl_2 and C, but plenty of titanium-containing ore, which is the limiting reagent in the reaction? What quantity of Ti Cl_4 can be produced?

A compound contains C, H, N. Combustion of 35.0mg of the compound produces 33.5mg CO_2 and 41.1mg H₂O. What is the empirical formula of the compound?

Solution:

- 1. Determine C and H, the rest from 33.5mg is N.
- 2. Determine moles from masses.
- 3. Divide by smallest number of moles.

Caffeine contains 49.48% C, 5.15% H, 28.87% N and 16.49% O by mass and has a molar mass of 194.2 g/mol. Determine the molecular formula.

Solution:

- 1. Convert mass to moles.
- 2. Determine empirical formula.
- 3. Determine actual formula.

 $C_8H_{10}N_4O_2$

Nitrogen gas can be prepared by passing gaseous ammonia over solid copper(II) oxide at high temperatures. The other products of the reaction are solid copper and water vapor. If a sample containing 18.1g of NH₃ is reacted with 90.4g of CuO, which is the limiting reactant? How many grams of N_2 will be formed.

Methanol can be manufactured by combination of gaseous carbon monoxide and hydrogen. Suppose 68.5Kg CO(g) is reacted with 8.60Kg H 2(g). Calculate the theoretical yield of methanol. If 3.57x104g CH3OH is actually produced, what is the percent yield of methanol?

 $\operatorname{SnO}_2(s) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{Sn}(s) + 2 \operatorname{H}_2O(I)$

- a) the mass of tin produced from 0.211 moles of hydrogen gas.
- b) the number of moles of H_2O produced from 339 grams of SnO_2 .
- c) the mass of SnO_2 required to produce 39.4 grams of tin.
- d) the number of atoms of tin produced in the reaction of 3.00 grams of H₂.
- e) the mass of SnO_2 required to produce 1.20 x 10²¹ molecules of water.