Lecture 11
Search Algorithms
Binary Search Algorithm
Divide in half
A fast way to search a sorted array is to use a binary search. The idea is to look at the element in the middle. If the key is equal to that, the search is finished. If the key is less than the middle element, do a binary search on the first half. If it's greater, do a binary search of the second half.
Performance
The advantage of a binary search over a linear search is astounding for large numbers. For an array of a million elements, binary search, O(log N), will find the target element with a worst case of only 20 comparisons. Linear search, O(N), on average will take 500,000 comparisons to find the element. Probably the only faster kind of search uses hashing, a topic that isn't covered in these notes.
This performance comes at a price - the array must be sorted first. Because sorting isn't a fast operation, it may not be worth the effort to sort when there are only a few searches.
Algorithm
Algorithm is quite simple. It can be done either recursively or iteratively:
1. get the middle element;
1. if the middle element equals to the searched value, the algorithm stops;
1. otherwise, two cases are possible:
2. searched value is less, than the middle element. In this case, go to the step 1 for the part of the array, before middle element.
2. searched value is greater, than the middle element. In this case, go to the step 1 for the part of the array, after middle element.
Now we should define, when iterations should stop. First case is when searched element is found. Second one is when subarray has no elements. In this case, we can conclude, that searched value doesn't present in the array.
Examples
Example 1. Find 6 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.
Step 1 (middle element is 19 > 6): -1 5 6 18 19 25 46 78 102 114
Step 2 (middle element is 5 < 6): -1 5 6 18 19 25 46 78 102 114
Step 3 (middle element is 6 == 6): -1 5 6 18 19 25 46 78 102 114

Example 2. Find 103 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.
Step 1 (middle element is 19 < 103): -1 5 6 18 19 25 46 78 102 114
Step 2 (middle element is 78 < 103): -1 5 6 18 19 25 46 78 102 114
Step 3 (middle element is 102 < 103): -1 5 6 18 19 25 46 78 102 114
Step 4 (middle element is 114 > 103): -1 5 6 18 19 25 46 78 102 114
Step 5 (searched value is absent): -1 5 6 18 19 25 46 78 102 114

/* searches for a value in sorted array
* arr is an array to search in
* value is searched value
* left is an index of left boundary
* right is an index of right boundary
* returns position of searched value, if it presents in the array
/* or -1, if it is absent

int binarySearch(int arr[], int value, int size) {
 int left,right,middle;
 left=0; right=size-1;
 while (left <= right) {
 middle = (left + right) / 2;
 if (arr[middle] == value)
 return middle;
 else if (arr[middle] > value)
 right = middle - 1;
 else
 left = middle + 1;
 }
 return -1;
}

Linear Search Algorithm
Look at every element
This is a very straightforward loop comparing every element in the array with the key. As soon as an equal value is found, it returns. If the loop finishes without finding a match, the search failed and -1 is returned.
Performance
For small arrays, linear search is a good solution because it's so straightforward. In an array of a million elements linear search on average will take 500,000 comparisons to find the key. For a much faster search, take a look at binary search.
Example
int linearSearch(int a[], int first, int last, int key) {
 // function:
 // Searches a[first]..a[last] for key.
 // returns: index of the matching element if it founds
 // otherwise -1.
 // parameters:
 // a : array of (possibly unsorted) values.
 // first, last in lower and upper subscript bounds
 // key : value to search for.
 // returns:
 // index of key, or -1 if key is not in the array.

 for (int i=first; i<=last; i++) {
 if (key == a[i]) {
 return i;
 }
 }
 return -1; // failed to find key
}

