Lecture9

Tree

Abstract fatree: 22
bstract idea of a tree: it éwd_)@w,%\ﬂfui\.%

PEUVRERTALY N) J> wo
: &,»J A tree is another data structure that you can use to store information. Unlike
—3tacks and queues, which are linear data structures, trees are hierarchical
data structures. Saying that the structure of a tree is hierarchical means —= q,,o-;@ LL
© ____ that things.areordered-above or below other thmgsui:teq‘e;&s—an—examﬁ of a :

tree_holding letters:

free

j <--root '
!\ :

- dj

\goo Y }p)-L\f-_AJU(

Let's now |Etrodu$’e some vocabuléry withour sampieE’cree “The element at
- the top é*f the tree is called the reot. The elements that are directly under osye Jy CS\

an element are called lts(chsmrey The element directly above something is . - i w
called its parent. For examplg,ais a child of f and f is the parent of a. Je)

Finally, elements with no childrén are called leaves.”
(w0 wwy&\b(] Chi A)’%
fu Aside: If you were to draw the picture above upside down it would look like__ :
P areal tree, with the leaves at the top and the root at the bottom.. However, Jj\
LGN‘E}' we usually draw tree data structures as we've done above. AO_QZU’?
Uses | el ool

o PN &5 /))lxa,wy@—@:\ SIPEN

We use trees you want to store information that naturaily forms a hlerarchy
For example, the file system on a computer: ... i -

i "Pagcﬂ

T R N L e

Gemmen) e

e e

] <-—root

[\ -
home — Utnled®
/ \ W e
Students course —s pg?
/ [1\
cs101 cs112 cs113. ¢\ ~ -~ .
— 5 S5 (o 2 S)

Despite the hierarchical order of the structure of the tree, the order enforced L,:';Ju\?
- “on objects in the tree will depend on how we use the tree] This just means
J"°$i

f - - ike a stack whose operations are usually limited to push/and pop, =
»P;/$ there are many different kinds of trees and ways to use them. hus, this MWL
RO flexibility makes them more akin to linked lists. . W
b % : . P
D (B9 o3 Cud KM Qg B b g :
a— Recursive Data Structure stag Al

gig (%ésfia%\u}#JP3)1f55 o€ 0 s O
;o5\ Atree can be viewed as a recursive data structure. Why? Remember that
203 5 recursive means that SoEes hing je defined intornsRinliitlimmaicmummemes R
R tismeans tnal rees are.nad B PO TaSUDILEES cummosissuseeos : - '

For example, let's loogat our tree of letters and ex*_wine thefpart starting at

- fand eyerything u%d_er 1o

- tree ; E %

;oo i -
E S A U (™)
i a h z ¥

Doesn't it look like a tree itself? In this subtree, fis the root

2 .;"‘" J‘: ;L‘, i

Z Binary Trees

- — 2.:’ i‘-"_} oI _f:’_\é r\‘ sus
We can talk about trees where the number of childfen that any element has

’yﬂﬁs_lim_i_tgd. In the tree above, no element has more than 2 children. For the
rest of this example, we will enforce this to be the case.

R ot whose elements have at most 2 children is called a binary
tree. ;

Since each element in a binary tree can have only 2 children, we typically name them the

left and right child.

Binary search tree -

A binary search tree of size 9 and depth 3, with root 8 ancl_le
@na13) .
n ordered

A bmary search tree (BST), Wthh may sometlmes also be called a

it

owa;b has e Ja
:th keys less than the |

(\/0)*5 CEE s key. '

F‘ « The right subtree of a node contams only nodes with keys grea._er thanA s
. the node’ s key. f

. Both the left and right subtrees must also b@nary search treesj)

J_.)‘F) BN AR R A nodf 35 B - Jom i\ U

F v Generally, e information represented by each node is a record rather than

: g\J’J a single data element However, for sequencing purposes, nodes are

&,2}) compared according to their keys rather than any part of their associated
['\\0\5 records

The major advantage of binary search trees over other data structures lsL_,__m
that the related sorting algorithms and search algorithms can be very

Top
L)'JJ\ Edm} ., U’GJ’Q‘F\'\ o

< The left subtree of a node™ con a|n

efﬁment ,_;;, o Lo ~
’© bu&uﬂ)u%ﬁ.mq&/‘_—\qﬁ)(;\&ﬂ ZJS‘_JD
7 E nary searc search trees are a fundamental data structure used to construct more

abstract data structures such as sets, multisets, and associative arrays.

M"Z -

.

[Page el

L R A S AR R DI

Tree operations:) &,J,,. Yomne V) Mlpg

As mentioned, there are different kinds of trees (e.qg. ,(binary searcﬂtrees

2-3 trees, AVL trees, tries,.....).

—

What operations we will need for a tree, and how they work, depends on
what kind of tree we use. However, there are some common operations we

can mention:

1. Add: . - .\
o€ JJJ’ ol pdc mss
Places an element in the tree (where elements end d up depends on the
kind of tree). For example, Add(tree, i) might giver

tree)
=S G 1 S
F . == e \wm _9-«-‘\{‘ Tl

<-- new Ieaf

: 2 Remove -~ j'\yf— \ (_5\»1—*-—> .
S | ‘(o ud) a3 '
Removes something from the tree (how the tree is reorganized after a
removal depends on the kind of tree). For example, Remove(tree, h)

might! glve

o CP B 0 G

{

1 <—ropt

f k
aal S !

a i 7

Here, i moved up to take its place.

3. IsMember

s AR e

Reports whether some element is in the tree.

e L Al I a5 A B

S P Y A e A TR i A g 1 Vi S e A T e A TR (S o R B R L £ e e T S A Rl T R < S

For example, IsMember(tree, a) should give a true value and
IsMember(tree, y) should give a false value.

Tree representation:

Since we want to be able to represent a tree in C++, how are we going to
store this hierarchical structure?

Can we use an array?

Answer: Certainly! There are times when we can use an array to represent a
o tree. '
- However, we can also do something along the lines of a linked list. For

example, just as linked list nodes hold one element and point to the next
node... ' :

¥ - | ‘Fe rc!oh!dj_have tree nodes that hold one element and: point to their children... F’

jal |h| |zl

H

- |ojor [ojoj [ojo]
B g AR Lt ' £ amsiasias.
|[Pager.y
AT A AT L A AT ST Y LR T R i AR S S R St T e

B T B R I

Note that some nodes don't have a left and/or right chiid, so those pointers
are NULL.

Also, just as we need a pointer to the first node to keep track of a linked list;
here, we need a pointer to the root node to keep track of a tree.

Tree implementation in C++

The following program creats a tree, insert elements into it and then print
it’s elements

" £ include <iostream.h>

include <stdio.h>

include <stdlib.h> r

1

1
struct btreenode

k.

{ i

int coj_ntent; Py
struct {btreenode *left; “B 7 LR
struet btreenede *rvight: . =5 e
bi >F
e I

typedef btreenode *p;
typedetf p pli &

pl insert (btreenode *nodePtr, int item)

{

+F (nodePtr == NULL) \H#

{ N S &S 42 02 M E
nodePtr = new btreenode, Wi f\k”
nodePtr~>content= item; —> N
nodePtr->left=nodePtr- >r1ght =NULL;

} ~

3 ¥ N AT
else if(item < noaeftrm>contQE;L,a

\a\ nodePtr->1left = insert(nodePtr—>left item) ;

else if (item > nodePtr >content)~ ~

\\ﬂ ¢ nodePtr- >right = insert (nodePtr->right, item);

J;LQ\ ’t*ﬁ

s

E hgf94jp

: iy~ return nodePtr;
L, J -0
AN i Y\@PV@"-‘ \o 0f aci(’ "‘l«@& d R ._

" . o? \0‘)
if (nodePtrL=NULL) 4 ,uuM}A E”.xL)\ ' Fom . B S
, R T A S o
cout<< nodePtr—Econtent é—”éub‘\‘\ /*baﬂ E: -E@
' prlntPreOrder(dePtr->left); : g ! o 13 4 7
prlntPreOrder(nodePtr >right); ' :

i }. \

; VOldrmalg() : t i
|] el VI R VATRVA

int item;

pl rootPtr = NULL; ?k,a
! rootPtr = insert (rootPtr, ; jzfzg“éag

rootPtr = insert (rootPtr,

rootPtr = insert(rootPtr,
rootPtr = insert (rootPtr,
rootPtr = 1nsert(rootPtr, 9

5

{ 3

rootPtr = insert (rootPtxr, 7
rootPtr = insert (rootPtr, 1
(4

(6

<<"\nPreOrder\n
prlntPreOrder(rootPtr)

I g e A B R

T HHHHAHAHHOGHBEHHRDS

B T LN L T T e I R L e S L AT) SRR SR S i o N I o e e R L

Tree applications: (Expression Trees)

SO T ol W)
One apphcatlon of trees is to store mathematlcai_expressmns such as

- 1'5'*("x+"’\f)"0r sqrt(42)‘+7*‘111"‘a‘”"c"’onﬁ7”“nt"form “Let's stick forth"me' : OES M‘J 1
3 E expreSSIons made up of n}mbers a d the operators +, . and /. Consnderfﬂfﬁ U6,
the ‘expressjon 3*((7+1) 4)+(1E,5) This expressmn is made up of two
R ——
subexp ressions, 3*((7 11)/4) and (17- 5), combined with the operator g
. :
When the’ expressmn is represented as a binary tree, tf] roqt,node holds the 3)J5

PY-vEPL -V
operator +, ‘whlle the subtrees of the root node rfepresentmibe

Ty ls g
subexpressno;ns 3*%((7+1)/4) and (17-5). Every node in the tree holds either; f)
! ! £
a number orian operator. A node that holds a number is a leaf node of the(&ng hod e
J

tree. A node that holds an operator has two subtrees representing the

operands to which the operator applies. The tree this type is refered to as an

expression tree.

Given an expression tree, it's easy to find the value of the expression that it F

represents. Each node in the tree has an associated value. If the node is a

leaf.node, then its value is: S|mply _the number that thex«nodegcontalnsﬁfx
node contams an operator then the assomated value is computed by flrst
~finding~the valles of its child*fiodes and then applying the operator to those“‘““-:-

values. The process is shown by the red arrows in the illustration. The value

|P_va,\ ;)

et N M B A e I AN N R PR AT AT AT A T T AT A B e L R ST e 28 Tk e L S B R T i £ T AT e e e R L A, I S R TR A A AR S BRI Y

computed for the root node is the value of the expression as a whole. There
are other uses for ex'pression trees. For example, a postorder traversal of

the tree will output the postfix form of the expression.

Atree that represents 18
the axpression T answer

3 *({7+1 Va)+ (17-5)
sl _ Thersdareomes chaw
hew the valus of
the expressicn
can be computed.

