Dr.Nada Elzein Eisa Quantum Mechanics 2 part 1

Q.M 2
Chapter 1

1-1 The Shrodinger Equation and some simple equation
applications:

ShrOdinger equation was regarded as to be a fundamental postulate,
or axiom of quantum and atomic physics, Just as Newton’s laws are
fundamental postulates of classical mechanics . The solutions to the
ShrOdinger equation are called the wave function. The ShrOdinger
Equation that does not contain time as a variable is called the time
independent ShrOdinger Equation and the solutions of such equation
are called the stationary state wave function.

As well as matters have a particle like character, matter has a wave
like character. Since then there must be a wave equations that
governs them.

For simplicity let us start with the classical one-dimensional wave
equation

ofu(x,t) 1 o7u(x,t)
Ox~= I3E ot

1)

Equation (1) can be solved by the method of separation of variables
and that U (X, t) can be written as the product of a function of x
and a harmonic or sinusoidal function of time.

u(x,t) =y (x)cos wt 2)

w (X) is called the spatial amplitude of the wave. Substituting
(2) into(1)we obtain

ok o ?
e
OX O

yw(x) =0 3)
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We now introduce the idea of de Broglie mater waves, the
wavelength associated with the momentum of the particle

I
2/ _ 4
(= )

where h is Planck’s constant. Substituting for the momentum from
the law of the total energy E-= %+U(x) into (4) we obtain

a4 =" h

P {zm[E —U GOT}?

5)

since w=2zv andvi =vthe term“’—; in equation (3) can be written in
L

the form

w* 4r°v?  4r® 2m[E —-U(x)]
L2 = L2 - PE - 72 6)
h

where 7 - and so equation 3 can be written as

T

o 2m
SR [E-UCO 00 =0 9

This is the famous Schrodinger equation, a differential equation for
w(x) for a particle of mass m moving in a potential field described by
U (x). The exact nature of y(x) is vague at this point, but in some
sense it is a measure of the amplitude of the matter wave and is
called the wave function of the particle. Equation (7 )does not
contain time and is called the time-independent Schrodinger
equation.

The wave functions obtained from Eq. (7) are called stationary-state
wave functions. Although there is a more general Schrodinger
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equation that contains a time dependence, we shall see throughout
the course that a great number of problems of atomic and molecular
interest can be described in terms of stationary-state wave functions.
Equation (7) can be written in the form

— h® %y
2m Ox~°

+U (X (X) = Ey(X) 8)

1-2 The Schrodinger Equation Can Be Formulated as an
Eigenvalue Problem.

An operator is a simple that tells you to do something to whatever
follows the symbol. For example, we can consider 0Y/0X to be the
O/ ©x operator operating in the function y(x). some other examples
are SQRT (take the square root of what follows), j 3 (multiply by

0

3), and a/6y. Clearly the operator and the operand (the function on
which the operator acts) must be compatible; the operation and the
result must be mathematically well-defined. We shall usually denote
an operator by a capital letter with a carat over it. Thus we write

ax) = A f (x)

to indicate that the operator A operates on f(x) to give a new function

g(x).
In guantum mechanics, we deal only with linear operators. An
operator is said to be linear if

Alc, f,()+¢, F,(0] = ¢, A F, () +¢, A T, (x)

where ¢, and ¢, are (possibly imaginary or complex) constants.
Clearly the “differentiate” and “integrate” operators are linear while
“square” and the “square root” operators are non linear (prove).

Dr.Nada Elzein Eisa Page 3



Dr.Nada Elzein Eisa Quantum Mechanics 2 part 1

A problem that occurs frequently is the following: Given A, find a
function ¢(x) and a constant a such that

Ag(X) = ag(x)

Note that the result of operating on the function ¢(x) by A is a
simply to give ¢(X) back again, only multiplied by a constant factor.

Clearly A and ¢(x) have a very special relationship with respect to
each other. The function4(x) is called an eigenfunction of the

operator A, and a is called an eigenvalue problem.

If we go back to equation (8) and we rearrange it in form the

— h? O°
[ S O +U (X)}//(X) = Eyw (X) 9)

if we denote the operators in the brackets by H then equation (9) can
be written in the form

H y () = Ey (X) 10)

Here we have formulated the shrodinger equation by an eigenvalue

problem where H is called the Hamiltonian operator. This suggests a
correspondence between the Hamiltonian operator and the energy.

The wave function is an eignvalue of the Hamiltonian operator and
the energy is the eigenvalue of it.
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Quantum Mechanics 2

1-3 Classical-Mechanical Quantities Are Represented
by Linear Operators in Quantum Mechanics.
To every observable in classical mechanics there corresponds an
operator in guantum mechanics. These correspondence are collected

in Table 1

part 1

Observable

Operator

Position X N Multiply by x
r A Multiply by r
Momentum P, 5 _in
* OX
N
s s o
p | & —|h[|§+15+k§
Kinetic energy k A  72” L o7
x px 2m 6X2
7~ rn2 (. o2 o2 =k
k < T omU'ax2 © oy 2 6x2j
Potential energy U(x) U(xj Multiply by U(x)
U(x,y,z)
[A 5 ] Multyply by U(x)
Ul xy,z
A hz 82 82 52
Total Energy E 4 — 2 (2 2k axzj
+ U(X,Y,2)
Angular L=y, -2, | |, i g_zgj
momentum (r X p) A Yoty
Iy:pr_xpz Ly —ih Zi_xij
IA_ ox oz
Iz:Xpy_ypx Z —ih Xi—yﬁ
oy =~ OX
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1-4 \Wave Function for A particle in one-

dimensional box

For a free particle (the particle experiences no potential energy i.e.
U(x)=0)of mass m constrained to lie along the x-axis between x=0
and x=a the Schrodinger Equation will be defined as

x=0 =a

here ¥(0)=w(a)=0 . The general solution of equation (11) is

w(x)= Acoskx+ Bsinkx | k = @ 12)
w(0)=0= A=0 then
v (a) =Bsinka=0 13)
since B#0 then
ka =nrx n=123,...... 14)
Substituting for k from (12) into (14), we find that
15)

Thus, the energy of a particle is said to be quantized and the integer n
is called the quantum number. The wave function that associated
with E, is

nzx

W, (X) =Bsinkx = BsinT n=1,2,3,...... 16)
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Max Born found that the probability of finding a particle located
between x and x+dx can be calculated by

X+dx 1 O<x<a
— * =
PI’Ob{X1 <X< XZ}— j@” (X (X)dx = {0 Otherwise

Substituting from 16 ito 17 we find

|B|2jsin2%dx:l 18)
0

Let " = then
a

& L NaX a 't . a(nr) a
sin 2 dx = sin®zdz=—| = |==2
I‘; a n;r-([ nﬂ( 2 ) 2 19)

Therefore, BZ(%)=1 , B=(%)y2 and

2 % . Nzax
Wn(x):(gj Sln7 0<x<a n=123,...... 20)

e A wave function that satisfied (17) and given by (20), is said to
be normalized.

e when constant that multiplies a wave function(e.g B) is
adjusted to assure that the wave function is normalized ,then
this constant is called the normalization constant.

e because Hamiltonian operator is a linear operator, if y is a

solution to Schrodinger equation H w = Eyw then AVis
also a solution to the Schrodinger equation where A is any
constant and A can always be chosen to normalize the equation.
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wn(x){ﬁj sin 1% g =0
a a Sma

‘2

‘l//4

W,
mAWA ANN
VR4

8ma n=4

2
Wi ‘l//?"

oh’ /\/\
8ma? \\\v/// n=3

4h? /\

8ma? n=2
2
W ‘l//l ‘
1
h2 n:].
8ma’
0 0 a
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Example 1:

Find the energy of the first exited state in the linear butadiene
molecule H,C=CH—CH=CH, ( model of free particle (electron) in a
one dimensional box).Given that the C=C bond length is 1.35 A and
the C C bond length is 1.54 A.

Solution:

For simplicity we shall assume that the four electrons is moving
along the straight line whose length can be estimated by

a = 2x(1.35) + 1.54 +1.54 = 2x( C=C bond length) + C— C bond
length +the distance of carbon atom radius at each end = 5.78.

The energy of the first excited state of this system of four electrons is
that having one electron elevated from n=2 to n=3 state see figre
below  The from the energy  equation obtained

h?n?
before En = 8maz we find that
h2
AE = SmaZ (3% — 22) therefore

B (6.626 X103 J.5)2 X5
8X (9.110X10 3 Kg)(5.78X10 °m)?

=9.02X10*°J

n=3

The frequency of the electron is given by Iy
,_Dp_(2mE)" +L =2
h oo

= 4.54X10*cm™

h

n=1
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1-5 The Average momentum of a particle in a box is Zero:

Suppose that some number x; is associated with the out come j(e.g
tossing a die has 6 possible outcomes and j=1,2,...6) and let f(x;)
represent the probability of realizing the number x; then we define
the average of x or the expectation value of x to be

x=(x)=2 %, f(x))
j=1
and the second moment to be
<x2>:zn:xj2f(xj)
j=1

another quantity of importance is the second central moment, or the
variance, defined by

ol = <(x—<x>)2> = Z;:(X—<X>)2 f(x;)

For the case of the particle in a box where0 < x<a

Es;in2 N7X ax
f(x)dx =4 a a 0<x<a 21)
0 Otherwise

the average value of x or the mean position of the particle, is

2% ., nax a
<X>=5£XS'“27O'X=§ (for all n)

To calculate the spread about (x) we calculate
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2 2 2% , ., Nax 25 L, nm
o =<x2>—<x> :g‘!xzsszd—(E’!xsszdx)2
2.2 22)

For the case of the position it is quite simple, but the problem arises
if we want to find the expectation or variance values for a
differential equations operators such as Hamiltonian or momentum
operators. Then the only way to solve such problem is to sandwich
the operator between ,* and y in order to calculate the average

value associated with that operator.

[wa 00 H iy, (0dx = E, [y, *(Qw, ()dx = E, 23

a 7 e
<p>=_[ (éj sinn?ﬂx (— |h%) (Sj sinnTﬂX dx 24)

0

a

2/ ¢ . NaX N 7zX
(p)=-—in - _([sm | cos——dx=0 )

1-6 The Werner Heisenberg (1927) Uncertainty Principle

Says That &,o, >%

Now let us calculate the variance of the
momentum

2 2 2 Werner Heisenberg,.Germany
< p > B < p> Nobel Prize in Physics (1932)

"for the creation of quantum
mechanics"

To calculate <|02> We use
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)= (2) 02 [ L) (2] s
|\ a dx* |\a a 26)
2,222 a
:—272 rlh sin nﬂxsin rUZXdx:O
a . a a
7°Nn*h?
2 7Z'2n2h2
Then O T
mnh
and @, = 2 27)

Because O ,is a measure of the spread of a distribution bout it
mean value, we can interpret O as a measure of the uncertinity
involved in any measurement. The above equation shows that the
uncertinity in a measurement of particle momentum is inversely
proportional to @ .While the uncerinity in the position of a particle
is directly proportional to @ (Eg.22). Thus ,the more we try to
localize the particle (definite short area of movement) the greater is
the uncertinity in its momentum.

then since the value of the square root term here is greater than the
unity for all n

/)
GXGp - E 28)
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Thus, we see that there is a reciprocal relation between the
uncertinity of the position and in momentum. and that a free particle
has a definite momentum but its position is completely undefined.
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Chapter 2

2-The Postulates and General principles of Quantum Mechanics

In this Chapter We shall formalize a set of wave mechanics postulates and
then discuss some general theorems that follow from this postulates.

2-1 The State of a system is completely Specified by its wave function

The position of the particle depends not only on the time but also on the initial
conditions

(t)= Xt %, yo,xo,uxo,uyo,uzo)
y(t): y(t;xo’ yo’XO!Umeyo’Uzo)

Z(t): Z(t;xo’ yo’ XOlUxo’UyO’Uzo)
we can write these three equations in a vector notation

r(t)=r(t;r,v,)

The vector r(t)describes the position of the particle as a function of time; r(t)
Is called the trajectory of the particle.

In classical mechanics, if there are N particles in the system, then it takes 3N
coordinates and 3N velocities to specify the state of the system. Then the
trajectory of the system is the position of each of the N particles in the system
as a function of time and as a function of the initial conditions. We should
suspect immediately that this is not going to be so in quantum mechanics
because the Uncertainty Principle tells us that we cannot specify or determine
the position and momentum of a particle simultaneously with finite precision.
Thus we see that in classical mechanics (the mechanics of macroscopic
bodies) the Uncertainty Principle is of no practical importance.

This leads us to the first postulate of Quantum Mechanics

The state of quantum mechanics system is completely specified by a function
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¥ (r, t )that depends on the coordinates of the particle and on the time.
This function, called the wave function or the state function, has the important
property that LI’*(r, t)T(r, t) dxdydz is the probability that the
particle lies in the volume element dxdydz ,located at r, at time t.

If there is more than one particle, say two, then we write
W (1,1, ) (1, ot Jlx, dy, dz, dx, dy,dz,

For the probability that particle 1 lies in the volume element XmdleIZ1 at

r,and that particle 2 lies in the volume element dx,dy,dz, a r, atthe

time t.

Because the square of the wave function has probabilistic interpretation, it
must satisfy certain physical requirements. For example a wave function must
be normalized, so that for the case of one particle we have

Ioj [ p(r, ) dudydz — 1 .

It is convenent to abbreviate Eq. 1 by letting dxdydz = dzand we
write

_qu(r,t)xp(r,t)df -1

with the understanding that this is really a triple integral.

Postulate 2

To every observable in classical mechanics there corresponds an operator in
guantum mechanics.(tablel.chapterl)
In other words Quantum-Mechanical Operators Represents Classical

—Mechanical variables

Postulate 3
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In any measurement of the observable associated with the operator A, the
only value that will ever be observed are the eigen value a, which satisfy the
eigen value equation

AY =a¥ 2)
Generally, an operator will have asset of eignfunctions and eignvalues
AY =a ¥

So in any experiment designed to measure the observable corresponding to

A, the only values we find are a;,a,,as,... The set of eignvalues {a_} of

operator A is called the spectrum of A.

As a specific example, consider the measurement of energy. The operator
corresponding to the energy is the Hamiltonian operator, and it is eign value
equation is given by

HY =E WY
The solution to this equation gives the LPnand En for the case of the particle
n°h?

— Smaz Postulate 3 sayes that if we measure the

energy of a particle in abox, we shall find one of these energies and no others.

 (n+1)?h?

(no such energies will founded &=n 3ma2 ).

in a box En

Postulste 4

If system is in state described by a normalized wave function 'Y then the
average value of the observable corresponding to is given by

(a)= [¥" Awdr
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Suppose that'¥ just happens to be an eignfunction of A; that is, suppose that
Y =¥ where

HY =E ¥

then

(a) = T‘P AW dr= T‘I’n*anTn dr =

O

anj‘Pn*\P dr=a

n n

5)

=00

Further more
(@)= [W AW dr=|¥ A(A\Pn)dr -
Ala ¥, )dr :TTn*an(ATn)dT =

j'\Pn*anz‘Pn dr =a °)

From Eqg. 5 and Eg.6 we see that the variance of the measurements gives

o’a = <a2> - <a>2 =0 (i.e they are the same)
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Thus as postulate 3 says that the only value that we measure is the

value an.
2-3 The Time-Dependence SchrOdinger Equation

Postulate 5

The wave function or state function of a system evolves in time according to
the time-dependent SchrOdinger equation

A .. oY
HWY(xt)=171—
(X ) ' ot 7)

again here with the use of method of separation of variables we reach to the
interesting solution of Eq.7

—1Et
Y(x,t)=w(x)e " 0

So if we use the relation E = hv = hw

Y(x,t)=w(x)e 9)

As the time independent SchrOdinger equation has a harmonic oscillation
with time, the time-dependent SchrOdinger equation has a harmonic
oscillation with time Yet the time-dependent SchrOdinger equation does not
have the same form as classical wave equation. SchrOdinger equation has a
first derivative of time, while the classical wave equation has a second
derivative in time. Nevertheless the SchrOdinger equation does have a
wavelike solution which is one reason why quantum mechanics is some times
called the wave mechanics.

There is asset of solutions to Eq. 7
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—iE t
n

LPn(X,’() =.(x)e " 10)

If the system happens to be in one of the eignstates given by 10
then

P, (X, 1) (X,1) = " (X (X) dX

Thus the probability density and the averages calculated from Eq.10 are

independent of time, and the ¥n (X) are called the stationary state wave
function

The stationary state wave function are of central importance in atomic and
molecular physics. and in later chapters we shall represent an atom or
molecule by asset of stationary energy states and express the spectroscopic
properties of the system in terms of transitions from one of the stationary state
to another. The Bohr model of the hydrogen atom a simple illustration of this
Idea.

A system is not generally in a state described by a wave function of
Eq.10.And the general solution of the time-dependent SchrOdinger equation
Is a superposion of it Eq.10

~iE t
¥, (x,t)=>Cuy,(x)e * 11)
" —iE t —iE t

1 2

Wh(x,t)= Cu//l(x)eT +Coyp2(x)e 7

and the probability density in this case is
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—IiE t —IE_t
1 2

P tO)Pn(x,t)=|C1rp1(x)e # +C 2y 2(x)e " |X

—IE t —iE_t
1 2

Cwyi1(x)e 7 +Coywa2(xX)e 7

:‘Czl‘v/*l(x)wl(x)+‘022_‘l//*2(X)l//z X) + |
C*l CZW*]_ (X)l//Z (X) exp M + C*Z Clw*Z (X)l//l (X) exp{@jl

The third and forth terms here contain time explicitly, so that
W (x,t)¥n(x,t) is not independent of time.

2-4 Hermitian Quantum-Mechanical Operators

All Quantum-Mechanical Operators Must Be Hermitian

Postulate 6

To every observable in classical mechanics there corresponds a linear
Hermitian operator in quantum mechanics.

All the operators in table 1 are Hermitian and that they satisfy the following

condition
12)

[f*Afdx= [ f A f*dx

Examplel

Prove that the kinetic energy operator is Hermitian
Solution:
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Example2:

Prove

O A 0 A

[f*Afdx= [fA*f*dx

—0Q0 —0Q0
Proof

In guantum mechanics the wave functions and operators generally are
complex, but certainly the eignvalues must be real quantities if they are
corresponds to the result of experimental measurements.

As from Eq.2 we have

A\

Ay =ay

multiply from left by l//* and integrate we find that
Iw*Ade:afl//*(//dX:a 13)

Now we take the complex conjugate of Eq.2

N
A*W*: a*w*: aw*
recognize that a is real . Multipling from the left by y and integrating

[w Ay *dx=a[yy*dx=a 14)
t_hen from Eq.13 and_Eq.14

[f*Afdx= [ fA*f*dx 15)
Prove:

Amore general definition of a Hermitian operator is

[g*Afdx= | f A*g*dx

where g and f are any two wave function.
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2-5 The Eignfunctions of Hermitian Operators are Orthogonal

Consider the two eignvalue equations

Awn = anyn , Aym = amym
We multiply the first by wm and integrate and then we take the complex conjugat
of the second and multiply it by wn ,then

[wm Apndx =an [wmpndx

[yn A*ymdx=am [ yoymdx

By subtracting the two eqauations

[wm Ayndx - [yn A*ymdx =(an —am) [wmyndx

because Ais Hermitian ,the left hand side here is zero and so we have

(an —am) [ympndx=0 16)
If n=m

The integral is unity by normalization and so we have

dn = a;
which is just another proof that the eignvlues are real

if n # m we have

(an —a’r;) J‘Wr’;WndX =0

L 17
[ympndx =0 :

A set of eignvalues that satisfies Eq.17 is said to be orthogonal
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A set of functions that are both normalized and orthogonal to each
other is called an orthonormal set and is expressed by

J'w’j‘a,ui dx = Sij 18)
. 1 I =]

The symbol Ai] is called Kronecher delta

So by now we come to the summery that: the quantum
mechanics operators are Hermitian and the Eigenvalues
of that Hermitian operators must be real and the
corresponding wave functions are orthogonal.

Example 3:

Prove that the wave function for a particle in a box is orthonormal.
Proof:

The wave function for a particle in a box is given by

2 4 . Nax
w,(X)=| — 5'”7 N=123,...........

a

: o 1 1
from the trigonometric identity, sinasin g = ECOS(O! ik ECOS(O! + /)
then

(Ejjsin %sin %dx = (E)j coswdx—(i)j C0S (n+m)7x dx
aj, a a a ) a a /g a
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Because n and m are integers so both integrands of the right-hand

i N i i i
side are of the form 00877ZX where N is an integer ,both integrals are
equal to zero if M # N If M = Nthen

2 fsin® M1
a /sy a

there for the wave function of the particle in the box it is orthonrmal.
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Chapter 3

The Harmonic Oscillator

For a mass m connected to a wall by spring of equilibrium length

|o A force was then applied to the spring to pull the mass to some
displacement x, so x=z—1,. The Newton’s equation with Hooks
law define the equitation of motion to be

d?z
mEZ_ k-1
ve (z-1,)
then s d’z _ d*x
en since —dt2 _—d'[2
d?x
mdt—2+ kXZO 1)

The solution to this equation is given by
X(t) = Asin wt + B cos wt

Kk )2
where @ = (%j =27y 2)
the initial velocity in this case is zero and so
x(0)=B and (%j = Acoswt =0
dt )i
And so

X(t) = B cos wt
From classical mechanics we know that the total energy of harmonic
oscillator is conserved and that

Bk

E=K+U = (Prove)
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3-1 The Equation of a Harmonic-Oscillator is a Model of a
Diatomic Molecule contains the reduced mass of the molecule

We are going to see later that the simple harmonic oscillator is a
good model for a vibrating diatomic molecule. The vibrating
diatomic molecule can be pictured by the system of two masses
connected by spring as shown in the Fig below

The two equation of motion, one for each

mass . M
1
m O|221—|<(z —z,-1)
1 a2 2 "4l 3)
d?z,
m =—k(z, -z, -1,)
2 dt? 2t R Z, Z,

Note that if z, —z; > |5, the spring is stretched and so the force on
mass m1 is toward the right and that on mass m2 is toward the left.
This is why the term in Eq.3 is positive and that in Eq. 4 is negative.
* |f we add Eq.3 to Eq.4

2 2 2
L % 2 dd% =V or jt_z(mlzl +My2,)=0 5)
This last term suggest that we introduce the center of mass

coordinate
mlzl + m222 mlzl + m222

m +M

7 = =
m; +m, M
Substituting in Eq.5 we get
d?z
M =0
dt?

This show that the center of mass moves uniformly in time with
constant momentum

*If we divide Eq.3 by m; and Eqg.4 by M, and then subtract them we
find
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__—:——(22 -1 —|o)—L(22 _Zl_lo)

> d> m m,
d(z, -z 1 1
GG ) B LN R
dt m m,
If . h (i+1):ml+m2:£
we recognize that m mm,  u
where 4 is the reduces mass and let x=12, —z; -1, , then we have
d*x kx =0
ot )

If we compare Equation 6 to equation 1 we find that the only
difference is that the the mass is expressed once as m and then as x

which mean that the two body system can be treated as easily as the
one body problem by using the reduced mass of the two body
system ..

3-2 The shrodinger equation of motion of harmonic
oscillator(harmonic oscillator in Quantum Physics)

The shrodinger equation for harmonic oscillator is
— h° %y
24 OX*

With U(x) = %kx2

E b L S R

This differential equation , however,  doesn't have constant
coefficients and so we cannot use the method of separation of
variables. In fact when a differential equation doesn't have constant

+U (X (X) = Eyw(X)
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coefficients there is no simple general technique for solving it and
each case must be studied individually. The wave functions of the
harmonic oscillator is given by

AL G :

q7 %2
Where & = (?j 9
1 a 7
And the normalization constant Nn = —(—j 10)
(2 m)2 7

And the Hn(a%x) are polynomials called the Hermite polynomiasl
where
H, (€)= (-1ye” e

n - n 11)

dg

The first few Hermit polynomials are listed below in table 1

H,(5) =1 H,(5)=2¢

H,(&) =457 -2 H,(&)=8&% -12¢

H,(£) =16&4 — 4852 +12 | Ho (&) = 328° —160£° +120&

The solution of the harmonic oscillator given by equation 8) is
associated with the energy restricted by the quantized value

12)

n=0,1,23,.
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KY? 1 (kY2
Where @ = (—j and vV = —(—j 13)
H 27\ u
Example 1
Find ¥, and
a) prove that it satisfy the quantum harmonic oscillator equation
of motion
b) prove that it is a normal wave functions
solution:
Substituting for n=0 into equation 8
%
(04 2
X)=| — e aX
W, (X) (ﬂj A Then

1
a) by substituting into equation 7) with E; = Ehwto obtain

2

OX? Az

%, —ax’? —ax’? 2 %' ~o’
(gj (azxze A—ae 4)+2’; ho KX (gj e 2 Z0
m el 2 2\«

(azxz—a)-l-[ﬂw—ﬂkxzjzo
h h

- Y
Using the fact that & = (h_zj and @ = [;] ,we see that every

thing cancel in the above expression.
* ow Yo 2\
b) I w2 (X)dx = (ﬁj j e dx = (ﬁ) (fj =1
S ) =, T a
3-3 The Harmonic oscillator accounts for the infrared spectrum
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A ccording to Eq.12 the vibrational energy levels of a diatomic
molecule are given by

_ n=0,1’2,....

A diatomic molecule can make a transition from one vibrational
state to another(model allows transition between adjacent energy
sates only) by absorbing or emitting electromagnetic radiation
whose observed frequency satisfied the Bohr frequency condition

Ry
AE:EN+1_EN:h(_] = NV,
U
y 1 (k) - 1 (kY?
obs — A~ | Vobs = —| —
Thust;z,u OR b27zc,u
Where
— 1 C
VObS:Z and Vobs:I
Example 2

The infrared spectrum of the molecule “Br*°F consists of an
intense line at 380 cm™.Calculate the force constant of the molecule.
Solution

K = (27CVans)2 12
And so

k =(27(3.0X10°m.s*)(3.8X10* m_l))z[

75X19
75+19

=129kg.s* =129N.m™
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3-4 Hermit polynomials are either Even or Odd functions
Recall that an even function is a function that satisfy the following
equation

f(x) = f(-x) (even) 14)
And an odd function is the function that satisfy the folloing equation
f(x)=—="f(-x) (odd) 15)

The even-odd property of a function is very important and special
property and that

1)the product of two even or two odd functios is an even function
2)the product of an even function with an odd function is odd
function.

3)The derivative of odd (even) function is even (odd) function.

4) | f (x)dx=0 for odd f(x) 16)

v (X) = Nan(a%xjemé
Appling this properties to the harmonic oscillator wave functuion

W (X) = Nan(a%xje_aX%

A) ¥ (X) is even when n is even number and odd when n is odd

number, Since odd

H,(6)=1 ™ H, (&) =2¢

H,(5)=4¢" -2 H, () =85> -126  °¢

H, (&) =16&* —485° +12 even | H¢ (&) =32E° —160&° ‘—1;1205

—Q 2 . .
And € is even function. / N /
(the properties 1 and 2)
jodd even
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B) Wr? (X) is an even function for all values of n.

C) anXWndX =0 (property 4)

D) J.Wml)”ndx =0 or more explicitly

o0

IHm(a%x)Hn(a%XJemde=0 m#n

From which we can show that ¥ ,(X) and ¥ ,(X) are orthogonal

3-4 The average kinetic Energy is equal to the average potential
energy of a harmonic oscillator

(x) = _[% (X)X, (X)dx =0 acoording to the property 4
Which say that the average internuclear separation is the equilibrium

bond length Io :

The average momentum

(p)= Tl//n (x)(— in %}y (X)dx =0

acoording to the properties 3 and 4

(&) e (2 ) 2 2
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a X —ax? d? ) -

<p2>: - je 4_;—12_2 e 2 dy =
T) dx

(2] oo 2 b e )

1

_ ha _ h(,uk)E
2 2
W :
AL
For the case of n=1 py(X) = [E) (20‘ 2x)e 2
3h
and <X2> == 1
2(,uk)2

the two results for <X2> suggest that

Also for (p°) = h(uk)i(n +%j

mhen o202 = (7)) < (n+ 1)

Which is in accord to the Uncertainty principle of Heisenberg
1

(-1 o305

2 %
2\ ko, h(k 1\ & 1) E,
<U(X)>:<T>:§<X >::E Zj (ME - zw('“?j: 2

Then we can say that the total energy is equally distributed between
the Kinetic and the potential energy.
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Chapter 4
Three Dimensional systems

4-1 The Problem of a Particle in a Three-dimensional Box is a
simple Extension of the One- dimensional Case

For the case of a three-dimensional version of a particle in a box the particle is
confined to lie within a rectangular parallelepiped with sides of lengths a, b, c.
The shrodinger equation is given by

ZA

b
c
v > X
a
y/

—h?(0%w oO%w O’w 0<x<a

2m [6x2 N oy*? T o2 =By (X ¥.2) ooy 1)
0<z<c

The wave function y(x,y,z) satisfies the boundary condition that it vanishes at
the walls of the box, and so

w(O, y,Z)=l//(a, y,z):O Forall y and z
W(x,O,z):y/(x,b,z)zo For all x and z
w(x, y,O) = 1//(x, Y, c) =0 For all xand y

With the use of method of separation of variables

w(xy,2)=X(xV(y)2(2) A)

to solve Eqg.1 we write
_hZ Xﬂ_hZ Y”_hz Z”_E
2m X 2myY 2m Z
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the three terms of the equation is a function of only x,y,z. Therefore,
where each term must be a constant to be valid for all values of x, v,
or z. Thus

E,+E,+E,=E

Where E,,E,,E, are constants given by

2 ”
_mXx e
2m X
2 "
_MY _E
2my 2
2 "
LN S
2m Z

Satisfying the boundary conditions

z

X(0)=X(a)=0
Y(0)=Y(b)=0
Z(0)=2(c)=0

Following the same development as in the one dimensional case

X (x)= A, sin ”x;’( =123,

Y(y)= A, sin nybﬂy N,=1,2,3,..........

3)
74

Z(z)= A, sin—"

C

According to the Eq.A the solution of Eq.1 is given by

. nXﬂX . nyﬂy . nZﬂ'Z
w(%y,2)= AA A, sin - sin - sin :

The normalization constant A, A, A, is found from
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c

jdxidyjdzw*(x, v, 2l (x,y,2)=1

0

8

b
AA A = — icle |
x My Mx (abcj one particle in abox

Thus the wave function of a particle in three-dimensional box is given by

4)

If we substitute Eqg.4 into Eq.1 we can find

5)

4-2 The average position of a particle in a three dimensional box
Is at the center of the box
The position operator in three dimensions is

R=Xi+Yj+Zk
and the average position is given by

<r> = i dxj dyj dzy *(x, y, z)ﬁz//(x, y,2)=1(x)+i(y) +k(z)

Let us evaluate (x) first using Eq.4 we have

BRI e NS

0

The second and the third integrals are unity by normalization conditions of a
particle in one-dimensional box. The first integral is just (x) for a particle in

one dimensional box (x) = %. The calculations for (y) and (z) are similar and

we see that
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a. b. c
<r>—51+§]+§k

part 1

Thus The average position of a particle in a three dimensional box is at the

center of the box.

4-3 The average momentum of a particle in a three-dimensional box

IS zero (prove)

f’z—ih[a 1+ o J+ ak]
OX oy oz

(P)= T dxi dyj dzy *(x, y,2)Py(x,y,2)=0

0 0 0

4-4 Degeneracies of the energy levels for a particle in a three-

dimensional box

An interesting feature of a particle in a three-dimensional box
Occurs when the sides of the box is equal such that a=b=c. In such case

And so the lowest level here is nondegenerate
3h 12h

Z 4

A

B = 8maZ # By = W y
but the second level is threefold degenerate (degeneracy arises because of
symmetry)
6h
E112 = E121 = E211 ~ 5. 2
8ma
(n n.n ) Degeneracy
19
18
16
14 (321)(312)(231)(132)(123)(213) O
12 (222) !
11 (311)(131)(113) 3
9 (221)(212)(122) 3
6 (211)(121)(112) 3
3 (111) 1
0
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It is a general theorem in quantum mechanics. That degeneracies are the
results of underlying symmetry and that degeneracies are lifted when the

symmetry is broken.
4-5 If the Hamiltonian is separable then its Eignfunction is a product of

simpler Eigenfunctions

Consider the simple case in which we say that the Hamiltonian is separable in
the case of two coordinates

H = H,(x) + Ha(y) 6)
with

Hy(xy)=Ep(xy) 7)
H, v, (X)= E, v, (X) 8)

I_/I\z v, (Y)=E,yw,(y)

Substitute Eq.8 into Eq.7 to obtain

()= s H, o 0w ()= A s w004 F2 s 0w )
Because H,(X) operates only upon w,(x) and I—?Z(y) operates only upon
l/IZ(Y), we can write

H oy (X, y)

=y, (y) . v, (X)) 4y, (%) H > v (y)
= E; l//z(y)l//l(x)+ Ezl//l(x) |:| 2 l//Z(y)
= (El -+ Ez)Wz(y)V/l(x)

— Eyw(x,y)

Thus we reach that if H is separable, that is, if H can be written as a sum of
independent terms involving separate coordinates, then the eigenfunction of
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H isa product of the Eigenfunctions of H: and H 2 and the eignvalues is

the sums of the eigenvalues of H1 and H 2.

Example 1
Consider a two dimensional harmonic oscillator whose potential energy is

given by
U(x,Y) T y?
2 27
Derive the wave functions and the energy levels of the system.

Solution
The Hamiltonian for this system is

2 2 2
—h (8 o j+%kxx2+%kyy2

H = +
2u \ ox®  oy?

And so H is of the form

fohh,

52 2 Y 2
_h — +1kxX2 + _h 8_2 +lkyy2
21 \ OX 2 2u \ oy 2
Since the Hamiltonian is separable then

w(xy) =y, (xw,(y)  and E=E, +E,

using the results of th3e harmonic oscillator in the last chapter then

E= hvx(nX +%j+ hvy[ny +%j

Where

1 (k) 1 (k)"
VvV = | X 1% :__y
X or 1 and yooor L

and the wave functions are

Y, (X’ Y) =V, (X)‘Vny (Y) Where
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T

WWW%=( - “ %H Q%%Y%ﬂ%{

2" |)y2 4 v
ny'

4-6 System of two particles

5
V=l - 7 [“j H (o Yok

For a system of two particles that interacting through a potential energy that
depends only on their relative separation. If we let X,Y and Z be the center of
mass coordinates and X,y and z be the relative coordinates , then the total
energy of the system is given by

Ez%[)(Z +Y2+zz)+§(x2+y2+22)+U(X,y,Z) 10)

this equation can be written in terms of momenta rather than velocitis

1 1
E=——(P’+P’+P’ )+ —(P?+P’+P?)+U(x,Yy,z
ZM( y z) 2/,!()( y z) ( y ) 11)

X

The quantum mechanical Hamiltonian operator corresponding to it is given by
A —hP( PP 0° o° \-n*(o* o*° ©&°
H = + + + + +U(X,y,2
2M (ax2 oY? azzj 2 Lax2 % 8x2] (%) 12)
and we can see that this equation is separable and can be written as

H=H,(X,Y,Z)+H:2(X,Y,2) 13)
where

n —hz (92 52 82 2 2 2 2

- + 2. T i
2M (axz oY? aZZJ and H:2= 2 (axﬁax”axZ}U(X’V’Z)

Consequently, the total wave function for this motion factors into
W(XY,Z,X Y, 2) = Wi (XY, Z) (%, Y, 2) 14)
and the total energy is

E= Etrans + Erel 15)
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trans stand for translation of the center of mass and rel stands for relative
motion. The transnational motion represents just the rectilinear motion of the
center of mass ans is of no interest. The interesting part is the relative motion
which is governed by the potential energy U (x,vy,z).

The shrodinger equation for the relative motion is given by

“n2( o> 0% o°
U(x,y,z X, ¥,2)=Ew(X,Y,Z
(2;: (6x2+8x2+6x2j+ (X, y )Jw( y,2)=Ew(XY,2)

or
2

—h
2—V2W+UV/=EV/ 16)
u

ok o° ok ) )
Where the VZ = [ + + j is the Laplacian operator To

ox®  ox*  ox?
convert V2 in spherical coordinates we need the equations that relates
Cartesian coordinates and spherical coordinates
A Z
X =rsindcos¢g

y=rsiné@sing

Z=rcosd

"~ x=rsinfcosg

, 10,0 1 0. ,0 1 0
Vie—S—|Ir"—| +5——|siN0—| +—5—— > 17)
reor\ or),, r°singad 00)., r-sin"0\o¢° ) ,
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4-7 Rotating diatomic molecule

The model of rotating diatomic molecule is represented by two point masses
m; and m, at fixed distances r; and r, from their center of masses,

Center
of mass

/

my Iy
my

Because the distance between the two masses is fixed, this model is referred to
as rigid rotator model. Although the diatomic molecule vibrates as it rotates,
the vibrational amplitude is small compared to the bond length, and so it is a
good approximation to consider the bond length to be fixed.

According to the theorem concerning center of mass and relative coordinates,
we can treat a rigid rotator as having one mass fixed at the origin with another
mass( the reduced mass . )rotating about the origin at affixed distance r.

mrn = m,h, 18)
r=r+r, 19)
ml ml
m1 + m2 m1 + m2

The kinetic energy of the rigid rotator is

21
K= % mo2 + % m,v7 )

Where v, =hw and U, =hLw 22)
where ¢ is the angular velocity.

1 1
K = > m, r’w? +5m, rw®

= %[mlrf +% m,r, ja)z

Substituting for r, and r, from above and with the use of the
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m,m

,Ll — 1772

m, +m,
Then the kinetic energy can be written as

1
k == lw?

> 23)
Where | = yl’zis the moment of inertia.
The angular momentum is given by
L=1Ilw 24)

And then we can write the kinetic energy in terms of the angular momentum is
given by

L2
K =— 25
21 )
The Hamiltonian operator of a rigid rotator is just the Kinetic energy operator
Py 26
="y )
21

Because one of the two masses of a rigid rotator is fixed at the origin we shall
express vZin spherical coordinate

A _ 2 2
H = f {—_1 i(siné?iJ+—_ 12 [a—zﬂ 27)
2l |sin@ 06 00) sin“ 0\ o¢

As we can see that there is no term in the Laplacian operator involving the
partial derivative with respect to r. This is because r is fixed in the rigid rotator
model.

e Lﬁ(sinei}L o 28)
siné 06 06 ) sin®@\ 0¢*

The orientation of a rigid rotator is completely specified by the two angels 6
and ¢, and so the rigid rotator wave function depend on these two variables.

The rigid rotator wave function are customarily denoted by Y(6,¢), and so the
shrédinger equation for a rigid rotator reads

HY(6,4)=EY(0.9)

Dr.Nada Elzein Eisa Page 43



Dr.Nada Elzein Eisa Quantum Mechanics 2 part 1

Ll { L o (s|n9i)+ = (822]}Y(0,¢)=EY(9,¢) 29)

21 |sin@ 00 06) sin®0\ o¢
If we multiply the equation by sin? ¢ and let g _zhl—E we find the partial
differential equation

0 (o av(e,¢)j %Y (6,9) -, ~
smeag(sme = +( Pye + fBsin? &Y (8,4)=0 30)

To solve the partial differential equation we use the method of separation of
variables

Y (O,9) =OO)D(sH) 31)

If we substitute into Eq.30 Above and then divide by ®(8)D(¢), we find
H 2

ﬂi(sinQOI—@jJrﬁsinz¢9+Ld quo 32)

0(0) do dé D(p) dg

Becuse €2 and < are independent variables, we must have that

Sin 9 i(sin ¢9d—®j + fsin® @ = m? 33)
e©) do do
o(g) dg

and m? is a constant.
The solution to the Eq.34 is relatively easy

O(g) = A,e™ and 35)

O(p) = A e

The requirement that @(y) is continuous

(¢ +27) = D(¢)

By substituting into the above two equations we find that

Am |m ¢+27r Amelm¢
A_me—lm(¢+2;z) _ A_me_im(¢)
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From the two equations, it implies that

e—|27zm — 1

In terms of sine and cos

cos(2zm)=+isin(2zm)=1

Then it implies that m=0,£1,+2,+3 ......... because cos(22zm)=1 and
sin(2zm)=0 for m=0,£1,+2,4+3,........

The two equations above can be written in the form

_ img
D(g) = Ane m=0+1+2,43 .. . 36)
Example:
1

Prove that the normalization constant A, = A

(27)
When Eq.33 is solvedit turns out
p=101-1) 1=012,..... 37)
Using the definition of g = Zhlf then

hZ

E =2;10-1) 1=012,... 38)

The differential equation (Eq.33) for ©(#) is not easy to solve and like the
solution of vibrating molecule (Hermite’s equation),the solution is obtained by
power series method. To solve Eq.33 it is convenient to let x=cos® and let
0(9)=P(x). Eq.33 then becomes
m2
X

(1—x2)(:ji|:—2x?j—z+[l(l+l)—l_ 2Jp(x)zo 39)

We have used the fact that g =1(1 +1). The above equation is known as
Legendre's Equation. The solution to this equation is determined according to
the value of m

If m=0

The solutions are known as Legendre's polynomials and are denoted by

P, (x) The first few Legender Polynomials,

P.(x)=1

P(x)=x

Dr.Nada Elzein Eisa Page 45



Dr.Nada Elzein Eisa Quantum Mechanics 2 part 1

P,(x) = (3x2 —1)

P,(x) == (5x° —3x)

[P -

—

P4(X) =

5 (35x* 30" +3)

Example
Prove that the first Legender polynomials satisfy Eq.39.

Example
Prove that the Legender polynomials are normalized by the general relation

[ xp, () p, (00 = [ dosin ép c0s6) , c03) = 2 -,

As you see the factor dé@sin@ is the “ @ “part of the spherical dz =r?sin&rdadg
And that the normalization constant of p, (x)

% 40
N = (2| +1) )
2
If m#0
The solution is known as the associated legendre functions denoted by
PI" (x) = [L-x? )‘m% :— P, (X) 41)
X

The first few associated legendre functions are listed below

P’(x)=1

P°(x) = x=cosé

PH(x) = %(1— xz)% =sing

Py (X) = %(3x2 —1): %(30032—1)

Py (X) = 3x(1— xz)% =3cosdsind

PZ(x) =3(1-x?)=3sin? 0

P (X) = %(Sx3 - 3x): %(5&:053 0 —3cos0)

P (x) = g(sz —1)(1— xz)% = g(Scos2 0 -1)sin@

P/ (x) = 15x(1— x2)= 15cos@sin® 6

P?(x) =15(1— x*)’* =15sin?
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Example
Prove that P! and P; are orthogonal.

Example

Prove that the Legender polynomials are normalized by the general relation
! : 2 (1+[m])

[ dxpl™ () p" () = [ do'sin &p)" (cos 0) p," (cos 0) = —— S

% ’ 21+1 (1 —|m|

As you see the factor d@sin@ ,is the “ @ “part of the spherical dz =r?sin &rdadg

And that the normalization constant of p, (x)

)T
[ ?

Returning to the original problem now, Eq.31 the rigid rotator wave function
Y (0, 9) = ©(0)D(#) = B (cos 9) D (#)

43)

The first few spherical harmonics rotators is listed in the table below. In
summary the shrodinger equatoion for a rigid rotator is

44)

2

With Ifl given by Eq.27. Since from Eq.28 IA_ differs from Ifl by the constant factor 21
only then

45)

That is to say the square of the angular momentum can have only the values
given by

1=012,3,....... 46)

el
Y. = (ij cosd

3V .
Y= (—) sin &'
87
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% _
j singe™’

%
j 3cos? 60— 1

2
sin@cos '’

/_\\
o | e

|_\
k)

v (

Y, =

h
| =
\_/

b .
Y, = (Ej sin@cos G
87

b _
Y, =(—15 j sin® ge?"?
327
% _
Y, % = (ﬁ) sin® ge "
32z

Rigid rotator angular momentum

Classical Quantum Quantum
definition | operators definition
AngLIIar lx =Yp, _Zpy |/:X —ih(yi—ziJ
momentum (r oz oy
Xp)
l, = pr - sz |
’ Ly — ih[zi— xij
X oz
Iz = Xpy — YPy |/:
z o o
- |h(x—— y—]
oy oX

It is straightforward to convert the partial differentiation into spherical coordinates to
obtain

IA_X =—ih —singbi—cotecosqﬁi
00 o¢

A ) 0 .0
Ly =—Ifi| —coS¢——cotdsing—
y [ ¢80 ¢8¢j 47)

I/:z :—ii’-li

0¢

The last one of equation 47 is simple and appling the equation 45 we find
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o . o™ -
L.(e™ )= —ih——=mne™

(e ) | o0 m#e 48)
L. ,,(4)=mhd, (¢) 49

This Equation shows that the only possible values that L. can be observed to have are
2

integral multiples of 7. It also show that Y," (6, #) are eignfunctions of L. aswell asL
('see Eq. 45),which emplies that the two operators commute or

A 2 A
{L : Lz} =0 (Prove)
It follows from EQ.50 that

2

L. Y™ (0,6) = m*h2Y," (4, 6)

And because

2 Y,"(0,4) = 1211 +1)Y," (6. 9)
And

L = L5+ L5 +L3

then

2 2 2,2

L —L. V\"(0,0) =| La+Ly [Y,"(6,8) = [1(1 +1)—m? }12Y," (0, 9) 51)

2 2 2 2
Thus, the observed values of L+ L, are[I(l +1)—m? }z?, and since L.+ L is a sum of two
squared terms, it cannot be negative z
I(1+1)-m? > >0
[( ) }’ , V2n\:
or thatl(l +1)>m !
and [m| <l —> m=041+2+3,.......,I 52)
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For the case of | =1, m=0,+1 and so

LY, (0.4) = 202, (6,4) = |L| = (L2) 2 =20
53)

L:Y,"(6,¢) =mhY,"(0,4) = L. =—h,0,+h
Note that the maximum value of Lz is less than |L| ,which implies that L2 cannot point in
the same direction as L. This is illustrated in the above figure which shows L: =/ and

|L| = /27 .This result might be familiar with the condition of the magnetic quantum number
of the hydrogen atom.
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